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Abstract— Orthogonal Frequency Division Multiple Access forming. In this zone, terminals are assigned a rectangukza
(OFDMA,) is the basis for several emerging wireless systems, (referred to asbursf in the time/frequency OFDMA plane.
such as 802.16e (WIMAX) or 3GPP Long Term Evolution Therefore; the scheduler needs to place a large number of
(LTE). In OFDMA, different users are multiplexed in time . .
and frequency. In the 802.16e Adaptive Modulation and Coding rectangle.s in the time/frequency plang. These rectangé®s m.
(AMC) downlink, the data bursts for a particular terminal have ~ have arbitrary measures under certain technology anddraffi
a rectangular shape and need to be placed in the two-dimensional specific constraints. The goal of the scheduler is to effttien
time/frequency plane. The position and shape of the rectangles pack the rectangles in the OFDMA-plane such that no free
is arbitrary, and it is the task of the frame packer to pack spaces are left over and the overhead is minimized.

the frame efficiently, wasting as little space as possible. In this . s .
paper, we treat the frame packing problem as a strip-packing In [3], Wan et. al. present a simple heuristic solution for

problem. We solve this combinatorial optimization problem by the frame packing problem in combination with a schedul-
developing a suitable representation for a genetic algorithm. This ing algorithm for the downlink AMC zone. In this paper,

algorithm can reac.:h. within 5% of the theoretical lower bound we develop a near-optimal algorithm for the frame packing
for the packing efficiency. problem in the AMC downlink zone by treating it as a strip-
packing optimization problem. We solve this combinatorial
optimization problem by developing an appropriate genetic

Orthogonal Frequency Division Multiplexing (OFDM) isalgorithm in a multi-service scenario with different traffi
a state-of-the-art spread-spectrum technique for preaedt classes. We will eventually show that the proposed solution
future wireless broadband systems. In an OFDM-system, tba&n efficiently pack all bursts in the AMC-zone and come
available spectrum is subdivided into a large number of frevithin only 5% of the theoretical lower bound.
quency subcarriers. Orthogonal Frequency Division Migtip  This paper is structured as follows. Section Il introdudes t
Access (OFDMA) is a multiplexing technique, where differer802.16e technology and the specific zone packing problem
terminals are multiplexed in time and frequency based on tire detail. The strip-packing problem and possible solution
underlying OFDM system. This is a promising approach fapproaches are introduced in section Ill. Subsequentiyiose
future broadband wireless communication networks and hasdevelops the specific solution of the strip-packing peshl
become the basis for several emerging cellular system$, siie 802.16e, and section V evaluates the performance of the
as 802.16e (WiMAX) or 3GPP Long Term Evolution (LTE). solution approaches. Finally, section VI concludes theepap

The decision on the time and frequency ranges allocated for

: . . ) o [l. OVERVIEW OF 802.16

a particular mobile terminal is the responsibility of the KA
scheduler. The scheduler has two basic tasks. First, itsieedA- 802.16e frame structure

decide on the terminals which shall be served in a particularin 802.16e Time Division Duplex (TDD) systems, every

frame or time period, i.e., it needs to decide on the scheduliMAC-frame is subdivided into an uplink and a downlink

order and also the amount of scheduled data. Second, it nesalsframe. Both subframes are further divided into zones,
to assign time and frequency resources to every transmissiallowing for different operational modes. A sample frame
This is also referred to asame packing structure is shown in Fig. 1. Every frame begins with a manda-

Scheduling in wireless networks has been studied extdnry PUSC-zone (Partial Use of Sub-Carriers), which corgai
sively. For 802.16e systems, most work has focused on the
scheduling order of terminals and the scheduled data amoyr*  -usc PUSC (optional)  AMC (optional) PUSC  AMC (optional)
or on QoS architectures. In [1], Wongthavarawat et al. ha
proposed and evaluated an uplink QoS scheduler for an 802
system. Another uplink scheduling proposal was presemted
[2] by Lee et al.

The problem of frame packing in 802.16e systems hi
gained far less attention. However, finding an optimal res®u
assignment is a non-trivial task. It is particularly difficin the "+ donnlink (BL) subframe f—uplnk (UL) subframe
Adaptive Modulation and Coding (AMC) zone, which is well
suited for advanced transmission techniques such as beam-

I. INTRODUCTION
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Fig. 1: Example of 802.16e frame structure
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9 subchannels in the left frame and 8 subchannels in the right
frame. Both is sufficient to carry a data amount that fits for
example in 7 or 8 subchannels. This impligasted capacity
for certain shapes under a particular traffic demand.
802.16e allows to use adaptive modulation and coding
(AMC) techniques. This means that the modulation scheme
and code rate, which both together form thest profile may
be chosen dynamically and individually for each SS dependin
on the present condition of the time-variant wireless clehnn
An SS in good channel conditions can be served with a higher
order modulation scheme and a high code rate, e.g., with
64QAM 3/4. Consequently, with AMC, the size of a burst
- . containing the same amount of data will vary depending on
the channel state.
If frequency-selective packet scheduling (FSPS, see for
Fig. 2: lllustration of the AMC 2x3 mode example [6]) is used, the modulation and coding scheme and
thus the burst size will even vary depending on the position
in the time/frequency plane. This is due to the variation of
important control information. This includes the downlinkhe channel in the frequency direction in a multipath fading
and uplink maps, which describe the location and subcarr@fvironment. FSPS requires detailed channel state infema
occupation of transmission bursts for mobile terminalsdal at the base station, which needs to be acquired via feedback
referred to as subscriber stations, SS). Commonly, one oe m@' measurement signals from the SS (for example via channel
optional PUSC-zones follow, which contain data bursts to s@unding [5]). Moreover, the present base station gemerati
transmitted with frequency diversity. does not support FSPS. Therefore, we will disregard this
A second important zone type besides PUSC is the AM{gature in the remainder of the paper. Instead, we assume AMC
zone. In this zone, a set of contiguous subcarriers in freased on RSSI (Receive Signal Strength Indicator) and CINR
quency and OFDM symbols in time direction are allocatedarrier to Interference and Noise Ratio) information, e¥hi
to one mobile terminal. The AMC-zone is particularly suiteds a standard approach in 802.16e and leads to a constant burs
for advanced transmission techniques, such as beamformsigg regardless of its position in the time/frequency plane
antennas, adaptive modulation and coding, frequencythede
scheduling, or interference coordination mechanisms {see
example [4]). Figure 2 shows an example of the AMC zone 802.16e allows to specify individual QoS parameters for
layout on the left side. The figure shows the AMC 2x3 modeljfferent traffic flows. This allows to prioritize a real-tenVolP
which defines subchannels of 16 adjacent data subcarrierscoyinection over a real-time streaming video, which in tuan ¢
3 contiguous OFDM symbols. A subchannel corresponds bbe prioritized over a best-effort FTP download. An interaet
the resource assignment granularity for a particular SS. vieb-session may be somewhere in-between. The scenario for
is therefore possible to abstract the AMC zone by the twthe remainder of this paper will assume a number of real-
dimensional resource field shown in the right part of Fig. 2ime and interactive connections, which need to be served
where subchannels are allocated to the different SS.

768 data subcarriers
48 subchannels

32 data subcarriers

band

subchannel: 16 x 3 = 48 data subcarriers subchannel

C. Scheduling and service classes

B. AMC-zone packing unoptimized packing optimized (compact) packing
Figure 3 (left) shows a possible allocation of subchannels f f

to subscriber stations. Every subscriber station is aléxta 1 empty
i X e g [ ss1

@fferently sized and shaped rectan.gular area, as it isifsgec s

in the 802.16e standard [5]. The size depends on the amount [ ss3

of data to be scheduled and the present channel conditions [ ss4

The shape mainly depends on the overall packing in that it % o -

must be chosen such that the resulting packing minimizes the .

total unoccupied space. An optimized packing is shown on the

right side of Fig. 3. The bursts are compactly packed in the

lower area of the plane while the empty space is aggregated

at the top. This allows to place yet another large burst in the - -

top area, which is more difficult with the fragmented empty

space of the unoptimized packing. t t
Note that different shapes can host a different data amount.

This becomes evident for SS 4 in Fig. 3, whose burst occupies

Fig. 3: Example of downlink AMC-zone packing



before other best-effort connections. The amount of data itdinite number (i.e., sufficient number) of bins of fixed size
be scheduled in one particular frame is determined in advand - H are available. The objective is to minimize the number of
for the real-time and interactive connections such that thequired bins. Strip- and bin-packing problems are alsoAkno
aggregated real-time and interactive traffic never exceels in literature ascutting-stock problemsr knapsack problems
capacity of one frame. For example, it is known upfront hor]. Dyckhoff [8] describes problems related twtting and
much data VoIP or streaming video requires in one particulpackingand lists more than 150 annotated references.
frame. Once all real-time and interactive flows have beenlf the set of items is known in advance the problem is
scheduled, the remaining space in the frame will be filled wgassified as amwffline problem. Otherwiseonline algorithms
with best-effort connections, which usually consist ofséila are necessary that individually place the items withoutkno
traffic, such as FTP downloads that can efficiently fill up gmptdge of number and/or shape of future items. Another major
space. classification criteria is thdevel-basedplacement of items,
This scenario implies the following frame-packing probleni.e., whether items horizontally next to each other havedo b
All bursts of real-time and interactive flows need to be packelaced on the same level of height or not.
as compact as possible (such as in Fig. 3, right side) in ordeiOur problem is a variant of the original offline, non-level-
to leave an as large as possible contiguous and rectangllased, 2-dimensional strip-packing problem, as we akocat
empty space. This empty space can then easily be fillegttangular areas of subchannels within one sufficientiyela
up with other rectangular bursts of the remaining bestreffcAMC-zone. Lodi et. al. [9] formulated an Integer Linear
flows. This problem is a variation of the well-known stripProgram (ILP) that finds the optimal solution for a similar
packing problem. In the following section, we will give anproblem. This approach works only for small level-based
overview of strip-packing and possible solution approactee problem instances, though. Several heuristics exist timat fi
this optimization problem before presenting a specificttmtu medium to good solutions (see for example [10]-[13]). We
for the AMC zone frame packing problem in section IV.  cannot apply these heuristics to our problem directly. All o
the approaches assume fixed sizes and shapes of the items,
1. STRIP-PACKING AND EVOLUTIONARY ALGORITHMS  gome of them allow rotating or flipping the items at most.
A. Classification of packing problems In our scenario the rectangular areas of subchannels are not

In a 2-dimensional orthogonal packing problem a finite Sg{edetermmed in shape, as long as they cover a minimum area;

of given rectangularly-shapedems each characterized by"e" we allow wasted gapacityithir? .the items: .
height ; and widthuw,, has to be optimally placed in one or Due to these properties we modified the existing approaches.

more bins such that the wasted unoccupied space in the b S devglop a genet|c algorithm that talfes the v'arlable .shape
the items into account and combine it with a simple

is minimized. The items must not overlap and must not crof

the bin boundaries. Iltems may be free-floating. Two basiis vafjmOI _faSt heuristi_cNext-Fit-Decreasing-Heigh1NFDH [9]) to
ants are known: the-dimensional strip-packing probleand obtain near optimal results. Such an approach has already

the 2-dimensional bin-packing problenin the strip-packing been. successfully employed on other variants of the. strip-
problem only one bin with widthi/” and infinite heightd paclqng problem [14], [15], though with the above mentioned
(i.e., sufficient height) has to be packed. The objectiveois festrictions.

minimize the required height. In the bin-packing problem ag  gyolutionary and genetic algorithms

It is possible to applyevolutionary algorithmsto almost
Rr X |P| _ any optimization problem, in our case to find the optimal
generation N . . . .
( RcXRRx|P :(1_RC)XRRX|pJ shapes and ordering of items. Roughly speaking, evolution-
: ary algorithms perform a systematic random search of the

% § optimum among all perceivable solutions. If the solutions a
\“‘1’/ represented by an array of bits, numbers, or charactersisee a
= ; speak ofgenetic algorithmsvith the solutions agenomesThe
s principle of evolutionary and genetic algorithms is illged
& = in Fig. 4. Starting with a finitepopulation of genomes, the
population is evolved with eachenerationinto a new and
[ (1+Rg) x |PI j better population. This process is inspired by the biolalic

evolution. Each new generation’s population has partlgt,fir

surviving genomes of the old population, secomaytated

genomes, and third, the (in our case mutatem)ssoverof

two genomes of the old population. fknessfunction selects

J generationN+1  only the best of these genomes into the new generation. By
favoring good genomes and/or slightly modifying them while

keeping relevant structural properties a genetic algoriik

superior to pure random search. Refer to [16] or [17] for

1590
10919S

T

[

Fig. 4: Operation of the Steady State Genetic Algorithm




further information. B. Mutation and Crossover

There are many variants of this basic algorithmic frame- ag already stated in our approach a genome consists of a
work. For example, different mutation and crossover operfist of bursts with assigned shape. For changing the order of
tions exist, that vary in complexity. Partial or whole poputhe |ist as well as shapes we define three mutators and one
lations can be replaced in each generation, even their sggssover operator.
can change. We chose a steady-state genetic algorithmewherrhe swap mutatorchanges only the order of the list but not
only a maximum fractionk of a population’s genomes arethe shapes. For one swapping two bursts are picked randomly
replaced in the next generation. The size of the populatigid their position in the list is exchanged. The amount ofswa
remains always constant. The representation of our probljihgs inside one genome depends on the mutationRate
with genomes and the respective mutation and crossoverrhe change shape mutat@hanges only the shape of bursts

operations are introduced in section IV. but not their order within the list. As feasible shape we dfin
one consisting of a widthy; < W and a height,; < H, which
IV. APPLICATION OF STRIP PACKING TO 802.16 has at least; subchannels but no more thamwasted capacity

As explained in section II, a set of burdBsis selected for UNits, i.e..c; < wih; < ¢;+¢. Among all feasible shapes a pre-
packing the AMC-zone. Each burste C is characterized Selection is taken to discard shapes with extreme dimession
by its data volumer; by means of the number of requiredFrom the remaining ones, one shape is selected randomly and
subchannels. The AMC-zone is rectangular with columns assigned to the burst. The number of changed shapes depends
and H rows, i.e.,W - H subchannels. analogous to the swap mutator on the mutation rate.

For each burst, a single rectangular area within the AMC- Theswap and change shape mutaéxchanges the position
zone must be allocated. That means. a lower left corn@k bursts in the list and simultaneously alters their shape.
(z;, y;) as well as an appropriate width; and heightp, Adain, the number of changes dependsfop.
must be selected such that the number of assigned subckannerinally the so-callegpartial match crossovefl8] is chosen
is at least as large as the number of required subchanrffsCroSSOVer operator, which produces two new genomes out
(w; - h; > ¢;) and the selected area is entirely within the AMCOf two existing ones. After selecting a matching region with
zone @; +w; < W andy; + h; < H). Furthermore, the random position and length in the list, the sequence of the
selection of rectangles should leave the remaining unus@¢fSts inside the matching region is mutually exchanged. As
subchannels organized in a rectangle of maximum size. ~€ach burst has to appear exactly ones in a genome, additional

To solve this optimization problem, we apply a genetiEXChangeS outside the matching region might be necessary.

algorithm. For this, we developed a representation of eadR€ Probability of altering existing genomes by this crogso
relevant arrangement by a genome and defined mutators SR§ratOr is given byiic (see also Fig. 4).
crossovers operating on our genomes as well as a mappingofgvaluation Metric

the solution’s quality to the fitness of a genome. For evaluation of our genetic algorithm approach, we have

chosen to use the rati® = Fy.s/Fjp. Thereby Fyeq; is the
fithess of the so far best solution found by the algorittim.

We model a genome as a listalf bursts that are selected tois a theoretical lower bound fitness and gives the minimum
be placed within the current frame’s AMC zone. Genomes caimber of rows necessary for all bursts without the constrai
differ by the order of bursts as well as the shape of each burst having rectangular shapes. Wiffy, = [, . ¢;/W] we
Accordingly, mutators and crossovers should reorder te lcan easily calculate this value.
and/or change width and height of any number of data blocks.

To place the bursts in the AMC-zone we apply the Next-
Fit-Decreasing-Height (NFDH) placement algorithm [9].igh A. Scenario
algorithm iterates through the list of bursts and placesheac We consider four different service classes as shown in
according to the following rules: The first burst is placed imable I. In every traffic class, the given number of bursts
the lower left corner. Any other burst is placed either to theeeds to be scheduled in every MAC frame (precisely: in the
right of the previously placed in the same row, if sufficientonsidered AMC zone of the respective MAC frame). Every
space is available and its height is less or equal to the hei@rst occupies a random number of subchannels in the range
of the previously placed burst. Otherwise it is placed in th@dicated in table I. The number of required subchannels per
first column of the next free row. burst varies within one traffic class even though the data rat

Finally, we measure the fitness of a genome by the AM@oes not change due to adaptive modulation and coding. Note
zone filling height since NFDH compacts the data blocks ihat the table lists the number of flows that are scheduled
the lower part of the AMC-zone. per frame, not the total number of flows in the system. Since

Obviously, NFDH is not optimal by itself as some sets oi video stream is scheduled more frequently than an audio
bursts can never be placed with minimal resource occuparsiyeam, it achieves a much higher data rate than the audio
independent of the list order. Nevertheless, we will show istream even though it requires only twice as many subchannel
section V that we can achieve near optimal results. per frame.

A. Genome Modeling and Fithess

V. PERFORMANCEEVALUATION
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As described in section 1I-C, the goal of the frame packin§hape Mutator explores both dimensions in the mutation
procedure is to pack the high priority service classes VolBpace. A higher crossover rate increases the performarige on
streaming video, and streaming audio as efficiently as plessifor low mutation ratesR,,, since a larger solution space
to leave enough contiguous space which can then be filled egn be traversed. For larger mutation rates a larger cressov
by the elastic background FTP traffic. rate harms the performance since newly created generations

As a stop criterion for the genetic algorithm, we choose lsave much less in common with the original generations,
fixed number of generationd,.,,. This is motivated by the which at some degree starts to contradict one basic pricipl
fact that frame packing is a real-time problem. Consequygentbf genetic algorithms. Compared to the other operators, the
a constant amount of time, and hence a constant numberSefap and Change Shape Mutator achieves the best perfor-
generations, needs to be foreseen for it in the basestation.mance which is only about 6% away from the theoretical

optimum.
B. Simulation and Optimization Environment

In order to evaluate the performance of the frame packing Convergence and population size
procedure, we perform Monte-Carlo simulations. In every ) o )
Monte-Carlo drop, one frame is being packed by the geneticON€ important criterion for the performance of the genetic
algorithm. For each of these frames, the number of subch&g0rithm is the time it takes to find a sufficiently good
nels required by a data burst is uniformly drawn from th&°lution. Figure 8 plots the fitness= Fi.;/F1, depending
range indicated in table I. For all results listed in thedaling ©" the number of generations for the best configuration of the

section, a total number of 1000 frames was packed, whichf§&€ mutators. With all mutators, the quality of the salnti

sufficient to deliver excellent confidence intervals. quickly decreases with an increasing number of generations
and good solutions can be obtained with od¥y., = 100

C. Comparison of Mutation Operators generations. While the Change Shape mutator and the Swap

Figures 5 through 7 show the performance of the differeffutator converge quicker in the beginning, the Swap and
mutators depending on the mutation r&tg and the crossover Change Shape Mutator outperforms them for larger number

rate Rc. Plotted is the ratiod = Fye./F) after Ny, = of generations. o
1000 generations with a population size pP| = 100 and a _ e same metric is plotted in Fig. 9 for the Swap and
maximum wasted capacity @f= 2. Change Shape mutator and different population siZésNat-

Both the Change Shape and the Swap Mutator utilize orij2!l¥: the quality of the solution improves as the popaiati
one dimension in the possible mutation space, either chgngfZ€ S increased. Alike, the algorithm converges fastecesi
the shape or swapping elements. The missing dimensiondjéarger solution space can be searched with the same number
brought in only by the crossover operation. Consequentf 9enerations. Note that for large’| and Ny, the lower
the GA achieves a better performance with both mutators Rgrformance bound can be reached by only 5%.

higher crossover rateBc. In contrast, the Swap and Change Larger|P| andNg., imply an increase in the computational
complexity. In particular, the complexity is proportiontd

Nyen -|P|. Itis therefore of great interest to find the minimum

. Data rate| Number of sub- | Number of N, and |P| which deliver the best performance. Figure 10
Traffic class [kbps] channels per burst bursts per frame . . .

Volp T 6 0 plots the fithess of the best solution depending oR| and
streaming video| 300 6—32 5 Ngyen. The chart reveals that it is inefficient to increase either
streaming audio| 44 3—18 5 Nyen Or |P| while leaving the other parameter unchanged.

FTP elastic elastic variable Instead, the best ratio of solution quality and computation

TABLE I: Traffic classes complexity can be achieved fd¥,,, ~ |P]|.
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E. Complexity
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Fig. 9: Performance oBwap and Change
Shape mutatodepending orP|

Genetic algorithms are known for their relatively long[1]

computation times. In contrast to that, frame packing isadre

time problem. As we have seen in the previous section, t
algorithm achieves a good performance already with 50-100

generations. Moreover, genetic algorithms have an inhere

parallelism, since all mutations, crossover operationsl a
fitness calculations can be done in parallel. This makes them
well suitable for a massively parallel hardware implemen{4l

tation on an FPGA or an ASIC. Several efficient hardwaref5

L
1000

Number of generations

Fig. 10: Frequency Reuse 3: Mean
throughput [kBit/s] in observation area
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