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Abstract— Optical Burst Switching (OBS) has been proposed in
the late 1990s as a novel photonic network architecture directed
towards efficient transport of IP traffic. OBS aims at cost-
efficient and dynamic provisioning of sub-wavelength granularity
by optimally combining electronics and optics. In order to reduce
the number of switching decisions in OBS core nodes, traffic
is aggregated and assembled to bursts by the Burst Assembly
Unit in an OBS ingress edge node. This Burst Assembly Unit is
responsible for buffering incoming packets in queues and sending
them as bursts as soon as a minimum burst length is reached
and/or a timer expires. Typically, dozens of different queues must
be able to handle high volumes of traffic.

This paper presents the design and implementation of a Burst
Assembly Unit for a Network Processor. In an evaluation of the
realized implementation we point out the ability to handle traffic
at line speed while having fine grained timers for all queues.

I. I NTRODUCTION

Optical Burst Switching has been introduced as a new
switching paradigm for transport networks in order to com-
pensate the two main drawbacks of todays network archi-
tectures [1]. First, today optical transmission technology is
only used for point-to-point links between network nodes,
while switching and routing is done in the electrical domain.
Thus, all data has be converted optical-to-electrical (O/E) and
electrical-to-optical (E/O) in every node. With optical switch-
ing, data would always remain in the optical domain and thus
O/E and E/O conversion would only be necessary on the edge.
Second, transport networks either rely on the packet or on
the circuit switching principle. In packet switched networks,
statistical multiplexing gain can be realized leading to a high
efficiency, but at the cost of a high processing overhead and the
need for buffering. In circuit switched networks, in a core node
only simple operations are required to forward the incoming
data stream to the responsible output port without large buffers,
but it cannot capitalize on any statistical multiplexing. In
OBS, packets are collected in the edge nodes and assembled
according to a certain strategy [2] into bursts with a size
usually between 10 kilobit and some 100 kilobits [3]. These
bursts are sent through the core network to the egress node
remaining always in the optical domain. Here, the bursts are
disassembled and the packets are forwarded towards their
destination. With this, still statistical multiplexing can be used
to increase the efficiency of the network, while the processing

overhead is essentially reduced in relation to packet switched
networks. Furthermore, O/E and E/O conversion has only to
be done at the edge of the network.

In an OBS edge node, the task of the Burst Assembly
Unit (BAU) is to classify incoming packets, buffer them in
the corresponding queues, assemble the bursts, and finally
schedule and transmit them. A BAU could be implemented
on several types of hardware: ASICs, FPGAs, Network Pro-
cessors (NP) or even General Purpose Processors (GPP). In
contrast to a GPP, an NP is equipped with fast media interfaces
and optimized for parallel and pipelined processing as it
is typical for network applications. Compared to hardwired
solutions, network nodes using NPs can be adapted to new
requirements by simply changing the program. Most NPs are
designed for classical IP processing applications consisting
mainly of packet classification, forwarding, queueing and
scheduling. Further, the manufacturers provide software frame-
works optimized for applications based on IP and Ethernet.
Nevertheless, in a BAU several new aspects like creating new
packets or multi stage queueing become important. These new
tasks are a challenge to the NP’s flexibility.

This paper presents the design of a BAU for an Intel
IXP2400 Network Processor. We will show how the BAU has
been realized by a Burst Assembly Module (BAM) that has
been integrated in the manufacturer’s software framework.

The remainder of this paper is structured as follows:
Section II introduces OBS and Burst Assembly, Section III
describes the Network Processor used. In Section IV, the
design of the BAM is presented, which is integrated in the
BAU in Section V. The results of the performance evaluation
are presented in Section VI. The last section concludes the
paper.

II. OPTICAL BURST SWITCHING

Current network architectures use fibers with several wave-
lengths for point-to-point links between nodes. On each node,
data has to go through O/E conversion for switching and
through E/O conversion thereafter. In OBS, data remains in
the optical domain throughout the network.

Figure 1 shows an OBS-network. It consists of edge nodes,
core nodes and fiber bundles connecting the nodes. The edge
nodes aggregate traffic to bursts, which are then sent through
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the core to the egress node. Arriving at the egress node, the
Disassembly Unit extracts the packets from the burst and
forwards them to their destination.

A closer look on the Burst Assembly Unit in Fig. 2 reveals
its functional blocks. First, received packets are forwarded
according to egress node and traffic class to one ofn queues of
them sets of queues. Once finalization is triggered, all packets
of a queue are assembled to a burst and forwarded to the
next queue. On finalization, a header is generated containing
information on the positions of the packets within the burst,
needed for disassembly on the egress. After finalization, the
burst is queued in another queue before it is scheduled for
transmission to the OBS core. Finalization can be triggered
based on the following criteria:

• Size-based
Once the queue length reaches a minimum size.

• Time-based
A predefined time after the first packet has been en-
queued.

• Combined
Reaching the minimum size or timeout trigger finaliza-
tion.

In the time-based case, the maximum delay of a packet due
to queueing is determined by the timeout set. Furthermore,
for providing several levels of Quality of Service (QoS) for
different traffic classes, the size/timeout values can be set
accordingly and appropriate scheduling can be employed [4].

Due to properties of the OBS network, the maximum burst
size might be limited. If this is the case, finalization has also
to be triggered in cases where a burst would become too large
by enqueueing another packet, since neither size-based nor
time-based strategies assure a maximum burst size.

III. N ETWORK PROCESSORS

A. Overview

Processing tasks in network nodes can be classified in data
path and control path tasks: While the majority of packets
has to be forwarded through the node on the data path,
some packets are addressed to the network node itself for
network control and routing. For the data path, Network
Processors integrate several Special Purpose Processors (SPP)
optimized for forwarding large amounts of data. For control
path processing and management tasks, a General Purpose
Processor (GPP) is often included.
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The architectures of the SPPs are optimized for the char-
acteristics of the data path: Operations like table lookup or
queueing are supported by special units and several SPPs do
processing tasks either as a functional pipeline, in parallel, or
in a combination of both. In network nodes, packets have to
be read and written at high speed, while only the header, a
small part of this data, is processed. Therefore, and because
the header has to be processed only once, there is no temporal
or spacial locality of this data and thus, caching of data is not
useful. However, the processor should not waste processing
time while waiting for memory operations. Since no cache
can hide this memory latency, other methods, like hardware-
supported multithreading, are employed.

The common processing approach in network nodes is to
first do packet processing (e.g. forwarding), followed by a
queueing stage. Afterwards, the scheduler decides when a
packet should be transmitted. Following this pattern, some
NPs reflect this principle in their hardware design: A cluster of
SPPs for packet processing and a dedicated ”Queue Manager”
(QM) for queueing. Often, these two components are imple-
mented in separate chips with different hardware requirements:
While the QM needs a high amount of memory for packet
buffers, the SPPs require low latency memory for tables and
a small amount of packet buffer memory only.

Different from this common principle, for Burst Assembly
two stages of queueing are needed: First, the packets have to be
queued until a burst is finalized and second, the burst is queued
until it will be scheduled. Obviously, an NP that does not need
an external QM component is better suited for this kind of
application than a two-chip solution. For the implementation of
the BAU, an NP of Intel’s IXP2XXX series has been chosen,
since these processors do not adhere to the division of NP and
QM.

B. The IXP2400

There are five different NPs in Intel’s IXP2XXX series.
All of them comprise of the same type of SPPs (called
microengines) for data path processing. The different models
of the IXP2XXX series differ in the number of microengines
employed, as well as in memory size and clock frequency of
microengines. For our implementation, an IXP2400 has been
chosen, which contains eight microengines and consists of the
basic blocks that are shown in Fig. 3.

Microengines are simple 32-Bit RISC processors that allow
hardware-supported multithreading by supporting fast context
switches between the eight register sets. In addition to the
registers that are intended for per-packet data, local memory
within each microengine can be used to keep state information
accessible for all threads. All microengines have access to
the media interface, the external memory and to a fast on-
chip memory. While the external memory is intended for
packet buffers and lookup tables, the on-chip memory is used
for inter-microengine communication. Additional hardware
support for ring buffers (FIFO queues) allows for atomic
concurrent access to this shared on-chip memory. Since all
microengines can access the same units in the same way, the
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Fig. 3. Simplified architecture of the IXP2400

tasks of the packet-processing pipeline can be mapped onto
the microengines in either way, parallel or pipelined.

A software framework [5] is provided by the manufacturer,
which contains building blocks for common processing tasks
and defines data structures as well as interfaces. This frame-
work enables designing reusable and flexible software blocks
for all models of the NP series.

C. Mapping of functions to microengines

The software framework defines one possibility of mapping
processing functions to microengines. In the following we will
introduce the framework briefly, since building blocks of it
have been reused for the BAU.

Figure 4 shows from top to bottom the basic tasks of a
packet processing node, the decomposition of the tasks in
basic functions, and the mapping to microengines as defined
by the software framework. This functional pipeline works as
follows: The RX and TX blocks transfer packet data from
the media interface to DRAM and vice versa. For passing
the packet from block to block, only a pointer to the packet
(packet handle) is used. This handle is passed together with
other information between microengines by the use of FIFOs
residing in the shared on-chip memory.

The packet processing stage incorporates all processing on
a packet and its headers, like decapsulation, encapsulation,
validation, forwarding and classification. Since this stage needs
the most of both, processing power and memory access,
it runs in parallel on several microengines. The queue and
scheduler blocks each run on separate microengines and are
interconnected by FIFOs for transferring control messages,
not packet handles. Once a packet is scheduled, its handle
is forwarded to the TX stage, which can run in parallel on
two microengines for performance reasons.

IV. D ESIGN OF THEBURST ASSEMBLY MODULE

For queueing of packets and assembling bursts, a software
module has been implemented that is designed for running
on a single microengine using the eight hardware-supported
threads. Other functional blocks, necessary for a complete
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BAU have been realized by the reuse of existing building
blocks. The BAM can be integrated in the functional pipeline
defined by the software framework (section III-C), as it will
be shown in Section V.

A. Basic tasks

As shown in Fig. 5, the BAM receives packets from the
input FIFO and sends bursts by writing to the output FIFO.
Additionally, it is capable of prepending headers.

For saving packets, the software framework defines a buffer
structure of a fixed size. In the case of large packets, several
buffers can be concatenated by means of pointers resulting in
a linked list. Converting the linked list back to a contiguous
packet is done at the end of the pipeline by the TX-block,
which reads all buffers of such a list and sends the data to the
media interface.

The BAM uses this support for linked lists to build a chain
of packets. This chain is used for queueing of packets as well
as for sending the burst, since this linked list can be processed
by the downstream blocks as if it was a single packet. The
main element in Fig. 5 is the queue descriptor for every queue,
which contains a pointer to the head and tail of the queue as
well as its size.

For enqueueing packets, a data structure from the input
FIFO is read, which contains the packet handle and informa-
tion on the packet size and queue number. The queue number
is determined by upstream blocks and based on its value, a
queue descriptor is selected and the packet is enqueued to the
tail of the corresponding queue. Before the first packet is added
to a queue, a buffer for the header is allocated and enqueued,
which provides enough memory space for a complete burst
header.

Finalizing a burst is accomplished by writing a data struc-
ture to the output FIFO and resetting the queue, which is done
by setting its size to zero, and enqueueing a new header buffer.

The data structure written to the output FIFO contains the
handle of the first packet and the queue number. This handle
contains sufficient information for downstream blocks to have
access to the complete burst, while the queue number is needed
since the next stage is a queueing stage that uses the same
queue numbering as the BAM. Triggering the finalization of
a burst for the size-based case is simply done by checking
the size of the queue, while for time-based assembly, a timer
mechanism is employed, which will be explained in section
IV-B.

The burst header contains one field for the number of
packets, one for the size of the header and one for the size
of every packet. Obviously, the size of the header is not fixed
and is only known when the burst is finalized.

For performance reasons, the header is written in chunks
of eight bytes. Since each header field has a size of 16
bits, four packet size fields have to be buffered within the
microengine before they are written to the buffer. When the
burst is finalized, the remaining buffered size fields are written.

B. Timers

As seen above, timers are necessary for time-based assem-
bly for every queue. A timer is started when the first packet for
a new burst is received and disarmed when the burst is sent.
When a timer expires, the corresponding burst is finalized.

Although there are eight hardware timers per microengine,
they are not used since they cannot be disarmed and it is
rather difficult to map about dozens of timers to eight hardware
timers efficiently. Therefore, a timer mechanism based on
polling of a timestamp register has been realized.

This timer mechanism saves the target times, at which the
timer expires, in local memory and checks them periodically.
For the target times, a contiguous block of memory is reserved,
with each timer occupying a 32-bit word. For efficiency
reasons, processing the timers is distributed among all threads
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Fig. 5. Queueing and assembly using linked lists of packet buffers

with each thread handling up to eight timers. Thus, with eight
threads, up to 64 timers can be processed. This implementation
is very fast, because eight contiguous memory words can be
accessed very efficiently with this hardware and thus needs
less processing time than an implementation with longer lists
or calendars. For keeping the program simple, each thread
processes the same number of timers, hence the number of
timers is always a multiple of eight, while superfluous timers
remain always disarmed.

A system time, which is provided by a 32-bit timestamp
register in each microengine, is used for this timer scheme. The
system clock increments this timestamp every 16 processor
cycles, which is obviously too fine-grained for our needs.
Therefore, the desired granularity is achieved by executing
a right shift operation on this timestamp value, thus the
granularity can be adjusted easily. For reducing jitter, the
internal granularity for saving target times in memory is four
times finer than the timer’s granularity.

When designing a timer, which relies on an advancing
system time, overflows of this value have also to be considered.
This can be accomplished in several ways, which all introduce
additional checks and expensive branch instructions. This
design circumvents overflow handling by only checking for
equality of system time and target time instead of doing a

less-or-equal check for determining exceeded timers. However,
in this case, it has to be guaranteed that all timers can be
processed fast enough before the time advances. This condition
has to be checked for a desired timer granularity and if it does
not hold, a coarser granularity has to be chosen.

V. I NTEGRATION AND TEST

For a complete BAU, the BAM has been integrated in
the functional pipeline between packet processing stage and
queue (Fig. 6). This functional pipeline reflects the BAU
introduced in Fig. 2. All other blocks can be realized by the
use of existing building blocks with minor changes.

The BAU has been realized on a Radisys ENP-2611 Net-
work Processor Board, which is equipped with an IXP2400,
three optical Gigabit Ethernet ports, and various other support-
ing components (e.g. memory for packet buffers and tables).
The Ethernet ports are connected to the media interface of the
IXP2400.

Using this hardware, it is possible to test the BAU as part
of a network scenario, where IP packets are received and
bursts are sent over Ethernet. Thus, in contrast to future OBS
applications, the burst size is limited for this implementation
to 9000 bytes (Ethernet jumbo frames).
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Fig. 6. Integration of the BAM into the BAU
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As shown in Fig. 7, the test setup consists of the NP
board and two computers, working as source and destination
node. On the destination node, a disassembly program extracts
packets from the received bursts and forwards them to the local
network stack. In order to acknowledge test packets received,
a feedback link is set up directly between the two test nodes.
On the destination node, a receiver software for responding
to test packets is running, which can be an ICMP stack for
simple tests.

Using this setup, the functionality of the BAU could be
validated and a throughput of 500 MBit/s was achieved, using
Iperf [6] as measurement tool. A higher bandwidth could not
be achieved due to limitations of the computers used as source
and destination. However, as the next section will show, the
BAU is capable of handling traffic rates that are higher than the
interface speed. Thus, it is impossible to measure the BAM’s
maximum throughput using the test setup described.

VI. EVALUATION OF THE BAM

In this section, the scalability and performance of the BAM
is evaluated. Other pipeline stages and their impact on the
performance are not considered.

A. Scalability

In the following, the scalability limited by the amount of
microengine-internal memory will be discussed. The mem-
ory requirement per queue depends on the desired assembly
strategy and on whether a header should be prepended to
the burst or not: Using (1), the amount of local memory
needed (M ) is determined by the number of queues (nq), the
size of the queue descriptor (sqdesc) and the memory needed
for one timer (stimer), which is always 4 bytes. For size-based
assembly without header generation,sqdesc is 16 bytes, while
it is 32 bytes for all other cases.

M = nq · sqdesc +
⌈nq

8

⌉
· stimer (1)

Since the microengines of the IXP2400 have 2560 bytes
of local memory each, 64 queues can be handled if all
features are used. This number would be enough for a wide
area network (WAN) of the size of Germany for example.
Such a network might have about 30 edge nodes and for
service differentiation, two traffic classes could be employed,
which would result in about 60 queues per BAU. For more

queues, external memory had to be employed resulting in more
complex and slower design.

B. Performance Estimation

In this section, we will show how the BAM has been
evaluated by calculations based on the worst case cycle count.
The results are presented for different configurations of the
BAM.

In order to calculate the number of packets that can be
processed per second, the proceeding is as follows: First,
the number of cycles needed for the various tasks of burst
assembly has to be counted and second, it has to be calculated
how many of these tasks can be processed within a given
period of time, resulting in the number of packets processed.

Calculating the throughput based on cycle count is possible
due to the properties of the microengine’s architecture: The
microengines are based on a RISC architecture with a single
execution path. Therefore, one instruction is processed in one
clock cycle. Additionally, the integrated instruction memory
is fast enough to read the next instruction within one clock
cycle, hence there is no latency for reading program data.

The microengines are programmed in an assembly language
using the instructions that will be executed on the processor.
Thus, by counting the instructions in the program code, it is
possible to give the number of cycles needed for the execution
of the program. However, the time needed for I/O instructions
depends on the load of the processor buses used by all
processor units. Due to the hardware-supported multithreading,
threads waiting for I/O instructions can swap out, leaving the
processor to threads that are ready to run, thus keeping the
processor at full load. For this performance evaluation it is
assumed that I/O operations always terminate fast enough for
keeping the processor busy at all times.

The results of the these calculations are shown in Fig. 8
for different configurations of the BAM. The performance is
given in packets per seconds for different timer granularities,
which result from multiplications of the clock period by a
power of two and are given as rounded values in the chart.
The results for 27.3µs and 13.7µs granularity drop to zero as
soon as the timer condition (see IV-B) cannot be fulfilled any
more, since giving the performance for configurations at which
proper operation of the timer mechanism cannot be guaranteed
does not make sense.
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Fig. 8. Calculated throughput of the BAM for different timer granularities

As shown, performance decreases approximately linear for
an increasing number of queues, since every additional queue
needs additional processing time for a timer and for finaliza-
tion. However, the curves are not straight due to effects like
processing deactivated timers and writing parts of the header
for every fourth packet.

In order to give an impression of the performance that can
be achieved by the BAM, the maximum packet rate that can
occur in the NP using our hardware is shown as a horizontal
line in the chart. With the three Gigabit Ethernet ports, a
maximum packet rate of 4.5 Million packets per second is
possible considering the smallest Ethernet frame size. As
shown in the chart, the BAM can handle 64 queues with a
timer granularity of 54.6µs per timer at this rate.

VII. C ONCLUSION

In this work, a Burst Assembly Unit on a Network Processor
has been implemented and evaluated. It was shown that a
Network Processor is suitable for such an implementation al-
though the characteristics differ from typical network applica-
tions. Both assembly strategies – time-based and size-based –
have been realized. For this, an efficient timer mechanism has
been found that is able to provide Burst Assembly at line
speed.

In a detailed performance evaluation, a method to calcu-
late the maximum packet rate for a certain setup has been
developed. With this, the throughput for a number of relevant
scenarios has been calculated. It was shown that the Burst
Assembly Module can handle up to 6.8 Million packets per
second.

As a next step, the task of Burst Disassembly, which is
currently implemented on a PC for testing purposes, has to be
implemented as a software module for the NP. This module
then could be integrated in the NP that also runs the BAU, in
order to provide complete edge node functionality on an NP.
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