public class WeibullDistribution extends ContinuousDistribution
| Meaning: | The Weibull distribution is often used to model internet traffic because of its heavy tail. |
|---|---|
| Parameters: |
|
| PDF: | P(T=t) = f(t) = \alpha \cdot \beta^{-\alpha} \cdot t^{\alpha -1} \cdot exp(-(\frac{t}{\beta})^{\alpha}) \mbox{ for } t>0 |
| DF: | P(T \le t) = F(t) = 1- exp(-(\frac{t}{\beta})^{\alpha}) \mbox{ for } t>0 |
| Expected value: | E[T]= \frac{\beta}{\alpha} \cdot \Gamma(\frac{1}{\alpha}, whereas \Gamma(x) is the gamma function |
| Variance: | VAR[T]= \frac{\beta^2}{\alpha} \cdot \left\{ 2\Gamma(\frac{2}{\alpha}) - \frac{1}{\alpha} \cdot \Gamma(\frac{1}{\alpha})^2 \right\} |
| Coefficient of variation: | c_T= \sqrt{\frac{2\alpha\Gamma(\frac{2}{\alpha})}{(\Gamma(\frac{1}{\alpha}))^2} -1} |
| Parser example: |
[...].Distribution = Weibull
|
| Modifier and Type | Field and Description |
|---|---|
double |
alphaReciprocal |
double |
beta |
rngCREATE_INSTANCE_METHOD_NAME| Constructor and Description |
|---|
WeibullDistribution(double alpha,
double beta) |
WeibullDistribution(double alpha,
double beta,
RandomNumberGenerator rng) |
| Modifier and Type | Method and Description |
|---|---|
static WeibullDistribution |
createInstance(SimNode ownNode,
Parameters pars,
RandomNumberGenerator rng)
as required by
ReflectionConstructable |
double |
next()
Create random numbers
|
getDefaultRNG, getRandomNumberGenerator, resetpublic WeibullDistribution(double alpha,
double beta,
RandomNumberGenerator rng)
public WeibullDistribution(double alpha,
double beta)
public static WeibullDistribution createInstance(SimNode ownNode, Parameters pars, RandomNumberGenerator rng)
ReflectionConstructablepublic double next()
ContinuousDistributionnext in class ContinuousDistribution