public class CondMeanStatistic extends Statistic implements ReflectionConstructable2<SimNode,Parameters>
CondMeanStatistic
is derived from
StdSampleStatistic
and offers the
possibility to obtain a mean value statistic conditioned on a value
(conditioner). The calculation of the bucket widths and the access to the
buckets is controlled by a derived class of
BucketUtility
.
CondMeanStatistic
has three constructors: one using
LinBucketUtility
, one using
LogBucketUtility
and one constructor
using default and either
LinBucketUtility
or
LogBucketUtility
, depending on the
value set as default for meanBucketSize. Upon construction the
parameters minimum value, maximum value and number of
buckets are required for the first two constructors and are passed to a
derived class of BucketUtility
. As
LogBucketUtility
additionally requires
a mean value for the bucket size, this parameter is also required upon
construction of CondMeanStatistic
using buckets of logarithms
growing size. The third constructor needs no special parameters besides
name and owner. getMean(int)
getDeviation(int)
getCoefficient(int)
getMeanConfidenceInterval(int)
getDeviationConfidenceInterval(int)
getCoefficientConfidenceInterval(int)
getMaximum(int)
getMinimum(int)
For printing the results it defines the following keywords:
Modifier and Type | Field and Description |
---|---|
protected BucketUtility |
bucketUtility |
protected StdSampleStatistic |
overallStatistic |
protected ikr.simlib.statistics.sample.CondMeanStatistic.ConditionalBucket[] |
statistics |
sampleIndex, simNode, traceWriter
CREATE_INSTANCE_METHOD_NAME
Constructor and Description |
---|
CondMeanStatistic(double min,
double max,
int noOfBuckets,
SimNode ownNode)
Creates the mean value statistic using a
LinBucketUtility as
conditioner. |
CondMeanStatistic(SimNode ownNode,
BucketUtility bucketUtility)
Creates the mean value statistic using a user-defined
BucketUtility as conditioner. |
Modifier and Type | Method and Description |
---|---|
void |
computeMeasures(int batchNumber) |
static CondMeanStatistic |
createInstance(SimNode ownNode,
Parameters pars)
as required by
ReflectionConstructable |
double |
getCoefficient(int index) |
double |
getCoefficientConfidenceInterval(int index) |
double |
getDeviation(int index) |
double |
getDeviationConfidenceInterval(int index) |
double |
getMaximum(int index) |
double |
getMean(int index) |
double |
getMeanConfidenceInterval(int index) |
double |
getMinimum(int index) |
void |
resetBatchStatistic()
only between batches
|
void |
resetStatistic()
reset complete statistic
|
void |
update(double condentiator,
double sample) |
addResultTag, addResultTag, disableTracing, enableTracing, handleInitSimulation, handleStartBatch, handleStartTransientPhase, handleStopBatch, handleStopTransientPhase, printComments, update, writeTraceEntry
protected final StdSampleStatistic overallStatistic
protected final ikr.simlib.statistics.sample.CondMeanStatistic.ConditionalBucket[] statistics
protected final BucketUtility bucketUtility
public CondMeanStatistic(SimNode ownNode, BucketUtility bucketUtility)
BucketUtility
as conditioner.LinBucketUtility
,
LogBucketUtility
public CondMeanStatistic(double min, double max, int noOfBuckets, SimNode ownNode)
LinBucketUtility
as
conditioner.public static CondMeanStatistic createInstance(SimNode ownNode, Parameters pars)
ReflectionConstructable
public void computeMeasures(int batchNumber)
computeMeasures
in class Statistic
public void resetBatchStatistic()
Statistic
resetBatchStatistic
in class Statistic
public void resetStatistic()
Statistic
resetStatistic
in class Statistic
public void update(double condentiator, double sample)
public double getMean(int index)
public double getDeviation(int index)
public double getCoefficient(int index)
public double getMeanConfidenceInterval(int index)
public double getDeviationConfidenceInterval(int index)
public double getCoefficientConfidenceInterval(int index)
public double getMaximum(int index)
public double getMinimum(int index)