The Octopus Network Model:
Opening up the Internet to Active and Programmable Network Implementation

Carlos Maciah
University of Stuttgart, Institute of Communication Networks and Computer Engineering
macian@ind.uni-stuttgart.de

1. This paper has been submitted to the 3rd International Working Conference on Active Networks (IWAN 2001) and is cdeereljiawm

Abstract: The inclusion of innovative services in commercial
networks is a burdensome task which frequently encounters
resistance from Network Operators. Opening up the network is
a prerequisite for the Active & Programmable Network para-
digm to succeed. In this paper we present a novel network model
which addresses three critical points to achieve that goal: net-
work security and safety, service management and high perfor-
mance. We show that excessive virtualization of network
resources penalizes performance and we introduce programma-
ble hardware at the core of our model. We also introduce a two-
tier security checking architecture which frees network nodes
from the most heavyweight tasks, improving performance. Our
single point of service admission permits strict security control.
Lastly, the separation between service introduction and service
management increases network flexibility and permits the
smooth integration of other network architectures in our frame-
work. We also present the Octopus Open Gateway architecture,
which shall support our network model.

Keywords: network architecture, hardware platform, resource
management, security, service admission, service operator.

l. Introduction

More functionality, more bandwidth and better service imply

costly investments to keep up with the latest technology,
which quickly becomes obsolete. On the other hand, the het-
erogeneity and complexity of modern networks makes its
management and configuration increasingly complex. It is
very difficult to foresee the implications of introducing a new

service or protocol for the correct behaviour of the network as
a whole before testing it on the field. As a consequence, the
Network Operator is discouraged (for economic as well as
technical reasons) from expanding the functionality of its net-
work and especially from granting third-parties access to its
management. Its main concerns to “open up” its infrastructure
are thus the security, safety and performance of the network.

The Active and Programmable Network (A&PN) commu-
nities, on their side, defend the idea that to foster innovation
two requisites are necessary: Allowing Service Providers
direct access to, and (partial) control of, the nodes and mak-
ing network nodes programmable. The Active Network com-
munity goes even further by introducing the packet as the
main network control and configuration unit: Incoming pack-
ets shall trigger the activation, download or reconfiguration of
services inside the nodes. Several proposals in these fields
have shown the feasibility of the concepts as well as some of
their advantages. Nevertheless, it is our claim that for the
broad dissemination of the A&PN paradigm three problems
remain unresolved: A satisfactory security model, a general
service management model and high performance.

Existing proposals either do not provide a general frame-
work addressing the security concerns of Network Operators

Although networking is a highly dynamic field, a broad

consensus exists regarding the difficulties of transportin r do so by developing heavy security architectures that

innovative concepts into real networks. The deployment o trongly per;al!ze {)erformanctet.hAlthouf?htther%|s|,. somt(:] v;/ork
new services or the introduction of new protocols is a slow/" Progress trying to surmount this conflict, we befieve that no

and burdensome task, in which the Network Operator can bgxisting architecture has achieved it so far in a completely
seen as the bottleneck. The reasons are manifold: On the Olggneral way.)

hand, his traditional sources of revenue, the transport of data The second unresolved problem is performance. On the
and the management of the network, are becoming a confn® hand, sharing control and communication network
modity. Increasing competition is driving prices down while 'esources among several parties, as A&PN defends, needs

agers and the like. All this additional elements have a nega-

tive effect on performance. On the other hand, as already
mentioned to fulfil the security requirements of this open net-
works burdensome procedures are needed. We nevertheless
claim that it is the exclusion of open hardware what will most
negatively affect performance in the long run. By emphasiz-

2. Contact address: Pfaffenwaldring 47, D-70569 Stuttgart, Ger-
many. Fax No. +49 711 685 7983. Telephone No. +49 711 685
7986. Web site: www.ind.uni-stuttgart.de/~macian. Mr. Macian is

a scientific staff member at the Institute of Communication Net-

works and Computer Engineering (IND) at the University of Stut-

tgart.

ing an abstract view of network infrastructure, presentController Unit. The Controller decides to which FPGA an
approaches prevent service developers from taking direéhcoming packet should be sent and also permits on-the-fly
advantage of the node hardware. There are many applicatiomeprogrammability by dynamically separating any FPGA
that would profit from hardware support. The increasingfrom the pipeline. With their prototype, Hadzic and its col-
speed of the networks and the tremendous development édagues showed the feasibility of the idea, although in a very
programmable hardware show us the necessity and the feasestricted form, since their platform was not designed to sup-
bility of using hardware-software co-design of new servicesport several services concurrently or to dynamically select
to successfully support network programmability. which packets should be processed by a certain service.
Lastly, open network programming interfaces (ONPIs) of The FHiPPs platform developed at the University of
some sort are at the core of most proposals. It is claimed thdraunschweig presents a much more advanced structure. It
they provide a foundation for service programming and thealso includes several FPGAs interconnected by a switching
introduction of new network architectures. Beyond this undeimatrix, plus an external processor, a DSP and ATM inter-
niable fact, the problem of evolving ONPIs remains. Since itfaces. The hardware is accessible from any application via so-
is impossible to foresee all the ways in which networkingcalled Happlets, which extend the functionality of classical
might evolve, programming interfaces, if not very carefully device drivers to manage the reconfigurability of the platform.
designed, are in themselves a restriction to innovation. Thein itself a very promising design, it is nevertheless not clear
constrain the ways in which service creation and managemetow different packet streams shall request processing by dif-
might develop. ferent services multiplexed onto the same platform or how a
In this paper we introduce the Octopus Open Networkchosen packet stream should access several services in a row.
Model, which we believe addresses the three points statedoreover, the design is in itself monolithic, without expan-
above. We have developed a node architecture that includ&on possibilities.
not only a programmable software environment for Service The ANN design from WashU is the most comprehensive
Providers, but also a programmable hardware platform. Thi§f all, including all aspects of the node architecture. Their
should strongly improve performance. We address the profParticular hardware is composed of a set of ANPEs (Active
lem of the evolution of network programming interfaces by Network Processing Engines) interconnected by an ATM
clearly differentiating service introduction from service man-switch core. Every ANPE includes a CPU, a FPGA and some
agement. We moreover keep the standardization of the lattépemory. These elements are controlled by the node OS,
at a minimum. We also use the introduction of our Trustedhich can reprogram any of them on-the-fly. Scalability is
Development Servers (TDSs) to structure our security archiprovided by means of attaching more ANPEs to the switch.
tecture in two tiers, placing all heavyweight mechanisms affhe only limitation is in the surveillance of the shared
the TDS. This should also benefit performance at the nodesresources in hardware. As we will discuss later, software con-
The rest of the paper is structured as follows: In chapter |{f0l Of hardware resources is not enough in presence of mal-
we summarize some of the most relevant previous work. (ffunctioning or greedy service designs. _
chapter IIl our network model is presented, while in chapter On the software side, we borrow heavily from the experi-
IV our node architecture is described. We conclude the papéi'C€ gained by the groups at UPenn and WashU, plus the

in chapter V by summarizing our contributions and present- émpest framework at the University of Cambridge [10]. The
ing some future topics of research. Switchware project at UPenn [6], [1] attempts to balance the

flexibility of programmable networks and the security
requirements stated in previous chapters. The main elements
of their architecture are active packets, dynamically loadable
Research in the areas of Active and Programmable Nejprograms called Switchlets and active nodes. Active packets
works has already produced a broad set of proposals. We wilre written in a safe language called PLAN. In order to ensure
not exhaustively examine them here, but we will concentratgafety the actions that active packets can realise are very
on the most relevant ones for our work instead. For a goodestricted. When more complex tasks are needed, active pack-
survey on this area we refer the reader to [2] and [9]. ets can call Switchlets, which are programmed in CAML.
The inclusion of programmable hardware in active nodeThis language supports formal methodologies to prove secu-
architectures has been rare. The idea is nevertheless preseity properties of the code. This code segments are loaded
as has been shown in the work of Hadzic et al. at the Univerout-of-band into the node. At the lowest layer, the Secure
sity of Pennsylvania [7] and Decasper et al. at Washingto\ctive Network Environment (SANE) ensures the integrity of
University at St. Louis [3] and recently also in the work of Dr. the entire environment.
Zitterbart’s group at the University of Braunschweig [8]. The The DAN architecture at WashU [4] sees services as a set
P4 architecture, developed under the Protocol Boostersf functions that are called by incoming packets. A packet
project [5] at UPenn consists of a pipeline of FPGAs inter-might call several functions, which are then daisy-chained to
connected by a switching array and controlled by a specigbrocess the packet in a row. If a packet needs a function

Il. Previous work

which is not present in the node at the moment, it is down-on the Service Provider for the content. At the other extreme
loaded from a well-known code server. This introduces addiof the chain, the Service Developer depends on the capabili-
tional delay, but permits to concentrate the most heavyweighties of the network, which fall under the control of the Net-
security checks in those servers, where new modules are firgtork Provider, to develop new services. But he also must
stored. The server authenticates itself when downloading adapt his design to the necessities and business model of the
new program into a node. The module itself can also be digiService Provider.

tally signed. We elaborate on the idea of code servers to Nowadays the control and management of the network still
develop our Trusted
Development Server

(see chapter 111). / \

The most character

istic item of the Tem- /Aj <SerV|Ce Operat@ \

pest framework is the <Service Develope} \ :
definition of several \
parallel control archi- \ /

tectures over the sam (Network Opera@! /

infrastructure. This

control architectureq K /

are furthermore cus ¢ ¢

tomizable on a per;
service basis with the
help of mobile code, < Regulators >
The whole concep

rests upon the abstrag
tion of node Fig. 1. The dependencies among actors
resources, which per
mits to share them in a

transparent way among coexisting control architecturedjes in the hands of the Network Operator. In the end, it is the
under the common surveillance of a resource divider calledvay and the extent in which the Network Operator will open

Prospero. This view of virtual networks over the physicalits network what is going to set the transition speed to, and
infrastructure are at the core of our Logical Overlay Networksthe ultimate success of, this new environment. We claim, as
(LONSs). The Tempest is nevertheless restricted to ATM netstated above, that innovation is being slowed by the rigidity of
works and we will contend that their degree of resourcethe networks. In order to accelerate this transition, a model is

abstraction penalizes performance. needed that guarantees the Network Operator the ultimate
control of its network while letting Service Operators free-
Ill. The Octopus Open Network Model dom to innovate.

The A&PN paradigm implies that the Service Provider is '€ main elements of the Octopus Open Network (OON)
going to become the principal actor in the networking world.Model can be seen in Fig. 2. First among those is the Octopus

He will provide the content to give added value and differenti-OP€n Gateway (OOG), which will be analysed in chapter IV.

ation to any network. Furthermore, it is the Service Provider! N€S€ nodes are shared among many Service Operators. The

itself who is going to manage its services. The Network OperUnion of all resources used by any one Service Operator is

ator will find itself reduced to a commodity provider, which called a Logical Overlay Network (LON) There are two

in this case means providing connectivity, bandwidth and £CC€SS points to a LON. The first one is the Trusted Develop-
set of general management services and surveillance of tHBENt Server (TDS). It represents the interface to introduce
network. Certain basic QoS guarantees also fall into this catdl€W Services into a LON. The interface to manage those ser-
gory. This new network model, then, foresees the Servicdices, once installed, is directly controlled by the Service
Provider as the Operator of its own Logical Overlay Network OPerator (dotted line on Fig. 2).
(LON), formed by all the (node and network) resources used _ o
by its services. Many such Service Operators will then be L Although regulators (governmental agencies, standardization

. . . . bodies, etc.) certainly influence all actors, their role will not be
multiplexed over the same physical infrastructure. This model fyrther explored here.
implies a new set of relationships among networking adtors 2. We avoid the common terms “virtual node” and “virtual net-
(see Fig. 1). The client will be dependent on the Network work” because we find them flawed. As so often in the network-

. . . ing world, we consider here simply an abstraction, a logical view
Operator for his connectivity and basic transport of data and of a physical infrastructure. There is nothing virtual about it.

Open Gatewa

Service Operator

Fig. 2. The Octopus Open Network Model. Main elements.

The OOG provides a software and hardware programmablmemory space and bandwidth. Since a service can be formed
platform. It is our goal to foster the quick development andby software and hardware modules, the task of resource mon-
installation of new services by improving portability and tak- itoring at the node is performed by the NodeOS as well as by
ing the Network Operator off the management path. We alsour Hardware Manager, described in chapter IV. Since the
foster performance by opening the node hardware to the SeHardware Manager is directly implemented in form of VHDL
vice Developer. We acknowledge, though, that network hetereode in our FPGAs, its reconfiguration is in fact performed at
ogeneity is here to stay. Hence, complete portabilitythe TDS, which integrates the resource requirements in the
especially for hardware modules is impossible to achieve. Waew configuration of our hardware platform. For that, the

shall elaborate on this shortly. TDS must either have a local copy of the configuration of its
The development and insertion of a new service is as folassociated nodes, or upload it as needed. It would be advis-
lows: able to have a hierarchy of TDSs in the networks, in order to

First, the Service Developer (possibly under contract of anore efficiently distribute the load and to prevent a single
Service Operator) designs a new service. We foresee the upeint of failure.
primarily of platform-independent languages, for the software The TDS realizes the adaptation of new services to the
parts of the service (with Java as an example) as well as farodes. A TDS is in charge of this for every Service Operator
the hardware parts (e.g. VHDL). Since the architecture ofusing a certain physical infrastructure. Thus, strong security
every node is different and does not fall under control of themeasures inside the TDS are needed in order essentially to
developer, only the most abstract description of the hardwarprevent access to foreign code. We envision the deployment
modules of a service can be kept portable. In a second step tloé secure OSs to accomplish that.
developer must adapt his hardware modules to the concrete The adapted service is then downloaded into the relevant
platforms where it is going to run. nodes. In case that a LON consists of nodes of different

To introduce the service in the LON, the code is then senEquipment Providers, this adaptation must be done in parallel
to the TDS. We foresee the deployment of at least one TD&t their respective TDSs.
per Equipment Provider and Network Operator. The role of As we see, the role of the TDS is twofold: First, it imple-
the TDS is to check the rightness of the code by formal methments the secure interface to the introduction of new services.
ods and to apply the most heavyweight security checks on thBoing that, it takes the burden of most security checkings off
new service and its provider. The second role of the TDS ighe node, thus improving performance. The node must simply
the integration of the new service in the configuration of theauthenticate TDS and code prior to accepting a download. Its
nodes. This mainly consists in communicating to the node theecond task is adapting the code to its environment and com-
resource requirements of the new service, in order to check ihunicating the resource needs of the new service to the node.
they can be satisfied. This resources are mainly CPU timeThis precludes the need for costly (in terms of money and

performance) additional processi
power inside the nodes.

Once a new service has be
deployed, its management falls entire

Universal Hardware Platform (UHP)

in the hands of the Service Operator. T CPU

resources that the service is going to Eyey Eyey

have already been set at the TDS and]] UHP Module
hard-coded inside the NodeOS a X | (UHPM)
Hardware Manager. This two entitig

monitor the behaviour of all service ——y

installed in a node, enforcing their co| [T

rect behaviour. Hence, there is no ne RAM

to restrict the ways in which the Serviq —

Operator manages its service. No restt
tive interface is needed. This character
tic of our model can be seen by some
a drawback, since it provides the fing Backplane
possible granularity of service contrg
Some Service Operators might prefer
have a certain management support. ¢
model does not preclude specializ > . >
companies from providing those se > —
vices. For those other Service Operat
which prefer to keep absolute contr
over their services, no restrictions a
imposed.
We thus avoid the standardisation of

Network Programming Interfaces (NPIs), since we believewith the CPU and the BHP is controlled by a special unit in

that no NPI can foresee all possible technological evolutionsthe UHP. The scalability of our platform is guaranteed by the
Hence, any NPI represents a potential restriction to innovamodularity of the design. More UHPMs can be added at any
tion. That is why we substitute this concept by our Servicetime. On the other hand, since we specifically separate BHP

Basic Hardware Platform (BHP)
Fig. 3. The OOG hardware architecture

Admission Interface (SAI), implemented in our TDS. and UHP, the later can be substituted for a more powerful one
if needed.
IV. The Octopus Open Gateway Architecture The CPU supervises the functioning of the node and pro-

The node architecture that we have developed is present&¢fdes the software environment where new services will be
in Fig. 3. It consists of three main blocks: A managementnSerted. Lately, the possibility to integrate microprocessor
CPU, a Basic Hardware Platform (BHP) and a UniversalcOres directly in the FPGAs has arisen. This seems very
Hardware Platform (UHP). attractive, for it allows the integration of both parts of a ser-

The BHP implements the basic communication functional-YIC€ (Software and hardware) in a common platform, easing
ity, i.e. it is a “plain” router. Those incoming packets that do the interchange of information between them. We leave this

not need any kind of special treatment will simply be for- OPtion for further study.

warded in a traditional fashion by the BHP. Nevertheless, at '€ Structure of a service can be seen in Fig. 4. As already

different points of the processing path (after packet classificaliéntioned, a service can be composed of several software

tion, route lookup, etc.) there exists the possibility to forwardModules (SMs, ak.a. applications) and several hardware

the packets to the UHP via an internal backplane. The uHpnodules, which directly run on the UHPMs. They communi-

presents the programmable hardware platform that Servicg?t€ Py means of specialized device drivers (DDs). In this

Developers can use for their designs. The separation betwe&€2 We are investigating the possibilities of the Happlets
BHP and UHP guarantees backward compatibility, since wdntroduced in the FHIPPs project [8]. To guarantee the suc-
do not force any change in the format or function of packets €SS Of our Open Gateway approach, three conditions have to
The UHP is composed of several modules, so-called UHPE Met _

Modules (UHPM) interconnected by another backplane. 1) Isolation between services

Every UHPM initially contains an FPGA and some memory. 2) Isolation between Service Operators _
No further interfaces are needed, since the communication 3) Protection of the node against both services and Service

Operators

The sharing of resources in a transparent \
implies that the QoS level agreed upon between
TDS and the Service Operator has to be maintai
for all services at all times. That is, neither the ad
tion or removal of services, nor their normal activi
can degrade the quality or performance of other {
vices. Furthermore, the node itself must be proted
against service malfunctions or malicious imp
mentations. The monitoring of the QoS and secu
levels is shared between the NodeOS and a sp¢
hardware module, called the Hardware Manager
software, the concept of safe execution envir
ments, sandboxes, etc. is widely known and its
fulness accepted. We believe that the ultim
responsibility of QoS and security monitoring
software can only be taken by the NodeOS.
intend to explore the possible use of the secu
architecture developed inside the SwitchWe
project [1] in our model.

The proposals that include programmable hg

&
i

4—»@
i

Userspace

P S

A

YRR YR

Hardware

Fig. 4. The service structure

ware put forward its control by the NodeOS or more
specifically by the device driver. We do not think that this situation we have introduced the figure of the Hardware Man-
approach succeeds in guaranteeing isolation among servicegjer. Its main task is the monitoring of those common
The access to shared hardware resources, like common bugesources and the enforcement of QoS agreements. It basi-
and memory blocks can not be conveniently controlled by theally is an enhanced hardware scheduler. Its configuration is
NodeOS, since this details are hidden from it. A greedy serupdated by the TDS every time a new service is integrated, to
vice could block the whole UHP by constantly sending datatake into account the new resource distribution. It is also the
over the common bus or by steadily writing to memory. Atask of the TDS to decide, according to the existing load in
malicious implementation could even try to selectively accesshe UHP, if the new requirements can be satisfied.

or damage another service’s resources or data. To solve thisWhile most proposals do not specify how packets are

/

Octopus Open Gateway

Userspace

1

I SwMI

T

NodeOS

Device Driver
1

I HwMI

Hardware Platform

\

SMI

Service
Operator

/

Fig. 5. The OOG’s interfaces

SMI: Service Management Interface
SwMI: Software Management Interface
HwMI: Hardware Management Interface
ST-SAIl: Service Operator to TDS SAI
TO-SAIl: TDS to OOG SAl

SAl: Service Admission Interface

directed to their respective service instances, we specificallgigm can succeed, a network model is needed that:

rely on packet classification for that task. The most usual [0 Preserves the security and safety of the network
business model foresees the client requesting a certain treat-[1 Does not degrade its performance

ment for his traffic from his Service Operator (similar to the [Facilitates service creation, deployment and manage-
actual SLAS). It is then the Service Operator who explicitly ment by third-parties (Service Operators)

configures his nodes to direct the client’s traffic to the appro- In this paper we introduce the Octopus Open Network
priate service instance. We support this model by leaving it tdVlodel. It represents a framework inside of which a variety of
the Service Operator to configure the packet classificatiometwork architectures can be realized. We address the most
engine accordingly. Although we regard the concept of packeritical points to “open up” the network by:

ets themselves signalling which service they require as less [0 Presenting a single point of entrance to service integra-
realistic, we do not preclude it. As stated underneath, such ation, where heavyweight security mechanisms can be applied,
approach can also be implemented inside our model. at the systems as well as at the programming level. By only

Our proposal can be taken for a relatively conservative proleaving lightweight security checks to the node (service
grammable network architecture. In reality, though, we try toauthentication) we also boost performance.
present a framework inside of which a variety of network U Introducing programmable hardware at the core of ser-
architectures can be implemented. We only limit the way invice design to enhance performance. We also present our own
which services are integrated in the LON, in order to controlVision of a Universal Hardware Platform to support these
the resources that it is going to use and to apply certain secideas.
rity measures. But we leave absolute freedom to realize any U Substituting Network Programming Interfaces by our
kind of service, including any other network architecture. AsService Admission Interface, in the process accepting that
an example, a capsule-based approach could be realized 't;ywovation is not foreseeable. We thus leave it to the Service
introducing a service which allows active packets to triggerOperator to define its own management interfaces.
certain functions inside this service. Our framework certainly We have also presented the architecture of the Octopus
forbids the dynamic download of new services on-the-fly.Open Gateway, which shall support our network model.
Nevertheless, most active packet approaches concede tHdthough we thankfully acknowledge the influence of previ-
only limited functionality can be directly transported inside 0Us work in our design, we introduce several innovations like
the packets or downloaded on-demand and that bigger prébe Hardware Manager, to monitor resource usage in our

grams should be downloaded out-of-band. That fits nicely it/HP, and the design of the UHP itself.
our vision. At the moment of writing, we are beginning the implemen-

A safe NodeOS, the Hardware Manager and the TDS ar@t_i'%n_ of Ia prc;toty;()je %?/teway. 'IA‘ first irlppleme?r':ationlpf tthe
the mechanisms which guarantee security, safety and Qo IS almost ready. VVe are also working on the realization

compliance in our model. We summarize the OOG’s inten‘ac@f the Hardwafre fManage; 3\r/1d |male"mept|ng r? s(;arwce th;t
structure in Fig. 5. The access to the network is controlled byt V€S s prooi-ol-concept. Vve are following a hardware-soft-

means of theService Operator to TDS Service Admission are co-design approach by dividing the service in two main

Interface (ST-SAIOnce validated, the service is downloaded mOdU|eS' one of them implemented in Java and the other one
into the OOG through th@DS to OOG Service Admission in VHDL.
Interface (TO-SAIl)The Service Operator can control its ser-
vice through theService Management Interface (SMThe
communication between hardware and software is controllett] Alexander, D. et al.Security in Active Networkgo appear in Secure
by the Software and Hardware Management Interfaces Inte_rnet Programming: Issues in Pistributed and Mobile Object Systems,
(SWMI and HWMI, respectively). Both are supervised by the Spr_mger-Vngag Lectur.e Notes'ln ComputerNSc!ence State-of-the-Art
series, available at http://www.cis.upenn.edu/~switchware/home.html

ator to implement its own SMI. comm Computer Communications review, vol. 29, no. 2, pgs. 7-24,
April 1999

[3] Decasper, D. et alA Scalable High-Performance Active Network Node
IEEE Network, January/February 1999

: _[4] Decasper, D. and Plattner, Bistributed Code Caching for Active Net-
Itis commonly accepted that implementing innovative con works Proceedings of Infocom 98, San Francisco, April 1998

cepts in C(_)mmerCial network_s is a difficult FaSk-_ The NetW(_)rk[S] Feldmeier, D. et al.Protocol BoosterslIEEE JSAC, vol. 16, no. 3, April

Operator is mostly responsible for that situation. Technical 1998

and economic reasons discourage him to open his network 6] Gunter, C.A. et al.The SwitchWare Active Network ArchitectuteEE

third-parties. As a result, the infrastructure as well as the ’;‘ge;‘g’orkvlsfzec'a' sueon active and programmable networks, May/June
. . , Vol. , ho.

management _Of network services is kept under the abSO|l_JT[§] Hadzic, I. et al..On-the-fly Programmable Hardware for Netwoykso-

control of the incumbent Operator. In order to overcome this * ceedings of Globecom ‘98

situation so that the Active and Programmable Network parags] Harbaum, T. et al.Hardware Support for RSVP Capable RoutifRyo-

References

V. Conclusions and further work

ceedings of the 3rd ATM Workshop, Heidelberg, June 2000

[9] Psounis, K.:Active Networks: Applications, Security, Safety and Archi-
tectures IEEE Communications Surveys, first quarter 1999, available at
http://lwww.comsoc.org/pubs/surveys

[10] Van der Merwe, J. et alfThe Tempest - A Practical Framework for Net-
work Programmability|EEE Network, November 1997

	Fig. 1. The dependencies among actors
	The Octopus Network Model: Opening up the Internet to Active and Programmable Network Implementat...
	Carlos Macián
	University of Stuttgart, Institute of Communication Networks and Computer Engineering macian@ind....
	I. Introduction
	II. Previous work
	III. The Octopus Open Network Model
	IV. The Octopus Open Gateway Architecture
	V. Conclusions and further work
	R eferences
	[1] Alexander, D. et al.: Security in Active Networks, to appear in Secure Internet Programming: ...
	[2] Campbell, A. et al.: A Survey of Programmable Networks, ACM Sigcomm Computer Communications r...
	[3] Decasper, D. et al.: A Scalable High-Performance Active Network Node, IEEE Network, January/F...
	[4] Decasper, D. and Plattner, B.: Distributed Code Caching for Active Networks, Proceedings of I...
	[5] Feldmeier, D. et al.: Protocol Boosters, IEEE JSAC, vol. 16, no. 3, April 1998
	[6] Gunter, C.A. et al.: The SwitchWare Active Network Architecture, IEEE Network, special issue ...
	[7] Hadzic, I. et al.: On-the-fly Programmable Hardware for Networks, Proceedings of Globecom ´98
	[8] Harbaum, T. et al.: Hardware Support for RSVP Capable Routing, Proceedings of the 3rd ATM Wor...
	[9] Psounis, K.: Active Networks: Applications, Security, Safety and Architectures, IEEE Communic...
	[10] Van der Merwe, J. et al: The Tempest - A Practical Framework for Network Programmability, IE...
	Fig. 2. The Octopus Open Network Model. Main elements.
	Fig. 3. The OOG hardware architecture
	Fig. 4. The service structure
	Fig. 5. The OOG´s interfaces

