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Abstract
In this paper, different approximations for the effective
bandwidth of self-similar traffic streams are reviewed.
Among those, classical approaches originally based on
Markovian models are regarded in the context of self-simi-
lar traffic. On the other hand, a solution is considered that
explicitly takes the long-range dependent character of the
traffic stream into account by using a fractional Brownian
motion model. Furthermore, we propose an effective band-
width scheme that provides a combination of approaches
from both domains. In order to achieve an objective com-
parison of the different schemes, an M/Pareto fluid burst
has been chosen as a common traffic model, and the corre-
sponding traffic parameters needed by the different
schemes have been derived. A burst level simulation of the
same traffic model serves as another reference. The evalu-
ation shows that the accuracy of the results obtained using
the different schemes depends very much on the traffic
parameters.

1. Introduction

Variable bit rate connections offer the chance of exploit-
ing a statistical multiplexing gain – an effect describing
that in order to transport the traffic of a number of variable
bit rate connections, less than the sum of all peak rates is
needed if a small loss or delay is acceptable. The effective
bandwidth is one way of characterizing the resource
requirements of a variable rate connection. It has origi-
nally been introduced in the context of connection admis-
sion control for ATM networks but as a measure of
resource consumption it can also be applied in optimal
charging or network dimensioning tasks. The latter is the
context in which this paper has been written.

Most of today’s data traffic is carried over the Inter-
net’s transmission control protocol TCP. This protocol
performs a flow control by which each connection adapts
its bandwidth to the maximum fair share available. This
makes it difficult to use classical dimensioning methods or
quality of service (QoS) parameters [5]. However, even

under these circumstances, a possible dimensioning ta
can be to adjust the capacity of one link in a network su
that this link is definitely (e.g., with respect to a certai
packet loss probability) not the bottleneck for TCP con
nections using it.

Several approaches for determining effective ban
widths have been derived for Markovian or other shor
range dependent traffic. On the other hand, Internet traf
has been found to exhibit significant amounts of self-sim
larity and long-range dependence [6, 11, 16, 20] due to
extremely high variability of burst durations [20]. It has
been shown that a high amount of self-similarity leads
greatly increasing queue lengths as compared to sh
range dependent traffic [8]. Our goal is to compare diffe
ent classical effective bandwidth schemes with othe
explicitly considering self-similarity and to find the
parameter regions in which these schemes can be use
give accurate estimates for the bandwidth needed by
traffic stream.

In Section 2, we introduce the M/Pareto traffic mode
as a burst scale model where Pareto distributed bursts
traffic arrive at negative exponentially distributed intera
rival instants and derive parameters for characterizing t
traffic. Section 3 gives an overview of some effectiv
bandwidth schemes, indicating how they can be applied
the M/Pareto context. In addition, a new approach com
bining formulas for two burst scale multiplexing phenom
ena is presented. Finally, a parameter study carried ou
Section 4 is used to compare the different effective ban
width formulas, discussing their individual strengths an
weaknesses using the M/Pareto traffic model as a comm
basis. Fluid flow burst scale simulation results for th
same traffic model are used as a reference.

2. Traffic Model

A superposition of many ON/OFF sources with heav
tailed ON or OFF durations has been suggested as tra
model that captures the long-range dependence effect
network traffic [20]. Among the class of heavy-tailed dis
tributions the Pareto distribution has turned out to be mo
21–1
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appropriate one for modelling in many cases [6]. Increas-
ing the number of ON/OFF sources with Pareto distributed
ON durations and decreasing the relative contribution of
each source results in an M/Pareto model. In [12], Neame,
Zukerman and Addie show that this is a quite appropriate
model for long-range dependent traffic streams that can be
well matched to a measured trace.

In the context of this paper an M/Pareto fluid burst
model is assumed where bursts comprising a certain
amount of fluid arrive according to a Poisson process with
rate . The fluid arrival rate during a burst is denoted by

. The distribution of the burst size (i.e. the amount of
fluid arriving in a burst) follows a Pareto distribution with
minimum value  and shape parameter :

, (1)

Special interest is given to the range for the
shape parameter leading to finite mean but infinite vari-
ance of the burst size. In this case traffic generated by the
M/Pareto model is asymptotically self-similar with Hurst
parameter

, (2)

The mean burst size is given by
. The mean rate of the total traffic

stream is .
The self-similar behaviour of the M/Pareto process

becomes obvious when regarding the cumulated arrival
process , i.e. the fluid arriving in an interval of length .
The variance of  can be obtained by

(3)

Repeated integration leads to the following expression:

(4)

where the constants are given by

(5)

The same result (however in a different presentation)
given in [1, 12].

If approaches infinity only the first term of the
expression for keeps relevant, i.e. the varian
increases with  in the limiting case:

, (6)

If ,  and  are used instead of ,  and  we get

(7)

Another interpretation of this result is that the variance
the average rate observed within an interval of length
approaches for . That means it decreas
very slowly if the Hurst parameter is close to 1.

If the cumulated arrival process in the case of a fini
variance burst size (corresponding to short-range depe
ent traffic) is regarded for comparison we obtain

(8)

for , i.e. the variance of the average rate in an inte
val of length  decreases with .

3. Effective Bandwidth

3.1 Definition

The notion of effective bandwidth provides a measure
the resource requirements of a traffic stream with certa
quality of service (QoS) constraints. Statistical properti
of the traffic stream have to be considered as well as s
tem parameters (e.g., buffer size, service discipline) a
the traffic mix. The terms equivalent bandwidth an
equivalent capacity are often used as synonyms for eff
tive bandwidth.

A mathematical framework for effective bandwidth ha
been defined based on the general expression [10]

(9)

which depends on the space parameter and the ti
parameter . Effective bandwidths for various types
traffic models have been derived from this definition [10
The problem with respect to a practical usage of the
expressions, however, is to find appropriate values for
and , which depend on the QoS requirements and the s
tem parameters. As this may become a rather complex t
[7] we restrict ourselves to approximate expressions whi
can be derived independently of (9).

In the following, different approximations of the effec
tive bandwidth of an M/Pareto traffic stream are pre
sented. The fluid is assumed to be the input of a FIF
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server with capacity , which has to be defined according
to the effective bandwidth of the traffic stream. The QoS
constraint of all presented methods is the overflow proba-
bility, i.e. the probability that queue length exceeds
some threshold .

3.2 Rate Envelope Multiplexing (REM)
Approximation

A rather simple method to approximate the effective band-
width is rate envelope multiplexing (REM) [17]. Only the
current total fluid arrival rate is considered and compared
with the link rate neglecting the effect of buffering. There-
fore it is also called bufferless approach. Another term is
stationary approximation [9].

The attractive feature of this approach is that it is
independent of the burst size distribution type. Only mean
and peak rate are relevant. Therefore it can be directly
applied to the M/Pareto traffic model introduced in
Section 2.

The probability that the total arrival rate exceeds the
link rate can be determined if the rate distribution is
known. In the case of an M/G fluid burst model the exact
rate distribution is given by a Poisson distribution. If the
ratio is large enough, a Gaussian distribution pro-
vides a reasonably good approximation.

Assuming that is approximately distributed accord-
ing to a Gaussian distribution with mean and variance

, the probability of exceeding can be
determined:

(10)

Using a rough approximation of the Gaussian distribution
as done in [9] provides a further simplification:

(11)

An expression for the effective bandwidth is obtained by
solving (11) for  [9]:

, (12)

It has to be remarked that the approximation of the Gaus-
sian distribution that leads to (11) and (12) is not very
accurate. However, we observed that according to (11)
matches the queueing probability , which is
larger than in general, quite well. From this one
can conclude that (11) may be seen as an upper bound of

. Therefore, (12) can be interpreted as a strictly
conservative solution.

3.3 Fluid Flow (FF) Approximation

While the solution presented in the previous sectio
neglects buffering, the approach denoted as fluid flo
approximation in [9] uses the queue length distribution
the case of exponentially distributed burst size. Bas
results have been obtained by Anick, Mitra and Sond
[2]. Assuming that traffic is generated by a superpositio
of ON/OFF sources with exponentially distributed phas
durations, they are able to calculate the distribution
queue length in an infinitely large buffer by solving a
system of differential equations. If the buffer threshold
is reasonably large, is well approximated by
single exponential term corresponding to the domina
eigenvalue in the underlying equation system. If th
number of sources goes to infinity maintaining a consta
aggregate mean rate the following result for the M/M bur
traffic model is obtained:

(13)

where is the system load and denotes th
mean burst size. As the calculation of is reaso
ably complex, Guérin et al. suggest to make the simplif
ing assumption [9]. This corresponds to
approximating by the conditional probability

 which leads to

(14)

The effective bandwidth is obtained by solving (14):

, (15)

The result is independent of the peak rate . Although t
derivation is based on the presumption of an exponentia
distributed burst size it can principally also be interprete
as a rough approximation for the effective bandwidth of a
M/Pareto traffic stream with equal mean burst size there
simply neglecting the heavy tail effect.

3.4 Fractional Brownian Motion (FBM)
Approximation

A very basic traffic model that is able to capture the effe
of long-range dependence is the fractional Brownia
motion (FBM) model [13]. The cumulated arrival proces
is described by

(16)

where and denote the mean arrival rate and the va
ance coefficient (which is not the same as the coefficie
of variation), respectively. The random variable repr
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sents a normalised FBM with Hurst parameter
. is mainly characterised by zero mean

and variance for . Therefore the variance of
is given by

, (17)

Additional properties of the FBM model are, e.g., dis-
cussed in [13, 14, 17].

In [13, 14], Norros presents an approach to obtain an
approximation for the queue length distribution in an
unlimited buffer fed by an FBM traffic stream and emp-
tied with service rate . Using a scaling law for the frac-
tional Brownian storage Norros finds that the distribution
of queue length roughly follows a Weibull distribu-
tion1. Like in the derivation of (14) in Section 3.3

is assumed, i.e. is approximated
by . Then the following formula for the
complementary queue length distribution is obtained:

(18)

Solving for yields an expression for the effective band-
width [14]:

(19)

with .
In the following, we refer to (19) as the Norros formula.

The result is also is in accordance with the solution found
in [10] using the general effective bandwidth definition
given in (9). A discussion of effects of the parameters in
the Norros formula can be found in [15].

The variance coefficient as well as and may be
determined by the evaluation of measurements. In a vari-
ance time plot (see Fig. 1 for an example) where

is drawn over
( and denote some time and volume unit, e.g., = 1
s and = 1 kbit, respectively) they define the regression
line  for large values of :

(20)

So , which is measured, e.g., in , ca
be derived from the intersection of the regression line wi
the vertical line at .

This measurement-based approach, however, will on
lead to valid results for a very long measurement perio
The empirical variance obtained during a short measu
ment interval may significantly differ from the expecte
variance in a long-term sense. The parameters and
derived from the empirical variance as well as the me
rate may be useless in this case. As we will point out Se
tion 4 even several millions of bursts may be too less
the case of high values of the Hurst parameter.

Typical values of , and are listed in Table 1
While the first two parameter sets are obtained from d
ferent Ethernet traffic measurements at Bellcore [11]
given in [14], the latter two result from newer HTTP traf
fic measurements in an ADSL-based access network a
at a local ISP [4].

An application of the Norros formula to the traffic
model specified in Section 2 can be achieved by mappi
the M/Pareto model to an FBM model. As pointed out i
[14] this can be done by equalling the mean and the va
ance of the corresponding cumulated arrival process
Regarding the variance of the M/Pareto process it
appropriate to take only the limiting term for
according to (7) into account. Equalling (7) and (17) the
yields

(21)

as an expression for the variance coefficient of th
M/Pareto process. The convergence behaviour

for increasing values of depends very muc
on the Hurst parameter (Fig. 1). While the variance co
verges very fast to the term expressed in (7) for close
1, no convergence is achieved for . Therefo
the variance coefficient of the M/Pareto process accordi
to (21) tends to infinity for . Furthermore, Fig. 2
shows that the value of extremely depends on the Hu
parameter as well as on the peak rate and the mean b
size. Therefore a variation of the Hurst parameter alo
without adapting the variance coefficient is not usefu
Similar observations have been made by Veitch and Ab
in [19].

1 A similar result is obtained by Brichet et al. in [3] in the case of heavy
traffic and heavy-tailed ON/OFF sources. Tsybakov and Georganas on the
other hand obtain a hyperbolic decay of the overflow probability [18].
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Table 1:  Measured FBM parameters

parameter Bellcore 1 Bellcore 2 ADSL local ISP

2279 kbit/s 12.3 kbit/s 10.5 kbit/s 8.76 kbit/s

262.8 kbit s 68.6 kbit s 440 kbit s 38 kbit s

0.78 0.86 0.915 0.88
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If in the Norros formula is substituted by the vari-
ance coefficient of the M/Pareto process as given in (21)
the following expression for the effective bandwidth of an
M/Pareto traffic stream is obtained:

(22)

Therein,  is used as an abbreviation for

(23)

A mapping to a short-range dependent burst arrival model
( = 0.5) can be done in the same way. If the burst size is
assumed to be exponentially distributed the variance coef-
ficient is given due to (8) by

(24)

This leads to relatively simple expressions for the over-
flow probability (using ) and the effective
bandwidth of an M/M/ burst traffic stream, respec-
tively:

(25)

(26)

Note that these results are similar to those obtained in Sec-
tion 3.3 but slightly different.

3.5 Combined Method

A simple ad hoc approach to find an effective bandwid
formula that considers both rate envelope multiplexing
well as rate sharing for self-similar traffic is to combin
the formulas derived in Section 3.2 and Section 3.4. Wh

according to (11) has been pointed out to be a re
sonably well approximation for , accord-
ing to (18) has actually been derived as an expression

. Therefore the product of the results o
(11) and (18) should deliver a good approximation fo

.

(27)

Some transformations lead to an equation of the form

(28)

with constants

(29)

Equation (28) can be solved for using a simple nume
cal method. If, e.g., Newton’s method with initial value

is used, only very few iterations are require
to find a reasonably exact solution.
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Fig. 1: Asymptotic behaviour of for the
M/Pareto arrival process

Fig. 2: Dependence of variance coefficient for
the M/Pareto arrival process on Hurst parameter
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4. Comparative Evaluation

In this section, the effective bandwidth results obtained by
the previously presented approaches are compared with
each other and with simulations. The simulator directly
implements the fluid burst model, i.e. only the burst level
is considered in the simulations. This has mainly two
advantages as compared to a packet level simulation. First,
simulation time is reduced by a factor which is in the order
of the number of packets per burst. Second, packet level
effects, which are not considered by the previously pre-
sented effective bandwidth schemes, are omitted. The
M/Pareto fluid burst model discussed in Section 2 is used
in the simulation to obtain reference results. The analytical
results are used as given in Section 3 for the REM, FF,
FBM and combined approaches under M/Pareto traffic.

Simulation of self-similar traffic generally has to be
regarded cautiously as the statistical significance may
increase only very slowly with simulation time. An exam-
ple may help to clarify this. In the case of short-range
dependent traffic the expected standard deviation of the
mean rate measured during simulation is reduced by a fac-
tor of 10 if the simulation time is prolonged by a factor of
100. If traffic is self-similar with Hurst parameter ,
however, simulation duration has to be increased by a fac-
tor of , i.e. by a factor of in the case of

= 0.9, to achieve the same goal. We observed that the
measured mean input rate was significantly different
(deviation of up to 5%) from the value specified in the
simulation configuration for = 0.9 although a huge
number of bursts ( , in some cases ) were consid-
ered in the simulations. As the effective bandwidth pre-
sented below is related to the mean rate as measured

during simulation, however, the results can still be seen
reasonable estimates for the real values even in the cas

 close to 1.
The example above leads us to a further rema

Although widely concealed the problem of statistical sig
nificance also occurs when performance studies on
basis of traces are performed as presented in many pap
If we assume that an average burst arriving on a netwo
link consists of 10 packets (which surely is a reasonab
number) a simulation of bursts comprises pac
ets. To get the same number of packets a measuremen
a fully loaded 100 Mbit/s would have to last for more tha
11 hours (assuming an average packet size of 500 byt
Within such a long period, however, the arrival proce
can no longer be assumed to be stationary due to diur
variations. Therefore, traces used for performance stud
presented in literature are usually much shorter, typica
in the order of packets [14]. This leads to a muc
lower statistical significance as compared to our simul
tions.

Now we first take a look on the complementary queu
length distribution. In Fig. 3 and Fig. 4 the results fo
exponentially and Pareto ( = 0.8) distributed burst si
are depicted, respectively. The offered load is 80% in bo
cases. A value of 40 is used for the ratio . Note th

denotes the total mean rate of the traffic stream, i
represents the mean number of simultaneous

active bursts. The REM approximation is independent
the buffer threshold and returns a constant value equa

. The FF approximation is able to follow the
exponential decay of in the exponential case.
the input traffic is self-similar, however, this method con
sequently underestimates the slope of the curve. The FB
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Fig. 3:  Queue length ccdf for exponentially dis-
tributed burst size with  and 80% load

Fig. 4:  Queue length ccdf for Pareto (  = 0.8)
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approximation using (18) as well as (21) for the M/Pareto
and (24) for the M/M case, respectively, can follow the
shape of quite well in both the self-similar and
the non self-similar case. Both figures reveal, however,
that the decay is slightly overestimated. This has also a
negative influence on the result according to the combined
method which underestimates the overflow probability,
especially in the case = 0.8. Unlike the FBM approxi-
mation the combined method matches the overflow proba-
bility quite well if the buffer size is very small.

The convex shape of the overflow probability curve in
Fig. 4 has already indicated that the queue length distribu-
tion may be well described by a Weibull distribution as
assumed in Section 3.4. But we wanted to have a closer
look on that in order to see whether this property really
holds in the case of M/Pareto input traffic. Therefore, we
have drawn over which
should give a straight line if follows a Weibull distribu-
tion. As obvious from Fig. 6 this is true with good accu-
racy at least for close to 1. If the Hurst parameter is
small, however, slight deviations can be observed.

As mentioned before all effective bandwidth schemes
presented in Section 3 have in common that they use the
overflow probability instead of the loss probability as QoS
measure. In order to show the difference between both
measures we also made simulations of a finite buffer
queue. The loss probability results for buffer size are
depicted in Fig. 5 together with those of the complemen-
tary queue length distribution in the infinite buffer case.
Again a ratio of and an offered load of 80%
were chosen. One can see that the loss probability curves
principally have a very similar shape as compared to the
overflow probability curves. This holds for different
degrees of self-similarity. However, the loss probability is

about one order of magnitude smaller in this case. So o
can conclude that it makes a significant difference wheth
the effective bandwidth is related to loss or to overflo
probability.

In the following, we compare the analytical results fo
the effective bandwidth as given by (12), (15), (22) an
(27) for the different methods with those obtained by sim
ulation for different degrees of self-similarity. The simula
tion results have been found by subsequently performi
simulations of the queueing model with varying servic
rate. Like the analytical results the simulation results a
based on the overflow probability as QoS measure us
a value of in all cases. The overflow probability is
related to a buffer threshold of 10 and 50 times the me
burst size in the right and the left figures, respectively. W
refer to this as the medium and large buffer case. T
mean burst size as well as the peak rate during a burst
kept constant while the mean rate is varied.

In Fig. 7 and Fig. 8 the effective bandwidths related
the total mean rate are drawn over for the case
exponentially distributed burst size. The figures show th
the effective bandwidth values according to FBM and F
approximation are proportional to the total mean rate. T
effective bandwidth based on the REM approximation, o
the other hand, remains unchanged if the buffer thresh
is increased. While the REM solution turns out to be qui
accurate in the medium buffer case (at least for high
mean rates) it is the worst solution if a large buffer
assumed. The Norros formula always yields a lower effe
tive bandwidth than the FF approximation. This general
leads to a higher network utilisation. However, in cases
low mean rates the Norros formula obviously underes
mates the required service rate. The combined meth
turns out to be the most accurate one for medium buf
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Fig. 7:  M/M traffic, x/b  = 10 Fig. 8:  M/M traffic, x/b  = 50
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Fig. 9:  M/Pareto traffic with H = 0.6, x/b  = 10 Fig. 10:  M/Pareto traffic with H = 0.6, x/b  = 50
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Fig. 11:  M/Pareto traffic with H = 0.7, x/b  = 10 Fig. 12:  M/Pareto traffic with H = 0.7, x/b  = 50
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size. However, the effect of underestimating the effective
bandwidth in some parameter regions caused by the con-
tribution of the FBM approximation is also increased. This
becomes obvious especially in the large buffer case.

In the next figures the effective bandwidth formulas are
applied to self-similar traffic based on the M/Pareto fluid
burst model with Hurst parameter = 0.6 (Fig. 9 and
Fig. 10), = 0.7 (Fig. 11 and Fig. 12), = 0.8 (Fig. 13
and Fig. 14), and = 0.9 (Fig. 15 and Fig. 16), respec-
tively. The results for self-similar traffic show that the FF
approximation significantly underestimates the required
service rate if the buffer size is large. The REM approxi-
mation on the other hand is always a conservative solu-
tion. It becomes more accurate when the Hurst parameter
is increased even for large buffers.

The FBM approximation is able to give quite accurate
results if the Hurst parameter is large enough. In the case

of = 0.6, however, it is overly conservative and give
an effective bandwidth even greater than that provided
the REM approximation. This effect is caused by the slo
convergence of the M/Pareto process to an FBM wi
respect to the variance for lower values of the Hur
parameter (Fig. 1). On the other hand, the FBM approx
mation underestimates the required capacity over t
whole range of  if  is low.

The combined method suffers from this underestim
tion effect of the FBM approximation. It is still conserva
tive for = 0.6 over a wide range of mean rates. In th
case it turns out to be the most accurate one. If, howev
the Hurst parameter is increased, the combined meth
underestimates the effective bandwidth over a wide ran
of . For very high total mean rates it can be shown b
simulations that it becomes more accurate than the FB
approximation for any value of the Hurst parameter.

H
H H

H

H

H m h⁄

Fig. 13:  M/Pareto traffic with H = 0.8, x/b  = 10 Fig. 14:  M/Pareto traffic with H = 0.8, x/b  = 50
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Fig. 15:  M/Pareto traffic with H = 0.9, x/b  = 10 Fig. 16:  M/Pareto traffic with H = 0.9, x/b  = 50
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5. Conclusions

The M/Pareto traffic model has been used as a traffic
model exhibiting long-range dependence to produce a
consistent set of parameters that allows the comparison of
different effective bandwidth schemes, namely the rate
envelope multiplexing, fluid flow and fractional Brownian
motion approximations. The latter explicitly includes
long-range dependence effects. A fourth method, combin-
ing the results of rate envelope multiplexing and fractional
Brownian motion approaches, was developed in an
attempt to find a scheme that captures both effects.

A comparison of analytical with burst scale fluid simu-
lation results has shown that none of the approaches is
able to give exact results for the effective bandwidth over
the full range of parameters. The fractional Brownian
motion is generally problematic as it underestimates the
bandwidth needed by traffic streams with small mean
rates. This weakness is also present in the combined
method. On the other hand, the FBM model overestimates
the bandwidth needed by short-range dependent or weakly
self-similar traffic if the total mean rate is relatively high.
The combined method yields more accurate results in this
parameter range. For highly self-similar traffic, the FBM
approximation gives quite accurate results, but the com-
bined method is even more accurate if the mean rate is
very high. In cases of small and medium buffer sizes or
high Hurst parameter, the REM method is a reasonably
accurate approximation, even though it is completely
insensitive to the burst size distribution.

References

[1] R. Addie, P. Mannersalo, I. Norros: “Performance Formu-
lae for Queues with Gaussian Input.”Proceedings of the
16th International Teletraffic Congress (ITC 16), Edin-
burgh, UK, June 1999, pp. 1169-1178.

[2] D. Anick, D. Mitra, M. Sondhi: “Stochastic Theory of a
Data-Handling System with Multiple Sources.”Bell System
Technical Journal, Vol. 61, No. 8, Oct. 1982, pp. 1871-
1894.

[3] F. Brichet, J. Roberts, A. Simonian, D. Veitch: “Heavy
Traffic Analysis of a Storage Model with Long Range
Dependent On/Off Sources.”Queueing Systems, Vol. 23,
1996.

[4] J. Charzinski: “Internet Client Traffic Measurement and
Characterisation Results.”Proceedings of the 13th Interna-
tional Symposium on Services and Local Access (ISSLS
2000), Stockholm, June 2000.

[5] J. Charzinski: “Fun Factor Dimensioning for Elastic Traf-
fic.” Accepted for presentation atITC Specialist Seminar on
IP Traffic Measurement, Modeling and Management,
Monterey, CA, Sep. 2000.

[6] M. E. Crovella, A. Bestavros: “Self-Similarity in World
Wide Web Traffic: Evidence and Possible Causes
IEEE/ACM Transactions on Networking, Vol. 5, No. 6,
Dec. 1997, pp. 835-846.

[7] R. J. Gibbens, Y. C. Teh: “Critical time and space scales f
statistical multiplexing.”Proceedings of the 16th Interna-
tional Teletraffic Congress (ITC 16), Edinburgh, UK, June
1999, pp. 87-96.

[8] M. Grossglauser, J.-C. Bolot: “On the relevance of long
range dependence in network traffic.”IEEE/ACM Transac-
tions on Networking, Vol. 7, No. 5, Oct. 1999, pp. 629-640

[9] R. Guérin: “Equivalent Capacity and Its Application to
Bandwidth Allocation in High-Speed Networks.”IEEE
Journal on Selected Areas in Communications, Vol. 9, No.
7, Sep. 1991, pp. 968-981.

[10] F. Kelly: “Notes on effective bandwidths.” InStochastic
Networks: Theory and Applications, Eds.: F. P. Kelly, S.
Zachary, I. Ziedins, Clarendon Press, Oxford, 199
pp.141-168.

[11] W. E. Leland, M. S. Taqqu, W. Willinger, D. V. Wilson:
“On the Self-Similar Nature of Ethernet Traffic (Extende
Version).” IEEE/ACM Transactions on Networking, Vol. 2,
No. 1, Feb. 1994, pp. 1-15.

[12] T. D. Neame, M. Zukerman, R. G. Addie: “A practica
approach for multimedia traffic modeling.”Proceedings of
the 5th International Conference on Broadband Commun
cations (BC ‘99), Hong Kong, Nov. 1999, pp. 73-82.

[13] I. Norros: “A storage model with self-similar input.”
Queueing Systems, Vol. 16, No. 2, 1994, pp. 387-396.

[14] I. Norros: “On the Use of Fractional Brownian Motion in
the Theory of Connectionless Networks.”IEEE Journal on
Selected Areas in Communications, Vol. 13, No. 6, Aug.
1995, pp. 953-962.

[15] A. Patel, C. Williamson:Statistical Multiplexing of Self-
Similar Traffic: Theoretical and Simulation Results, Uni-
versity of Saskatchewan, Department of Computer Scien
April 1997, http://www.cs.usask.ca/faculty/carey/paper
statmuxing.ps.

[16] V. Paxson, S. Floyd: “Wide Area Traffic: The Failure o
Poisson Modeling.”IEEE/ACM Transactions on Network-
ing, Vol. 3, No. 3, June 1995, pp. 226-244.

[17] J. Roberts, U. Mocci, J. Virtamo (Eds.):Broadband net-
work teletraffic: Final Report of Action COST 242.
Springer, 1996.

[18] B. Tsybakov, N. D. Georganas: “On Self-Similar Traffic in
ATM Queues: Definitions, Overflow Probability Bound
and Cell Delay Distribution.”IEEE/ACM Transactions on
Networking, Vol. 5, No. 3, June 1997, pp. 397-409.

[19] D. Veitch, P. Abry: “A Wavelet-Based Joint Estimator o
the Parameters of Long-Range Dependence.”IEEE Trans-
actions on Information Theory, Vol. 45, No. 3, April 1999,
pp. 878-897.

[20] W. Willinger, M. S. Taqqu, R. Sherman, D. V. Wilson:
“Self-Similarity Through High-Variability: Statistical
Analysis of Ethernet LAN Traffic at the Source Level.”
IEEE/ACM Transactions on Networking, Vol. 5, No. 1, Feb.
1997, pp. 71-86.
21–10


	Abstract
	1. Introduction
	2. Traffic Model
	3. Effective Bandwidth
	3.1 Definition
	3.2 Rate Envelope Multiplexing (REM) Approximation
	3.3 Fluid Flow (FF) Approximation
	3.4 Fractional Brownian Motion (FBM) Approximation
	3.5 Combined Method

	4. Comparative Evaluation
	5. Conclusions
	References
	Evaluation of Effective Bandwidth Schemes for Self-Similar Traffic

