Chirping for
Congestion Control

ICCRG - IETF80 Prag — March 31st, 2011

Mirja Kihlewind <mirja.kuehlewind@ikr.uni-stuttgart.de>
Bob Briscoe <bob.briscoe@BT.com>

IKR, University of Stuttgart Germany

BT!

This work is partly funded by the German Research Foundation (DFG) through the Center of Excellence (SFB) 627 "Nexus"
and by Trilogy, a research project (ICT-216372) supported by the European Community under its 7th Framework Programme.

Overview

Motivation

Chirping as a Building Block for Congestion Control

Research Challenges

Conclusion and Qutlook

M. Kihlewind - Chirping for Congestion Control

Motivation

Scaling Problem

1. Original TCP acquires new bandwidth too slowly
2. State-of-the-art approaches overshoot instead
3. Overshoot causes a lot unnecessary congestion

state of the art
‘scalable’ TCP

"

bit-rate newly available capacity
@ e.g. another flow has ended

e
Tg;tarir;g:rlg:ch | e
« Do we need to update the interface between host & network?

— Prior to discovering chirping, we thought we did, but not yet conclusive.

 Chirping provides an estimation about the available bandwidth (fast feedback)
— Probing for a wide range of bit-rates with minimal harm to others (without overshoot)

M. Kihlewind - Chirping for Congestion Control

Chirping Principle

Chirp: A group of several packets with decreasing inter-packet gaps and increasing rate
— Proposed by pathChirp bandwidth estimation tool [1]

. ts t?-___*:‘ >
........... b .
1 2 3 4 5

chirpwithN=5

« Bandwidth estimation based on self-induced congestion
« Feedback for monitoring of one-way delay

[1] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil and L. Cottrell. "pathChirp: Efficient Available Bandwidth Estimation for Network Paths".

Passive and Active Measurement Workshop 2003

M. Kihlewind - Chirping for Congestion Control

Chirping as a Building Block for Congestion Control

Chirping for Congestion Control: Continuous transmission of data packets as chirps
— proposed by RAPID congestion control [2]

ts
i t3 -
tag ¢+ t2* ------------ !
"""" N T | |
3 45 1 2 3 4 5 :)
chirpwithN=5

* Average rate r,,q should equal intended sending rate of congestion control

* Actual per-packet rates are lower and higher than r,4

— Probing for a wide range of possible sending rates but still limited impact of probing on
other flows

[2] V. Konda and J. Kaur. "RAPID: Shrinking the Congestion-Control Timescale". In IEEE INFOCOM 2009

M. Kihlewind - Chirping for Congestion Control

Chirping Implementation

Per-Packet rate of one chirping connection with N=32 on 1Mbit/s bottleneck link

Chirping at sender-side

E_ 6 - T T T T]
e .

S 5/ chirp [|
S 4+ .
©

— 3rF -
®

O 2 I~ .
©

e 1r :
E O | | | |

< 25 3 3.5 4

Chirping at receiver-side

per-packet rate [Mbps]
O - N w -~ Oor o

2.5 3 3.5 4
Time [s]

M. Kihlewind - Chirping for Congestion Control

Bandwidth Estimation based on relative OWD

Bandwidth estimation: Monitoring of the relative queuing delays of one chirp

220

200

180

160

140

one-way delay [ms]

120

100

initial delay
introduced by mostly
previous chirp self-induced congestion

-

=

estimated rate

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
packet number

« Growth in queuing delay between packets: Aq, = g - -1
— Increasing values at the end of reveals available capacity (self-induced congestion)

M. Kihlewind - Chirping for Congestion Control

OWD with cross-traffic implications

Excursion: Temporary increase in delay due to cross traffic

280

260

240

200

one-way delay [ms]

180

160

140

220 ;

-initial delay

introduced by mostly

previous chirp excursion self-induced congestion
< > > == >
i estimated rate

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

packet number

« Bandwidth estimation heuristics used (provided by pathChirp)

M. Kihlewind - Chirping for Congestion Control

Chirping Implementation in the Linux Kernel

« Implementation in the Linux kernel version 2.6.26 (current version 2.6.38)
— Rate-based approach and timer-based sent-out to realize inter-packet gaps
— Usage of the kernel code in a simulation environment

* Framework separates
— Rate estimation: Estimation of the available bandwidth rqg (pathChirp)

Rate adaption: Decision on new r,,q (RAPID: ry,q = rest — SCavenger)
Inter-packet gap calculation: Harmonic progression of rates

« Feedback based on TCP Timestamp Option (by default enabled in most OSs)

Every packet gets a time-stamp TSval assigned at sent-out

Receiver will echo this TSval and provide an own time-stamp TSecr on sent-out of the
acknowledgement

One-Way-Delay: OWD = TSval - TSecr

Currently no one-ended deployment (because of delayed ACKSs)

M. Kihlewind - Chirping for Congestion Control

Chirping Implementation in the Linux Kernel

Sender-side Delay Measurement based on TCP Timestamp Option

One-way delay measurement based on TCP Timestamp Option

| Kind=8 | 10 | TS Value (TSval) | TS Echo Reply (TSecr) |

+—— t——— - - +
1 1 4 4

— Option header includes echoed timestamp of data packet and ACK timestamp

— One-way delay estimate: g = TSecr - TSval
— Monitoring of relative increase in OWD within one chirp: AQy, =y - dn-1

Challenges
« TCP Timestamp Option does not ensure certain resolution (add. negotiation needed)

« Feedback needs to be assigned to one specific packet in a chirp (delayed ACKs?)

« Accuracy of time-stamping at send-out of data packet and ACK
— Additional delay on network device (hardware timestamping)

— Improved accuracy by use of the actual sending time gaps (reconstructed from the TCP TS

Option) as long as the inter-packet gaps are getting smaller within one chirp

M. Kihlewind - Chirping for Congestion Control

10

Research Challenges (1)

1. Processing overhead because of interrupt handling for sent-out timers

— Threaded interrupts
— Possibility of hardware support for timing and time-stamping

2. Additional delays on the network device/in the OS of a real system (e.g. delayed ACKSs,
TCP Segmentation Offload)

Real-world testbed with current kernel version

3. Limitations in timestamp resolution and computational restrictions for algorithms
— hrtimers in the Linux kernel provide currently nanosecond resolution
— that’s enough to serve high-speed links

4. Additional negotiation for TCP Timestamp Option (draft-scheffenegger-tcpm-
timestamp-negotiation)

— about timesamp resolution
— to reassign right timestamp to the right chirp

M. Kihlewind - Chirping for Congestion Control 11

Research Challenges (2)

5. Interdependencies with a large number of chirping senders
— Accuracy of measurement with a large aggregation of probing chirps
— Impact of short term probing delays on the queue burstiness
— Influence of a large aggregation of probing chirps on the base queue length
— Reduced overshoot and respectively reduced maximum queue length

6. Adaption of chirping parameters to prevailing conditions (inter-packet gap calculation)
— smaller number of packet per chirp for low mean sending rate
— variation of probing range
— arrangement of probing rates depending on previous estimation

M. Kihlewind - Chirping for Congestion Control 12

Conclusion and Outlook

Design of a robust congestion control based on chirping

 (If it works) bandwidth estimation is a valuable information; more than just ‘there is
congestion’ or ‘there is no congestion’ as today loss/delay measurements do

« Fast feedback chirping information only in addition to other network state information

« Converenge in capacity sharing also when competing with other protocols

— RAPID is scavenger protocol: Not designed to take capacity share from loss-based
protocols

« The transport layer needs to have mechanism to adapt to the different networks/
network conditions and not the other way around!

 Chirping information can be used to avoid large overshoots

Conclusion
« Use faster feedback to enable more scalable rate adaption with minimal overshoot!

« Do we need to update the interface between host & network?
— Prior to discovering chirping, we thought we did, but not yet conclusive.

M. Kihlewind - Chirping for Congestion Control 13

Chirping for Congestion Control

Thank you for your attention!

Questions?

M. Kihlewind - Chirping for Congestion Control

14

Chirping

Preliminary Results

Per-Packet rate of one chirping connection on 1Mbit/s bottleneck link

Chirping at sender-side

T T T+

Istar’[-up phalse chirp

per-packet rate [Mbps]
O = N W P~ OO

0.5 1 1.5 2 2.5 3
Chirping at receiver-side

per-packet rate [Mbps]
O = N W s~ OorO,

\l\w]]]]

Time [s]

M. Kihlewind - Chirping for Congestion Control

15

Chirping Implementation in the Linux Kernel

Implementation Details

— Extended congestion control kernel module interface and TCP timer for send-out timing

Application

I

H

Socket interface

=l

: tcp_data_queue]

/\
(top_min_cwnd)

[tcp_ownd_down |

;

| tcp_séﬁdmsg]

Ep_ack

—
{ top_cong_avoid)
_/

" top_rev_established

[tep_v4 _do_rev |

[top_fastretrans_alert

] —

[tcp_push pending_frames

/\

}ﬁ tep_chirping_timer
v

~ _
tcp_sentd> ed_ack]
- o~

((tep_reset_timer

tcp_snd_ack }F

[tcp_write_xmit _— —
tcp_chirping_set_timer j)

e ——

tep_transmit_skb |

[ip_local_deliver]

[top_v4_do_rcv |

I

Network device driver

M. Kihlewind - Chirping for Congestion Control

I

16

Chirping Implementation in the Linux Kernel

Algorithm for Inter-packet gap Calculation

« Fully based on inter-packet time gaps instead of rate
* N should be an the integer power of 2
— Initiallly hard-coded to N = 32 (=2°)
« Harmonic progression of rates by linear decrease of inter-packet gaps
— Linear decrease of inter-packet gaps: gap; = gap;.1 - gapstep With gapgiep = (2 * gapayg) / N
« Implementation with integer arithmetic

gap; = gapstep * (N -i+1) = (2 * gapayg) /N * (N -1+ 1) with i =1...N-1; gapg = gapaygq

— Probing range:1/2 rayq to N/4 14
— Maximum rates of harmonic progression not used
— Slightly lower average rate than the estimated one

M. Kihlewind - Chirping for Congestion Control 17

