
Universität Stuttgart
INSTITUT FÜR

KOMMUNIKATIONSNETZE
UND RECHNERSYSTEME

Prof. Dr.-Ing. Dr. h. c. mult. P. J. Kühn

Interner Bericht / Internal Report No 53

Titel / Title Performance Measurements of SIMCO over TCP
and SCTP

Verfasser /
Author(s)

Sebastian Kiesel, Michael Scharf, Sebastian Beutel,
Thomas Ruschival

Datum / Date July 3, 2006

Umfang / Size 18 Seiten / Pages

Schlüsselworte /
Keywords

Measurement, SIMCO, TCP, SCTP

Kurzfassung / Abstract

This technical report summarizes the results of the SIMCO performance mea-
surements with different transport protocols.
SIMCO (SImple Middlebox COnfiguration) is a signaling protocol that can be used
for controlling middleboxes such as firewalls and network address translators –
small cable/DSL routers as well as large gateways between VoIP carrier networks,
policing thousands of simultaneous calls. In the latter case, optimizing the SIMCO
response time is important, as this contributes to the call setup delay perceived
by the user in a negative way.
SIMCO assumes to be transmitted over a reliable transport layer protocol. How-
ever, it requires only partial in-order delivery of messages. Using a Linux and
Solaris based prototype implementation and a wide area network emulator, the
SIMCO transaction response time was measured both for TCP (Transmission
Control Protocol) and SCTP (Stream Control Transmission Protocol) as transport
layer protocols, with different parameter settings and for different workloads.
The measurement results reveal clear advantages of using SCTP, especially in
scenarios with medium to high transaction rates.

1

1 Introduction

The SIMCO (SImple Middlebox COnfiguration) protocol [1] is a signaling protocol that implements
the MIDCOM protocol semantics [2]. In the context of the MIDCOM architecture [3], it can be used
for controlling middleboxes [4] such as firewalls and network address translators (NATs).

As outlined in [3], firewalls and NATs are potential obstacles to packet streams, for example if dy-
namically negotiated UDP or TCP port numbers are used, as in many peer-to-peer communication
applications. SIMCO allows applications to communicate with middleboxes on the datagram path in
order to request a dynamic configuration at the middlebox that enables datagram streams to pass the
middlebox. Applications can request pinholes at firewalls and address bindings at NATs. A typical
MIDCOM/SIMCO usage scenario is shown in figure 1.

When interactively establishing multimedia sessions, such as the SIP (Session Initiation Protocol [5])
based VoIP (Voice over IP) scenario shown in figure 1, optimizing the SIMCO response time is im-
portant, as this contributes to the call setup delay perceived by the user in a negative way.

SIMCO assumes to be transmitted over a reliable transport layer protocol. The SIMCO specifica-
tion [1] mandates TCP (Transmission Control Protocol) [6] as the default transport for SIMCO. How-
ever, SIMCO requires only partial in-order delivery of messages: all SIMCO messages referring to
firewall rules related to a specific VoIP call have to be delivered in sequence, whereas messages related
to other calls can be transmitted independently. TCP ensures complete in-order delivery and therefore
fulfills this requirement, but may cause unnecessary delays due to so-called head-of-line-blocking in
case of packet losses and retransmissions in the network.

The Stream Control Transmission Protocol (SCTP) [7] has originally been designed as a part of the
SIGTRAN architecture [8], for the transport of Signaling System No. 7 (SS7) messages over IP. How-
ever, this rather special purpose is achieved by adaptation layers on top of SCTP. SCTP itself has been
designed as a generic transport protocol for IP networks, at the same layer in the protocol stack as TCP
or UDP. SCTP offers several advantages compared to TCP for the transport of signaling protocols,
especially in scenarios with high reliability requirements or high signaling traffic between two end-
points. In particular, the negative effect of head-of-line-blocking can be reduced by distributing the
application layer messages over several so-called streams within one SCTP association, each having
its own resequencing queue.

How to transport SIMCO over SCTP and in particular how to leverage SCTP’s multiple streams
feature has been specified in [9]. This technical report summarizes the results of the SIMCO perfor-
mance measurements carried out at the IKR network laboratory. Using a Linux and Solaris based
prototype implementation (derived and extended from [10]) and a wide area network emulator, the
SIMCO transaction response time was measured both for TCP and SCTP transport layer protocols,
with different parameter settings and for different workloads.

SIP
proxy

SIP UA SIP UARTP

SIP

MIDCOM

user A user B

packet filter
("middlebox")

policy
protocol
interface
(impl.
specific)

interface
protocol
MIDCOM

public network (e.g., Internet)private domain

Figure 1: The MIDCOM architecture

2

2 Theoretical Explanation of Effects

Several effects contribute to the transaction response times presented in this report:

• Propagation delays of individual IP packets in the network between SIMCO agent and mid-
dlebox (in the following: RTT = round trip time, considered in the IP layer, assumed to be
constant)

• Delays caused by retransmissions of lost packets

• Additional delays due to the behavior of the resequencing queue at the receiver in case of packet
losses

• Local processing of requests, especially in the middlebox

• Delays at the sender in case of small congestion windows

In [11], we propose an analytical model that describes the additional resequencing delays when using
multiple SCTP streams in ordered mode. The model is compared with measurements on the “SIMCO
over SCTP” testbed. This technical report provides additional measurement results yielded from the
same testbed, detailing a larger parameter space than presented in [11].

In [12], both the analytical and measurement based evaluation is extended to consider two additional
configurations for signaling transport: distribution of messages over several parallel TCP connections,
and SCTP using one stream in unordered mode. Adding support for parallel TCP connections to the
SIMCO software would be rather complex. A completely unordered transport is not applicable for
SIMCO. Therefore, all measurements presented in [12] are based on an even simpler testbed. It
consists of a load generator, the WAN emulator and an echo server that simply returns the dummy
messages sent by the load generator.

When using a single TCP connection or SCTP with multiple streams in ordered mode, the measure-
ment results from the very simple testbed of [12] can be compared and are virtually identical to the
SIMCO results presented in this report and in [11]. Therefore, one can conclude that local process-
ing of SIMCO requests in the middlebox has only a low impact on the total response time for the
considered parameter configuration.

3

3 Measurement Setup

Figure 2 shows the block diagram of the SIMCO agent (“client”) and middlebox (“server”) as they
could be used in a scenario as depicted in figure 1.

3.1 SIMCO implementation

For the measurements documented in this technical report, a “SIMCO over SCTP” prototype was
implemented and a testbed has been configured, as shown in figure 3. The SIP proxy has been replaced
by a load generator.

The design and implementation of the testbed components (SIMCO server and load generator), as
well as some first measurements are documented in [10]. The SIMCO implementation is compliant
to Version 7 of the SIMCO Internet draft [13]. However, some features such as support for PDR
and some policy rule sanity checks were omitted. Adding support for these features might slow
down local processing of PER requests in the SIMCO server. SCTP support is compliant to [9], the
outbound stream number is chosen as TID modulo number of streams [9, section 4.4.1.2.]. The Nagle
algorithm for TCP and its equivalent for SCTP have been disabled (socket options TCP_NODELAY
and SCTP_NODELAY). For the Linux SCTP implementation this does not make a difference; it
seems that this algorithm is not yet implemented in the version used for the measurements. For the
performance measurements, the interface between the SIMCO server and the kernel packet filter has
been disabled, i.e., the firewall rules were not added to the kernel, in order to evaluate the transport
layer performance without the impact of the packet filter API.

The SIMCO implementation used for the measurements was slightly modified compared to the final
outcome of [10]. The source code was made more portable in order to compile and run under Sun
Solaris ([10] supported only Linux). Furthermore, several minor bug fixes and error handlers were
added to avoid software crashes under rare error conditions.

ACK

SIP Proxy

SIP protocol entity

WAN

TCP SCTPUDP

transceiver
SCTPTCP

transceiver

IP

SIMCO client

TCP SCTP

transceiver
SCTPTCP

transceiver

packet
filterIP

Middlebox

SIMCO server
rule
del
add/

Figure 2: SIP proxy as SIMCO agent and middlebox block diagram

4

3.2 Operating System Software & Hardware Configuration

Both the SIMCO client (load generator) and SIMCO server (middlebox) were compiled from their
C++ source code and installed on two different hardware and operating system platforms.

Linux/x86

Operating System linux-2.6.16 / Fedora Core 3
CONFIG_HZ in Kernel 250
GCC version 3.4.3 20050227 (Red Hat 3.4.3-22.fc3)
glibc version glibc-2.3.5-0.fc3.1
libsctp version 1.0.2

CPU Intel Pentium 4 2.80GHz, stepping 04,
hyperthreading disabled

RAM 512 MByte
Ethernet NIC D-Link DFE-500TX (Digital DS21143 “Tulip” revision 65)

Solaris/UltraSPARC

Operating System Sun Solaris 10
(SunOS 5.10 Generic_118833-02 sun4u sparc SUNW)

GCC version 3.4.3 (csl-sol210-3_4-branch+sol_rpath)

Server Model Sun Netra AX 1105-500
CPU UltraSPARC IIe, 500MHz
RAM 768 MByte

Load Generator
response
time

WAN
Emulator

Delay,
Packet loss

LabPC01 LabPC02NetEmu

TCP SCTPUDP

transceiver
SCTPTCP

transceiver

IP

SIMCO client

TCP SCTP

transceiver
SCTPTCP

transceiver

packet
filterIP

Middlebox

SIMCO server
rule
del
add/

Figure 3: Testbed with load generator used for measurements

5

3.3 WAN Emulator & Computer Interconnection

All results presented in this report were measured using the NistNet WAN emulator. For some param-
eter settings, measurements were repeated using the Shunra\Cloud WAN emulator, without noticing
any significant differences.

The computers were interconnected by means of Fast Ethernet hubs (100 Mbps half-duplex). No
other traffic was present on these network segments during the measurements.

NistNet

WAN emulator NistNet 3.0.alpha
Operating System Linux 2.6.12-b5 / Ubuntu Linux 5.10

CPU Intel Pentium 4 2.80GHz, stepping 04,
hyperthreading disabled

RAM 512 MByte
Ethernet NIC 2 * D-Link DFE-500TX (Digital DS21143 “Tulip” rev. 65)

Shunra\Cloud

WAN emulator Shunra\Cloud V4.0 Build 10149
Operating System Microsoft Windows2000 Build 5.00.2195

CPU 2 * Intel Pentium 3 500MHz (symmetric multiprocessing)
RAM 1024 MByte
Ethernet NIC 2 * D-Link DFE-500TX (Digital DS21143 “Tulip” rev. 65)

4 Experiments 1 – 3 : Delay over Loss

4.1 Parameters for Experiments 1 – 3

Protocols: TCP, SCTP (1, 2, 4, 8, 16, 1024 streams, ordered)
SIMCO transaction rate: 1001

s

IP packet loss in WAN emulator: 0.0 % . . . 10.0 % per direction, applied in both directions,
random distribution with indicated mean value

One-way latency in WAN emulator: Experiment 1: 10 ms,
Experiment 2: 20 ms,
Experiment 3: 40 ms,
constant, applied in both directions

Number of measured transactions: Experiment 1: 80,000 per parameter combination
Experiments 2 & 3: 40,000 per parameter combination

At higher packet loss probabilities, the Solaris SCTP measurements are distorted by sporadic longer
stalls of the SCTP association, which seem to occur without any obvious reason. In this case, the
measurements were aborted.

Error bars indicate 95% T-test confidence intervals.

6

4.2 Experiment 1: One-Way Latency 10 ms

 20

 40

 60

 80

 100

 120

 0.1 1 10

SI
M

CO
 P

ER
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

Packet Loss (in %)

Experiment 1, Linux

SCTP-1
SCTP-2
SCTP-4
SCTP-8

SCTP-16
SCTP-1024

TCP

Figure 4: Experiment 1: Delay over Loss (Linux)

 20

 40

 60

 80

 100

 120

 0.1 1 10

SI
M

CO
 P

ER
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

Packet Loss (in %)

Experiment 1, Solaris

SCTP-1
SCTP-2
SCTP-4
SCTP-8

SCTP-1024
TCP

Figure 5:Experiment 1: Delay over Loss (Solaris),
SCTP measured only for low loss probabil-
ities due to problems – see text

 20

 40

 60

 80

 100

 120

 0.1 1 10

SI
M

CO
 P

ER
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

Packet Loss (in %)

Experiment 1

Linux TCP
Solaris TCP

Figure 6:Experiment 1: Delay over Loss (Linux TCP
vs. Solaris TCP)

7

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

CC
DF

SIMCO PER response time (in ms)

Experiment 1: CCDF at 0.0 % packet loss

Linux SCTP-1
Linux SCTP-2
Linux SCTP-4
Linux SCTP-8

Linux SCTP-16
Linux SCTP-1024

Linux TCP
Solaris TCP

Figure 7:Experiment 1: Delay CCDF at 0.0 % packet
loss

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

CC
DF

SIMCO PER response time (in ms)

Experiment 1: CCDF at 1.0 % packet loss

Linux SCTP-1
Linux SCTP-2
Linux SCTP-4
Linux SCTP-8

Linux SCTP-16
Linux SCTP-1024

Linux TCP
Solaris TCP

Figure 8:Experiment 1: Delay CCDF at 1.0 % packet
loss

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

CC
DF

SIMCO PER response time (in ms)

Experiment 1: CCDF at 2.5 % packet loss

Linux SCTP-1
Linux SCTP-2
Linux SCTP-4
Linux SCTP-8

Linux SCTP-16
Linux SCTP-1024

Linux TCP
Solaris TCP

Figure 9:Experiment 1: Delay CCDF at 2.5 % packet
loss

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

CC
DF

SIMCO PER response time (in ms)

Experiment 1: CCDF at 5.0 % packet loss

Linux SCTP-1
Linux SCTP-2
Linux SCTP-4
Linux SCTP-8

Linux SCTP-16
Linux SCTP-1024

Linux TCP
Solaris TCP

Figure 10:Experiment 1: Delay CCDF at 5.0 %
packet loss

 20

 25

 30

 35

 40

 45

 50

1024168421

SI
M

CO
 P

ER
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

Number of SCTP streams

Experiment 1, Linux

//

0.0% loss
0.5% loss
1.0% loss
2.5% loss
5.0% loss

10.0% loss

Figure 11:Experiment 1: Delay over Number of
SCTP Streams (Linux)

8

4.3 Experiment 2: One-Way Latency 20 ms

 40

 60

 80

 100

 120

 140

 0.1 1 10

SI
M

CO
 P

ER
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

Packet Loss (in %)

Experiment 2, Linux

SCTP-1
SCTP-2
SCTP-4
SCTP-8

SCTP-16
SCTP-1024

TCP

Figure 12: Experiment 2: Delay over Loss (Linux)

 40

 60

 80

 100

 120

 140

 0.1 1 10

SI
M

CO
 P

ER
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

Packet Loss (in %)

Experiment 2, Solaris

SCTP-1
SCTP-2
SCTP-4
SCTP-8

SCTP-1024
TCP

Figure 13:Experiment 2: Delay over Loss (Solaris),
SCTP measured only for low loss proba-
bilities due to problems – see text

 40

 60

 80

 100

 120

 140

 0.1 1 10

SI
M

CO
 P

ER
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

Packet Loss (in %)

Experiment 2

Linux TCP
Solaris TCP

Figure 14:Experiment 2: Delay over Loss
(Linux TCP vs. Solaris TCP)

9

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

CC
DF

SIMCO PER response time (in ms)

Experiment 2: CCDF at 0.0 % packet loss

Linux SCTP-1
Linux SCTP-2
Linux SCTP-4
Linux SCTP-8

Linux SCTP-16
Linux SCTP-1024

Linux TCP
Solaris TCP

Figure 15:Experiment 2: Delay CCDF at 0.0 %
packet loss

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

CC
DF

SIMCO PER response time (in ms)

Experiment 2: CCDF at 1.0 % packet loss

Linux SCTP-1
Linux SCTP-2
Linux SCTP-4
Linux SCTP-8

Linux SCTP-16
Linux SCTP-1024

Linux TCP
Solaris TCP

Figure 16:Experiment 2: Delay CCDF at 1.0 %
packet loss

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

CC
DF

SIMCO PER response time (in ms)

Experiment 2: CCDF at 2.5 % packet loss

Linux SCTP-1
Linux SCTP-2
Linux SCTP-4
Linux SCTP-8

Linux SCTP-16
Linux SCTP-1024

Linux TCP
Solaris TCP

Figure 17:Experiment 2: Delay CCDF at 2.5 %
packet loss

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

CC
DF

SIMCO PER response time (in ms)

Experiment 2: CCDF at 5.0 % packet loss

Linux SCTP-1
Linux SCTP-2
Linux SCTP-4
Linux SCTP-8

Linux SCTP-16
Linux SCTP-1024

Linux TCP
Solaris TCP

Figure 18:Experiment 2: Delay CCDF at 5.0 %
packet loss

 40

 45

 50

 55

 60

 65

 70

 75

 80

1024168421

SI
M

CO
 P

ER
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

Number of SCTP streams

Experiment 2, Linux

//

0.0% loss
0.5% loss
1.0% loss
2.5% loss
5.0% loss

10.0% loss

Figure 19:Experiment 2: Delay over Number of
SCTP Streams (Linux)

10

4.4 Experiment 3: One-Way Latency 40 ms

 80

 100

 120

 140

 160

 180

 0.1 1 10

SI
M

CO
 P

ER
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

Packet Loss (in %)

Experiment 3, Linux

SCTP-1
SCTP-2
SCTP-4
SCTP-8

SCTP-16
SCTP-1024

TCP

Figure 20: Experiment 3: Delay over Loss (Linux)

 80

 100

 120

 140

 160

 180

 0.1 1 10

SI
M

CO
 P

ER
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

Packet Loss (in %)

Experiment 3, Solaris

SCTP-1
SCTP-2
SCTP-4
SCTP-8

SCTP-1024
TCP

Figure 21:Experiment 3: Delay over Loss (Solaris),
SCTP measured only for low loss proba-
bilities due to problems – see text

 80

 100

 120

 140

 160

 180

 0.1 1 10

SI
M

CO
 P

ER
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

Packet Loss (in %)

Experiment 3

Linux TCP
Solaris TCP

Figure 22:Experiment 3: Delay over Loss
(Linux TCP vs. Solaris TCP)

11

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

CC
DF

SIMCO PER response time (in ms)

Experiment 3: CCDF at 0.0 % packet loss

Linux SCTP-1
Linux SCTP-2
Linux SCTP-4
Linux SCTP-8

Linux SCTP-16
Linux SCTP-1024

Linux TCP
Solaris TCP

Figure 23:Experiment 3: Delay CCDF at 0.0 %
packet loss

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

CC
DF

SIMCO PER response time (in ms)

Experiment 3: CCDF at 1.0 % packet loss

Linux SCTP-1
Linux SCTP-2
Linux SCTP-4
Linux SCTP-8

Linux SCTP-16
Linux SCTP-1024

Linux TCP
Solaris TCP

Figure 24:Experiment 3: Delay CCDF at 1.0 %
packet loss

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

CC
DF

SIMCO PER response time (in ms)

Experiment 3: CCDF at 2.5 % packet loss

Linux SCTP-1
Linux SCTP-2
Linux SCTP-4
Linux SCTP-8

Linux SCTP-16
Linux SCTP-1024

Linux TCP
Solaris TCP

Figure 25:Experiment 3: Delay CCDF at 2.5 %
packet loss

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

CC
DF

SIMCO PER response time (in ms)

Experiment 3: CCDF at 5.0 % packet loss

Linux SCTP-1
Linux SCTP-2
Linux SCTP-4
Linux SCTP-8

Linux SCTP-16
Linux SCTP-1024

Linux TCP
Solaris TCP

Figure 26:Experiment 3: Delay CCDF at 5.0 %
packet loss

 80

 90

 100

 110

 120

 130

 140

 150

 160

1024168421

SI
M

CO
 P

ER
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

Number of SCTP streams

Experiment 3, Linux

//

0.0% loss
0.5% loss
1.0% loss
2.5% loss
5.0% loss

10.0% loss

Figure 27:Experiment 3: Delay over Number of
SCTP Streams (Linux)

12

5 Experiments 4 – 6 : Delay over Load

5.1 Parameters for Experiments 4 – 6

Protocols: TCP, SCTP (1, 2, 4, 1024 streams, ordered)
SIMCO transaction rate: 0.11

s
. . . 10,0001

s

IP packet loss in WAN emulator: Experiment 4: 0.0 %
Experiment 5: 1.0 %
Experiment 6: 2.0 %
per direction, applied in both directions,
random distribution with indicated mean value

One-way latency in WAN emulator: 10 ms constant, applied in both directions

Number of measured transactions per parameter combination:

Transaction rate Experiment-4 Experiment-5 Experiment-6
≥ 0.1 1

s
≥ 100 ≥ 1000 -

≥ 1 1
s

≥ 400 ≥ 10,000 -
≥ 10 1

s
≥ 4,000 ≥ 100,000 ≥ 4,000

≥ 100 1
s

≥ 40,000 ≥ 100,000 ≥ 40,000

As very long measurement durations are required to produce statistically significant results for low
transaction rates, only Linux TCP, Solaris TCP and Linux SCTP with 1024 streams were measured
only in measurements 4 and 5 for transaction rates lower than 101

s
. In each measurement the sending

rate was increased until the load generator could not generate the desired rate during the whole mea-
surement duration. That is, the measurement was aborted for one protocol if the load generator could
not pass messages to TCP or SCTP within a time threshold of 1 s after the scheduled sending time,
e. g., because even repeated calls of thesend()system call failed due to full socket buffers.

Error bars indicate 95% T-test confidence intervals.

13

5.2 Experiment 4: Packet Loss 0.0 %

 20

 25

 30

 35

 40

 0.1 1 10 100 1000 10000

SI
M

CO
 P

ER
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

SIMCO Transaction Rate (1/s)

Experiment 5

Linux SCTP-1
Linux SCTP-2
Linux SCTP-4

Linux SCTP-1024
Linux TCP

Solaris TCP

Figure 28: Experiment 4: Delay over Load

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

CC
DF

SIMCO PER response time (in ms)

Experiment 4: CCDF at 0.1 1/s SIMCO transaction rate

Linux SCTP-1
Linux SCTP-2
Linux SCTP-4

Linux SCTP-1024
Linux TCP

Solaris TCP

Figure 29:Experiment 4: Delay CCDF at 101s
SIMCO transaction rate

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

CC
DF

SIMCO PER response time (in ms)

Experiment 4: CCDF at 0.1 1/s SIMCO transaction rate

Linux SCTP-1
Linux SCTP-2
Linux SCTP-4

Linux SCTP-1024
Linux TCP

Solaris TCP

Figure 30:Experiment 4: Delay CCDF at 1001s
SIMCO transaction rate

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

CC
DF

SIMCO PER response time (in ms)

Experiment 4: CCDF at 0.1 1/s SIMCO transaction rate

Linux SCTP-1
Linux SCTP-2
Linux SCTP-4

Linux SCTP-1024
Linux TCP

Solaris TCP

Figure 31:Experiment 4: Delay CCDF at 10001s
SIMCO transaction rate

14

5.3 Experiment 5: Packet Loss 1.0 %

 20

 30

 40

 50

 60

 70

 80

 0.1 1 10 100 1000 10000

SI
M

CO
 P

ER
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

SIMCO Transaction Rate (1/s)

Experiment 5

Linux SCTP-1
Linux SCTP-2
Linux SCTP-4

Linux SCTP-1024
Linux TCP

Solaris TCP

Figure 32: Experiment 5: Delay over Load

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

CC
DF

SIMCO PER response time (in ms)

Experiment 5: CCDF at 0.1 1/s SIMCO transaction rate

Linux SCTP-1
Linux SCTP-2
Linux SCTP-4

Linux SCTP-1024
Linux TCP

Solaris TCP

Figure 33:Experiment 5: Delay CCDF at 1.01s
SIMCO transaction rate

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

CC
DF

SIMCO PER response time (in ms)

Experiment 5: CCDF at 0.1 1/s SIMCO transaction rate

Linux SCTP-1
Linux SCTP-2
Linux SCTP-4

Linux SCTP-1024
Linux TCP

Solaris TCP

Figure 34:Experiment 5: Delay CCDF at 101s
SIMCO transaction rate

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

CC
DF

SIMCO PER response time (in ms)

Experiment 5: CCDF at 0.1 1/s SIMCO transaction rate

Linux SCTP-1
Linux SCTP-2
Linux SCTP-4

Linux SCTP-1024
Linux TCP

Solaris TCP

Figure 35:Experiment 5: Delay CCDF at 1001s
SIMCO transaction rate

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

CC
DF

SIMCO PER response time (in ms)

Experiment 5: CCDF at 0.1 1/s SIMCO transaction rate

Linux SCTP-1
Linux SCTP-2
Linux SCTP-4

Linux SCTP-1024
Linux TCP

Solaris TCP

Figure 36:Experiment 5: Delay CCDF at 10001s
SIMCO transaction rate

15

5.4 Experiment 6: Packet Loss 2.0 %

 20

 30

 40

 50

 60

 70

 80

 0.1 1 10 100 1000 10000

SI
M

CO
 P

ER
 R

es
po

ns
e

Ti
m

e
(in

 m
s)

SIMCO Transaction Rate (1/s)

Experiment 5

Linux SCTP-1
Linux SCTP-2
Linux SCTP-4

Linux SCTP-1024
Linux TCP

Solaris TCP

Figure 37: Experiment 6: Delay over Load

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

CC
DF

SIMCO PER response time (in ms)

Experiment 6: CCDF at 0.1 1/s SIMCO transaction rate

Linux SCTP-1
Linux SCTP-2
Linux SCTP-4

Linux SCTP-1024
Linux TCP

Solaris TCP

Figure 38:Experiment 6: Delay CCDF at 101s
SIMCO transaction rate

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

CC
DF

SIMCO PER response time (in ms)

Experiment 6: CCDF at 0.1 1/s SIMCO transaction rate

Linux SCTP-1
Linux SCTP-2
Linux SCTP-4

Linux SCTP-1024
Linux TCP

Solaris TCP

Figure 39:Experiment 6: Delay CCDF at 1001s
SIMCO transaction rate

 0.001

 0.01

 0.1

 1

 10 100 1000 10000

CC
DF

SIMCO PER response time (in ms)

Experiment 6: CCDF at 0.1 1/s SIMCO transaction rate

Linux SCTP-1
Linux SCTP-2
Linux SCTP-4

Linux SCTP-1024
Linux TCP

Solaris TCP

Figure 40:Experiment 6: Delay CCDF at 10001s
SIMCO transaction rate

16

6 Observations and Conclusions

• Except for very low transaction rates, SIMCO transaction delays were significantly lower when
using SCTP instead of TCP transport, for all considered delay and packet loss combinations
and numbers of SCTP streams.

• Even for moderate packet loss probabilities TCP suffers from rather large end-to-end delays
and a significant quantile of the transactions exceed the average delay by far.

• In general, increasing the number of streams within an SCTP association reduces transmission
delays by alleviating the effect of head-of-line blocking. For the considered parameter space a
rather small number of streams is sufficient – further increasing the number of streams does not
yield even lower delays.

• There are significant differences when using an SCTP association with only one stream per
direction and ordered transport instead of a TCP connection. Except for very low transaction
rates delays are lower when using SCTP.

• There are clearly noticeable differences in the behavior of the TCP implementations of Linux
and Sun Solaris.

• From an implementation point of view it is worth noticing that the SCTP-specific parts of the
SIMCO client and server source code are shorter and simpler than the TCP-specific parts, be-
cause of the message based SCTP API as opposed to TCP’s byte stream based API.

17

References

[1] M. Stiemerling, J. Quittek, and C. Cadar, “NEC’s Simple Middlebox Configuration (SIMCO)
Protocol Version 3.0,” IETF, RFC 4540, May 2006.

[2] M. Stiemerling, J. Quittek, and T. Taylor, “Middlebox Communications (MIDCOM) Protocol
Semantics,” IETF, RFC 3989, Feb. 2005.

[3] P. Srisuresh, J. Kuthan, J. Rosenberg, A. Molitor, and A. Rayhan, “Middlebox communication
architecture and framework,” IETF, RFC 3303, Aug. 2002.

[4] B. Carpenter and S. Brim, “Middleboxes: Taxonomy and Issues,” IETF, RFC 3234, Feb. 2002.

[5] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley,
and E. Schooler, “SIP: Session Initiation Protocol,” IETF, RFC 3261, June 2002.

[6] J. Postel, “Transmission Control Protocol,” IETF, RFC 793, Sept. 1981.

[7] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla,
L. Zhang, and V. Paxson, “Stream Control Transmission Protocol,” IETF, RFC 2960, Oct. 2000.

[8] L. Ong, I. Rytina, M. Garcia, H. Schwarzbauer, L. Coene, H. Lin, I. Juhasz, M. Holdrege, and
C. Sharp, “Framework Architecture for Signaling Transport,” IETF, RFC 2719, Oct. 1999.

[9] S. Kiesel, “SIMCO over SCTP,” IETF, draft-kiesel-midcom-simco-sctp-01, IETF draft - work
in progress, Apr. 2006.

[10] C. Blankenhorn, “Evaluation of SCTP as transport protocol for transaction-based applications at
the example of a protocol for firewall control,” Student project (in German), IKR, University of
Stuttgart, 2005.

[11] S. Kiesel and M. Scharf, “Modeling and performance evaluation of SCTP as transport proto-
col for firewall control,” inProc. IFIP-TC6 Networking Conference, Springer LNCS, Coimbra,
Portugal, May 2006.

[12] M. Scharf and S. Kiesel, “Head-of-line blocking in TCP and SCTP: Analysis and measure-
ments,” inProc. IEEE Globecom 2006, San Francisco, USA, Nov. 2006.

[13] M. Stiemerling, “Simple Middlebox Configuration (SIMCO) Protocol Version 3.0,” IETF, draft-
stiemerling-midcom-simco-07, IETF draft - work in progress, May 2005.

18

	Introduction
	Theoretical Explanation of Effects
	Measurement Setup
	SIMCO implementation
	Operating System Software & Hardware Configuration
	Linux/x86
	Solaris/UltraSPARC

	WAN Emulator & Computer Interconnection
	NistNet
	Shunra"026E30F Cloud

	Experiments 1 -- 3 : Delay over Loss
	Parameters for Experiments 1 -- 3
	Experiment 1: One-Way Latency 10 ms
	Experiment 2: One-Way Latency 20 ms
	Experiment 3: One-Way Latency 40 ms

	Experiments 4 -- 6 : Delay over Load
	Parameters for Experiments 4 -- 6
	Experiment 4: Packet Loss 0.0 %
	Experiment 5: Packet Loss 1.0 %
	Experiment 6: Packet Loss 2.0 %

	Observations and Conclusions
	References

