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Slow-Start in TCP (RFC 2581)
• Exponential growth of congestion window

- After connection setup or long idle periods

- (After retransmission timeouts)

• One pillar of TCP congestion control

- Probing of path capacity

- Initialization of ACK clocking mechanism

Quick-Start in TCP (RFC 4782)
• Idea: Start immediately with high sending rate

- Reduces delay for interactive applications

- Requires explicit feedback from routers on path

• Experimental RFC since Jan. 2007
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Example: Quick-Start During 3-Way Handshake

• IP and TCP options to "request" for a data rate (no QoS reservation!)

• Raw granularity: 15 steps from 80 kbit/s to 1.31 Gbit/s

• All routers on path must explicitly approve request
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Additional Router Functions
• Processing of new IP options

• Avail. bandwidth on egress interfaces

- Link capacity (cross-layer issue!)

- Traffic metering

• Admission control of QS requests

➥ No per-flow state

Additional Host Functions
• Read/write new IP and TCP options

• Modified congestion and flow control

- Rate pacing after QS approvals

- Additional state/information storage

New functions

estimator

adaptation decision

Resource
estimator
Traffic

Admission and Recent
approvals

QS req.

EgressIngress

N
ew

 f
u

n
ct

io
n

s Option processing

Rate pacing

New cong. control

New interfaces

TCP

Appl.

IP

Overview of Quick-Start



Benefits of Quick-Start
• Speeds up interactive applications when RTT is large

- After connection setup

- After longer idle period (with cong. window validation acc. to RFC 2861)

• Could complement other new high-speed TCP extensions

• Conservative alternative to non standard-compliant workarounds

Challenges
• Deployment: Requires support by all routers (and middleboxes)

• Cross-layer issues: Routers have to estimate available bandwidth

• Security: Can be rendered useless by attackers

• Real-world experience: Mostly studied by simulations so far

➥ Recommended for controlled environments only, not the Internet
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Our Quick-Start Implementation in Linux
• (Almost) all host and router functions

• Modified kernel (currently based on 2.6.20.11)

• TCP and IPv4 only

➥ Works in lab tests correctly

Some Statistics
• Limited Effort

- 1700 lines of code (5 person months)

- Changes affect 20 different files

• Additional state information

- Host: About 20 integer variables per TCP connection

- Router: Some integer variables per egress interface

• Configuration: >10 new sysctl options

Implementation in the Linux Kernel



Linux Stack (Simplified)

Typical flow of packets
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Linux Stack (Simplified) - Code Modifications
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Sender State Engine
• Diabled by default

• Enabling of Quick-Start

- By application via socket option

- By heuristics inside kernel

• Reasons for further states

- Requests only in SYN or data
segments

- Sending rate reports

Rate Pacing States
• Rate pacing starts when first data

segment is sent, not earlier

• Several abort conditions
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Rate Pacing - Realization Details
• Usage of internal kernel timers

- Linux kernel has a high timer granularity (up to 1000 Hz)

- Limitation of the number of timers by "minimum chunk size" parameter

• Timer initialization has to handle different cases
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Processing Overhead (CPU Effort)
• Hosts function (TCP layer): No additional CPU load measured so far

- Rate pacing rather lightweight

- In total, only small parts of TCP code modified

• Router function (IP layer): CPU load increase observed (ca. +15%)

- Reason: Per-packet processing for traffic metering

- No significant impact of Quick-Start specific functions

TCP Performance Benefit
• Transfer time reduction depends

on bandwidth-delay product (BDP)

• Testbed example

- 10Mbps Ethernet

- 100ms RTT (realized by netem)

➥ BDP of 84 segments
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Example: Improvement of Transfer Times

• Details of analytical analysis: Michael Scharf, "Performance Analysis
of the Quick-Start TCP Extension", Proc. IEEE Broadnets, Sept. 2007

• Work in progress: Measurements with real applications
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Observations (1)
• Interaction with flow control: Automatic buffer tuning announces too

small receive windows, and interaction with window TCP scale option

➥ see draft-scharf-tsvwg-quick-start-flow-control-01.txt

• TCP and IP option handling is tricky in practice

- Options are processed at several different places in the stack

- Setting IP options from TCP code is not forseen by the standard APIs

- TCP MSS must be reduced to leave space for IP options

➥ Requires several workarounds and expanded APIs

• Drivers do not reliably tell link capacity (interface card speed)

- Current solution: Manual configuration per sysctl interface

- Potential alternative: Active bandwidth probing (?)

• Mid-connection usage less straightforward than connection setup

Lessons Learnt



Observations (2)
• TCP connection end-points must have QS router

processing

➥ Potential for cross-layer information exchange

• Setting of ssthresh after Quick-Start approval is
an important design choice. Current solution:

- If QS request is reduced by routers: ssthresh = cwndQS
- If QS request is not reduced: ssthresh = 2*cwndQS
➥ Is not optimal in all cases!

Open Issues
• Interaction of rate pacing and Nagle algorithm

• IPv6

• Path MTU discovery

• Automatic self-configuration (reduction of number of parameters)
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Conclusions
• We do have running code ;)

• Not too difficult to implement Quick-Start in the Linux stack

- Overall implementation straightforward

- But: Small modifications at many places, some ugly workarounds

• No major issues found in spec, except for flow control interaction
(see draft-scharf-tsvwg-quick-start-flow-control-01.txt)

• Still, any explicit router feedback is challenging...

Ongoing/Future Work
• Make kernel patch available to allow real-world performance tests

• Quick-Start router functions in a network processor

- Intel IXP2400

- Ongoing work at the University of Stuttgart
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