Experiences with Implementing
Quick-Start in the Linux Kernel

Michael Scharf <michael.scharf @ikr.uni-stuttgart.de>
Haiko Strotbek <haiko @ strotbek.com>

University of Stuttgart, Germany

IETF 69 - TSVAREA - July 24, 2007

This work is partly funded by the German Research Foundation (DFG) through the Center of Excellence (SFB) 627 "Nexus".

Agenda

1.Overview of Quick-Start
2.Implementation in the Linux kernel
3.Initial measurement results
4.Lessons learnt

5.Conclusions and future work

Overview of Quick-Start

Slow-Start in TCP (RFC 2581)

e Exponential growth of congestion window
- After connection setup or long idle periods
- (After retransmission timeouts)

* One pillar of TCP congestion control
- Probing of path capacity
- Initialization of ACK clocking mechanism

Quick-Start in TCP (RFC 4782)

e |dea: Start immediately with high sending rate
- Reduces delay for interactive applications
- Requires explicit feedback from routers on path
e Experimental RFC since Jan. 2007

Congestion window

Congestion window

Slow Start

Slow start threshold

Time

Quick-Start

Slow start threshold

Time

Overview of Quick-Start

Example: Quick-Start During 3-Way Handshake

Host 1 Router Router Host 2
_...SYN QSrequest .. |
Rate?
QS response b]
SYN,ACK ; Echo
repor
Rate! [P] pTCP
Rate
pacing
Standard
algorithms

e |P and TCP options to "request" for a data rate (no QoS reservation!)
e Raw granularity: 15 steps from 80 kbit/s to 1.31 Gbit/s
¢ All routers on path must explicitly approve request

Overview of Quick-Start

Additional Router Functions

. . Admission and
Recent
* Processing of new IP options adaptation decision aporovals

* Avail. bandwidth on egress interfaces New functions
- Link capacity (cross-layer issue!) Traffic D3 Resource
- Traffic metering estimator estimator
e Admission control of QS requests — QSreq. »
> ||| E:)—>
w No per-flow state Ingress gress
Additional Host Functions Appl.

¢ Read/write new IP and TCP options

* Modified congestion and flow control
- Rate pacing after QS approvals
- Additional state/information storage

New functions

Overview of Quick-Start

Benefits of Quick-Start

e Speeds up interactive applications when RTT is large
- After connection setup
- After longer idle period (with cong. window validation acc. to RFC 2861)

¢ Could complement other new high-speed TCP extensions
e Conservative alternative to non standard-compliant workarounds

Challenges

e Deployment. Requires support by all routers (and middleboxes)

e Cross-layer issues: Routers have to estimate available bandwidth
e Security: Can be rendered useless by attackers

* Real-world experience: Mostly studied by simulations so far

w Recommended for controlled environments only, not the Internet

Implementation in the Linux Kernel

Our Quick-Start Implementation in Linux

* (Almost) all host and router functions

¢ Modified kernel (currently based on 2.6.20.11)
e TCP and IPv4 only

w Works in lab tests correctly

Some Statistics

¢ Limited Effort
- 1700 lines of code (5 person months)
- Changes affect 20 different files
* Additional state information
- Host: About 20 integer variables per TCP connection
- Router: Some integer variables per egress interface
e Configuration: >10 new sysctl options

Implementation in the Linux Kernel

Linux Stack (Simplified)

User space

Socket interface =] | Cdo_tcp_setsockopt) TCP

| =]
3 Sysctl config
Fast/siow pat

control

Send ACK Htcp_transmi t_skg

IP
Sysctl config

ip_local_deliver Cip_queue_xmia C iggggi_égagg@—)

ip_forward ip_forward_fini SIQ‘/

Routing

net_rx_action dev_queue_xmi

Kernel space

—» Typical flow of packets

Implementation in the Linux Kernel

Linux Stack (Simplified) - Code Modifications

User space

Activate QS New sysctl

Socket interface =] | (do_tcp_setsockopt) TCP

iconfig
Fast/slow path
/’ Rate Flow control
 pacing Hande SV

Cong. (tcp_vrite mid

control Options Options
Send ACK Htcp transmit_skb

ip_local_deliver ip_queue_xmit B-R4iid-pad-)

QS TTL decr. JVietering, adm. Sysctl config
ip_forward_finishj

Traffic metering,
adm. control

net_rx_action dev_queue_xmi

Kernel space

—» Typical flow of packets

Implementation in the Linux Kernel

Sender State Engine

¢ Diabled by default

e Enabling of Quick-Start
- By application via socket option
- By heuristics inside kernel

* Reasons for further states

- Requests only in SYN or data
segments

- Sending rate reports

Rate Pacing States

* Rate pacing starts when first data
segment is sent, not earlier

e Several abort conditions

"Report rate” Timeout

| Uninitialized l

Request by socket (or by kernel)

f A4 f
New request Enabled

Request sent
v (only SYN or data segments)

New request

Sent request

Not approved or

Approved rate>0
PP > invalid response

Not supported

Report rate

Report sent

Report sent

| Not used l
Not used Done
QS state: /argetcwn chieved, or
al

4 Y

Rate approved

rrival of an ACK for paced data, or
DUPACK or ECN received

Initialized Active
Data available

Implementation in the Linux Kernel

Rate Pacing - Realization Details

e Usage of internal kernel timers

- Linux kernel has a high timer granularity (up to 1000 Hz)

- Limitation of the number of timers by "minimum chunk size" parameter
e Timer initialization has to handle different cases

Case 1: Small window increase

1 23 456 7.8 9 10112 131415 | ;
. ‘ ‘ ‘ ‘ o R (15 timer)

Time [:I'icks]

Case 2: Largeiwindow increase =~ Carryover" segments . ;
13 6 9 12 15 18 21 24 27 3082 34 36 38 40 42 44 46 48 50 |
B B BB EEEEBE | (20 timer)
, ' Time [Ticks]
Case 3: Large;window increase with bundling yinimum chunk=4 |
'5 10, 14 18 22, 26 30 34 38 42 46 50 |
II T L ozume
io 11 12 13 4 15 {6 17 18 {9 3°T|meIT|cks]

RTT =20 Ticks

Initial Measurement Results

Processing Overhead (CPU Effort)

* Hosts function (TCP layer): No additional CPU load measured so far
- Rate pacing rather lightweight
- In total, only small parts of TCP code modified
* Router function (IP layer): CPU load increase observed (ca. +15%)
- Reason: Per-packet processing for traffic metering
- No significant impact of Quick-Start specific functions

TCP Performance Benefit

e Transfer time reduction depends
on bandwidth-delay product (BDP)

¢ Testbed example
- 10Mbps Ethernet responce
- 100ms RTT (realized by netem) e

w BDP of 84 segments 10 M:bps
Ethernet switch

Initial Measurement Results

Example: Improvement of Transfer Times

104: T T \\\\H‘ T T T \H‘ T T \\\H\‘ \ 107‘
- Analytical model 4 9l X
L +--+ Measurement (Reno) &
— I x--—x Measurement (Cubic) S 8~ 1 N n
2 > b
o | 1L n
= S 71 !
2 s [l
= RFC 2581+RFC 3390 T 61 h n
P / o - % 1!
S 10° 4 ® 51 .',l 7
Q. - ko) L
2 Slow-Start o 4 ! d“P Slow-Start N
- f ke] - +
[0 d .
2 ¥ g s i g
» Quick-Start s 1
8 2 N
B /X/ + - -+ Measurement (Reno) 7
o T 4;% x—--x Measurement (Cubic) |
1029 L L H“ e G \\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\
10° 10* 10° 10° 10 0 05 1 15 2 25 3 35 4
Transfer length s [byte] Time after connection setup [s]

* Details of analytical analysis: Michael Scharf, "Performance Analysis
of the Quick-Start TCP Extension", Proc. IEEE Broadnets, Sept. 2007

e Work in progress: Measurements with real applications

Lessons Learnt

Observations (1)

Interaction with flow control: Automatic buffer tuning announces too
small receive windows, and interaction with window TCP scale option

w see draft-scharf-tsvwg-quick-start-flow-control-01.txt

TCP and IP option handling is tricky in practice

- Options are processed at several different places in the stack

- Setting IP options from TCP code is not forseen by the standard APIs
- TCP MSS must be reduced to leave space for IP options

w Requires several workarounds and expanded APls

Drivers do not reliably tell link capacity (interface card speed)

- Current solution: Manual configuration per sysctl interface

- Potential alternative: Active bandwidth probing (?)

Mid-connection usage less straightforward than connection setup

Lessons Learnt

Observations (2)

e TCP connection end-points must have QS router

Rate req.
TCP TCP (S
funcfions

Cross-layer

exchange?

processing
w Potential for cross-layer information exchange

e Setting of ssthresh after Quick-Start approval is
an important design choice. Current solution:

I QS adm.
contro),

- If QS request is reduced by routers: ssthresh = cwndgg

- If QS request is not reduced: ssthresh = 2*cwndgg
w |[s not optimal in all cases!

Open Issues

* Interaction of rate pacing and Nagle algorithm
e IPv6
e Path MTU discovery

—>

QS adm.
control

—>

Router

e Automatic self-configuration (reduction of number of parameters)

Conclusions and Future Work

Conclusions

e We do have running code ;)
* Not too difficult to implement Quick-Start in the Linux stack
- Overall implementation straightforward
- But: Small modifications at many places, some ugly workarounds

¢ No major issues found in spec, except for flow control interaction
(see draft-scharf-tsvwg-quick-start-flow-control-01.txt)

e Still, any explicit router feedback is challenging...

Ongoing/Future Work

* Make kernel patch available to allow real-world performance tests
¢ Quick-Start router functions in a network processor

- Intel IXP2400

- Ongoing work at the University of Stuttgart

