
Experiences with Implementing
Quick-Start in the Linux Kernel

Michael Scharf <michael.scharf@ikr.uni-stuttgart.de>
Haiko Strotbek <haiko@strotbek.com>

University of Stuttgart, Germany

IETF 69 - TSVAREA - July 24, 2007

This work is partly funded by the German Research Foundation (DFG) through the Center of Excellence (SFB) 627 "Nexus".

1.Overview of Quick-Start

2. Implementation in the Linux kernel

3. Initial measurement results

4.Lessons learnt

5.Conclusions and future work

Agenda

Slow-Start in TCP (RFC 2581)
• Exponential growth of congestion window

- After connection setup or long idle periods

- (After retransmission timeouts)

• One pillar of TCP congestion control

- Probing of path capacity

- Initialization of ACK clocking mechanism

Quick-Start in TCP (RFC 4782)
• Idea: Start immediately with high sending rate

- Reduces delay for interactive applications

- Requires explicit feedback from routers on path

• Experimental RFC since Jan. 2007

C
on

ge
st

io
n

w
in

do
w

Time

Slow Start

Slow start threshold

Quick−Start

Time

Slow start threshold

C
on

ge
st

io
n

w
in

do
w

Overview of Quick-Start

Example: Quick-Start During 3-Way Handshake

• IP and TCP options to "request" for a data rate (no QoS reservation!)

• Raw granularity: 15 steps from 80 kbit/s to 1.31 Gbit/s

• All routers on path must explicitly approve request

Router Router
QS request

QS report

QS response

SYN

pacing

Rate!

Rate?

Echo

Rate

Standard
algorithms

ACK
SYN,ACK

New ACK

Host 2Host 1

IP

IP

IP

TCP

TCP

TCP

Overview of Quick-Start

Additional Router Functions
• Processing of new IP options

• Avail. bandwidth on egress interfaces

- Link capacity (cross-layer issue!)

- Traffic metering

• Admission control of QS requests

➥ No per-flow state

Additional Host Functions
• Read/write new IP and TCP options

• Modified congestion and flow control

- Rate pacing after QS approvals

- Additional state/information storage

New functions

estimator

adaptation decision

Resource
estimator
Traffic

Admission and Recent
approvals

QS req.

EgressIngress

N
ew

 f
u

n
ct

io
n

s Option processing

Rate pacing

New cong. control

New interfaces

TCP

Appl.

IP

Overview of Quick-Start

Benefits of Quick-Start
• Speeds up interactive applications when RTT is large

- After connection setup

- After longer idle period (with cong. window validation acc. to RFC 2861)

• Could complement other new high-speed TCP extensions

• Conservative alternative to non standard-compliant workarounds

Challenges
• Deployment: Requires support by all routers (and middleboxes)

• Cross-layer issues: Routers have to estimate available bandwidth

• Security: Can be rendered useless by attackers

• Real-world experience: Mostly studied by simulations so far

➥ Recommended for controlled environments only, not the Internet

Overview of Quick-Start

Our Quick-Start Implementation in Linux
• (Almost) all host and router functions

• Modified kernel (currently based on 2.6.20.11)

• TCP and IPv4 only

➥ Works in lab tests correctly

Some Statistics
• Limited Effort

- 1700 lines of code (5 person months)

- Changes affect 20 different files

• Additional state information

- Host: About 20 integer variables per TCP connection

- Router: Some integer variables per egress interface

• Configuration: >10 new sysctl options

Implementation in the Linux Kernel

Linux Stack (Simplified)

Typical flow of packets

Config

Device driver

IP

Application

Kernel space

User space

TCP

ip_rcv

net_rx_action

Routing

ip_local_deliver

Analysis

Socket interface

Sysctl config

Sysctl config

ip_finish_output

tcp_send_msg

dev_queue_xmit

tcp_write_xmit

tcp_v4_rcv Send ACK tcp_transmit_skb

ip_forward_finish

ip_queue_xmit

ip_forward

Fast/slow path State

do_tcp_setsockopt

Handle SYN Cong.
control

send_packet
ip_build_and_

Implementation in the Linux Kernel

Linux Stack (Simplified) - Code Modifications

Typical flow of packets

Config

Device driver

IP

Application

Kernel space

User space

TCP

ip_rcv

net_rx_action

Routing

ip_local_deliver

Analysis

Socket interface

Sysctl config

Sysctl config

ip_finish_output

tcp_send_msg

dev_queue_xmit

tcp_write_xmit

tcp_v4_rcv Send ACK tcp_transmit_skb

ip_forward_finish

ip_queue_xmit

ip_forward

Fast/slow path State

do_tcp_setsockopt

Handle SYN Cong.
control

send_packet
ip_build_and_

Options Options Options

Flow control

New sysctlActivate QS

Traffic metering,
adm. control

Rate
pacing

Metering, adm.

Hist.

QS TTL decr.

Implementation in the Linux Kernel

Sender State Engine
• Diabled by default

• Enabling of Quick-Start

- By application via socket option

- By heuristics inside kernel

• Reasons for further states

- Requests only in SYN or data
segments

- Sending rate reports

Rate Pacing States
• Rate pacing starts when first data

segment is sent, not earlier

• Several abort conditions

Rate approved

Enabled

Not supportedReport rate

Sent request

Request sent
(only SYN or data segments)

Approved rate>0 Not approved or

Not used

Uninitialized

Request by socket (or by kernel)

New request New request

Report sent Report sent

invalid response

Not used

Initialized

Done

Active

"Report rate"

Data available

QS state: Target cwnd achieved, or

DUPACK or ECN received
arrival of an ACK for paced data, or

Timeout

Implementation in the Linux Kernel

Rate Pacing - Realization Details
• Usage of internal kernel timers

- Linux kernel has a high timer granularity (up to 1000 Hz)

- Limitation of the number of timers by "minimum chunk size" parameter

• Timer initialization has to handle different cases

1 2 3 4 5 6 7 8 9 10 11 12 14 1513

15 18 21 27 30 32 3412 36 3824 40 42 44 46 48 503 6 9

5 10 14 18 22 26 30 34 38 42 46 50

14 15 16 17 18131211109876543210 19 20

Time [Ticks]

Time [Ticks]

Time [Ticks]

cwnd = 15QS

chunk = 1

QS

chunk = 1

QS

chunk = 4

(15 timer)

(20 timer)

(12 timer)

RTT = 20 Ticks

cwnd = 50

cwnd = 50

Case 1: Small window increase

Case 2: Large window increase

Case 3: Large window increase with bundling

"Carryover" segments

Minimum chunk = 4

Implementation in the Linux Kernel

Processing Overhead (CPU Effort)
• Hosts function (TCP layer): No additional CPU load measured so far

- Rate pacing rather lightweight

- In total, only small parts of TCP code modified

• Router function (IP layer): CPU load increase observed (ca. +15%)

- Reason: Per-packet processing for traffic metering

- No significant impact of Quick-Start specific functions

TCP Performance Benefit
• Transfer time reduction depends

on bandwidth-delay product (BDP)

• Testbed example

- 10Mbps Ethernet

- 100ms RTT (realized by netem)

➥ BDP of 84 segments

QS request
IP TCP

QS report
IP TCP

QS response
IP TCP

Client Server

SYN,ACK

SYN

ACK

time

Server
response

Rate?

Rate!

Ethernet switch
10 Mbps

Initial Measurement Results

Example: Improvement of Transfer Times

• Details of analytical analysis: Michael Scharf, "Performance Analysis
of the Quick-Start TCP Extension", Proc. IEEE Broadnets, Sept. 2007

• Work in progress: Measurements with real applications

10
3

10
4

10
5

10
6

10
7

Transfer length s [byte]

10
2

10
3

10
4

S
er

ve
r

re
sp

on
se

 ti
m

e
[m

s]

Analytical model
Measurement (Reno)
Measurement (Cubic)

Slow-Start

Quick-Start

RFC 2581+RFC 3390

0 0.5 1 1.5 2 2.5 3 3.5 4
Time after connection setup [s]

0

1

2

3

4

5

6

7

8

9

10

D
ow

nl
oa

d
IP

 d
at

a
ra

te
 [M

by
te

/s
]

Measurement (Reno)
Measurement (Cubic)

Slow-Start

Quick-Start

Initial Measurement Results

Observations (1)
• Interaction with flow control: Automatic buffer tuning announces too

small receive windows, and interaction with window TCP scale option

➥ see draft-scharf-tsvwg-quick-start-flow-control-01.txt

• TCP and IP option handling is tricky in practice

- Options are processed at several different places in the stack

- Setting IP options from TCP code is not forseen by the standard APIs

- TCP MSS must be reduced to leave space for IP options

➥ Requires several workarounds and expanded APIs

• Drivers do not reliably tell link capacity (interface card speed)

- Current solution: Manual configuration per sysctl interface

- Potential alternative: Active bandwidth probing (?)

• Mid-connection usage less straightforward than connection setup

Lessons Learnt

Observations (2)
• TCP connection end-points must have QS router

processing

➥ Potential for cross-layer information exchange

• Setting of ssthresh after Quick-Start approval is
an important design choice. Current solution:

- If QS request is reduced by routers: ssthresh = cwndQS
- If QS request is not reduced: ssthresh = 2*cwndQS
➥ Is not optimal in all cases!

Open Issues
• Interaction of rate pacing and Nagle algorithm

• IPv6

• Path MTU discovery

• Automatic self-configuration (reduction of number of parameters)

IP

TCP

Router

exchange?
Cross−layer

QS adm.
control

TCP QS
functions

QS adm.
control

Utilization

Rate req.

Lessons Learnt

Conclusions
• We do have running code ;)

• Not too difficult to implement Quick-Start in the Linux stack

- Overall implementation straightforward

- But: Small modifications at many places, some ugly workarounds

• No major issues found in spec, except for flow control interaction
(see draft-scharf-tsvwg-quick-start-flow-control-01.txt)

• Still, any explicit router feedback is challenging...

Ongoing/Future Work
• Make kernel patch available to allow real-world performance tests

• Quick-Start router functions in a network processor

- Intel IXP2400

- Ongoing work at the University of Stuttgart

Conclusions and Future Work

