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Abstract—In optical burst switching networks, bursts arrive
out-of-sequence due to contention resolution schemes as well as
contention avoidance schemes. Out-of-sequence bursts may imply
out-of-sequence packets, which affect the packet layer perfor-
mance. Consequently, it is necessary to classify and investigate the

resulting burst/packet out-of-sequence pattern. In our previous
work, we presented an analytic model to evaluate the out-of-
sequence pattern for deterministic traffic showing constant inter-
arrival times using the IETF WG IPPM reordering metrics. This
paper extents our previous work. If the amount of out-of-order
arrivals is small, the performance impact may also be small. One
indication of the amount of out-of-order arrivals is the reordering
ratio. In this paper, we prove analytically that deterministic traffic
with constant inter-arrival time generates the highest reordering
ratio for our model with respect to any other traffic characteristic.
Consequently, deterministic traffic serves as an upper bound for
the estimation of the reordering ratio. It allows a quick estimation
of the reordering ratio and indicates if further investigations on
the reordering pattern are required.

Index Terms—burst reordering, worst case considerations,
deterministic traffic

I. INTRODUCTION

Optical burst switching (OBS, [1]) is a promising network

technology for core and metro networks based on wavelength

division multiplex. At the OBS network edge, the OBS assem-

bly unit aggregates packets based on their destination address

and optionally their service class. At the end of the assembly

process, the assembly unit forwards the burst to the optical

transmission unit heading to the destination node.

Literature proposes various assembly schemes like time- or

size-based assembly or a combination of both. Each of these

schemes shows a different traffic characteristic of the departing

bursts depending on the input traffic.

In OBS networks, contention occurs on intermediate nodes

if two or more bursts request the same wavelength at the

same time. Given this situation, original OBS discards all but

one successful burst. These burst losses degrade the transport

service and stimulate the research on contention resolution and

contention avoidance schemes to reduce burst losses [2]–[5].

Both, contention resolution schemes and contention avoid-

ance schemes delay bursts compared to the primarily planned

shortest path. As a result, the burst order at the destination may

change resulting in out-of-sequence arrivals. Since each data

burst is an aggregate of multiple packets, out-of-sequence burst

arrivals also imply a special out-of-sequence packet arrival,

which may affect transport and application layer protocols.

Transport protocols provide an unreliable or a reliable con-

nection service to applications. Out-of-sequence packets of the

same flow affect the performance of these protocols. [6] gives

an overview on this topic. As summarized in [7], literature

discusses these impacts on the transport layer in several

publications. The transmission control protocol (TCP, [8]) is

the most important representative of transport protocols for a

reliable connection service in IP-based networks. The basic

TCP congestion control algorithm [8] suffers from missing or

out-of-sequence packets. Literature extensively studies in [9]–

[14] the impact of burst losses on TCP.

Literature rarely studies the impact of burst reordering on

TCP and other upper-layer protocols. In our previous work [7],

we presented an analytic model as well as a new methodology

to study burst reordering pattern in OBS networks. Perelló et

al. in [15] as well as Schlosser in [16] focus on burst reordering

using simulations rather than formal methods. Their simulation

models usually include several layers in the simulation not

allowing a deep in-sight in the reordering process.

A more basic problem is the definition of an out-of-sequence

burst and the characterization of its out-of-sequence pattern.

Literature proposes several different out-of-sequence metrics.

Piratla et al. propose in [17] the reorder density to measure

the amount of reordered packets and the displacement of a

single packet. They compare their approach to the standardized

metrics of the IETF in [18]. Also in the field of optical burst

reordering, Callegati et al. propose a simple measure for out-

of-sequence bursts in [12]. Both metrics lack a standardized

approach. For a comprehensible study, we consider the stan-

dardized metrics of the IETF WG IPPM [19].

In our previous work [7], [20], [21], we proposed a first

model to investigate the burst reordering phenomena analyt-

ically and showed its applicability for traffic types showing

deterministic traffic with a constant inter-arrival time. We esti-

mated these calculations as a worst-case scenario regarding the

reordering ratio but did not provide a formal proof. This paper

closes this gap and provides an analytic proof, showing that

the reordering ratio (the amount of out-of-sequence arrivals)

reaches its maximum with deterministic traffic.

Starting from a given reordering model, our findings enable



a quick estimation of the amount of reordered bursts and

packets at the destination. Thereby, our findings enable a

worst-case estimation of the amount of reordered bursts. The

amount of out-of-sequence bursts/packets indicates if an in-

depth investigation on the reordering pattern is necessary or

not [19]. Applying formal methods requires no multi-layer

network simulations. In this scenario, single layer studies on

the OBS layer are sufficient, a simulation of the whole network

stack ranging from the transport protocol down to the OBS

network layer is not necessary.

We structure our paper in the following way: In section II

we introduce the IETF definition of reordered bursts/packets

and the reordering ratio. Section III reviews the reordering

ratio for deterministic traffic schemes and section IV proves

our findings with respect to generic traffic characteristics.

Section V summarizes our work.

II. REORDERING METRIC

This section introduces the definition of IP packet reorder-

ing, which is consistent with the proposal of the IETF WG

IPPM [19]. This definition also holds for generic packet-

switched networks like OBS networks.

The reordering definition includes the following theoretic

considerations. The source node assigns each burst a sequence

number. The sequence numbers increase strict monotonically.

At the destination node, a 3-tuple (i, s[i], s′[i]) characterizes
each burst arrival. Index i indicates the arrival order at the

destination. s[i] denotes its sequence number and s′[i] denotes
the next expected sequence number at this arrival instance.

The previously received burst determines the value of s′[i].
We distinguish two cases:

1) s[i] < s′[i] burst i arrives out-of-sequence
and s′[i + 1] := s′[i].

2) s[i] ≥ s′[i] burst i arrives in order

and s′[i + 1] := s[i] + 1.

Literally, a burst gets to the destination out-of-sequence, if

there is one burst with a larger sequence number arriving prior

to it. For instance, burst I shows sequence number i and burst

J shows sequence number j where i < j. Burst I leaves the

source node earlier than burst J . The inter-departure time1

between burst I and burst J is the random variable TIJ . The

path from source to destination shows for each burst a different

delay D, where D ≥ 0. Burst I receives random delay DI ,

while burst J receives a random delay of DJ . According to

the definition, burst I arrives out-of-sequence with respect to

burst J if the following inequality holds:

DI > DJ + TIJ , where DI ≥ 0, DJ ≥ 0, TIJ > 0 (1)

With this definition, [19] derives the reordering ratio indi-

cating the proportion of bursts, which arrive out-of-sequence.

The reordering ratio equals the probability of an out-of-

sequence burst arrival at the destination. As shown in [7], the

burst reordering ratio equals the packet reordering ratio.

1time between two burst departures

Fig. 1. Queueing model

III. REORDERING ANALYSIS

This section first reviews our reordering model and second

shows the methodology to obtain the reordering ratio for

deterministic traffic showing constant inter-departure times.

A. Reordering model

Our reordering model considers bursts sent from an OBS

source node to an OBS destination node. These bursts may

follow different paths due to implemented contention resolu-

tion and avoidance schemes. Consequently, in an end-to-end

consideration the bursts show a certain jitter at the destination

node. The distribution of the jitter reflects the different paths

from source to destination and their frequency of occurrence.

We discretize the delay jitter and model each delay alterna-

tive from source to destination node by one abstract link l. In
general we assume m ∈ N

+ parallel abstract links l1 to lm.

Besides this, l0 represents the primarily planned shortest path

with no extra delay. m is finite as the network itself limits the

number of alternative paths.

A burst follows an abstract link and receives an additional

delay, reflecting for instance the time in a fibre delay line or

on a deflection path. Abstract link li delays the burst following
li by ∆i ∈ R

+.

The jitter distribution at the destination node reflects the

different probabilities of the abstract links. Consequently, we

define the probability pi for a burst following abstract link li.
Thereby, the law of total probability holds:

∑m
k=0 pk = 1.

Summarizing, a 3-tuple (k, pk, ∆k) characterizes each ab-

stract link lk: the link number k, 0 ≤ k ≤ m; the probability

pk, 0 ≤ pk ≤ 1 to follow lk and the delay ∆k. Note, as

an OBS network switches each burst separately, each burst

decides independently of all other bursts which abstract link

to follow.

B. Network delay distribution

The previous section introduced the delay ∆k of an abstract

link k. This section motivates the correlation between the inter-



Fig. 2. Reordering with deterministic (top) and generic traffic (bottom) traffic

arrival time and the delay ∆k for deterministic traffic showing

constant inter-arrival times.

In our scenario, we consider deterministic traffic with a con-

stant inter-arrival time. This scenario corresponds to constant

bit rate traffic as introduced in our previous work [7]. There,

the delay on two neighbouring abstract links differs by exactly

the mean inter-arrival time: ∆i+1 − ∆i = ∆ = E [TIJ ]. Con-
sequently, the delay per abstract link k results in ∆k = k ∆.

Figure 1 depicts the corresponding queuing model of the

whole reordering process. This model represents our simula-

tion model used to validate our findings. The bursts leave the

source node and enter the reordering model. An initial splitting

process assigns each burst to a certain abstract link following

the probability distribution of the abstract links. Each abstract

link — except l0 — delays the burst by k ∆ using an infinite

number of server places. After leaving the abstract link the

burst leaves the network and arrives at the destination node.

The initial splitting process determines the total number of

delay units to pass.

C. The reordering probability

Our previous work derived the reordering extent and the

TCP relevant nr-reordering metric in [20] and [7]. Here, we

briefly summarize the calculation of the reordering ratio for

a deterministic traffic scenario C, where VAR [TIJ ] = 0. For
this investigation, we assume a lossless burst network.

Figure 2 depicts in the first row the general reordering

scenario for one selected burst, i. e., the test burst, but our

considerations also hold for any other burst, too. As we

consider the reordering probability, we distinguish two kinds

of bursts:

1) the test burst (black) for which we evaluate the reorder-

ing ratio. Without loss of generality, its sequence number

s is s = 0.
2) bursts (gray) departing later but arriving earlier than the

test burst because of the delay of the test burst. These

bursts cause the test burst arriving out-of-sequence.

The test burst arrives out-of-sequence at the destination if

there is at least one burst arrival with s > 0 prior to the test

burst (at least one out of five bursts of figure 2 arrives before

the test burst). The reordering probability is a joint probability

of (a) the test burst receives a delay and (b) there is at least one

burst arrival with a larger sequence number than zero before

the test burst. For condition (a), we assume that the test burst

receives a delay of dt with probability pdt
. Then there are dt

candidate bursts, which may accomplish condition (b).

We derive the probability of (b) by its complement, i. e., that

there is no arrival before the test burst. The random variable

of the delay of the test burst is Dt. Then the probability

that the candidate burst j, 0 < j ≤ dt does not accomplish

condition (b) is P(B = 0 |Dt = dt | J = j) =
∑m

k=dt−j+1 pk.

B denotes the random variable of the arrival of burst j
before the test burst. The sum of probabilities represents

the probability that burst j arrives later than the test burst.

It considers the position of the burst j and sums up the

probabilities of all abstract link leading to a later arrival than

the test burst. For instance, consider figure 2. Burst 3 arrives

later than the test burst if it follows abstract links i ≥ 2. It
arrives before the test burst if following abstract links 0 and 1.

The joint probability that none of the candidate bursts

accomplish condition (b) at the same time is P(B = 0 |Dt =
dt) =

∏dt

j=1 P(B = 0 |Dt = dt | J = j). The complementary

probability of P(B = 0 |Dt = dt) accomplishes condition (b).

The burst reordering probability for deterministic traffic results

in

Pr(C) =

m∑

i=1

pi



1 −

i∏

k=1

m∑

j=i−k+1

pj



 (3)

IV. WORST CASE CONSIDERATIONS

This section proves that the analytic reordering model

together with packet arrivals showing constant inter-departure

times serve as a worst-case approximation of the expected

reordering ratio. We prove that deterministic traffic with a

constant inter-arrival time generates a larger reordering ratio

than any other traffic.

For the generic traffic scenario, we assume a mean inter-

arrival time of E [TIJ ]. The reordering model corresponds

to the analytic reordering model of section III-A with m
abstract links. According to the definition, an abstract link

i delays a packet by i∆ = i E [TIJ ] with probability pi,

where
∑m−1

i=0 pi = 1. Thereby, the abstract link probability

is arbitrarily distributed. With this scenario, we state the

following theorem:

Theorem. The reordering ratio of traffic stream G showing

an arbitrary inter-arrival time distribution with mean E [TIJ ]
is less or equal than the reordering probability of a traffic

stream C showing constant inter-arrival times (VAR [C] = 0)
with the same mean inter-arrival time E [TIJ ] on the same

reordering model. According to (3), this translate to the

following proposition:

Pr(G)
!
≤ Pr(C) (4)

Proof: If the traffic characteristic shows deterministic

arrival instances and constant inter-arrival times, the time axis



P (G) =

m∑

i=1

pi

(

1 −

∞∑

n=0

Pr(Nt = n)
∑

~x∈Si
n

Pr( ~X = ~x|Nt = n)

i∏

k=1





m∑

j=i−k+1

pj





xk




=

m∑

i=1

pi









1 −

∞∑

n=0

∑

~x∈Si
n

Pr( ~X = ~x ∧ Nt = n)

i∏

k=1









m∑

j=i−k+1

pj

︸ ︷︷ ︸

qk









xk








(2)

shows slotted characteristics as depicted in figure 2. At each

slot border, there occurs exactly one burst (first row). The time

between two bursts is constant ∆. If the test burst follows

abstract link i, then in the mean time at maximum i bursts

may pass by, if they do not follow any abstract link, causing

a later arrival than the test burst. The figure illustrates the

scenario for i = 5, i. e., the test burst follows abstract link

5. Besides for the constant inter-arrival time, the slots serve

a different purpose. The slot number determines the sum of

probabilities for a later arrival than the test burst (cf. (3)).

Figure 2 shows the scenario for a general burst arrival

pattern in the bottom row. Consequently, the number of burst

arrivals within one slot varies. Mapping the burst arrivals onto

the slotted time axis leads to a random distribution of arrivals

within each slot. In the figure, xi denotes the number of

burst arrivals within one slot. For instance, in the first slot

one burst arrives, while in the third slot no burst arrives.

Thereby, we neglect the burst length and consider only the

arrival instance of the burst. The distribution of arrivals within

the slots corresponds to the burst traffic characteristic.

For the generic traffic scenario, px(t) is the probability

distribution function of the number of arrivals within an

arbitrary time interval t. Then, for the first slot the following

equations hold:

∞∑

n=0

n pn(∆) = 1 (5)

∞∑

n=0

pn(∆) = 1 (6)

(5) states the requirement of the mean inter-arrival time being

∆ = E [TIJ ] and (6) gives the total probability of all arrivals.

We consider for the test burst the arbitrary delay of i. With

this, we introduce the vector ~x representing the number of ar-

rivals within the i slots. Therein, Xk holds the random number

of arrivals within slot k, where 1 ≤ k ≤ i. Additionally, Si

represents the co-domain of ~X holding all possible vectors ~x
of length i. The subset Si

n shows exactly n arrivals within

the i slots. We summarize these properties in the following

equations:

∞∑

n=0

∑

~x∈Si
n

Pr
(

~X = ~x ∧ N = n
)

= 1 (7)

∞∑

n=0

∑

~x∈Si
n

n Pr
(

~X = ~x ∧ N = n
)

= i (8)

(7) states the total probability of all possible arrivals within the

next i slots. (8) represents the average number of packets in

the whole interval. According to the definition of section III-B

this is i for i slots.
According to the reordering probability of equation (3), we

formulate an equivalent equation to determine the reordering

probability of a general arrival pattern in (2). Its structure

follows equation (3).

The outer sum considers all possible branches i of the test

burst (pi). The bracket shows the complementary distribu-

tion of a burst arrival with a larger sequence number. The

product combines the number of possible arrivals N and the

distribution of these arrivals among the i slots (Si
n). For each

arrival within a certain slot, the same condition applies for

the sum of probabilities (for a later arrival than the test burst)

equivalent to (3). The product of sums guarantees the joint

probability for all slots. Further, equation (2) reformulates this

conditioned probability to a joint probability in the second

line. The innermost sum represents a sum of probabilities. For

convenience of reading, qk abbreviates the individual factors.

According to the theorem, (4) must hold for any distribution

of p. As a first step, we enforce our proposition by demanding

that each individual summand of (2) is smaller than the

corresponding summand of (3). If this is true, also (4) is true.

Applying this simplifications leads to the following inequal-

ity, where the expression of G (from (2)) stands left and the

expression of C (from (3)) stands right (the inequality sign

changed because of resolving the complementary probability):

∞∑

n=0

∑

~x∈Si
n

Pr
(

~X = ~x ∧ N = n
) i∏

k=1

qxk

k ≥
i∏

k=1

qk

∞∑

n=0

∑

~x∈Si
n

Pr
(

~X = ~x ∧ N = n
) i∏

k=1

qxk−1
k ≥ 1

(9)

The next approximation focus on the qxk

k product of equa-

tion (9). The product consists of n factors as
∑i

k=1 xk = n.
The subsequent step divides both sides by the individual
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qk ≤ 1 for 1 ≤ k ≤ m. As the product reflects a joint proba-

bility, we approximate the individual qk by its smallest value

q = mink{qk}. Inserting q in (9) leads to the approximation

of the product:

i∏

k=1

qxk−1
k ≥ qn−i (10)

With this approximation, (9) simplifies to:

∞∑

n=0

qn Pr
(

~X = ~x ∧ N = n
)

≥ qi (11)

With i = E [N ] and g(n) = qn equation (11) becomes:

∞∑

n=0

g(n) Pr
(

~X = ~x ∧ N = n
)

︸ ︷︷ ︸

E[g(X)]

≥ g(E [X ]) (12)

(12) shows the same structure than the inequality by

Jensen [22] for convex functions ϕ:

ϕ

(∑
aixi
∑

ai

)

≤

∑
aiϕ(xi)
∑

ai
where ai > 0. (13)

In our case ϕ = g(n) = qn is convex as g′′(n) > 0, ∀n > 0.

A. Numerical results

In this section, we first introduce the applied network delay

distributions and traffic characteristics for a comprehensive

discussion. Second, we show some illustrative results to vi-

sualize the upper bound burst reordering ratio and compare

these results to the simulation results of other the traffic

characteristics.

1) Parameterization: We parameterize our reordering

model with the following parameters: (a) the probability of

delay p, which corresponds to the complementary probability

to follow l0, (b) the number of abstract links m and (c) the

delay distribution among the m abstract links. We distinguish

three different delay distributions, where i gives the index of

the abstract link with 1 ≤ i ≤ m.

• geometric distribution:

pi = q (1 − q)i−1 with q = 1 − (1 − p)1/m,

• linear distribution: pi = 2 i p/(m2 + m),
• uniform distribution: pi = 1/m.

We load our traffic model with three different traffic distri-

butions: Pareto traffic, Poisson traffic and deterministic traffic

for comparison. The properties of the Pareto distributed traffic,

showing heavy tail characteristics, are:

fP (t) = α
kα

kα+1
(14)

E [T ] =

{
α k
α−1 for α > 1

∞ for α ≤ 1
(15)

The first line shows the probability density function, while

the second line shows the mean value. The parameters of the

Pareto distribution are the shape parameter α > 0 and the

minimum value k > 0. If α > 2, then also the variance exists.

The next equations show the characteristics attributes of the

well known Poisson distribution (left) and the deterministic

distribution (right):

fN(t) = λ exp (−λ t) fD(t) = δ(t − d)

E [T ] =
1

λ
E [T ] = d

Therein, λ represents the mean arrival rate and d represents

the constant inter-arrival time.

2) Illustrative results: For numerical results, we fix the traf-

fic mean rate. In case of the negative exponentially distributed

inter-arrival time and deterministic traffic, this relates directly

to the parameters of the distribution. For the Pareto traffic

model, we use three different parameterizations for a wide

range of α leading all to the same mean rate: α1 = 6.81, k1 =
0.77; α2 = 2.52, k2 = 0.59 and α3 = 1.5, k3 = 1

3 .

Figures 3, 4 and 5 show the calculated values of the

reordering metric for deterministic traffic (dashed line) and

the simulated values for the Pareto distributed traffic for

an increasing number of abstract links. We simulated these

scenarios with our event-driven simulation library [23]. For

reasonable results, we obtained the statistical values from ten

batches each including at least one million burst arrivals (the

figures also depict the tiny confidence intervals). We obtained

the results for the deterministic traffic scenario, by our analytic

model from [7]. As these results match the corresponding

simulation results, we skip the simulation results here.
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Our evaluation of the formal proof includes branch prob-

abilities of 0.1 and 0.3 for the introduced three different

delay distributions. We also simulated the much lower branch

probability of 0.01 but skip the results as they do not provide

additional findings.

For a small number of abstract links, the reordering proba-

bility in all cases is much lower than the branch probability p.
With the increasing number of links, the reordering ratio ap-

proximates the branch probability of 0.1 and 0.3, respectively.
The reordering probability of the different values of α is

very similar if α > 2. For α < 2, the reordering ratio is larger,

as the variation is much larger in this case. Nevertheless, the

reordering ratio of all Pareto parameterizations is well below

the corresponding value of the deterministic traffic.

Thereby, the number of links has a significant impact on

the reordering ratio while the network delay distribution has

only minor influence. For the geometric, uniform and linear

distribution, the values of the reordering ratio are very similar.

Figures 6, 7 and 8 show the same scenario for Poisson

traffic showing negative exponentially distributed arrival times.

Again, the figures depict the reference value for the determin-

istic traffic showing the same mean than the Poisson traffic.

The findings for the Poisson traffic are equivalent to the

findings of the Pareto traffic. The reordering ratio is always

below the deterministic value as well as the reordering value

approaches the branch probability for a large number of links.

Comparing the reordering ratio to the corresponding value

of the Pareto traffic highlights that Poisson traffic shows in

general a smaller reordering ratio than Pareto traffic.

The analytic model with a constant inter-departure time

serves as an upper bound for the reordering ratio. The analytic

model enables worst-case considerations more easily than with

extensive simulations.

V. CONCLUSION

In this paper, we reviewed our queuing model for our

reordering analysis presented in [7]. Applying the reordering

queuing model, we stated that the reordering ratio of deter-

ministic traffic with constant inter-arrival time is worse than

any other traffic pattern in the same scenario. We proved the

above statement using formal methods and showed illustrative

results obtained from simulations.

In the simulation scenarios, we applied three different traffic

characteristics (Poisson, Pareto and deterministic traffic) in

three different network delay scenarios (geometric, linear and

uniform distributed) to cover a broad spectrum of potential

combinations of traffic and delay characteristics. The simula-

tion results backup our findings and validated our proof.

The application of the model showing constant inter-arrival

time enables reordering investigations, without performing

exhaustive simulations, if the network delay distribution is

known in advance (e. g. by previous simulations).
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