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Abstract under these circumstances, a possible dimensioning target

can be to adjust the capacity of one link in a network such
that this link is definitely (e.g., with respect to a certain

packet loss probability) not the bottleneck for TCP con-
nections using it.

Several approaches for determining effective band-
widths have been derived for Markovian or other short-
range dependent traffic. On the other hand, Internet traffic
has been found to exhibit significant amounts of self-simi-
larity and long-range dependence [6, 11, 16, 20] due to an
extremely high variability of burst durations [20]. It has

In this paper, different approximations for the effective
bandwidth of self-similar traffic streams are reviewed.
Among those, classical approaches originally based on
Markovian models are regarded in the context of self-simi-
lar traffic. On the other hand, a solution is considered that
explicitly takes the long-range dependent character of the
traffic stream into account by using a fractional Brownian
motion model. Furthermore, we propose an effective band-
width scheme that provides a combination of approaches

from both domains. In order to achieve an objective com- . oo
: ) . been shown that a high amount of self-similarity leads to
parison of the different schemes, an M/Pareto fluid burst . .
greatly increasing queue lengths as compared to short-

has been chosen as a common traffic model, and the corre-ran e dependent traffic [8]. Our goal is to compare differ-
sponding traffic parameters needed by the different 9 P ’ g P

schemes have been derived. A burst level simulation of theent classical effective bandwidth schemes with others

. explicitly considering self-similarity and to find the
same traffic model serves as another reference. The evalu- : . )

. . . ~parameter regions in which these schemes can be used to
ation shows that the accuracy of the results obtained using

the different schemes depends very much on the trafficglve. accurate estimates for the bandwidth needed by a
traffic stream.
parameters.

In Section 2, we introduce the M/Pareto traffic model
as a burst scale model where Pareto distributed bursts of
traffic arrive at negative exponentially distributed interar-
rival instants and derive parameters for characterizing this
traffic. Section 3 gives an overview of some effective
bandwidth schemes, indicating how they can be applied in
. the M/Pareto context. In addition, a new approach com-

needed if a small loss or delay is acceptable. The effectiv:bm"’].g formulas for t.WO burst scale multiplexing p.henom—.
ena is presented. Finally, a parameter study carried out in

bandwidth is one way of characterizing the FESOUTCe section 4 is used to compare the different effective band-

requirements of a variable rate connection. It has origi- . : . L
. . . > width formulas, discussing their individual strengths and
nally been introduced in the context of connection admis- : !
weaknesses using the M/Pareto traffic model as a common

sion control for ATM networks but as a measure of . . . .
L L . basis. Fluid flow burst scale simulation results for the
resource consumption it can also be applied in optimal ,
same traffic model are used as a reference.

charging or network dimensioning tasks. The latter is the
context in which this paper has been written.

Most of today’s data traffic is carried over the Inter-
net's transmission control protocol TCP. This protocol
performs a flow control by which each connection adapts
its bandwidth to the maximum fair share available. This
makes it difficult to use classical dimensioning methods or
quality of service (QoS) parameters [5]. However, even

1. Introduction

Variable bit rate connections offer the chance of exploit-
ing a statistical multiplexing gain — an effect describing
that in order to transport the traffic of a number of variable

2. Traffic Model

A superposition of many ON/OFF sources with heavy-
tailed ON or OFF durations has been suggested as traffic
model that captures the long-range dependence effects of
network traffic [20]. Among the class of heavy-tailed dis-
tributions the Pareto distribution has turned out to be most
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appropriate one for modelling in many cases [6]. Increas- The same result (however in a different presentation) is
ing the number of ON/OFF sources with Pareto distributed given in [1, 12].
ON durations and decreasing the relative contribution of If t approaches infinity only the first term of the
each source results in an M/Pareto model. In [12], Neame,expression fort >k/h keeps relevant, i.e. the variance
Zukerman and Addie show that this is a quite appropriate increases with2" in the limiting case:
model for long-range dependent traffic streams that can be VAR[A] — ¢, (2H t = o (6)
well matched to a measured trace.

In the context of this paper an M/Pareto fluid burst f m, band H are used instead df k, aad  we get

model is assumed where bursts comprising a certain w1 R=2H 7~
amount of fluid arrive according to a Poisson process with m Cher = _2H g
rate A . The fluid arrival rate during a burst is denoted by ~ VAR[A] - azH (7

- X X —-2H)O2H -1) H
h. The distribution of the burst sizB  (i.e. the amount of ) (_3 ) E( ) )
fluid arriving in a burst) follows a Pareto distribution with Another interpretation of this result is that the variance of

minimum valuek and shape parameter : the average rate observed within an interval of length
approaches, [1?H-2 fot -~ « . That means it decreases
P(B<s) = 1- ckcf . s>k 1) very slowly if the Hurst parameter is close to 1.
[0 If the cumulated arrival process in the case of a finite

Special interest is given to the range< a <2 for the Variance burst size (corresponding to short-range depend-
shape parameter leading to finite mean but infinite vari- ent traffic) is regarded for comparison we obtain

ance of the burst size. In this case traffic generated by the [B?]

M/Pareto model is asymptotically self-similar with Hurst VAR[A] - m E[B] [ (8)

parameter fort — o, i.e. the variance of the average rate in an inter-
H = 3;0(, %SH <1 @) val of lengtht decreases with!

The mean burst sizeb = E[B] is given by 3. Effective Bandwidth
b = klb/(a—-1). The mean rate of the total traffic
streamism = A [b . 3.1 Definition

The self-similar behaviour of the M/Pareto process

becomes obvious when regarding the cumulated arrival "€ notion of effective bandwidth provides a measure of
processA, , i.e. the fluid arriving in an interval of length . the resource requirements of a traffic stream with certain

The variance o, can be obtained by quality of service (QoS) constraints. Statistical properties
Cu e of the traffic stream have to be considered as well as sys-
tem parameters (e.g., buffer size, service discipline) and

VAR[A] = 2AChfdufdv[P(B>9ds  (3)  he traffic mix. The terms equivalent bandwidth and

0 0 wvh equivalent capacity are often used as synonyms for effec-
Repeated integration leads to the following expression: tive bandwidth.

A mathematical framework for effective bandwidth has

O . .
2 3 been defined based on the general expression [10
EAhzchi_ld%—%g ogg%‘ ) g P =
VAR[A] = O ) (4) as, t) = = OogE[exp(s 1A)] (9)
c,d3-9+c,d+c t>= _ .
0 & 2 3 h which depends on the space parameter and the time

parametert . Effective bandwidths for various types of

where the constants are given by traffic models have been derived from this definition [10].

5 kP The problem with respect to a practical usage of these
—2[A[h [H':D expressions, however, is to find appropriate valuessfor
€ = (1-0){2—a) (3-0) andt , which depend on the QoS requirements and the sys-
tem parameters. As this may become a rather complex task
c, = -\ [K2 [% [7] we restrict ourselves to approximate expressions which
-a can be derived independently of (9).
3 a In the following, different approximations of the effec-
Cy = A d<— 5— 5 '
3 h 303-0a) ©) tive bandwidth of an M/Pareto traffic stream are pre-

sented. The fluid is assumed to be the input of a FIFO
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server with capacityC , which has to be defined according 3.3 Fluid Flow (FF) Approximation

to the effective bandwidth of the traffic stream. The QoS

constraint of all presented methods is the overflow proba- While the solution presented in the previous section
bility, i.e. the probability that queue lengt®)  exceeds neglects buffering, the approach denoted as fluid flow

some threshold . approximation in [9] uses the queue length distribution in
the case of exponentially distributed burst size. Basic

3.2 Rate Envelope Multiplexing (REM) results have been obtained by Anick, Mitra and Sondhi
Approximation [2]. Assuming that traffic is generated by a superposition

of ON/OFF sources with exponentially distributed phase
A rather simple method to approximate the effective band- durations, they are able to calculate the distribution of
width is rate envelope multiplexing (REM) [17]. Only the queue lengthQ in an infinitely large buffer by solving a
current total fluid arrival rate is considered and compared system of differential equations. If the buffer threshald
with the link rate neglecting the effect of buffering. There- s reasonably largeP(Q > x) is well approximated by a
fore it is also called bufferless approach. Another term is single exponential term corresponding to the dominant
stationary approximation [9]. eigenvalue in the underlying equation system. If the
The attractive feature of this approach is that it is number of sources goes to infinity maintaining a constant

independent of the burst size distribution type. Only mean gggregate mean rate the following result for the M/M burst
and peak rate are relevant. Therefore it can be directlytraffic model is obtained:

applied to the M/Pareto traffic model introduced in

Section 2. P(Q>x) = P(Q>0) lexp(1-p) (F  (13)
The probability that the total arrival rafe ~ exceeds the

link rate C can be determined if the rate distribution is wherep = m/ C is the system load arldl  denotes the

known. In the case of an M/G fluid burst model the exact mean burst size. As the calculationB{Q > 0) is reason-

rate distribution is given by a Poisson distribution. If the ably complex, Guérin et al. suggest to make the simplify-

ratio m/ h is large enough, a Gaussian distribution pro- ing assumptionP(Q>0)=1 [9]. This corresponds to

vides a reasonably good approximation. approximating P(Q > x) by the conditional probability
Assuming thatR is approximately distributed accord- P(Q > x|Q >0) which leads to

ing to a Gaussian distribution with meam  and variance

02 = m[h, the probability of R exceedingC can be P(Q>x)= exp%—%l—%%[ﬁ% =€ (14)
determined:
o The effective bandwidth is obtained by solving (14):
-1 0 y?
P(R>C)= /21 DC_[ expD—-Z—%jy (10) c=—" xb>-Ine (15)
—m

1+-=[{neg
o X

Using a rough approximation of the Gaussian distribution The resylt is independent of the peak rate . Although the
as done in [9] provides a further simplification: derivation is based on the presumption of an exponentially
1 Coxpd (C—m)?q_ . (11) distributed burst size it can principally also be interpreted

T P 22 O~ as a rough approximation for the effective bandwidth of an

. S . o . M/Pareto traffic stream with equal mean burst size thereby
An expression for the effective bandwidth is obtained by simply neglecting the heavy tail effect.

solving (11) forC [9]:

P(R>C)=

h 1 3.4 Fractional Brownian Motion (FBM)
C=m [El + ./—2Ing - |ﬂ(2T[) O E’ID , €< 7_[ (12) Approx|mat|on

It has to be remarked that the approximation of the Gaus-A very basic traffic model that is able to capture the effect

sian distribution that leads to (11) and (12) is not very of long-range dependence is the fractional Brownian

accurate. However, we observed tliat according to (11) motion (FBM) model [13]. The cumulated arrival process

matches the queueing probabilitp(Q>0) , which is is described by

larger thanP(R> C) in general, quite well. From this one _ o

can conclude that (11) may be seen as an upper bound of Ac = mt+./mialz, (16)

P(Q> x). Therefore, (12) can be interpreted as a strictly wherem anda denote the mean arrival rate and the vari-

conservative solution. ance coefficient (which is not the same as the coefficient
of variation), respectively. The random variatde  repre-
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Table 1: Measured FBM parameters

parameter Bellcore 1 Bellcore 2 ADSL local ISP
m 2279 kbit/s 12.3 kbit/s 10.5 kbit/s 8.76 kbit/s
a 262.8 kbit s 68.6 kbit s 440 kbit s 38 kbit s
H 0.78 0.86 0.915 0.88
sents a normalised FBM with Hurst parameter Soa = a[¥2H , which is measured, e.g., kbit(5 , can

HO[1/21). Z, is mainly characterised by zero mean
and variance?" fot >0 . Therefore the variance/f
is given by

VAR[A] = mCalg", t>0 (17)

Additional properties of the FBM model are, e.g., dis-
cussed in [13, 14, 17].

be derived from the intersection of the regression line with
the vertical line at =t

This measurement-based approach, however, will only
lead to valid results for a very long measurement period.
The empirical variance obtained during a short measure-
ment interval may significantly differ from the expected
variance in a long-term sense. The paramefers Hnd

In [13, 14], Norros presents an approach to obtain an gerived from the empirical variance as well as the mean

approximation for the queue length distribution in an
unlimited buffer fed by an FBM traffic stream and emp-
tied with service rateC . Using a scaling law for the frac-
tional Brownian storage Norros finds that the distribution
of queue lengthQ roughly follows a Weibull distribu-
tion'. Like in the derivation of (14) in Section 3.3
P(Q>0)= 1 is assumed, i.eP(Q>x) is approximated
by P(Q>xQ>0). Then the following formula for the
complementary queue length distribution is obtained:

(C —m)2H [x2-2H 0
2H [(1—-H)2-24 [a 0!

Solving for C yields an expression for the effective band-
width [14]:

P(Q>x) = epo > TH (18)

1 1 1-H @ 2H-1
C = mLH +(-2«(H)2Ine)?H a2 (X H [m 27
(19)
with k(H) = HH Q1-H)1-H,
In the following, we refer to (19) as the Norros formula.

The result is also is in accordance with the solution found

in [10] using the general effective bandwidth definition
given in (9). A discussion of effects of the parameters in
the Norros formula can be found in [15].

The variance coefficierd aswellas arhtl

y = log(VAR[A]/V2) is drawn overx = log(t/t,)

(t, andV, denote some time and volume unit, etg., =1

_ . may be \yaAR[A] for increasing values of
determined by the evaluation of measurements. In a vari-

ance time plot (see Fig.1 for an example) where

rate may be useless in this case. As we will point out Sec-
tion 4 even several millions of bursts may be too less in
the case of high values of the Hurst parameter.

Typical values ofm ,a andd are listed in Table 1.
While the first two parameter sets are obtained from dif-
ferent Ethernet traffic measurements at Bellcore [11] as
given in [14], the latter two result from newer HTTP traf-
fic measurements in an ADSL-based access network and
at a local ISP [4].

An application of the Norros formula to the traffic
model specified in Section 2 can be achieved by mapping
the M/Pareto model to an FBM model. As pointed out in
[14] this can be done by equalling the mean and the vari-
ance of the corresponding cumulated arrival processes.
Regarding the variance of the M/Pareto process it is
appropriate to take only the limiting term far -
according to (7) into account. Equalling (7) and (17) then
yields
—2H -

) 20 0 »

&% B2 2H-1) ™ (1)
as an expression for the variance coefficient of the
M/Pareto process. The convergence behaviour of
depends very much
on the Hurst parameter (Fig. 1). While the variance con-
verges very fast to the term expressed in (7)Hor  close to
1, no convergence is achieved for = 1/2 . Therefore
the variance coefficient of the M/Pareto process according

h2H -1

sandV, =1 kbit, respectively) they define the regression (21) tends to infinity forH — 1/2 . Furthermore, Fig. 2

liney = r(x) for large values ok

r(x) = log(m0a/V32) + 2H x (20)

1 A similar result is obtained by Brichet et al. in [3] in the case of heavy

shows that the value af  extremely depends on the Hurst
parameter as well as on the peak rate and the mean burst
size. Therefore a variation of the Hurst parameter alone
without adapting the variance coefficient is not useful.

traffic and heavy-tailed ON/OFF sources. Tsybakov and Georganas on theSimilar observations have been made by Veitch and Abry

other hand obtain a hyperbolic decay of the overflow probability [18].

in [19].
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Fig. 1: Asymptotic behaviour of VAR [Afgr the Fig. 2: Dependence of variance coefficient far
M/Pareto arrival process the M/Pareto arrival process on Hurst parameter

If a in the Norros formula is substituted by the vari- 3.5 Combined Method
ance coefficient of the M/Pareto process as given in (21)

the following expression for the effective bandwidth of an A simple ad hoc approach to find an effective bandwidth
M/Pareto traffic stream is obtained: formula that considers both rate envelope multiplexing as

1 i well as rate sharing for self-similar traffic is to combine
[ L Ta T27 2 the formulas derived in Section 3.2 and Section 3.4. While
— _ 2H fLIH MLl 2H
C= mEE[L *X(H) L=2lng) E%D [g:ﬂ E €rem according to (11) has been pointed out to be a rea-
sonably well approximation foP(Q >0) &g, accord-

(22) ing to (18) has actually been derived as an expression for
Therein,x(H) is used as an abbreviation for P(Q> x|Q>0). Therefore the product of the results of
X(H) = 2%(3_2,_,)-% TN E(l—H)% (2H _1)% (;(1()? Sn)g (18) should deliver a good approximation for
(23) '
A mapping to a short-range dependent burst arrival model € = €remErpm
(H =0.5) can be done in the same way. If the burst sizeis 1 0 (C—m)2 (C—m)2H [x2-2H

assumed to be exponentially distributed the variance coef- 5o exp 202 2k(H)2aOm U

ficient is given due to (8) by
E[B?]

(27)

Some transformations lead to an equation of the form

2= @ - 2b (24) K,QC-m)2+K,(C-m2H+K; =0 (28)
This leads to relatively simple expressions for the over- With constants
flow probability (using p = m/C) and the effective K. = 1
bandwidth of an M/Mé burst traffic stream, respec- 17 2mh
tiver: x2-2H
1- K2 = T - amm
P(Q>x) = expd=—F X1 (25)
P Ky = In(e 0/2m) (29)
C = mE%l— Ine EED (26) Equation (28) can be solved f@  using a simple numeri-
XU cal method. If, e.g., Newton’s method with initial value

Note that these results are similar to those obtained in Sec.Co_— m = h is used, only very fgw iterations are required
tion 3.3 but slightly different. to find a reasonably exact solution.
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tributed burst size with C/h = 5and 80% load distr. burst size with  C/h = 5@nd 80% load
4. Comparative Evaluation during simulation, however, the results can still be seen as

reasonable estimates for the real values even in the case of

In this section, the effective bandwidth results obtained by H close to 1.
the previously presented approaches are compared with The example above leads us to a further remark.
each other and with simulations. The simulator directly Although widely concealed the problem of statistical sig-
implements the fluid burst model, i.e. only the burst level nificance also occurs when performance studies on the
is considered in the simulations. This has mainly two basis of traces are performed as presented in many papers.
advantages as compared to a packet level simulation. FirstJf we assume that an average burst arriving on a network
simulation time is reduced by a factor which is in the order link consists of 10 packets (which surely is a reasonable
of the number of packets per burst. Second, packet levelnumber) a simulation o108  bursts comprisgg® pack-
effects, which are not considered by the previously pre- ets. To get the same number of packets a measurement on
sented effective bandwidth schemes, are omitted. Thea fully loaded 100 Mbit/s would have to last for more than
M/Pareto fluid burst model discussed in Section 2 is used 11 hours (assuming an average packet size of 500 bytes).
in the simulation to obtain reference results. The analytical Within such a long period, however, the arrival process
results are used as given in Section 3 for the REM, FF, can no longer be assumed to be stationary due to diurnal
FBM and combined approaches under M/Pareto traffic.  variations. Therefore, traces used for performance studies

Simulation of self-similar traffic generally has to be presented in literature are usually much shorter, typically
regarded cautiously as the statistical significance mayin the order of 106 packets [14]. This leads to a much
increase only very slowly with simulation time. An exam- lower statistical significance as compared to our simula-
ple may help to clarify this. In the case of short-range tions.
dependent traffic the expected standard deviation of the Now we first take a look on the complementary queue
mean rate measured during simulation is reduced by a facdength distribution. In Fig. 3 and Fig. 4 the results for
tor of 10 if the simulation time is prolonged by a factor of exponentially and Paretdd = 0.8) distributed burst size
100. If traffic is self-similar with Hurst parametel , are depicted, respectively. The offered load is 80% in both
however, simulation duration has to be increased by a fac-cases. A value of 40 is used for the ratio’ h . Note that
tor of 10v/(1-H) j.e. by a factor of101° in the case of m denotes the total mean rate of the traffic stream, i.e.
H= 0.9, to achieve the same goal. We observed that them/ h represents the mean number of simultaneously
measured mean input rate was significantly different active bursts. The REM approximation is independent of
(deviation of up to 5%) from the value specified in the the buffer threshold and returns a constant value equal to
simulation configuration forH = 0.9 although a huge P(Q>0). The FF approximation is able to follow the
number of burstsX08 , in some cask8® ) were consid- exponential decay oP(Q > x) in the exponential case. If
ered in the simulations. As the effective bandwidth pre- the input traffic is self-similar, however, this method con-
sented below is related to the mean rate as measuredequently underestimates the slope of the curve. The FBM
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probability for different burst size distributions

approximation using (18) as well as (21) for the M/Pareto about one order of magnitude smaller in this case. So one
and (24) for the M/M case, respectively, can follow the can conclude that it makes a significant difference whether
shape ofP(Q > x) quite well in both the self-similar and the effective bandwidth is related to loss or to overflow
the non self-similar case. Both figures reveal, however, probability.

that the decay is slightly overestimated. This has also a In the following, we compare the analytical results for
negative influence on the result according to the combinedthe effective bandwidth as given by (12), (15), (22) and
method which underestimates the overflow probability, (27) for the different methods with those obtained by sim-

especially in the casél = 0.8. Unlike the FBM approxi- ulation for different degrees of self-similarity. The simula-
mation the combined method matches the overflow proba-tion results have been found by subsequently performing
bility quite well if the buffer size is very small. simulations of the queueing model with varying service

The convex shape of the overflow probability curve in rate. Like the analytical results the simulation results are
Fig. 4 has already indicated that the queue length distribu-based on the overflow probabiliy as QoS measure using
tion may be well described by a Weibull distribution as a value of10-2 in all cases. The overflow probability is
assumed in Section 3.4. But we wanted to have a closerrelated to a buffer threshold of 10 and 50 times the mean
look on that in order to see whether this property really burst size in the right and the left figures, respectively. We
holds in the case of M/Pareto input traffic. Therefore, we refer to this as the medium and large buffer case. The
have drawn In(-InP(Q>x)) overin(x/b) which mean burst size as well as the peak rate during a burst are
should give a straight line i)  follows a Weibull distribu-  kept constant while the mean rate is varied.

tion. As obvious from Fig. 6 this is true with good accu- In Fig. 7 and Fig. 8 the effective bandwidths related to
racy at least forH close to 1. If the Hurst parameter is the total mean raten are drawn ovey h  for the case of
small, however, slight deviations can be observed. exponentially distributed burst size. The figures show that

As mentioned before all effective bandwidth schemes the effective bandwidth values according to FBM and FF
presented in Section 3 have in common that they use theapproximation are proportional to the total mean rate. The
overflow probability instead of the loss probability as QoS effective bandwidth based on the REM approximation, on
measure. In order to show the difference between boththe other hand, remains unchanged if the buffer threshold
measures we also made simulations of a finite buffer is increased. While the REM solution turns out to be quite
gueue. The loss probability results for buffer size  are accurate in the medium buffer case (at least for higher
depicted in Fig. 5 together with those of the complemen- mean rates) it is the worst solution if a large buffer is
tary queue length distribution in the infinite buffer case. assumed. The Norros formula always yields a lower effec-
Again a ratio ofm/ h = 40 and an offered load of 80% tive bandwidth than the FF approximation. This generally
were chosen. One can see that the loss probability curvedeads to a higher network utilisation. However, in cases of
principally have a very similar shape as compared to thelow mean rates the Norros formula obviously underesti-
overflow probability curves. This holds for different mates the required service rate. The combined method
degrees of self-similarity. However, the loss probability is turns out to be the most accurate one for medium buffer
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size. However, the effect of underestimating the effective of H = 0.6, however, it is overly conservative and gives
bandwidth in some parameter regions caused by the con-an effective bandwidth even greater than that provided by
tribution of the FBM approximation is also increased. This the REM approximation. This effect is caused by the slow
becomes obvious especially in the large buffer case. convergence of the M/Pareto process to an FBM with
In the next figures the effective bandwidth formulas are respect to the variance for lower values of the Hurst
applied to self-similar traffic based on the M/Pareto fluid parameter (Fig. 1). On the other hand, the FBM approxi-
burst model with Hurst parametéd = 0.6 (Fig. 9 and mation underestimates the required capacity over the
Fig. 10),H =0.7 (Fig. 11 and Fig. 124 = 0.8 (Fig. 13 whole range oH ifm/h is low.
and Fig. 14), andH = 0.9 (Fig. 15 and Fig. 16), respec- The combined method suffers from this underestima-
tively. The results for self-similar traffic show that the FF tion effect of the FBM approximation. It is still conserva-
approximation significantly underestimates the required tive for H = 0.6 over a wide range of mean rates. In this
service rate if the buffer size is large. The REM approxi- case it turns out to be the most accurate one. If, however,
mation on the other hand is always a conservative solu-the Hurst parameter is increased, the combined method
tion. It becomes more accurate when the Hurst parametemunderestimates the effective bandwidth over a wide range
is increased even for large buffers. of m/ h. For very high total mean rates it can be shown by
The FBM approximation is able to give quite accurate simulations that it becomes more accurate than the FBM
results if the Hurst parameter is large enough. In the caseapproximation for any value of the Hurst parameter.
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5.

Conclusions

The M/Pareto traffic model has been used as a traffic

model exhibiting long-range dependence to produce a
consistent set of parameters that allows the comparison o
different effective bandwidth schemes, namely the rate
envelope multiplexing, fluid flow and fractional Brownian

motion approximations. The latter explicitly includes 8
long-range dependence effects. A fourth method, combin-
ing the results of rate envelope multiplexing and fractional
Brownian motion approaches, was developed in an[9]
attempt to find a scheme that captures both effects.

A comparison of analytical with burst scale fluid simu-

(6]

lation results has shown that none of the approaches is
able to give exact results for the effective bandwidth over
the full range of parameters. The fractional Brownian

motion is generally problematic as it underestimates the
bandwidth needed by traffic streams with small mean
rates. This weakness is also present in the combined
method. On the other hand, the FBM model overestimates
the bandwidth needed by short-range dependent or weakly
self-similar traffic if the total mean rate is relatively high.

The combined method yields more accurate results in this
parameter range. For highly self-similar traffic, the FBM

approximation gives quite accurate results, but the com-

bined method is even more accurate if the mean rate isl

very high. In cases of small and medium buffer sizes or
high Hurst parameter, the REM method is a reasonably
accurate approximation, even though it is completely
insensitive to the burst size distribution.
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