

To Session or not to Session

Session Concepts in Currently Emerging Future Networks

Michael Scharf, Marc Necker, C. Gauger, B. Gloss, C. Hauser, J. Jähnert, S. Kiesel, M. Köhn, P. J. Kühn, A. Reifert, D. Sass {marc.necker | michael.scharf}@ikr.uni-stuttgart.de

6th Würzburg Workshop on IP: "Visions of Future Generation Networks" August 1, 2006

Outline: • To session in general

- Pros and cons of sessioning
- To session in particular

Traditional Network Design Principles

Internet

Telecommunication networks

- End-to-end argument: Intelligence is located in the end-nodes
- ISP provides bitpipe only
- Open to many new services
- ➡ User centric design

- 3rd 3rd party 3rd party party 3rd party Core Network Carrier T P WLAN Contract Core Network Carrier V
- Operator control: Intelligence is located in the network
- Closed network, usage-based charging
- Well-standardized services
- Operator driven / network centric

Current Trends

AII-IP Networks ...

Institute of Communication Networks and Computer Engineering

Current Trends

All-IP Networks ... Under Full Operator Control

➡ NGN architectures of 3GPP, ETSI, and ITU-T: IP Multimedia Subsystem (IMS), TISPAN, ...

Institute of Communication Networks and Computer Engineering

Current Trends

All-IP Networks ... Under Full Operator Control?

➡ NGN architectures of 3GPP, ETSI, and ITU-T: IP Multimedia Subsystem (IMS), TISPAN, ...

Institute of Communication Networks and Computer Engineering

State semantics

Institute of Communication Networks and Computer Engineering

State semantics

Institute of Communication Networks and Computer Engineering

Institute of Communication Networks and Computer Engineering

University of Stuttgart

Institute of Communication Networks and Computer Engineering

Institute of Communication Networks and Computer Engineering

AND PROPERTY AND PROPERTY.

A GARTS AND AND AND

Institute of Communication Networks and Computer Engineering

Lifeline of Network State

Institute of Communication Networks and Computer Engineering

Lifeline of Network State

Institute of Communication Networks and Computer Engineering

Lifeline of Network State

Institute of Communication Networks and Computer Engineering

Pros and Cons of State in the Network

Reasons beyond QoS!

Institute of Communication Networks and Computer Engineering

Mobility

Mobility Management

• Mobile IP: End-to-end solution

Institute of Communication Networks and Computer Engineering

Mobility

Mobility Management

- Mobile IP: End-to-end solution
- Cellular networks: Highly stateful

Resource Management

 Challenge: Common resource management for heterogeneous networks

- Needs to be network driven, or at least network assisted
- ➡ Optimal resource management requires session information

state needed

Research Issues

- Architectures and protocols for holistic resource management
- Mobility management across heterogeneous access networks
- Cross-layer indications (e.g., for adaptive applications)

Availability

Distributed Denial-of-Service Attacks (DDoS)

- Serious problem in today's Internet
- DDoS countermeasures
 - Massive overprovisioning and replication (e. g., content delivery networks)
 - 2. Protection by packet filters and firewalls
- Possible solution: Per-flow access control by firewalls
 state needed
 - Packet filters or firewalls at domain boundaries
 - Blacklist or whitelist approach possible

Reseach Issues

- Interaction with session signaling protocols (e.g., SIP)
- "Path-coupled" vs. "path-decoupled" firewall signaling

Privacy

•

Problem 1: Topology Hiding

- Non-disclosure of internal network details
- Requirement by operators
- Signaling filtering state
 needed
 - Research issue: Interdomain-operation with limited knowledge

Domain A

Domain B

Privacy

Problem 1: Topology Hiding

- Non-disclosure of internal network details
- **Requirement by operators**
- state Signaling filtering

From: A

To: B'

Domain A

Problem 2: User Location Privacy

- Hiding of sensible user data (e. g., IP address)
- Address mapping, e. g., by network address port translation (NAPT), JAP
- **Requires session state at intermediary anonymizers** needed

Sender

- "Feature": May prevent end-to-end communication by users (P2P)
- **Research issue: Interworking with end-to-end protocols**

Institute of Communication Networks and Computer Engineering

Domain B

From: A'

Desti-

nation

To: B

state

Anonymizer

A→A'

 $B \rightarrow B'$

p in the installed

Privacy

Problem 3: Anonymity

• Usual trust model: Network operator is fully trusted

- But: Aggregation of knowledge at operator raises privacy issues
- More and more operators and service providers
- Internet does not only span democratic countries
- Anonymity can achieved by encryption and multiple anonymizers

Information is encoded in packets, no state in anonymizers

- Research issue: Preventing inference by cooperation, ...
 - ► Protection of user *against network operator*

Institute of Communication Networks and Computer Engineering

Future Generation Networks

The Raise of ...

Institute of Communication Networks and Computer Engineering

Future Generation Networks

The Raise of Session Border Controllers (SBC)

Institute of Communication Networks and Computer Engineering

Future Generation Networks

The Raise of Session Border Controllers (SBC)?

IMS/TISPAN/... as "one-does-it-all" solution?

Institute of Communication Networks and Computer Engineering

Conclusion

Institute of Communication Networks and Computer Engineering