
Chirping for

Congestion Control

ICCRG – IETF80 Prag – March 31st, 2011

Mirja Kühlewind <mirja.kuehlewind@ikr.uni-stuttgart.de>

Bob Briscoe <bob.briscoe@BT.com>

IKR, University of Stuttgart, Germany

This work is partly funded by the German Research Foundation (DFG) through the Center of Excellence (SFB) 627 "Nexus"

and by Trilogy, a research project (ICT-216372) supported by the European Community under its 7th Framework Programme.

2M. Kühlewind - Chirping for Congestion Control

Overview

• Motivation

• Chirping as a Building Block for Congestion Control

• Research Challenges

• Conclusion and Outlook

3M. Kühlewind - Chirping for Congestion Control

Motivation

Scaling Problem

1. Original TCP acquires new bandwidth too slowly

2. State-of-the-art approaches overshoot instead

3. Overshoot causes a lot unnecessary congestion

• Do we need to update the interface between host & network?

→ Prior to discovering chirping, we thought we did, but not yet conclusive.

• Chirping provides an estimation about the available bandwidth (fast feedback)

→ Probing for a wide range of bit-rates with minimal harm to others (without overshoot)

4M. Kühlewind - Chirping for Congestion Control

Chirping Principle

Chirp: A group of several packets with decreasing inter-packet gaps and increasing rate

– Proposed by pathChirp bandwidth estimation tool [1]

• Bandwidth estimation based on self-induced congestion

• Feedback for monitoring of one-way delay

[1] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil and L. Cottrell. "pathChirp: Efficient Available Bandwidth Estimation for Network Paths".

Passive and Active Measurement Workshop 2003

5M. Kühlewind - Chirping for Congestion Control

Chirping as a Building Block for Congestion Control

Chirping for Congestion Control: Continuous transmission of data packets as chirps

– proposed by RAPID congestion control [2]

• Average rate ravg should equal intended sending rate of congestion control

• Actual per-packet rates are lower and higher than ravg

→ Probing for a wide range of possible sending rates but still limited impact of probing on

other flows

[2] V. Konda and J. Kaur. "RAPID: Shrinking the Congestion-Control Timescale". In IEEE INFOCOM 2009

6M. Kühlewind - Chirping for Congestion Control

Chirping Implementation

Per-Packet rate of one chirping connection with N=32 on 1Mbit/s bottleneck link

 0

 1

 2

 3

 4

 5

 6

 2.5 3 3.5 4

p
e
r-

p
a
c
k
e
t
ra

te
 [
M

b
p
s
] Chirping at sender-side

chirp

 0

 1

 2

 3

 4

 5

 6

 2.5 3 3.5 4

p
e
r-

p
a
c
k
e
t
ra

te
 [
M

b
p
s
]

Time [s]

Chirping at receiver-side

chirp

7M. Kühlewind - Chirping for Congestion Control

Bandwidth Estimation based on relative OWD

Bandwidth estimation: Monitoring of the relative queuing delays of one chirp

• Growth in queuing delay between packets: �qn = qn - qn-1

→ Increasing values at the end of reveals available capacity (self-induced congestion)

 100

 120

 140

 160

 180

 200

 220

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

o
n

e
-w

a
y
 d

e
la

y
 [

m
s
]

packet number

estimated rate

initial delay

introduced by

previous chirp

mostly

self-induced congestion

8M. Kühlewind - Chirping for Congestion Control

OWD with cross-traffic implications

Excursion: Temporary increase in delay due to cross traffic

• Bandwidth estimation heuristics used (provided by pathChirp)

 140

 160

 180

 200

 220

 240

 260

 280

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

o
n
e

-w
a

y
 d

e
la

y
 [

m
s
]

packet number

estimated rate

initial delay

introduced by
previous chirp excursion

mostly
self-induced congestion

9M. Kühlewind - Chirping for Congestion Control

Chirping Implementation in the Linux Kernel

• Implementation in the Linux kernel version 2.6.26 (current version 2.6.38)

– Rate-based approach and timer-based sent-out to realize inter-packet gaps

– Usage of the kernel code in a simulation environment

• Framework separates

– Rate estimation: Estimation of the available bandwidth rest (pathChirp)

– Rate adaption: Decision on new ravg (RAPID: ravg = rest → scavenger)

– Inter-packet gap calculation: Harmonic progression of rates

• Feedback based on TCP Timestamp Option (by default enabled in most OSs)

– Every packet gets a time-stamp TSval assigned at sent-out

– Receiver will echo this TSval and provide an own time-stamp TSecr on sent-out of the

acknowledgement

– One-Way-Delay: OWD = TSval - TSecr

– Currently no one-ended deployment (because of delayed ACKs)

10M. Kühlewind - Chirping for Congestion Control

Chirping Implementation in the Linux Kernel

Sender-side Delay Measurement based on TCP Timestamp Option

One-way delay measurement based on TCP Timestamp Option

+-------+-------+---------------------+---------------------+

|Kind=8 | 10 | TS Value (TSval) |TS Echo Reply (TSecr)|

+-------+-------+---------------------+---------------------+

 1 1 4 4

→ Option header includes echoed timestamp of data packet and ACK timestamp

→ One-way delay estimate: q = TSecr - TSval

→ Monitoring of relative increase in OWD within one chirp: �qn = qn - qn-1

Challenges

• TCP Timestamp Option does not ensure certain resolution (add. negotiation needed)

• Feedback needs to be assigned to one specific packet in a chirp (delayed ACKs?)

• Accuracy of time-stamping at send-out of data packet and ACK

– Additional delay on network device (hardware timestamping)

– Improved accuracy by use of the actual sending time gaps (reconstructed from the TCP TS

Option) as long as the inter-packet gaps are getting smaller within one chirp

11M. Kühlewind - Chirping for Congestion Control

Research Challenges (1)

1. Processing overhead because of interrupt handling for sent-out timers

– Threaded interrupts

– Possibility of hardware support for timing and time-stamping

2. Additional delays on the network device/in the OS of a real system (e.g. delayed ACKs,

TCP Segmentation Offload)

Real-world testbed with current kernel version

3. Limitations in timestamp resolution and computational restrictions for algorithms

– hrtimers in the Linux kernel provide currently nanosecond resolution

– that’s enough to serve high-speed links

4. Additional negotiation for TCP Timestamp Option (draft-scheffenegger-tcpm-

timestamp-negotiation)

– about timesamp resolution

– to reassign right timestamp to the right chirp

12M. Kühlewind - Chirping for Congestion Control

Research Challenges (2)

5. Interdependencies with a large number of chirping senders

– Accuracy of measurement with a large aggregation of probing chirps

– Impact of short term probing delays on the queue burstiness

– Influence of a large aggregation of probing chirps on the base queue length

→ Reduced overshoot and respectively reduced maximum queue length

6. Adaption of chirping parameters to prevailing conditions (inter-packet gap calculation)

– smaller number of packet per chirp for low mean sending rate

– variation of probing range

– arrangement of probing rates depending on previous estimation

13M. Kühlewind - Chirping for Congestion Control

Conclusion and Outlook

Design of a robust congestion control based on chirping

• (If it works) bandwidth estimation is a valuable information; more than just ’there is

congestion’ or ’there is no congestion’ as today loss/delay measurements do

• Fast feedback chirping information only in addition to other network state information

• Converenge in capacity sharing also when competing with other protocols

– RAPID is scavenger protocol: Not designed to take capacity share from loss-based

protocols

• The transport layer needs to have mechanism to adapt to the different networks/

network conditions and not the other way around!

• Chirping information can be used to avoid large overshoots

Conclusion

• Use faster feedback to enable more scalable rate adaption with minimal overshoot!

• Do we need to update the interface between host & network?

→ Prior to discovering chirping, we thought we did, but not yet conclusive.

14M. Kühlewind - Chirping for Congestion Control

Chirping for Congestion Control

Thank you for your attention!

Questions?

15M. Kühlewind - Chirping for Congestion Control

Chirping

Preliminary Results

Per-Packet rate of one chirping connection on 1Mbit/s bottleneck link

 0

 1

 2

 3

 4

 5

 6

 0.5 1 1.5 2 2.5 3

p
e
r-

p
a
c
k
e
t
ra

te
 [
M

b
p
s
] Chirping at sender-side

start-up phase chirp

 0

 1

 2

 3

 4

 5

 6

 0.5 1 1.5 2 2.5 3

p
e
r-

p
a
c
k
e
t
ra

te
 [
M

b
p
s
]

Time [s]

Chirping at receiver-side

chirp

16M. Kühlewind - Chirping for Congestion Control

Chirping Implementation in the Linux Kernel

Implementation Details

→ Extended congestion control kernel module interface and TCP timer for send-out timing

17M. Kühlewind - Chirping for Congestion Control

Chirping Implementation in the Linux Kernel

Algorithm for Inter-packet gap Calculation

• Fully based on inter-packet time gaps instead of rate

• N should be an the integer power of 2

→ Initiallly hard-coded to N = 32 (=25)

• Harmonic progression of rates by linear decrease of inter-packet gaps

→ Linear decrease of inter-packet gaps: gapi = gapi-1 - gapstep with gapstep = (2 ∗ gapavg) / N

• Implementation with integer arithmetic

gapi = gapstep ∗ (N - i + 1) = (2 ∗ gapavg) / N ∗ (N - i + 1) with i = 1...N-1; gap0 = gapavg

– Probing range:1/2 ravg to N/4 ravg

– Maximum rates of harmonic progression not used

→ Slightly lower average rate than the estimated one

