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1 Introduction

This document is intended for introducing new students, who start a bachelor, research or master
thesis project related to protocol layer network simulation, to the concepts and opportunities of
the IKR QEMU simulation environment [I]. It shows some example approaches to simulate
different problems by providing commented parameter files. These approaches are based on the
powerful QEMU-Example models DumbbellModel [2] and ParkingLotModel [3].

Please keep in mind that results are the more valuable the more general they are. To prove this,
typically many (randomized) simulation runs and a well-understood and appropriate statistical
evaluation are necessary. Simlib and the introduced elements in the protocolsupport library
produce some statistics. Use and interpret them with careful consideration!

In order to get a sufficient coverage, i.e. run many simulations, use the tools introduced in this
document in combination with SimTree [§]. To use (and understand) this tool, also have a closer
look on the Simlib documentation [4], in particular on the overview pages which explain the
fundamental design principles. You might want to have a look on the documentation how to run
a simulation [9], too, but that should not be necessary.

If using IKR compute nodes (cnode<nn>), always use the global scheduler or talk to your
supervisor!
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2 Simulation approaches for example problems

2.1 Problem 1: Behavior of different congestion control algorithms

In our scenario we want to use the congestion control (CC]) algorithm implementations of real
Linux Kernels to be able to simulate realistic connections between TCP /TP stacks. By using the
IKR.QEMU [6] library in combination with the IKR.SimLib [4] and the IKR.Protocolsupport
[5] library, we can run these Kernels on virtual QEMU machines and use their TCP/IP stack
implementation to start and handle [TCP] connections.

For the start we want to simulate a connection between a client and a server, connected via
a bottleneck link. Therefore the client has an infinite amount of data, which he sends to the
server. We want to evaluate the client’s congestion window size and the status of the queue at
the bottleneck link.

For this problem we can use the DumbbellModel [2], in the IKR.QEMU-example library, in an
easy form by simply using the following parameters in the sim.par file.

DumbbellModel . NumberOfClients = 1 # one client, i.e. sender
DumbbellModel . NumberOfServers = 1 # one server, i.e. receiver

Figure |1] shows the resulting topology.
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Figure 1: Topology of the used Dumbbell model (Problem1)

To be able to compare different CC algorithms with each other, we can set the algorithm, the
stacks shall use, by the parameter:

DumbbellModel . DefaultCongestionControl = reno

To generate the log files with the bottleneck queue’s status, we have to use a TracingBounded-
FIFOQDisc as queuing discipline, instead of the default BoundedFIFOQDisc. We also log the
size of the congestion windows by adding the following parameters:

DumbbellModel . CentralLinkClientToServer . QueuingEntity . QueuingDiscipline =

ikr . protocolsupport.algorithms.queuingDisciplines. TracingBoundedFIFOQDisc
DumbbellModel . CentralLinkClientToServer. QueuingEntity . QueuingDiscipline
.TraceFile = queue.csv # name of the queue log file
DumbbellModel . L4Connection *. LogSocketState = true # log the congestion window

Logging socket states is an expensive operation, but may also provide even more detailed data
on how the 1sender’s kernel sees the situtation at a time. While by default only the the sender’s
congestion window is traced, the following line

DumbbellModel . L4Connection *. LoggedTcpInfoValues = snd_cwnd;snd_ ssthresh;rtt;rttvar

retrieves



e sender’s congestion window (snd__cwnd)

sender’s slow start threshold (snd_ ssthresh)

the current [RT'T] as perceived by the sender (rtt)

the RTT’s variation (rttvar)

You can retrieve any values in the tcp_info struct of the Linux kernel. Remember, that this
struct varies (grew) from version to version!

There are several other parameters needed to run the DumbbellModel [2], like the bandwidth
and delay of the links. See the attached Problem1.sim file for all used parameters and their
purpose. Many of the parameters needed for the DumbbellModel [2] are set by default if they are
not set in the .par file. You can see all the parameters used in a simulation run by greping the re-
sulting DumbbellModel.stderr for "query" (command line: "grep query DumbbellModel.stderr").
The results for a run with the attached Probleml.sim file are plotted in Figure
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Figure 2: Client’s Congestion Window and bottleneck queue status for the first 30
seconds

In Figure [2| you can see the different phases of the congestion control algorithms and how they
depend on the bottleneck queue’s packet drops. Also the differences between the algorithms are
visible, e.g. the cubic congestion control in Figure 2D] causes more packet drops after slow start
than the reno congestion control in Figure [2a]

2.1.1 Testing a new CC algorithm of a modified Kernel

One of the advantages of using a Kernel image in a QEMU is the possibility to quickly change
it. If we already compiled a new Kernel with a modified Congestion Control algorithm, we can
easily use the scenario mentioned above and simply change the following parameters, to see how
our algorithm performs.

*.+ Stack .QEMU. kernel = "../path/to/yourKernellmage"
DumbbellModel . DefaultCongestionControl = myCC



2.2 Problem 2: Fairness of CC algorithms

A major aspect in congestion control designs is fairness. Fairness can be defined in different ways,
but mostly means a situation where different [TCP]flows compete for bandwidth at a bottleneck
in a network. So for this problem we want to see how flows with different congestion control
algorithms perform at a bottleneck queue. Therefore we can use the DumbbellModel [2] with
two clients, each having a greedy connection through a bottleneck link to a server. The resulting
topology is shown in Figure
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Figure 3: Topology of the used Dumbbell model (Problem?2)

To evaluate this problem we are interested in the goodput rate received at the servers. Therefore
we need the following settings:

DumbbellModel . NumberOfClients = 2

DumbbellModel . NumberOfServers = 2
DumbbellModel . WriteRateMeter = true

# two clients = senders
# two server = receivers
# generates rate logs

The interesting log files for us are the Server2Stack.InRates and Server3Stack.InRates, which are
plotted in Figure [4]
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Figure 4: Goodput rates of two competing reno flows

In Figure [4] we can see how the two flows are competing for bandwidth. In most periods they get
an unequal amount of the available bandwidth but in the plot over 5 minutes we can estimate
that the distribution of bandwidth is balanced.

By cleverly setting the bandwidth of the accessInputLinks to the bandwidth of the central link,
we can use the automatically generated statistics of the accessInputLinks at the server side to
measure the average link load. We find these statistics in the generated sim.log file for the Ca-
pacityPhase of the nodes AccessInputLinkServer2Stack and AccessInputLinkServer3Stack. The



results statistics, of the run plotted in Figure [4] are:

AccessInputLinkServer2Stack.CapacityPhase.meanOccupancy = 0.49821115733333504
AccessInputLinkServer3Stack.CapacityPhase.meanOccupancy = 0.501357906720002

These results show that in average the available bandwidth is shared nearly equally between
the two competing flows and therefore this situation can be considered to be fair.

We can also set up a reno flow against a cubic flow, to see how they compete, with the parameter:

DumbbellModel. CongestionControl = [reno cubic reno cubic]

The results of such a run are plotted in Figure
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Figure 5: Reno flow vs. cubic flow

Statistics:
AccessInputLinkServer2Stack.CapacityPhase.meanOccupancy = 0.44136550400000213
AccessInputLinkServer3Stack.CapacityPhase.meanOccupancy = 0.5582783046933326

The results shown in Figure [pajand the statistics show, that the bandwidth is also shared nearly
equally. The slight plus for the cubic flow may just be a fluctuation or can result from the
more aggressive way of the cubic algorithm to request available bandwidth. For statistically re-
liable results we would need to run this simulation for a much longer time. Figure [5b| shows the
congestion windows of each flow while they compete. This is only for visualization but not for
comparison reasons, because the size of the congestion window strongly depends on the algorithm
and the queue behavior and therefore it is not comparable.

2.3 Problem 3: [TCP| unfairness regarding round trip time

One of the known unfair aspects of todays congestion control algorithms (especially reno) are
competition situations, where the competing flows have different round trip times. We can
simulate this situation by using the above settings of Problem2.par and simply adjust the
delay of the access links. By setting the following parameters, we get different [RT' Tk for the
connections of client0 and client1:

DumbbellModel . AccessOutputLink x. PropagationDelayInSeconds = 0.00

DumbbellModel . AccessInputLinkClient0Stack . PropagationDelayInSeconds = 0.05



DumbbellModel. AccessInputLinkServer2Stack . PropagationDelayInSeconds = 0.05

DumbbellModel. AccessInputLinkClient1Stack.PropagationDelayInSeconds = 0
DumbbellModel . AccessInputLinkServer3Stack . PropagationDelayInSeconds = 0

With these settings, we get the following round trip times for the flows:

RTT ientotoServer2s = 0ms 4+ 20ms + 50ms + 0ms + 20 ms + 50ms = 140 ms
RTT Jient1toServers = 0ms + 20ms + 0ms + 0ms + 20ms + 0ms = 40 ms

The results for runs with reno and cubic flows are plotted in Figure [}
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Figure 6: Goodput rates of two competing flows with different [RT'Tk

Statistics for the reno flows:
AccessInputLinkServer2Stack.CapacityPhase.meanOccupancy = 0.21598137066668843
AccessInputLinkServer3Stack.CapacityPhase.meanOccupancy = 0.781988625013388

Statistics for the cubic flows:
AccessInputLinkServer2Stack.CapacityPhase.meanOccupancy = 0.25293508266669357
AccessInputLinkServer3Stack.CapacityPhase.meanOccupancy = 0.7466114118933846

As we can see in Figure[6land the statistics, the flow with a higher [RI'T] gets less of the available
bandwidth. When we compare the results for reno with cubic flows, we can see that there seems
to be a slight improvement of the situation if cubic congestion control is used. As mentioned
above we would need to simulate for a much longer time to get statistically reliable results,
but we can definitely see that this situation is highly unfair. These problems can be solved by
intelligent queuing disciplines which e.g. equally distribute packet drops on flows.

2.4 Problem 4: [TCP| Unfairness regarding number of flows

Another known unfair aspect of todays [[CPk are situations, where clients can increase their
bandwidth at a bottleneck by simply using more flows. This concept is commonly used by
download helper applications, which simply start multiple connections to download fragments
of a file and later reassemble it. We can simulate this situation by using the above settings of
Problem2.par and simply use two clientOToServer2 connections instead of one. Therefore
we need the following parameters:

DumbbellModel . NumberOfL4Connections = 3
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The results for runs with reno and cubic flows are plotted in Figure [7}
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Figure 7: Goodput rates of two clients with one client having two flows

Statistics for the reno flows:
AccessInputLinkServer2Stack.CapacityPhase.meanOccupancy = 0.6701289180266726
AccessInputLinkServer3Stack.CapacityPhase.meanOccupancy = 0.32956165066667

Statistics for the cubic flows:
AccessInputLinkServer2Stack.CapacityPhase.meanOccupancy = 0.6332702373333364
AccessInputLinkServer3Stack.CapacityPhase.meanOccupancy = 0.3664343180266672

As we can see in Figure [7] and the statistics, the client with two flows gets more of the available
bandwidth. In this case the available bandwidth is equally distributed over the flows, which
means that every flow gets a third of it. From a flow perspective this is fair, but from a client
perspective, which often is more relevant, this is highly unfair. These problems can be solved by
intelligent queuing disciplines which e.g. equally distribute packet drops on clients.

2.5 Problem 5: [TCP] Unfairness for flows facing multiple bottlenecks

For this situation, we assume a connection between a client and a server, which passes several
network nodes and therefore several links with queuing entities, similar to a connection trough
the internet. In this case the flow has to share the available bandwidth of each link with other
flows that pass this link. We call these flows cross traffic. If these links are the bottleneck for
this cross traffic, the Active Queue Management (AQM)) of this queue will (have to) drop packets
of the competing flows as well as of the flow traversing several of these bottleneck queues. In
our model we want to evaluate the effect of these multiple bottlenecks on a central flow. For
this purpose we can use the ParkingLotModel [3] in the IKR.QEMU-example library. Figure
shows an overview of this topology and Figure [8b| the details of ParkingLotModel [3].
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We want the crossroad links to all have the same bandwidth and delay and the cross traffic flows
to have about the same [RT1] as the central flow. As the packets of the central flow pass several
queues, they suffer from several queue waiting times and therefore we can only estimate the [RITT]
for the central flow. So for this problem we use the following parameters:

# Topology settings:

ParkingLotModel

ParkingLotModel.
ParkingLotModel.

ParkingLotModel

ParkingLotModel.

ParkingLotModel

.NumberOfCrossRoads = 4
# Link settings:
ParkingLotModel.

CentralAccessLink . PropagationDelayInSeconds = 0
CentralAccessLink . TransmissionRateInMBitS = 100
CentralReturnLink.PropagationDelayInSeconds = 0

CentralBottleneck

.CentralReturnLink . TransmissionRateInMBitS = 100
ParkingLotModel.
ParkingLotModel.

Link *. PropagationDelayInSeconds = 0.01

CentralBottleneckLink x. TransmissionRateInMBitS = 20

CrossAccessLink *.

.CrossAccessLink *.
ParkingLotModel.
ParkingLotModel.
ParkingLotModel.
ParkingLotModel.

CrossOutputLink *.
CrossOutputLink *.
CrossReturnLink x.
CrossReturnLink .

# Possible generic outputs:

ParkingLotModel . WriteRateMeter

PropagationDelayInSeconds = 0
TransmissionRateInMBitS = 100
PropagationDelayInSeconds = 0.04
TransmissionRateInMBitS = 100
PropagationDelayInSeconds = 0
TransmissionRateInMBitS = 100

true

With these settings we get the following round trip times for the flows:
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RTT entral low = 0ms+10ms + 10ms + 10ms + 10ms + 0ms + 4 - queueW aitingTimey queues

40 ms + 4 - queueW aitingT'imey queyes

RTT ient1toServers = 0ms + 10ms + 40ms + 0ms + queueWaitingT'imer gueue
= 50ms + queueWaitingT'ime: queue
Keep in mind, that 0 < queueW aitingTimes gueves < 4 - queueW aitingTime gueue!

The resulting goodput rate of the central flow measured at the input port of server5 (Server5.InRate)
is plotted in Figure [0}
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Figure 9: Goodput rate of the central flow

The perfectly fair result would be the central flow getting half of the available bandwidth at each
bottleneck link and therefore having a goodput rate of about 10 Mbps. As we can see in Figure
and in Figure [0D] this is not the case for both reno and cubic The problem is, that both
of these congestion control algorithms are based on losses (and/or on marked packets, if ECN is
used) and the fact that the central flow suffers from losses in multiple queues. In this situation
the central flow gets more congestion signals than the cross flows do and therefore reduces its
sending rate more often.

2.6 Problem 6: Using AQM queues

The behavior of [TCPl flows is not only depending on the used congestion control algorithms, but
also on the queuing disciplines used in the queuing entities in front of the bottlenecks passed
by a flow. For the previous problems we always used the default BoundedFIFOQDisc for the
link queues. This algorithm is quite simple, because it just drops packets if the queue’s buffer is
full. These so called drop-tail queues have many drawbacks, e.g. global synchronization and the
penalization of bursty flows. In order to reduce the overall congestion rate (i.e. the number / rate
of packet drops), [AQM] queues start dropping packets before the buffer is full to give the sender
an early signal that there is congestion in the network. This is also reflected in the name of the
first and most deployed Random Early Detection (REDI]). This obviously requires that
the queue has more buffer space available than is the lowest threshold for signalling congestion
(e.g. the minimum threshold for [REDI). For this problem we just want to compare the results of
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the BoundedFIFOQDisc of Problem 1 with the results of a [RED| queuing discipline. Therefore
we use the parameters of Problem 1 with the RedIpQDisc:

DumbbellModel . CentralLinkClientToServer . QueuingEntity . QueuingDiscipline =
ikr . protocolsupport.algorithms. queuingDisciplines.RedIpQDisc

. CentralLinkClientToServer .*. QueuingDiscipline. Tracing = true
. CentralLinkClientToServer .*. QueuingDiscipline. TraceFile = RedQueuelog. dat

Results are plotted in Figure [I0] and Figure [IT]
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Figure 11: Client’s Congestion Window and bottleneck queue status for cubic flows

In Figure and Figure we can see that the RED queue tries to hold its queuing size at a
low level by starting to drop packets at a buffer size of 256%. Therefore, usually the queuesize is
chosen four times bigger than for drop tail queues.

So, always take care in choosing the right parameters for your simulation! Default parameters
may exist, that just make sense for certain configuration while they are really wrong for others.
In this case, we can also see that low default buffer size is by far not ideal for the simulated
situation with only one flow. The queue often runs empty and so the link is not fully occupied
(mean occupation statistics for reno: 0.9155606352000085, for cubic: 0.9552077923333341). But
for further simulations it would be interesting to evaluate whether several flows passing a RED
queue fill the link and if the average [RI1]is lower than with a tail drop queue.
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3 Acronyms

RTT Round Trip Time

CC congestion control

AQM Active Queue Management

RED

Random Early Detection

TCP Transmission Control Protocol
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4 Appendix

4.1 Sketching graphs

There are many different programs available to plot graphs. Just to name some of them, there
are gnuplot, Matlab, grace and matplotlib. For this tutorial we used xmgrace, the gui version of
grace. Its gui is not very pretty but it is helpful after you get used to it. Here are some short
hints on how to use it.

At first you have to bring the data in a form that is readable for xmgrace. It needs .dat files
and the data sets have to be separated by spaces. Lines beginning with # are ignored. You can
either manipulate the LineWriter’s output if you have access to the source code, or you replace
all semicolons by spaces with the command:

sed ’s/;/ /g’ ParkinglotModel.ServerbStack.InRates > ServerbStack.InRates.dat

Then you start xmgrace and import the data set. You can do this on the command line, see
its documentation (also loading multiple sets and appearance parameters in command line is
possible).

xmgrace ParkinglotModel.Serverb5Stack.InRates.dat

or

'Data > Import > ASCII'

If the .dat file contains multiple data sets, you choose "Load as NXY'.

After this you can set the appearance as you wish. For some problems there are parameter files
for the xmgrace settings added, use them by loading with "Plot > Load parameters'.

4.2 Parameter files

See the attached *.par files with comments to all used parameters

# Parameters for Problem 1:

# These are basically the minimalDumbbell parameters with the addition of the needed key
parameters for Problem 1

ModelName = Tutoriall

# QEMU settings :

#.%.%.Binary = "../ikr.qgemu—java/lib/gemu" # path to the QEMU application binary (
patched to work together with the IKR.QEMU-Java library)

*.%.%.BiosPath = "../ikr.gqemu—java/lib" # path to the bios wused by the QEMU application

*.x Stack .QEMU. kernel = "../ikr .gemu—java/lib/bzIlmage —3.10.9" # path to the Kernel
image

*.x Stack .QEMU. initrd = "../ikr .gemu—java/lib/initramfs.cpio" # path to the ram image
the QEMU shall use for initiation

*.% Stack .QEMU. dynticks = true # use dynamic ticks to only wake the emulated Kernel
when it is needed (see more in ikr.gemu.QEMU. java documentation) /not important for this
task

*.%.QEMU. LoadSnapshot = false # don’t load snapshot, instead boot Kernel /not

important for this task

# should be faster , but doesn 't work with kernel 8.5 (with 3.10 it s OK)
.+ Stack .QEMU. virtIOConsole = false # don’t wuse virtual QEMU console /not important
for this task

*

# Link settings:

Tutoriall.CentralLink . PropagationDelayInSeconds = 0.02 # one way propagation delay for
the central links in seconds

Tutoriall.CentralLink . TransmissionRateInMBitS = 20 # transmission rate for
the central links in seconds

Tutoriall . Access*Link*. PropagationDelayInSeconds = 0.00 # one way propagation delay for

the access links in seconds. Set to 0, but this link is important anyway for spreading
packet bursts of the TCPMuzzerHosts. Because the Kernel in the QEMU does not run in
simulation time (to mnot be hardware dependent) it can send several messages at once in
simulation time. Therefore this access link with 0 delay but with a bandwidth is mneeded to
spread these packet bursts over simulation time.

Tutoriall . Access*Link*. TransmissionRateInMBitS = 1000 # transmission rate for the
access links in seconds. These access links can be interpreted as 1 Gbps line cards wused
by the QEMU stacks.

Tutoriall . Access*Link*.QueuingEntity . QueuingDiscipline. MaxNumberOfMessages = 11 # needed to
accept ack + initial window
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# Topology settings:
Tutoriall . NumberOfClients = 1 # only one client is needed for this task
Tutoriall . NumberOfServers = 1 # only one server is needed for this task

# Task specific settings:

Tutoriall.DefaultCongestionControl = cubic # sets the congestion control algorithm
all initiated stacks shall use wvia sysctl. For the shown results of this task we wused "
reno" and "cubic”

Tutoriall.CentralLinkClientToServer.QueuingEntity. QueuingDiscipline = ikr.protocolsupport.
algorithms.queuingDisciplines . TracingBoundedFIFOQDisc # we want to wuse a bounded
fifo queue which implements tracing to be able to log the queue’s status

# Simulation control settings:

Tutoriall . TransientDuration = 0 # due to the fact that we do mot meed statistical
results we do not meed a transient (warm up) phase

Tutoriall . BatchDuration = 3 # by setting the batch duration to 8 seconds we get a
total simulation time of 8s * 10 = 30s

# Possible generic outputs:

# These are all parameters we need to set for this task. There are several other parameters
needed to run this model which are set by default if we do not set them here.

# After you ran a simulation , you can see all used parameters by simply greping for "query" in
the xstderr log file:

# command line example: grep query Tutoriall.stderr

Tutoriall .L4Connection*.LogSocketState = true
Tutoriall .L4Connection*.LoggedTcpInfoValues = snd_cwnd;snd__ssthresh;rtt;rttvar # sets up a

logger which writes the selected state of the sockets, e.g. the congestion window
Tutoriall .L4Connection0OfStackO. Client.CongestionControl = reno # apart from the model’s
default congestion control, every single sender, i.e. BidirectionalConnectionEndpoint ,

may have its congestion control configured
Tutoriall . WriteCentralRateMeter = true

Tutoriall . SamplePeriodInSeconds = 0.02
Tutoriall . WritePcap = true

Listing 1: attached file Problem1.par

# Parameters for Problem 2:
ModelName = Tutorial2

# QEMU settings :

*.%.%.Binary = "../ikr.qgemu—java/lib /gemu" # path to the QEMU application binary (
patched to work together with the IKR.QEMU-Java library)

*.%.%.BiosPath = "../ikr.qgemu—java/lib" # path to the bios wused by the QEMU application

*.x Stack .QEMU. kernel = "../ikr.gemu—java/lib/bzImage —3.10.9" # path to the Kernel
image

*.*% Stack .QEMU. initrd = "../ikr.gemu—java/lib/initramfs.cpio" # path to the ram image
the QEMU shall wuse for initiation

*.% Stack .QEMU. dynticks = true # use dynamic ticks to only wake the emulated Kernel
when it is needed (see more in ikr.gemu.QEMU. java documentation) /not important for this
task

*.%.QEMU. LoadSnapshot = false # don’t load snapshot, instead boot Kernel /not

important for this task

# should be faster , but doesn’t work with kernel 3.5 (with 8.10 it s OK)
.x Stack .QEMU. virtIOConsole = false # don’t use wvirtual QEMU console /not important
for this task

*

# Link settings:

Tutorial2.CentralLink x. PropagationDelayInSeconds = 0.02 # one way propagation delay for
the central links in seconds

Tutorial2.CentralLink . TransmissionRateInMBitS = 20 # transmission rate for
the central links in seconds

Tutorial2. Access*Link*. PropagationDelayInSeconds = 0.00 # one way propagation delay for

the access links in seconds. Set to 0, but this link is important anyway for spreading
packet bursts of the TCPMuzzerHosts. Because the Kernel in the QEMU does not run in
simulation time (to not be hardware dependent) it can send several messages at once in
simulation time. Therefore this access link with 0 delay but with a bandwidth is mneeded to
spread these packet bursts owver simulation time.

Tutorial2 . AccessOutputLink *. TransmissionRateInMBitS = 1000 # transmission rate for the
access links in seconds. These access links can be interpreted as 1 Gbps line cards wused
by the QEMU stacks .

Tutorial2 . AccessInputLink x. TransmissionRateInMBitS = 20 # set to the same as the
central links transmission rate to be able to simply use the statistics to see the average
bandwidth of each flow

Tutorial2. Access*Link *. QueuingEntity . QueuingDiscipline. MaxNumberOfMessages = 11 # needed to
accept ack + initial window

# Topology settings:
Tutorial2 . NumberOfClients = # two clients needed for this task
Tutorial2. NumberOfServers = 2 # two servers needed for this task

)

# Task specific settings:

#Tutorial2. DefaultCongestionControl = reno # sets the congestion control algorithm
all initiated stacks shall use wvia sysctl. For the shown results of this task we used "
reno" and "cubic ".

Tutorial2.CongestionControl = [ reno cubic reno cubic ] # sets the congestion control
algorithm for all stacks separately
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# Simulation control settings:

Tutorial2. TransientDuration = 0 # due to the fact that we do not need statistical
results we do not meed a transient (warm up) phase

Tutorial2.BatchDuration = 30 # by setting the batch duration to 30 seconds we get a total
simulation time of 80s = 10 = 300s

# Possible generic outputs:

#Tutorial2.LjConnection*. LogSocketState = true # sets up a congestion window logger
which writes a xcwnd.csv log file
Tutorial2 . WriteRateMeter = true # sets up rate meters at all stack ports

# These are all parameters we need to set for this task. There are several other parameters
needed to run this model which are set by default if we do not set them here.

# After you ran a simulation , you can see all wused parameters by simply greping for "query' in
the xstderr log file:

# command line example: grep query Tutorial2.stderr

Listing 2: attached file Problem2.par

# Parameters for Problem 3:
ModelName = Tutorial3

# QEMU settings :

*.%.%.Binary = "../ikr.qemu—java/lib/qemu" # path to the QEMU application binary (
patched to work together with the IKR.QEMU-Java library)

*.%.%.BiosPath = "../ikr.gqemu—java/lib" # path to the bios wused by the QEMU application

*.x Stack .QEMU. kernel = "../ikr .gemu—java/lib/bzImage —3.10.9" # path to the Kernel
image

*.x Stack .QEMU. initrd = "../ikr .gemu—java/lib/initramfs.cpio" # path to the ram image
the QEMU shall wuse for initiation

*.*% Stack .QEMU. dynticks = true # use dynamic ticks to only wake the emulated Kernel
when it is needed (see more in ikr.gemu.QEMU. java documentation) /not important for this
task

*.%.QEMU. LoadSnapshot = false # don’t load snapshot, instead boot Kernel /not

important for this task

# should be faster , but doesn’t work with kernel 3.5 (with 8.10 it ’s OK)
.« Stack .QEMU. virtIOConsole = false # don’t use wvirtual QEMU console /not important
for this task

*

# Link settings:

Tutorial3 . CentralLink . PropagationDelayInSeconds = 0.02 # one way propagation delay for
the central links in seconds
Tutorial3 . CentralLink x. TransmissionRateInMBitS = 20 # transmission rate for

the central links in seconds

Tutorial3 . AccessOutputLink*. PropagationDelayInSeconds = 0.00 # one way
propagation delay for the access output links in seconds. Set to 0, but this link is
important anyway for spreading packet bursts of the TCPMuzzerHosts. Because the Kernel in
the QEMU does mot run in simulation time (to mnot be hardware dependent) it can send
several messages at once in simulation time. Therefore this access link with 0 delay but
with a bandwidth is mneeded to spread these packet bursts over simulation time.

Tutorial3 . AccessInputLinkClient0OStack.PropagationDelayInSeconds = 0.05 # added delay for flow
client0OToServer?2

Tutorial3 . AccessInputLinkServer2Stack.PropagationDelayInSeconds = 0.05 # added delay for flow
clientOToServer?2

Tutorial3 . AccessInputLinkClientlStack.PropagationDelayInSeconds = 0 # no added
delay for flow clientlToServer3
Tutorial3 . AccessInputLinkServer3Stack.PropagationDelayInSeconds = 0 # no added

delay for flow client0ToServer?2

Tutorial3 . AccessOutputLink . TransmissionRateInMBitS = 1000 # transmission rate for the
access links in seconds. These access links can be interpreted as 1 Gbps line cards used
by the QEMU stacks .

Tutorial3 . AccessInputLink . TransmissionRateInMBitS = 20 # set to the same as the
central links transmission rate to be able to simply use the statistics to see the average
bandwidth of each flow

Tutorial3 . Access*Link*. QueuingEntity . QueuingDiscipline. MaxNumberOfMessages = 11 # needed to
accept ack + initial window

# Topology settings:
Tutorial3 . NumberOfClients = 2 # two clients mneeded for this task
Tutorial3 . NumberOfServers = 2 # two servers mneeded for this task

# Task specific settings:
Tutorial3.DefaultCongestionControl reno # sets the congestion control algorithm
all initiated stacks shall use wvia sysctl. For the shown results of this task we used "

reno" and "cubic ".

# Simulation control settings:

Tutorial3 . TransientDuration = 0 # due to the fact that we do mnot meed statistical
results we do not meed a transient (warm up) phase

Tutorial3.BatchDuration = 30 # by setting the batch duration to 30 seconds we get a total
simulation time of 30s = 10 = 300s

# Possible generic outputs:
Tutorial3 . WriteRateMeter = true # sets up rate meters at all stack ports
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# These are all parameters we need to set for this task. There are several other parameters
needed to run this model which are set by default if we do mnot set them here.

# After you ran a simulation , you can see all used parameters by simply greping for "query' in
the xstderr log file:

# command line example: grep query Tutorial3.stderr

Listing 3: attached file Problem3.par

# Parameters for Problem 4:
ModelName = Tutorial4

# QEMU settings :

#.%.%.Binary = "../ikr.gemu—java/lib /qgemu" # path to the QEMU application binary (
patched to work together with the IKR.QEMU-Java library)

#.%.%.BiosPath = "../ikr.gqemu—java/lib" # path to the bios wused by the QEMU application

*.% Stack .QEMU. kernel = "../ikr.gemu—java/lib/bzlmage —3.10.9" # path to the Kernel
image

#.%x Stack .QEMU. initrd = "../ikr .gemu—java/lib/initramfs.cpio" # path to the ram image
the QEMU shall wuse for initiation

*.x Stack .QEMU. dynticks = true # use dynamic ticks to only wake the emulated Kernel
when it is needed (see more in ikr.gemu.QEMU. java documentation) /not important for this
task

*.%.QEMU. LoadSnapshot = false # don’t load snapshot, instead boot Kernel /not

important for this task

# should be faster , but doesn’t work with kernel 3.5 (with 8.10 it ’s OK)
.x Stack .QEMU. virtIOConsole = false # don’t use wvirtual QEMU console /not important
for this task

*

# Link settings:

Tutoriald4d . CentralLink . PropagationDelayInSeconds = 0.02 # one way propagation delay for
the central links in seconds
Tutorial4 . CentralLink . TransmissionRateInMBitS = 20 # transmission rate for

the central links in seconds

Tutorial4d . TypeOfAccess*xLinkx = ikr.protocolsupport.entities.Link # because of the balanced
scenario we will have bottlenecks before the central link, too, so we can’t use NoDropLink
i.e. NoDropBoundedFIFOQDisc

Tutorial4 . Access*Link*. PropagationDelayInSeconds = 0.00 # one way propagation delay for
the access links in seconds. Set to 0, but this link is important anyway for spreading
packet bursts of the TCPMuzzerHosts. Because the Kernel in the QEMU does not run in
simulation time (to not be hardware dependent) it can send several messages at once in
simulation time. Therefore this access link with 0 delay but with a bandwidth is needed to
spread these packet bursts over simulation time.

Tutorial4d . AccessOutputLink . TransmissionRateInMBitS = 1000 # transmission rate for the
access links in seconds. These access links can be interpreted as 1 Gbps line cards used
by the QEMU stacks .

Tutoriald4d . AccessInputLink x. TransmissionRateInMBitS = 20 # set to the same as the
central links transmission rate to be able to simply wuse the statistics to see the average
bandwidth of each flow

# Topology settings:
Tutorial4d . NumberOfClients =
Tutorial4d . NumberOfServers =

# two clients mneeded for this task
# two servers mneeded for this task

[CEN]

# Task specific settings:

Tutorial4 . DefaultCongestionControl = reno # sets the congestion control algorithm
all initiated stacks shall use wvia sysctl. For the shown results of this task we used "
reno" and "cubic ".

Tutoriald . NumberOfL4Connections = 3 # number of total conmections
Tutoriald . MaxNumberOfFlowsPerStack = 2 # set the mazimal number of flows per stack. This is
important for the buffer calculation of the TCPMuxzzerHosts

Tutorial4 .L4Connection0. Client = 0 # client of connection 0 is clientO

Tutorial4d . L4Connection0. Server = 2 # server of conmnection 0 is server2

Tutorial4.L4Connectionl. Client = 0 # client of connection 1 is clientO

Tutorial4 . L4Connectionl. Server = 2 # server of conmection 1 is server2

Tutorial4 .L4Connection2. Client = 1 # client of commnection 2 is clientl

Tutorial4 .L4Connection2. Server = 3 # server of connection 2 is server3

# Simulation control settings:

Tutorial4 . TransientDuration = 0 # due to the fact that we do mnot meed statistical
results we do not need a transient (warm up) phase

Tutorial4 . BatchDuration = 30 # by setting the batch duration to 30 seconds we get a total
simulation time of 80s x 10 = 300s

# Possible generic outputs:

Tutorial4d . WriteRateMeter = true # sets up rate meters at all stack ports

# These are all parameters we need to set for this task. There are several other parameters
needed to run this model which are set by default if we do not set them here.

# After you ran a simulation , you can see all used parameters by simply greping for "query" in
the xstderr log file:

# command line example: grep query Tutorialj.stderr

Listing 4: attached file Problem4.par
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# Parameters for Problem 5:
ModelName = Tutorialb

# QEMU settings :

#.%.%.Binary = "../ikr.gemu—java/lib /qgemu" # path to the QEMU application binary (
patched to work together with the IKR.QEMU-Java library)

*.%.%.BiosPath = "../ikr.gqemu—java/lib" # path to the bios wused by the QEMU application

#.% Stack .QEMU. kernel = "../ikr .gemu—java/lib/bzIlmage —3.10.9" # path to the Kernel
image

#.x Stack .QEMU. initrd = "../ikr .gemu—java/lib/initramfs.cpio" # path to the ram image
the QEMU shall wuse for initiation

*.x Stack .QEMU. dynticks = true # use dynamic ticks to only wake the emulated Kernel
when it is needed (see more in ikr.gemu.QEMU. java documentation) /not important for this
task

*.%.QEMU. LoadSnapshot = false # don’t load snapshot, instead boot Kernel /not

important for this task

# should be faster , but doesn’t work with kernel 3.5 (with 8.10 it ’s OK)
.xStack .QEMU. virtIOConsole = false # don’t use wvirtual QEMU console /not important
for this task

*

# Link settings:

Tutorial5.CentralAccessLink.PropagationDelayInSeconds = 0 # the access link can
be interpreted as 100 Mbps line card used by the QEMU stack
Tutorial5.CentralAccessLink . TransmissionRateInMBitS = 100
Tutorial5.CentralReturnLink.PropagationDelayInSeconds = 0 # return link for the
central connection, has mo influence in this model
Tutorial5.CentralReturnLink . TransmissionRateInMBitS = 100
Tutorial5s.CentralBottleneckLink *x. PropagationDelayInSeconds = 0.01 # delay of the
bottleneck link in a crossroad segment
Tutorial5.CentralBottleneckLink . TransmissionRateInMBitS = 20 # transmission

rate of the bottleneck link in a crossroad segment
Tutorial5s.CrossAccessLink*.PropagationDelayInSeconds = 0 # the access link can

be interpreted as 100 Mbps line card used by the QEMU stack
Tutorial5.CrossAccessLink . TransmissionRateInMBitS = 100

Tutorial5.CrossOutputLink*.PropagationDelayInSeconds = 0.04 # delay of the cross output
link , set to 40ms to approxzimate the cross flow s RTT to the central flow s RTT

Tutorial5.CrossOutputLink*. TransmissionRateIlnMBitS = 100

Tutorial5.CrossReturnLink . PropagationDelayInSeconds = 0 # return link for the

cross flow connections

Tutorial5.CrossReturnLink *. TransmissionRateInMBitS 100
# Topology settings:
Tutorial5 . NumberOfCrossRoads = 4 # number of the cross road segments

# Task specific settings:

Tutorial5.DefaultCongestionControl = reno # sets the congestion control algorithm
all initiated stacks shall use wvia sysctl. For the shown results of this task we used "
reno" and "cubic ".

Tutorial5.x Stack.BufPerFlow = 500000 # buffer size per flow, must be enough to not
trigger kernel routines which try to influence buffer sizes of connections in order to
save memory space

Tutorialb.x Stack .QEMU. systemMemory = 64.0M # gemu system ’s memory space

# Simulation control settings:

Tutorial5 . TransientDuration = 0 # due to the fact that we do not meed statistical
results we do not need a transient (warm up) phase

Tutorial5.BatchDuration = 30 # by setting the batch duration to 30 seconds
we get a total simulation time of 30s x 10 = 300s

# Possible generic outputs:

Tutorial5 . WriteRateMeter = true # we want to log the rates

Tutorial5 . WritePcap = false # default is true, but not needed for this
problem

# These are all parameters we need to set for this task. There are several other parameters
needed to run this model which are set by default if we do not set them here.

# After you ran a simulation , you can see all used parameters by simply greping for "query" in
the xstderr log file:

# command line example: grep query Tutoriald.stderr

Listing 5: attached file Problem5.par

# Parameters for Problem 6:
ModelName = Tutorial6

# QEMU settings :

#.%.%.Binary = "../ikr.gemu—java/lib /gemu" # path to the QEMU application binary (
patched to work together with the IKR.QEMU-Java library)

#.%.%.BiosPath = "../ikr.gqemu—java/lib" # path to the bios wused by the QEMU application

#.% Stack .QEMU. kernel = "../ikr .gemu—java/lib/bzIlmage —3.10.9" # path to the Kernel
image

#.x Stack .QEMU. initrd = "../ikr .gemu—java/lib/initramfs.cpio" # path to the ram image

the QEMU shall use for initiation
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*.*% Stack .QEMU. dynticks = true # use dynamic ticks to only wake the emulated Kernel
when it is mneeded (see more in ikr.gemu.QEMU. java documentation) /not important for this
task

*.%.QEMU. LoadSnapshot = false # don’t load snapshot, instead boot Kernel /not
important for this task

# should be faster , but doesn’'t work with kernel 8.5 (with 3.10 it s OK)
.+ Stack .QEMU. virtIOConsole = false # don’t use wvirtual QEMU console /not important
for this task

*

# Link settings:

Tutorial6.CentralLink . PropagationDelayInSeconds = 0.02 # one way propagation delay for
the central links in seconds

Tutorial6.CentralLink . TransmissionRateInMBitS = 20 # transmission rate for
the central links in seconds

Tutorial6 . Access*Link*. PropagationDelayInSeconds = 0.00 # one way propagation delay for

the access links in seconds. Set to 0, but this link is important anyway for spreading
packet bursts of the TCPMuzzerHosts. Because the Kernel in the QEMU does not run in
simulation time (to mnot be hardware dependent) it can send several messages at once in
simulation time. Therefore this access link with 0 delay but with a bandwidth is needed to
spread these packet bursts over simulation time.

Tutorial6 . Access*Link*. TransmissionRateInMBitS = 1000 # transmission rate for the
access links in seconds. These access links can be interpreted as 1 Gbps line cards wused
by the QEMU stacks.

Tutorial6 . Access*Link*. QueuingEntity . QueuingDiscipline. MaxNumberOfMessages = 11 # needed to
accept ack + initial window

# Topology settings:
Tutorial6 . NumberOfClients = 1 # only one client is needed for this task
Tutorial6 . NumberOfServers = 1 # only one server is needed for this task

# Task specific settings:

Tutorial6.DefaultCongestionControl = reno # sets the congestion control algorithm
all initiated stacks shall use wvia sysctl. For the shown results of this task we used "
reno" and "cubic ".

Tutorial6.CentralLinkClientToServer.QueuingEntity . QueuingDiscipline = ikr.protocolsupport.
algorithms.queuingDisciplines.RedIpQDisc # We want to wuse the RedIpQDisc for
this link s queue

# Simulation control settings:

Tutorial6 . TransientDuration = 0 # due to the fact that we do not mneed statistical
results we do not mneed a transient (warm up) phase

Tutorial6 .BatchDuration = 3 # by setting the batch duration to 3 seconds we get a
total simulation time of 3s *x 10 = 30s

# Possible generic outputs:
Tutorial6 .L4Connection*. LogSocketState = true # sets up a congestion window logger
which writes a xcwnd.csv log file
Tutorial6.CentralLinkClientToServer.QueuingEntity . QueuingDiscipline. Tracing = true
# logs the queue’s status
Tutorial6.CentralLinkClientToServer.QueuingEntity . QueuingDiscipline. TraceFile = RedQueueLog.csv
# sets the name of the queue’s log file

# These are all parameters we need to set for this task. There are several other parameters
needed to run this model which are set by default if we do not set them here.

# After you ran a simulation , you can see all used parameters by simply greping for "query" in
the xstderr log file:

# command line example: grep query Tutorial6.stderr

Listing 6: attached file Problem6.par

5 Version history

2015-06-16 David Wagner

e changes to reflect clarifications in protocolsupport-lib
e reference to VMSimInt paper

e reference to SimTree

2015-02-03 Sebastian Dorner

e initial feature-complete version (supervised by David Wagner)
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