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Motivation

Scaling Problem

1. Original TCP acquires new bandwidth too slowly
2. State-of-the-art approaches overshoot instead
3. Overshoot causes a lot unnecessary congestion

state of the art
‘scalable’ TCP
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bit-rate newly available capacity
@ e.g. another flow has ended
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« Do we need to update the interface between host & network?

— Prior to discovering chirping, we thought we did, but not yet conclusive.

 Chirping provides an estimation about the available bandwidth (fast feedback)
— Probing for a wide range of bit-rates with minimal harm to others (without overshoot)
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Chirping Principle

Chirp: A group of several packets with decreasing inter-packet gaps and increasing rate
— Proposed by pathChirp bandwidth estimation tool [1]
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« Bandwidth estimation based on self-induced congestion
« Feedback for monitoring of one-way delay

[1] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil and L. Cottrell. "pathChirp: Efficient Available Bandwidth Estimation for Network Paths".

Passive and Active Measurement Workshop 2003
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Chirping as a Building Block for Congestion Control

Chirping for Congestion Control: Continuous transmission of data packets as chirps
— proposed by RAPID congestion control [2]
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* Average rate r,,q should equal intended sending rate of congestion control

* Actual per-packet rates are lower and higher than r,4

— Probing for a wide range of possible sending rates but still limited impact of probing on
other flows

[2] V. Konda and J. Kaur. "RAPID: Shrinking the Congestion-Control Timescale". In IEEE INFOCOM 2009
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Chirping Implementation

Per-Packet rate of one chirping connection with N=32 on 1Mbit/s bottleneck link

Chirping at sender-side
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Chirping at receiver-side
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Bandwidth Estimation based on relative OWD

Bandwidth estimation: Monitoring of the relative queuing delays of one chirp
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« Growth in queuing delay between packets: Aq, = g - -1
— Increasing values at the end of reveals available capacity (self-induced congestion)
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OWD with cross-traffic implications

Excursion: Temporary increase in delay due to cross traffic
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« Bandwidth estimation heuristics used (provided by pathChirp)
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Chirping Implementation in the Linux Kernel

« Implementation in the Linux kernel version 2.6.26 (current version 2.6.38)
— Rate-based approach and timer-based sent-out to realize inter-packet gaps
— Usage of the kernel code in a simulation environment

* Framework separates
— Rate estimation: Estimation of the available bandwidth rqg (pathChirp)

Rate adaption: Decision on new r,,q (RAPID: ry,q = rest — SCavenger )
Inter-packet gap calculation: Harmonic progression of rates

« Feedback based on TCP Timestamp Option (by default enabled in most OSs)

Every packet gets a time-stamp TSval assigned at sent-out

Receiver will echo this TSval and provide an own time-stamp TSecr on sent-out of the
acknowledgement

One-Way-Delay: OWD = TSval - TSecr

Currently no one-ended deployment (because of delayed ACKSs)
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Chirping Implementation in the Linux Kernel

Sender-side Delay Measurement based on TCP Timestamp Option

One-way delay measurement based on TCP Timestamp Option

| Kind=8 | 10 | TS Value (TSval) | TS Echo Reply (TSecr) |
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— Option header includes echoed timestamp of data packet and ACK timestamp

— One-way delay estimate: g = TSecr - TSval
— Monitoring of relative increase in OWD within one chirp: AQy, =y - dn-1

Challenges
« TCP Timestamp Option does not ensure certain resolution (add. negotiation needed)

« Feedback needs to be assigned to one specific packet in a chirp (delayed ACKs?)

« Accuracy of time-stamping at send-out of data packet and ACK
— Additional delay on network device (hardware timestamping)

— Improved accuracy by use of the actual sending time gaps (reconstructed from the TCP TS

Option) as long as the inter-packet gaps are getting smaller within one chirp
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Research Challenges (1)

1. Processing overhead because of interrupt handling for sent-out timers

— Threaded interrupts
— Possibility of hardware support for timing and time-stamping

2. Additional delays on the network device/in the OS of a real system (e.g. delayed ACKSs,
TCP Segmentation Offload)

Real-world testbed with current kernel version

3. Limitations in timestamp resolution and computational restrictions for algorithms
— hrtimers in the Linux kernel provide currently nanosecond resolution
— that’s enough to serve high-speed links

4. Additional negotiation for TCP Timestamp Option (draft-scheffenegger-tcpm-
timestamp-negotiation)

— about timesamp resolution
— to reassign right timestamp to the right chirp
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Research Challenges (2)

5. Interdependencies with a large number of chirping senders
— Accuracy of measurement with a large aggregation of probing chirps
— Impact of short term probing delays on the queue burstiness
— Influence of a large aggregation of probing chirps on the base queue length
— Reduced overshoot and respectively reduced maximum queue length

6. Adaption of chirping parameters to prevailing conditions (inter-packet gap calculation)
— smaller number of packet per chirp for low mean sending rate
— variation of probing range
— arrangement of probing rates depending on previous estimation
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Conclusion and Outlook

Design of a robust congestion control based on chirping

 (If it works) bandwidth estimation is a valuable information; more than just ‘there is
congestion’ or ‘there is no congestion’ as today loss/delay measurements do

« Fast feedback chirping information only in addition to other network state information

« Converenge in capacity sharing also when competing with other protocols

— RAPID is scavenger protocol: Not designed to take capacity share from loss-based
protocols

« The transport layer needs to have mechanism to adapt to the different networks/
network conditions and not the other way around!

 Chirping information can be used to avoid large overshoots

Conclusion
« Use faster feedback to enable more scalable rate adaption with minimal overshoot!

« Do we need to update the interface between host & network?
— Prior to discovering chirping, we thought we did, but not yet conclusive.
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Chirping for Congestion Control

Thank you for your attention!

Questions?
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Chirping

Preliminary Results

Per-Packet rate of one chirping connection on 1Mbit/s bottleneck link

Chirping at sender-side
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Chirping Implementation in the Linux Kernel

Implementation Details

— Extended congestion control kernel module interface and TCP timer for send-out timing

Application
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Chirping Implementation in the Linux Kernel

Algorithm for Inter-packet gap Calculation

« Fully based on inter-packet time gaps instead of rate
* N should be an the integer power of 2
— Initiallly hard-coded to N = 32 (=2°)
« Harmonic progression of rates by linear decrease of inter-packet gaps
— Linear decrease of inter-packet gaps: gap; = gap;.1 - gapstep With gapgiep = (2 * gapayg) / N
« Implementation with integer arithmetic

gap; = gapstep * (N -i+1) = (2 * gapayg) /N * (N -1+ 1) with i =1...N-1; gapg = gapaygq

— Probing range:1/2 rayq to N/4 14
— Maximum rates of harmonic progression not used
— Slightly lower average rate than the estimated one
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