public class CondMeanStatistic extends Statistic implements ReflectionConstructable2<SimNode,Parameters>
CondMeanStatistic is derived from
StdSampleStatistic and offers the
possibility to obtain a mean value statistic conditioned on a value
(conditioner). The calculation of the bucket widths and the access to the
buckets is controlled by a derived class of
BucketUtility.
CondMeanStatistic has three constructors: one using
LinBucketUtility, one using
LogBucketUtility and one constructor
using default and either
LinBucketUtility or
LogBucketUtility, depending on the
value set as default for meanBucketSize. Upon construction the
parameters minimum value, maximum value and number of
buckets are required for the first two constructors and are passed to a
derived class of BucketUtility. As
LogBucketUtility additionally requires
a mean value for the bucket size, this parameter is also required upon
construction of CondMeanStatistic using buckets of logarithms
growing size. The third constructor needs no special parameters besides
name and owner. getMean(int)
getDeviation(int)
getCoefficient(int)
getMeanConfidenceInterval(int)
getDeviationConfidenceInterval(int)
getCoefficientConfidenceInterval(int)
getMaximum(int)
getMinimum(int)
For printing the results it defines the following keywords:
| Modifier and Type | Field and Description |
|---|---|
protected BucketUtility |
bucketUtility |
protected StdSampleStatistic |
overallStatistic |
protected ikr.simlib.statistics.sample.CondMeanStatistic.ConditionalBucket[] |
statistics |
sampleIndex, simNode, traceWriterCREATE_INSTANCE_METHOD_NAME| Constructor and Description |
|---|
CondMeanStatistic(double min,
double max,
int noOfBuckets,
SimNode ownNode)
Creates the mean value statistic using a
LinBucketUtility as
conditioner. |
CondMeanStatistic(SimNode ownNode,
BucketUtility bucketUtility)
Creates the mean value statistic using a user-defined
BucketUtility as conditioner. |
| Modifier and Type | Method and Description |
|---|---|
void |
computeMeasures(int batchNumber) |
static CondMeanStatistic |
createInstance(SimNode ownNode,
Parameters pars)
as required by
ReflectionConstructable |
double |
getCoefficient(int index) |
double |
getCoefficientConfidenceInterval(int index) |
double |
getDeviation(int index) |
double |
getDeviationConfidenceInterval(int index) |
double |
getMaximum(int index) |
double |
getMean(int index) |
double |
getMeanConfidenceInterval(int index) |
double |
getMinimum(int index) |
void |
resetBatchStatistic()
only between batches
|
void |
resetStatistic()
reset complete statistic
|
void |
update(double condentiator,
double sample) |
addResultTag, addResultTag, disableTracing, enableTracing, handleInitSimulation, handleStartBatch, handleStartTransientPhase, handleStopBatch, handleStopTransientPhase, printComments, update, writeTraceEntryprotected final StdSampleStatistic overallStatistic
protected final ikr.simlib.statistics.sample.CondMeanStatistic.ConditionalBucket[] statistics
protected final BucketUtility bucketUtility
public CondMeanStatistic(SimNode ownNode, BucketUtility bucketUtility)
BucketUtility as conditioner.LinBucketUtility,
LogBucketUtilitypublic CondMeanStatistic(double min,
double max,
int noOfBuckets,
SimNode ownNode)
LinBucketUtility as
conditioner.public static CondMeanStatistic createInstance(SimNode ownNode, Parameters pars)
ReflectionConstructablepublic void computeMeasures(int batchNumber)
computeMeasures in class Statisticpublic void resetBatchStatistic()
StatisticresetBatchStatistic in class Statisticpublic void resetStatistic()
StatisticresetStatistic in class Statisticpublic void update(double condentiator,
double sample)
public double getMean(int index)
public double getDeviation(int index)
public double getCoefficient(int index)
public double getMeanConfidenceInterval(int index)
public double getDeviationConfidenceInterval(int index)
public double getCoefficientConfidenceInterval(int index)
public double getMaximum(int index)
public double getMinimum(int index)