public class BetaDistribution extends ContinuousDistribution
Meaning: |
|
---|---|
Parameters: |
|
PDF: | \(P(T=t) = f(t) = \frac{t^{\alpha_1 -1} \cdot (1-t)^{\alpha_2
-1}}{B(\alpha_1 , \alpha_2)} \mbox{ for } 0 < x < 1 \), whereby \(B(x,y)\) is the Beta function |
DF: | No closed form of the distribution function (except for special cases) |
Expected value: | \(E[T]= \frac{\alpha_1}{\alpha_1 + \alpha_2}\) |
Variance: | \(VAR[T]= \frac{\alpha_1 \cdot \alpha_2}{(\alpha_1 + \alpha_2)^2 \cdot (\alpha_1 + \alpha_2 +1)}\) |
Coefficient of variation: | \(c_T= \sqrt{\frac{\alpha_1}{\alpha_2 \cdot (\alpha_1 + \alpha_2 +1)}}\) |
Parser example: |
[...].Distribution = Beta
or with the mean value and variation coefficient:
[...].Distribution.Mean = 0.33
|
Modifier and Type | Field and Description |
---|---|
GammaDistribution |
gamma1 |
GammaDistribution |
gamma2 |
rng
CREATE_INSTANCE_METHOD_NAME
Constructor and Description |
---|
BetaDistribution(double alpha1,
double alpha2) |
BetaDistribution(double alpha1,
double alpha2,
RandomNumberGenerator rng) |
Modifier and Type | Method and Description |
---|---|
static BetaDistribution |
createInstance(SimNode ownNode,
Parameters pars,
RandomNumberGenerator rng)
as required by
ReflectionConstructable |
double |
next()
Create random numbers
|
getDefaultRNG, getRandomNumberGenerator, reset
public final GammaDistribution gamma1
public final GammaDistribution gamma2
public BetaDistribution(double alpha1, double alpha2, RandomNumberGenerator rng)
public BetaDistribution(double alpha1, double alpha2)
public static BetaDistribution createInstance(SimNode ownNode, Parameters pars, RandomNumberGenerator rng)
ReflectionConstructable
public double next()
ContinuousDistribution
next
in class ContinuousDistribution