
The Octopus Network Model:
Opening up the Internet to Active and Programmable Network Implementations1

Carlos Macián2

University of Stuttgart, Institute of Communication Networks and Computer Engineering
macian@ind.uni-stuttgart.de

1. This paper has been submitted to the 3rd International Working Conference on Active Networks (IWAN 2001) and is currently under review.
ly
y,
et-
its
is

as
the
as
t-

its
re
rk.

-
on
rs
ak-

-
he
-
of
lds
of

he
s

ral

e-
rs
at
rk
o
ly

he
rk
eds
n-
a-
dy
t-
less

st
iz-
Abstract: The inclusion of innovative services in commercial
networks is a burdensome task which frequently encounters
resistance from Network Operators. Opening up the network is
a prerequisite for the Active & Programmable Network para-
digm to succeed. In this paper we present a novel network model
which addresses three critical points to achieve that goal: net-
work security and safety, service management and high perfor-
mance. We show that excessive virtualization of network
resources penalizes performance and we introduce programma-
ble hardware at the core of our model. We also introduce a two-
tier security checking architecture which frees network nodes
from the most heavyweight tasks, improving performance. Our
single point of service admission permits strict security control.
Lastly, the separation between service introduction and service
management increases network flexibility and permits the
smooth integration of other network architectures in our frame-
work. We also present the Octopus Open Gateway architecture,
which shall support our network model.

Keywords: network architecture, hardware platform, resource
management, security, service admission, service operator.

I. Introduction

Although networking is a highly dynamic field, a broad
consensus exists regarding the difficulties of transporting
innovative concepts into real networks. The deployment of
new services or the introduction of new protocols is a slow
and burdensome task, in which the Network Operator can be
seen as the bottleneck. The reasons are manifold: On the one
hand, his traditional sources of revenue, the transport of data
and the management of the network, are becoming a com-
modity. Increasing competition is driving prices down while
the requirements posed by clients are always increasing.

More functionality, more bandwidth and better service imp
costly investments to keep up with the latest technolog
which quickly becomes obsolete. On the other hand, the h
erogeneity and complexity of modern networks makes
management and configuration increasingly complex. It
very difficult to foresee the implications of introducing a new
service or protocol for the correct behaviour of the network
a whole before testing it on the field. As a consequence,
Network Operator is discouraged (for economic as well
technical reasons) from expanding the functionality of its ne
work and especially from granting third-parties access to
management. Its main concerns to “open up” its infrastructu
are thus the security, safety and performance of the netwo

The Active and Programmable Network (A&PN) commu
nities, on their side, defend the idea that to foster innovati
two requisites are necessary: Allowing Service Provide
direct access to, and (partial) control of, the nodes and m
ing network nodes programmable. The Active Network com
munity goes even further by introducing the packet as t
main network control and configuration unit: Incoming pack
ets shall trigger the activation, download or reconfiguration
services inside the nodes. Several proposals in these fie
have shown the feasibility of the concepts as well as some
their advantages. Nevertheless, it is our claim that for t
broad dissemination of the A&PN paradigm three problem
remain unresolved: A satisfactory security model, a gene
service management model and high performance.

Existing proposals either do not provide a general fram
work addressing the security concerns of Network Operato
or do so by developing heavy security architectures th
strongly penalize performance. Although there is some wo
in progress trying to surmount this conflict, we believe that n
existing architecture has achieved it so far in a complete
general way.

The second unresolved problem is performance. On t
one hand, sharing control and communication netwo
resources among several parties, as A&PN defends, ne
coordination in the form of middleware actors, resource ma
agers and the like. All this additional elements have a neg
tive effect on performance. On the other hand, as alrea
mentioned to fulfil the security requirements of this open ne
works burdensome procedures are needed. We neverthe
claim that it is the exclusion of open hardware what will mo
negatively affect performance in the long run. By emphas

2. Contact address: Pfaffenwaldring 47, D-70569 Stuttgart, Ger-
many. Fax No. +49 711 685 7983. Telephone No. +49 711 685
7986. Web site: www.ind.uni-stuttgart.de/~macian. Mr. Macián is
a scientific staff member at the Institute of Communication Net-
works and Computer Engineering (IND) at the University of Stut-
tgart.

n
fly
A
l-
ry
p-
ct

f
. It

ing
r-
so-
al

.
ar
if-
a

row.
-

e
ir
e
M
e
S,

is
h.
d
n-
al-

i-
the
e
he
y
nts
le

ets
re
ery
ck-
.

cu-
ed
re
f

set
et
to
on
ing an abstract view of network infrastructure, present
approaches prevent service developers from taking direct
advantage of the node hardware. There are many applications
that would profit from hardware support. The increasing
speed of the networks and the tremendous development of
programmable hardware show us the necessity and the feasi-
bility of using hardware-software co-design of new services
to successfully support network programmability.

Lastly, open network programming interfaces (ONPIs) of
some sort are at the core of most proposals. It is claimed that
they provide a foundation for service programming and the
introduction of new network architectures. Beyond this unde-
niable fact, the problem of evolving ONPIs remains. Since it
is impossible to foresee all the ways in which networking
might evolve, programming interfaces, if not very carefully
designed, are in themselves a restriction to innovation. They
constrain the ways in which service creation and management
might develop.

In this paper we introduce the Octopus Open Network
Model, which we believe addresses the three points stated
above. We have developed a node architecture that includes
not only a programmable software environment for Service
Providers, but also a programmable hardware platform. This
should strongly improve performance. We address the prob-
lem of the evolution of network programming interfaces by
clearly differentiating service introduction from service man-
agement. We moreover keep the standardization of the latter
at a minimum. We also use the introduction of our Trusted
Development Servers (TDSs) to structure our security archi-
tecture in two tiers, placing all heavyweight mechanisms at
the TDS. This should also benefit performance at the nodes.

The rest of the paper is structured as follows: In chapter II
we summarize some of the most relevant previous work. In
chapter III our network model is presented, while in chapter
IV our node architecture is described. We conclude the paper
in chapter V by summarizing our contributions and present-
ing some future topics of research.

II. Previous work

Research in the areas of Active and Programmable Net-
works has already produced a broad set of proposals. We will
not exhaustively examine them here, but we will concentrate
on the most relevant ones for our work instead. For a good
survey on this area we refer the reader to [2] and [9].

The inclusion of programmable hardware in active node
architectures has been rare. The idea is nevertheless present,
as has been shown in the work of Hadzic et al. at the Univer-
sity of Pennsylvania [7] and Decasper et al. at Washington
University at St. Louis [3] and recently also in the work of Dr.
Zitterbart´s group at the University of Braunschweig [8]. The
P4 architecture, developed under the Protocol Boosters
project [5] at UPenn consists of a pipeline of FPGAs inter-
connected by a switching array and controlled by a special

Controller Unit. The Controller decides to which FPGA a
incoming packet should be sent and also permits on-the-
reprogrammability by dynamically separating any FPG
from the pipeline. With their prototype, Hadzic and its co
leagues showed the feasibility of the idea, although in a ve
restricted form, since their platform was not designed to su
port several services concurrently or to dynamically sele
which packets should be processed by a certain service.

The FHiPPs platform developed at the University o
Braunschweig presents a much more advanced structure
also includes several FPGAs interconnected by a switch
matrix, plus an external processor, a DSP and ATM inte
faces. The hardware is accessible from any application via
called Happlets, which extend the functionality of classic
device drivers to manage the reconfigurability of the platform
In itself a very promising design, it is nevertheless not cle
how different packet streams shall request processing by d
ferent services multiplexed onto the same platform or how
chosen packet stream should access several services in a
Moreover, the design is in itself monolithic, without expan
sion possibilities.

The ANN design from WashU is the most comprehensiv
of all, including all aspects of the node architecture. The
particular hardware is composed of a set of ANPEs (Activ
Network Processing Engines) interconnected by an AT
switch core. Every ANPE includes a CPU, a FPGA and som
memory. These elements are controlled by the node O
which can reprogram any of them on-the-fly. Scalability
provided by means of attaching more ANPEs to the switc
The only limitation is in the surveillance of the share
resources in hardware. As we will discuss later, software co
trol of hardware resources is not enough in presence of m
functioning or greedy service designs.

On the software side, we borrow heavily from the exper
ence gained by the groups at UPenn and WashU, plus
Tempest framework at the University of Cambridge [10]. Th
Switchware project at UPenn [6], [1] attempts to balance t
flexibility of programmable networks and the securit
requirements stated in previous chapters. The main eleme
of their architecture are active packets, dynamically loadab
programs called Switchlets and active nodes. Active pack
are written in a safe language called PLAN. In order to ensu
safety the actions that active packets can realise are v
restricted. When more complex tasks are needed, active pa
ets can call Switchlets, which are programmed in CAML
This language supports formal methodologies to prove se
rity properties of the code. This code segments are load
out-of-band into the node. At the lowest layer, the Secu
Active Network Environment (SANE) ensures the integrity o
the entire environment.

The DAN architecture at WashU [4] sees services as a
of functions that are called by incoming packets. A pack
might call several functions, which are then daisy-chained
process the packet in a row. If a packet needs a functi

e
ili-
-
st
the

till

e
n
nd
as
of
l is
ate
-

)
us
.
The
is

p-
ce
er-
e

which is not present in the node at the moment, it is down-
loaded from a well-known code server. This introduces addi-
tional delay, but permits to concentrate the most heavyweight
security checks in those servers, where new modules are first
stored. The server authenticates itself when downloading a
new program into a node. The module itself can also be digi-
tally signed. We elaborate on the idea of code servers to
develop our Trusted
Development Servers
(see chapter III).

The most character-
istic item of the Tem-
pest framework is the
definition of several
parallel control archi-
tectures over the same
infrastructure. This
control architectures
are furthermore cus-
tomizable on a per-
service basis with the
help of mobile code.
The whole concept
rests upon the abstrac-
tion of node
resources, which per-
mits to share them in a
transparent way among coexisting control architectures,
under the common surveillance of a resource divider called
Prospero. This view of virtual networks over the physical
infrastructure are at the core of our Logical Overlay Networks
(LONs). The Tempest is nevertheless restricted to ATM net-
works and we will contend that their degree of resource
abstraction penalizes performance.

III. The Octopus Open Network Model

The A&PN paradigm implies that the Service Provider is
going to become the principal actor in the networking world.
He will provide the content to give added value and differenti-
ation to any network. Furthermore, it is the Service Provider
itself who is going to manage its services. The Network Oper-
ator will find itself reduced to a commodity provider, which
in this case means providing connectivity, bandwidth and a
set of general management services and surveillance of the
network. Certain basic QoS guarantees also fall into this cate-
gory. This new network model, then, foresees the Service
Provider as the Operator of its own Logical Overlay Network
(LON), formed by all the (node and network) resources used
by its services. Many such Service Operators will then be
multiplexed over the same physical infrastructure. This model
implies a new set of relationships among networking actors1

(see Fig. 1). The client will be dependent on the Network
Operator for his connectivity and basic transport of data and

on the Service Provider for the content. At the other extrem
of the chain, the Service Developer depends on the capab
ties of the network, which fall under the control of the Net
work Provider, to develop new services. But he also mu
adapt his design to the necessities and business model of
Service Provider.

Nowadays the control and management of the network s

lies in the hands of the Network Operator. In the end, it is th
way and the extent in which the Network Operator will ope
its network what is going to set the transition speed to, a
the ultimate success of, this new environment. We claim,
stated above, that innovation is being slowed by the rigidity
the networks. In order to accelerate this transition, a mode
needed that guarantees the Network Operator the ultim
control of its network while letting Service Operators free
dom to innovate.

The main elements of the Octopus Open Network (OON
Model can be seen in Fig. 2. First among those is the Octop
Open Gateway (OOG), which will be analysed in chapter IV
These nodes are shared among many Service Operators.
union of all resources used by any one Service Operator
called a Logical Overlay Network (LON)2. There are two
access points to a LON. The first one is the Trusted Develo
ment Server (TDS). It represents the interface to introdu
new services into a LON. The interface to manage those s
vices, once installed, is directly controlled by the Servic
Operator (dotted line on Fig. 2).

1. Although regulators (governmental agencies, standardization
bodies, etc.) certainly influence all actors, their role will not be
further explored here.
2. We avoid the common terms “virtual node” and “virtual net-
work” because we find them flawed. As so often in the network-
ing world, we consider here simply an abstraction, a logical view
of a physical infrastructure. There is nothing virtual about it.

Client
Service Developer

Service Operator

Network Operator

Regulators

Fig. 1. The dependencies among actors

ed
on-
by
he

at
the
e
ts
vis-
to
le

he
or
ity

to
ent

ant
nt
llel

-
es.
ff

ply
Its
m-
de.

nd
The OOG provides a software and hardware programmable
platform. It is our goal to foster the quick development and
installation of new services by improving portability and tak-
ing the Network Operator off the management path. We also
foster performance by opening the node hardware to the Ser-
vice Developer. We acknowledge, though, that network heter-
ogeneity is here to stay. Hence, complete portability,
especially for hardware modules is impossible to achieve. We
shall elaborate on this shortly.

The development and insertion of a new service is as fol-
lows:

First, the Service Developer (possibly under contract of a
Service Operator) designs a new service. We foresee the use
primarily of platform-independent languages, for the software
parts of the service (with Java as an example) as well as for
the hardware parts (e.g. VHDL). Since the architecture of
every node is different and does not fall under control of the
developer, only the most abstract description of the hardware
modules of a service can be kept portable. In a second step the
developer must adapt his hardware modules to the concrete
platforms where it is going to run.

To introduce the service in the LON, the code is then sent
to the TDS. We foresee the deployment of at least one TDS
per Equipment Provider and Network Operator. The role of
the TDS is to check the rightness of the code by formal meth-
ods and to apply the most heavyweight security checks on the
new service and its provider. The second role of the TDS is
the integration of the new service in the configuration of the
nodes. This mainly consists in communicating to the node the
resource requirements of the new service, in order to check if
they can be satisfied. This resources are mainly CPU time,

memory space and bandwidth. Since a service can be form
by software and hardware modules, the task of resource m
itoring at the node is performed by the NodeOS as well as
our Hardware Manager, described in chapter IV. Since t
Hardware Manager is directly implemented in form of VHDL
code in our FPGAs, its reconfiguration is in fact performed
the TDS, which integrates the resource requirements in
new configuration of our hardware platform. For that, th
TDS must either have a local copy of the configuration of i
associated nodes, or upload it as needed. It would be ad
able to have a hierarchy of TDSs in the networks, in order
more efficiently distribute the load and to prevent a sing
point of failure.

The TDS realizes the adaptation of new services to t
nodes. A TDS is in charge of this for every Service Operat
using a certain physical infrastructure. Thus, strong secur
measures inside the TDS are needed in order essentially
prevent access to foreign code. We envision the deploym
of secure OSs to accomplish that.

The adapted service is then downloaded into the relev
nodes. In case that a LON consists of nodes of differe
Equipment Providers, this adaptation must be done in para
at their respective TDSs.

As we see, the role of the TDS is twofold: First, it imple
ments the secure interface to the introduction of new servic
Doing that, it takes the burden of most security checkings o
the node, thus improving performance. The node must sim
authenticate TDS and code prior to accepting a download.
second task is adapting the code to its environment and co
municating the resource needs of the new service to the no
This precludes the need for costly (in terms of money a

Trusted Development Servers

Service Operator

Logical Overlay Network

Physical Network

Octopus
Open Gateway

Fig. 2. The Octopus Open Network Model. Main elements.

in
e

ny
HP
ne

o-
be
or
ry

r-
ng
is

dy
are
are
i-
is
ts
c-

e to

ice
performance) additional processing
power inside the nodes.

Once a new service has been
deployed, its management falls entirely
in the hands of the Service Operator. The
resources that the service is going to use
have already been set at the TDS and are
hard-coded inside the NodeOS and
Hardware Manager. This two entities
monitor the behaviour of all services
installed in a node, enforcing their cor-
rect behaviour. Hence, there is no need
to restrict the ways in which the Service
Operator manages its service. No restric-
tive interface is needed. This characteris-
tic of our model can be seen by some as
a drawback, since it provides the finest
possible granularity of service control.
Some Service Operators might prefer to
have a certain management support. Our
model does not preclude specialized
companies from providing those ser-
vices. For those other Service Operators
which prefer to keep absolute control
over their services, no restrictions are
imposed.

We thus avoid the standardisation of
Network Programming Interfaces (NPIs), since we believe
that no NPI can foresee all possible technological evolutions.
Hence, any NPI represents a potential restriction to innova-
tion. That is why we substitute this concept by our Service
Admission Interface (SAI), implemented in our TDS.

IV. The Octopus Open Gateway Architecture

The node architecture that we have developed is presented
in Fig. 3. It consists of three main blocks: A management
CPU, a Basic Hardware Platform (BHP) and a Universal
Hardware Platform (UHP).

The BHP implements the basic communication functional-
ity, i.e. it is a “plain” router. Those incoming packets that do
not need any kind of special treatment will simply be for-
warded in a traditional fashion by the BHP. Nevertheless, at
different points of the processing path (after packet classifica-
tion, route lookup, etc.) there exists the possibility to forward
the packets to the UHP via an internal backplane. The UHP
presents the programmable hardware platform that Service
Developers can use for their designs. The separation between
BHP and UHP guarantees backward compatibility, since we
do not force any change in the format or function of packets.

The UHP is composed of several modules, so-called UHP
Modules (UHPM) interconnected by another backplane.
Every UHPM initially contains an FPGA and some memory.
No further interfaces are needed, since the communication

with the CPU and the BHP is controlled by a special unit
the UHP. The scalability of our platform is guaranteed by th
modularity of the design. More UHPMs can be added at a
time. On the other hand, since we specifically separate B
and UHP, the later can be substituted for a more powerful o
if needed.

The CPU supervises the functioning of the node and pr
vides the software environment where new services will
inserted. Lately, the possibility to integrate microprocess
cores directly in the FPGAs has arisen. This seems ve
attractive, for it allows the integration of both parts of a se
vice (software and hardware) in a common platform, easi
the interchange of information between them. We leave th
option for further study.

The structure of a service can be seen in Fig. 4. As alrea
mentioned, a service can be composed of several softw
modules (SMs, a.k.a. applications) and several hardw
modules, which directly run on the UHPMs. They commun
cate by means of specialized device drivers (DDs). In th
area we are investigating the possibilities of the Happle
introduced in the FHiPPs project [8]. To guarantee the su
cess of our Open Gateway approach, three conditions hav
be met:

1) Isolation between services
2) Isolation between Service Operators
3) Protection of the node against both services and Serv

Operators

FPGA

RAMRAM

FPGA

RAMRAM

FPGA

RAMRAM

FPGA

RAMRAM

uP

RAMRAM

Backplane

CPU

Basic Hardware Platform (BHP)

UHP Module

Universal Hardware Platform (UHP)

(UHPM)

Fig. 3. The OOG hardware architecture

n-
n
asi-

is
, to
he
in

re
The sharing of resources in a transparent way
implies that the QoS level agreed upon between the
TDS and the Service Operator has to be maintained
for all services at all times. That is, neither the addi-
tion or removal of services, nor their normal activity
can degrade the quality or performance of other ser-
vices. Furthermore, the node itself must be protected
against service malfunctions or malicious imple-
mentations. The monitoring of the QoS and security
levels is shared between the NodeOS and a special
hardware module, called the Hardware Manager. In
software, the concept of safe execution environ-
ments, sandboxes, etc. is widely known and its use-
fulness accepted. We believe that the ultimate
responsibility of QoS and security monitoring in
software can only be taken by the NodeOS. We
intend to explore the possible use of the security
architecture developed inside the SwitchWare
project [1] in our model.

The proposals that include programmable hard-
ware put forward its control by the NodeOS or more
specifically by the device driver. We do not think that this
approach succeeds in guaranteeing isolation among services.
The access to shared hardware resources, like common buses
and memory blocks can not be conveniently controlled by the
NodeOS, since this details are hidden from it. A greedy ser-
vice could block the whole UHP by constantly sending data
over the common bus or by steadily writing to memory. A
malicious implementation could even try to selectively access
or damage another service´s resources or data. To solve this

situation we have introduced the figure of the Hardware Ma
ager. Its main task is the monitoring of those commo
resources and the enforcement of QoS agreements. It b
cally is an enhanced hardware scheduler. Its configuration
updated by the TDS every time a new service is integrated
take into account the new resource distribution. It is also t
task of the TDS to decide, according to the existing load
the UHP, if the new requirements can be satisfied.

While most proposals do not specify how packets a

FPGA

RAMRAM

FPGA

RAMRAM

NodeOS

DD DD

SM SM

Userspace

Hardware

Fig. 4. The service structure

SMI: Service Management Interface
SwMI: Software Management Interface
HwMI: Hardware Management Interface
ST-SAI: Service Operator to TDS SAI
TO-SAI: TDS to OOG SAI
SAI: Service Admission Interface

Fig. 5. The OOG´s interfaces

Userspace

NodeOS

Hardware Platform

TDS

Service
Operator

Octopus Open Gateway

Device Driver

SwMI

HwMI

TO-SAI

ST-SAI

SMI

e-

rk
f
ost

ra-
ed,
ly
e

r-
wn
e

r
at

ice

us
l.

i-
ke
ur

-
e
n
at
ft-
in
ne

s,
rt

4,

ne
directed to their respective service instances, we specifically
rely on packet classification for that task. The most usual
business model foresees the client requesting a certain treat-
ment for his traffic from his Service Operator (similar to the
actual SLAs). It is then the Service Operator who explicitly
configures his nodes to direct the client´s traffic to the appro-
priate service instance. We support this model by leaving it to
the Service Operator to configure the packet classification
engine accordingly. Although we regard the concept of pack-
ets themselves signalling which service they require as less
realistic, we do not preclude it. As stated underneath, such an
approach can also be implemented inside our model.

Our proposal can be taken for a relatively conservative pro-
grammable network architecture. In reality, though, we try to
present a framework inside of which a variety of network
architectures can be implemented. We only limit the way in
which services are integrated in the LON, in order to control
the resources that it is going to use and to apply certain secu-
rity measures. But we leave absolute freedom to realize any
kind of service, including any other network architecture. As
an example, a capsule-based approach could be realized by
introducing a service which allows active packets to trigger
certain functions inside this service. Our framework certainly
forbids the dynamic download of new services on-the-fly.
Nevertheless, most active packet approaches concede that
only limited functionality can be directly transported inside
the packets or downloaded on-demand and that bigger pro-
grams should be downloaded out-of-band. That fits nicely in
our vision.

A safe NodeOS, the Hardware Manager and the TDS are
the mechanisms which guarantee security, safety and QoS
compliance in our model. We summarize the OOG´s interface
structure in Fig. 5. The access to the network is controlled by
means of theService Operator to TDS Service Admission
Interface (ST-SAI). Once validated, the service is downloaded
into the OOG through theTDS to OOG Service Admission
Interface (TO-SAI). The Service Operator can control its ser-
vice through theService Management Interface (SMI). The
communication between hardware and software is controlled
by the Software and Hardware Management Interfaces
(SwMI andHwMI, respectively). Both are supervised by the
NodeOS. It falls under the responsibility of the Service Oper-
ator to implement its own SMI.

V. Conclusions and further work

It is commonly accepted that implementing innovative con-
cepts in commercial networks is a difficult task. The Network
Operator is mostly responsible for that situation. Technical
and economic reasons discourage him to open his network to
third-parties. As a result, the infrastructure as well as the
management of network services is kept under the absolute
control of the incumbent Operator. In order to overcome this
situation so that the Active and Programmable Network para-

digm can succeed, a network model is needed that:
➔ Preserves the security and safety of the network
➔ Does not degrade its performance
➔ Facilitates service creation, deployment and manag

ment by third-parties (Service Operators)
In this paper we introduce the Octopus Open Netwo

Model. It represents a framework inside of which a variety o
network architectures can be realized. We address the m
critical points to “open up” the network by:

➔ Presenting a single point of entrance to service integ
tion, where heavyweight security mechanisms can be appli
at the systems as well as at the programming level. By on
leaving lightweight security checks to the node (servic
authentication) we also boost performance.

➔ Introducing programmable hardware at the core of se
vice design to enhance performance. We also present our o
vision of a Universal Hardware Platform to support thes
ideas.

➔ Substituting Network Programming Interfaces by ou
Service Admission Interface, in the process accepting th
innovation is not foreseeable. We thus leave it to the Serv
Operator to define its own management interfaces.

We have also presented the architecture of the Octop
Open Gateway, which shall support our network mode
Although we thankfully acknowledge the influence of prev
ous work in our design, we introduce several innovations li
the Hardware Manager, to monitor resource usage in o
UHP, and the design of the UHP itself.

At the moment of writing, we are beginning the implemen
tation of a prototype gateway. A first implementation of th
UHP is almost ready. We are also working on the realizatio
of the Hardware Manager and implementing a service th
serves as proof-of-concept. We are following a hardware-so
ware co-design approach by dividing the service in two ma
modules, one of them implemented in Java and the other o
in VHDL.

References

[1] Alexander, D. et al.:Security in Active Networks, to appear in Secure
Internet Programming: Issues in Distributed and Mobile Object System
Springer-Verlag Lecture Notes in Computer Science State-of-the-A
series, available at http://www.cis.upenn.edu/~switchware/home.html

[2] Campbell, A. et al.:A Survey of Programmable Networks, ACM Sig-
comm Computer Communications review, vol. 29, no. 2, pgs. 7-2
April 1999

[3] Decasper, D. et al.:A Scalable High-Performance Active Network Node,
IEEE Network, January/February 1999

[4] Decasper, D. and Plattner, B.:Distributed Code Caching for Active Net-
works, Proceedings of Infocom ´98, San Francisco, April 1998

[5] Feldmeier, D. et al.:Protocol Boosters, IEEE JSAC, vol. 16, no. 3, April
1998

[6] Gunter, C.A. et al.:The SwitchWare Active Network Architecture, IEEE
Network, special issue on active and programmable networks, May/Ju
1998, vol. 12, no. 3

[7] Hadzic, I. et al.:On-the-fly Programmable Hardware for Networks, Pro-
ceedings of Globecom ´98

[8] Harbaum, T. et al.:Hardware Support for RSVP Capable Routing, Pro-

ceedings of the 3rd ATM Workshop, Heidelberg, June 2000
[9] Psounis, K.:Active Networks: Applications, Security, Safety and Archi-

tectures, IEEE Communications Surveys, first quarter 1999, available at
http://www.comsoc.org/pubs/surveys

[10]Van der Merwe, J. et al:The Tempest - A Practical Framework for Net-
work Programmability, IEEE Network, November 1997

	Fig. 1. The dependencies among actors
	The Octopus Network Model: Opening up the Internet to Active and Programmable Network Implementat...
	Carlos Macián
	University of Stuttgart, Institute of Communication Networks and Computer Engineering macian@ind....
	I. Introduction
	II. Previous work
	III. The Octopus Open Network Model
	IV. The Octopus Open Gateway Architecture
	V. Conclusions and further work
	R eferences
	[1] Alexander, D. et al.: Security in Active Networks, to appear in Secure Internet Programming: ...
	[2] Campbell, A. et al.: A Survey of Programmable Networks, ACM Sigcomm Computer Communications r...
	[3] Decasper, D. et al.: A Scalable High-Performance Active Network Node, IEEE Network, January/F...
	[4] Decasper, D. and Plattner, B.: Distributed Code Caching for Active Networks, Proceedings of I...
	[5] Feldmeier, D. et al.: Protocol Boosters, IEEE JSAC, vol. 16, no. 3, April 1998
	[6] Gunter, C.A. et al.: The SwitchWare Active Network Architecture, IEEE Network, special issue ...
	[7] Hadzic, I. et al.: On-the-fly Programmable Hardware for Networks, Proceedings of Globecom ´98
	[8] Harbaum, T. et al.: Hardware Support for RSVP Capable Routing, Proceedings of the 3rd ATM Wor...
	[9] Psounis, K.: Active Networks: Applications, Security, Safety and Architectures, IEEE Communic...
	[10] Van der Merwe, J. et al: The Tempest - A Practical Framework for Network Programmability, IE...
	Fig. 2. The Octopus Open Network Model. Main elements.
	Fig. 3. The OOG hardware architecture
	Fig. 4. The service structure
	Fig. 5. The OOG´s interfaces

