
Copyright Notice
c© 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this

material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must

be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright
and all rights therein are retained by authors or by other copyright holders. All persons copying this

information are expected to adhere to the terms and constraints invoked by each author’s copyright. In
most cases, these works may not be reposted without the explicit permission of the copyright holder.

Institute of Communication Networks and Computer Engineering
University of Stuttgart

Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Phone: ++49-711-685-68026, Fax: ++49-711-685-67983

Email: mail@ikr.uni-stuttgart.de, http://www.ikr.uni-stuttgart.de

Beyond Performance: Secure and Fair Memory
Management for Multiple Systems on a Chip

Carlos Macián
Institute of Communication Networks

and Computer Engineering
University of Stuttgart

Pfaffenwaldring, 47
D-70569 Stuttgart, Germany

Email: macian@ikr.uni-stuttgart.de

Sarang Dharmapurikar
Applied Research Lab
Washington University
One Brookings Drive
St. Louis, MO 63130

Email: sarang@arl.wustl.edu

John Lockwood
Applied Research Lab
Washington University
One Brookings Drive
St. Louis, MO 63130

Email: lockwood@arl.wustl.edu

Abstract— Developments in VLSI technologies create the pos-
sibility of hosting several independent (sub) systems in a single
chip. There is a need to share a number of resources, espe-
cially off-chip resources, which creates new constraints in the
design process. Although performance is still a key constraint,
sharing implies that secure access to those resources and QoS
guarantees are needed. In this paper, an architecture is presented
that achieves the goals listed above. The Embedded Hardware
Manager acts as a middleware between the applications and
the resources, taking the role of resource manager and security
agent. The results show that it can prevent resource misuse and
undue information peeking or even altering while maintaining
individual QoS guarantees. At the same time, high performance
is still achieved.

I. INTRODUCTION

In recent years, the evolution in chip size, on-chip memory
and gate density opened the door to the integration of whole
systems on a single chip (SoC). At present, the sustained
development in VLSI technology allows to go one step further:
The advent of Multiple-Systems-on-a-Chip (MSoC). State-
of-the-art chips can easily support several embedded micro-
processors and a number of specialized hardware modules
concurrently. And yet, new constraints have to be taken into
account in this environment: The number of I/O pins grows at
a slower pace than gate density, provoking a mismatch in I/O
bandwidth and processing power. Further, multiple systems (or
subsystems) will have to share those pins. An ef£cient way of
sharing access to external resources is needed.

In this context, the way in which interfaces and the access
to off-chip resources are managed becomes critical for the
successful introduction of MSoCs. The emphasis so far has
been mainly in £nding ways to extract the maximum possible
performance (both in terms of bandwidth and delay) out of
those resources. While performance is clearly a must, it is
not suf£cient. When several independent systems are sharing
a chip, two other criteria become critical: Security and QoS.
As with multitasking operating systems on a CPU, it is unac-
ceptable that a malicious (or simply misbehaving) component
could block the memory interface for the entire chip, or that
it could ¤ood the communication channels with data, that
ignores the SoC arbitration mechanism. Or even that it would

try to access reserved regions in off-chip memory that were
granted to other systems. QoS is also paramount: Different
systems will have different requirements in terms of delay
sensitivity, performance, bandwidth, etc. Classical approaches
tend to share those resources fairly among competing systems.
That might not be enough in this new scenario, in which a
more complex scheduling may be needed to acknowledge the
different requirements of the systems.

In this paper, an architecture realizing those goals is pre-
sented: It manages access to off-chip resources in a secure
way and enforces a complex QoS policy, while still providing
good performance, which we believe to be mandatory for
future MSoCs. The focus of this work is on access to off-
chip DRAM, but our architecture is completely general (see
Section III). The rest of the paper is organized as follows:
In Section II related work is reviewed. Section III describes
the architecture and its main elements. In Section IV a set of
tests and results are presented and Section V concludes the
paper.

II. RELATED WORK

The issue of memory management has been widely stud-
ied in the literature, but generally only in the context of
throughput optimization. Security and QoS issues in shared
access have often been neglected. McKee et al. have pre-
sented a general classi£cation of techniques for throughput
maximization through request ordering in [1]. Different page
interleaving schemes have been implemented for reducing the
cache con¤icts and cache misses [2] [3]. A comprehensive
set of algorithms for memory request reordering has been
presented by Rixner et al. [4] and McKee [5]. Some of the
other general purpose SDRAM controllers have been discussed
in [6]. Other studies have tried to explore more effective
ways to organize data into memory [7] or memory itself
[8]. Although these works cover most general techniques to
minimize access latency, no special attention has been given
to the problem of QoS or multi-module memory requests.

In [9] the issue of memory access sharing is considered, but
only in the context of on-chip RAM. Furthermore, only a very
basic scheduling scheme, based on £xed priorities, is used.

Commercial products, like the QoS-aware memory controller
from Denali Software Inc., are available [10]. However, since
the architectures are proprietary, underlying algorithms are
unknown. Better documented is the work by Sonics Inc. [11].
Their goals and approach resemble the design presented here,
but no details about their scheduler are disclosed. Furthermore,
they limit the possible QoS strategies to three (minimum delay,
minimum guaranteed bandwidth and best effort), while our
design offers additional ¤exibility and per-¤ow guarantees,
not per-class. The data available for memory usage seems to
con£rm that the work presented here clearly achieves higher
ef£ciency.

III. EHM ARCHITECTURE

The Embedded Hardware Manager (EHM) regulates the
access to, and sharing of, off-chip resources in a MSoC.
Figure 1 presents the basic architecture.

Every system or application present in the chip has access
to the off-chip resources exclusively through the EHM. In this
way, bypassing the security and scheduling mechanisms is
prevented. As an interface between the applications and the
EHM a fully compliant version of the Open Core Protocol
(OCP) interface [12] has been chosen. The advantages of that
interface were many: It is an open standard, thus not tying us
to any vendor-speci£c solution. Furthermore, its characteristics
are well adapted to the needs of a system on chip: It is an
extremely ¤exible interface thanks to its many optional signals,
which allow to adapt to a vast range of system behaviors. It is
general-purpose, thus allowing the interconnection of a wide
range of applications (microprocessors, memory controllers
and peripherals). It allows bursts of different sizes and is
a point-to-point interface, thus eliminating any possibility
of interference in accessing the EHM among the different
applications on the chip. A detailed description of the OCP
speci£cation can be found in [12]. Since the EHM design
is a general, platform- and technology-independent resource
manager, it can also support other standard, non-proprietary
interfaces, that could further ease the integration of third-party
products, like the Wishbone [13] and AMBA [14] interfaces.

Every application thus multiplexes access to all shared
resources on the OCP interface. How that multiplexing is done
is application speci£c.

The Embedded Hardware Manager is composed of a set
of Service Managers (Svc Mgr), one per application. Every
Svc Mgr controls access to all shared resources (memory,
I/O, etc) for one application. To that end, it is divided in
a set of Resource Usage Managers (RUMs), one per shared
resource. Every RUM implements the QoS and security policy
for its application and shared resource, as will be described in
Section III-A for the DRAM case. Obviously, an application’s
QoS and security requirements vary among resources: E.g., a
computing-intensive application like image processing might
need a lot of memory bandwidth and less I/O capacity, while
encryption barely uses memory access but requires packet
processing at wire speed, thus intensively using I/O channels.
Furthermore, the capabilities and access patterns of every

resource are also different: Single-access (as in SRAM) vs
bursts (as in DRAM), single burst (as in memory access) vs
multiple bursts (packet transfer), etc. Every RUM is therefore
optimized for its speci£c resource. The emphasis of this paper
being on memory management, the role of the SDRAM RUM
will be explained in more detail.

RUMs control the transfer of requests to the corresponding
resource, responses being handled by the General Responder.
Requests are locally acknowledged by the OCP slave, in order
not to block the OCP interface, which otherwise would have
to wait for the response (e.g. data coming from a read request
to SDRAM) before being freed for subsequent transactions.
This provides a certain multiplexing gain in interface us-
age. Whenever a response is ready to be transfered to the
application, it is sent to the General Responder, which acts
as a multiplexer, serializing responses coming from different
resources, potentially simultaneously. Although the present
implementation serves every resource in a round-robin fashion,
the General Responder could assign priorities to them, in case
that certain requests had more stringent delay requirements.

Access requests are passed to the Resource Controller,
which polls every Svc Mgr following a certain strategy. For
the SDRAM Controller, two different strategies have been
implemented to give access to memory. The £rst and simplest
is a round-robin scheduler, that grants access to the bus to
every Svc Mgr in turn. Our second implementation tries to
optimize memory usage by dividing time in so-called epochs.
Requests being served in an epoch will be rearranged to better
utilize memory and minimize the overhead associated with
DRAM management.

The next sections describe the modules in more detail.

A. SDRAM RUM

The SDRAM Resource Usage Manager (RUM) regulates
access to the data interface according to the security and
QoS policies chosen. For that, it performs two functions:
It controls resource usage and also checks the validity of
memory addresses being accessed. Figure 2 presents the basic
architecture.

Ctrl RAM Data RAM

Container

To memory
controllerSlave

Token Bucket

From OCP

SDRAM RUM

Fig. 2. SDRAM RUM Architecture

Since access to memory will be granted according to a
scheduler, it can not be guaranteed that a request will be
answered immediately. Hence, some form of intermediate

App 0

Controller
Other

General

Responder

App N

Data path

Control path

RU Manager
SDRAM

Master 0
OCP OCP

Slave

I/O

Other

. .
 .

. .
 .

Controller

. . .

OCP

Svc Mgr 0

Svc Mgr N
EHM

Offchip

Offchip
Other

To all buses

as in Svc Mgr 0

RU Manager

RU Manager

Master N

Memory

Controller
I/O

DRAM

Offchip
I/O

Fig. 1. Embedded Hardware Manager Architecture

buffering is needed. The SDRAM Resource Usage Manager
performs that function. It can be seen as a queue storing the
write and read requests, plus the corresponding data in the
case of a write.

To control resource usage, a scheduler has been used that
represents a good compromise between ease of implementa-
tion, performance and effectiveness. Especially important is
that the scheduler will not allow large jitters in the access
to the bus. In packet schedulers, for example, the time unit
is large: It is the time needed to send a whole packet to
the network. But in memory access, the time unit is much
smaller, since it is only the time needed to send a data burst,
which is typically at least an order of magnitude shorter than
a packet. Hence, delaying a burst the equivalent of a packet
transmission time might be unacceptable for delay-sensitive
applications. That eliminates many current schedulers used in
networking. To set an upper bound in delay and jitter and yet
allow the burstiness typical of memory access, a combination
of token buckets are used. There is a Token Bucket for every
application. Its parameters are chosen to re¤ect the bandwidth
and burst size accorded to that application and thus represent
our mechanism to grant different QoS to different applications,
according to their needs. Nevertheless, the maximum time that
an application can use the bus is limited by the maximum burst
size. Once exhausted, the Memory Controller grants access
to the next application with a pending request. In this way,
the maximum delay is known and bounded to (N-1)*MBS,
where N is the number of applications and MBS represents
the maximum time allowed to transmit the maximum burst
size on the OCP.

The Container stores the requests and corresponding data
in a small set of on-chip RAM. Access to memory is granted
to these requests in a £rst-come-£rst-served basis. Storing
requests is independent from actually delivering them to
the Memory Controller. That process is controlled by the

Token Bucket. Once a request has been made to the Memory
Controller, the RUM must wait for a grant before the data
can actually be delivered. Depending on the version of the
Memory Controller, requests are served either in a round-robin
fashion or according to a performance-maximizing strategy, as
described in the next section.

Nevertheless, a malicious application might request bus
usage to transmit a shorter burst and once granted, try to use up
the maximum allowed time. To prevent this, the RUM keeps
track of actual usage and discounts tokens accordingly. Once
the limit has been reached, the transaction is aborted if it was
not £nished by then. In this way, bus misuse is prevented.

The second task of the RUM is to map requested memory
addresses to the address space granted to the application. For
that purpose, a virtual memory scheme is used. Only the low
bits of the address bus are taken into account by the RUM. It
then pre£xes the high order bits according to a virtual address
table and compares the resulting address with the last valid
address for that application. If the requested position falls out
of bounds, the request is dropped. In this way, peeking into
memory or even altering its content is prevented.

The address range allocated to an application, together with
the required QoS parameters (in the case of the SDRAM RUM,
basically memory bandwidth), are calculated and agreed upon
in the design phase, between the application developer and the
memory management developer. If programmable hardware is
used (FPGAs), it would be possible to dynamically change
these values at compile time.

The implemented strategy is certainly not the only one
possible and we are currently exploring alternatives. We never-
theless believe this choice to provide satisfactory results while
being comparatively simple to implement.

B. Memory Controller Architecture

The Memory Controller depicted in £gure 4 is designed
to maximize memory usage within an epoch. We de£ne an
epoch as the time needed to serve all active requests from
the SDRAM RUMs at the moment of polling. The controller
will then rearrange those requests to minimize the overhead
associated with DRAM operation, as described shortly, and
serves them accordingly. Once £nished, a new epoch begins
with a new polling phase.

DRAM ef£ciency is highly dependent on the access pattern.
In particular the throughput depends on the burst length of
the access, the address being accessed and the type of access
(read/write). DRAM is partitioned in multiple banks to enable
parallel access to the memory locations. Within each bank it
is arranged in rows (pages) and columns. In case of successive
memory requests on the DRAM, typically, there is very little
delay involved between the two memory transactions if the
second memory request operates on the same page as the
previous request (page hit). There is a larger penalty if the
second request operates on the same bank but different row
than the one activated by the previous request (page miss).
The penalty is smaller if the second memory request incurs a
bank miss. In order to improve the ef£ciency of DRAM, some
optimizations are required which can avoid the page miss,
bank-miss and maximize the page-hits. The arbiter (memory
controller) needs to permute the memory requests in such a
way that it reduces the number of con¤icts and improves the
throughput.

The memory controller developed for this project uses
Micron SDRAM memory MT8LSDT864 [15] However the
design principles discussed here apply to any generic SDRAM.

Figure 3 shows how two successive memory operations can
be executed in different conditions for the SDRAM used. A
simpli£ed representation of the timing diagram is shown where
each box is equivalent to a clock cycle. Only the command
and data bus are shown in the £gure, the upper row showing
the commands.

The mnemonics and the color code for the commands
are also illustrated in the £gure. The idle time in the two
data transactions on the data bus is the reason for a loss in
the SDRAM ef£ciency. There is a delay between two data
transactions whenever there is a turn around from a read to
a write operation or vice-versa. The penalty is larger when
the following memory access incurs a page miss. All the
transactions ending with SM in the £gure are page miss. The
penalty is maximum when there is write to read turn around
and a page miss too. In order to improve the ef£ciency of the
DRAM, the page hits have to be favored and turn arounds and
page miss have to be avoided.

The SDRAM controller is split up in a Request Selector
and a Request Executer. The Request Selector logic takes
the pending requests(one from each module) and selects a
request among them which, if executed at the appropriate
time, maximizes the SDRAM data bus utilization. It makes
use of a brute force technique to £nd the best among the

WWSH

WWD

WWSM

RWSH

RWD

RWSM

RRSH

RRD

RRSM

WRSH

WRD

WRSM

ACTIVE

WRITE

READ

PCH

DATA1

DATA2

RW : Read folowed by Write

RR : Read followed by read

WW : Write followed by Write

WR : Write followed by Read

D : Different bank operation

S : Same bank operation

M : Page miss

H : Page hit

Fig. 3. Timing successive read and write operations in different conditions

pending requests. It compares the pending requests supplied
to it against the current memory operation and decides which
of the transactions shown in the £gure 3 the pending request
corresponds to. The address of the pending request and the
operation type (read or write) are compared against the address
and the operation type of the current access. The result of
the comparison indicates the transaction type that a memory
request represents. The request which corresponds to the
transaction with the least penalty is chosen and passed to the
Request Executer.

The Request Executer logic executes the selected request
at the appropriate time. It issues commands to the SDRAM
at appropriate clock cycles in a state-machine fashion. Since
the basic scheme allows two requests to have overlapping
operations (termination of one request and the initiation of
the next request) two state machines are required to control
the SDRAM interface. If one state machine is busy executing
commands for a request then the new request is loaded into
the other state machine. If both state machines are busy, then
the Request Executer refuses to accept any new request and
the scheduling operation has to be repeated.

It is the epoch concept that ensures throughput optimization
without compromising QoS. The order in which memory
requests are enqueued depends only on the Token Buckets.
This ensures that every application will get its accorded
bandwidth. At the cost of some extra jitter, the memory
controller rearranges the requests that the Token Buckets have
enqueued to achieve better overall throughput. Since the re-
quest permutation occurs only at the beginning of every epoch,
the additional delay that a request can suffer is bounded.

C. Architectural Properties

In summary, the architecture controls resource usage and
provides protection of the system from misuse by (sub)
modules. It ef£ciently uses the OCP interface, since bus
requests can be placed while data operations are in progress,

Comparator

Comparator

Comparator
Type

Logic

Next

Request

State m/c2

Current ReqRequest from

App 1

Request from

Request from

App N

App 2

Request Selector Request Executer

SDRAM Controller

Selection

State m/c1

Transaction

SDRAM

Fig. 4. Block diagram of the memory controller

hence making good use of request multiplexing. By using
a general-purpose interface the details of the resource being
accessed are hidden from the application. This simpli£es
application design and increases reusability in the face of
changing components. It also allows the same interface and
overall architecture to manage access to different kinds of
resources, such as communication channels, off-chip buses
and CPU. The abstraction represented by the interface is
nevertheless not so high so as to obscure or mislead the
functioning of the resources. It is important to note that an
ef£cient use of the hardware resources presupposes a detailed
knowledge and control of their operation. Excessive abstrac-
tion usually implies a loss of ef£ciency and performance in
exchange for easier handling. This architecture also delivers
good performance and controlled, bounded delay, which is
important for most applications, that are not completely delay-
insensitive. Last but not least, the proposed design scales well
with the number of applications. In fact, it would be very
easy to automate the instantiation of Svc Mgrs depending
on the number of applications present. By changing a small
set of parameters, the required number of Svc Mgrs can be
automatically instantiated. It is in fact the performance of the
OCP and the memory which set a limit on the usefulness of
sharing resources.

IV. RESULTS

The design was developed in VHDL and synthesized for the
Field-programmable Port Extender (FPX) platform [16]. The
FPX is an open platform that augments a network with re-
programmable hardware. It enables new data-processing hard-
ware to be rapidly developed, prototyped, and deployed over
the Internet. Extensive simulations (several million memory
accesses in all cases) were performed, changing the number
of active applications as well as their bandwidth requirements.
The goal was to measure the ef£ciency in memory usage as
well as the enforcement of the bandwidth requirements. A
set of simple greedy applications were run, which constantly
and inde£nitely try to access memory, alternately to write
and read. The alternation of writes and reads represents a
very unfavorable pattern, since after every transfer a memory
turnaround is needed. This makes the results very conservative
and thus safe estimates. When several applications are active

simultaneously, the described effect is not so critical, since
the memory controller can rearrange the requests to better
suit memory needs, although only within an epoch. The
results of our simulations are summarized in Figure 5 as
well as in Tables I, II, III and IV. In every case, we
present the required and obtained memory bandwidth per
application in two different conditions: under fair sharing and
under an unequal pattern. Several bandwidth distributions were
measured, we present only one for brevity. The results are
consistent across all patterns.

Memory usage is de£ned as the number of clock cycles
dedicated to data transmission divided by the total number of
cycles. This number should ideally approximate 1, although
that is impossible in practice due to the communication over-
head and the scheduling effect. The results for one application
are shown as reference. Since one application, being alone,
produces a load equivalent to 40% of the total memory
bandwidth, any number of applications equal or greater than 3
already offers a total load of over 100%. Hence, the tests also
show the capacity of the design to safely deal with overload
(320% for 8 applications).

39.60

75.01

80.00

85.74

90.03

0 2 4 6 8

Number of Applications

30

40

50

60

70

80

90

100

M
em

or
y

U
sa

ge
 E

ffi
ci

en
cy

 (
%

)

Fig. 5. Memory usage for different # applications

The number of applications varies from 3 to 8 to test the

App Nr req (%) obt (%) req (%) obt (%)

App0 33.3 33.3 40 40.0
App1 33.3 33.3 20 20.0
App2 33.3 33.3 40 40.0

TABLE I

REQUESTED AND OBTAINED BANDWIDTH: 3 APPS

App Nr req (%) obt (%) req (%) obt (%)

App0 25 25 20 19.6
App1 25 25 30 32.1
App2 25 25 20 19.6
App3 25 25 30 28.6

TABLE II

REQUESTED AND OBTAINED BANDWIDTH: 4 APPS

reactions of the system to an increasing sharing burden. Al-
though not shown in the tables for clarity, as could be expected,
the average and maximum delays, which are both bounded
by the scheduler, increase with the number of applications.
On the other hand, it can also be noticed, that the overall
performance also increases (see Figure 5). This is due to
the more ef£cient use of time, since overhead in queuing
and scheduling requests can be partially overcome by other
applications sending useful data meanwhile. As can be seen,
it represents a fair approximation to the maximum capacity of
the memory, thus proving the small cost of our architecture in
terms of ef£ciency in exchange for a strong enforcement of
QoS and security policies.

A second set of tests checked the capacity to deliver QoS
in terms of individual bandwidth for the applications. As can

App Nr req (%) obt (%) req (%) obt (%)

App0 16.6 16.6 8.3 9.4
App1 16.6 16.6 25 24.5
App2 16.6 16.6 8.3 9.4
App3 16.6 16.6 8.3 9.4
App4 16.6 16.6 25 24.5
App5 16.6 16.6 8.3 9.4

TABLE III

REQUESTED AND OBTAINED BANDWIDTH: 6 APPS

App Nr req (%) obt (%) req (%) obt (%)

App0 12.5 12.5 30 30.6
App1 12.5 12.5 2 2.3
App2 12.5 12.5 2 2.3
App3 12.5 12.5 30 28.9
App4 12.5 12.5 2 2.3
App5 12.5 12.5 2 2.3
App6 12.5 12.5 30 28.8
App7 12.5 12.5 2 2.3

TABLE IV

REQUESTED AND OBTAINED BANDWIDTH: 8 APPS

be seen on the tables, in spite of having greedy applications,
the limits set on the bandwidth were kept within reasonable
limits in all cases, independently of the weights chosen.

Results on the success of the attacks described before (bus
misuse and memory peeking) have not been included, for
they always failed. As explained in section III-A, memory
peeking or alteration is simply impossible, while bus misuse
is immediately aborted and penalized.

V. CONCLUSIONS

Large Integrated Circuits enable hosting several independent
systems on a single chip. The necessity to share a number
of resources, especially off-chip resources (different kinds
of memory, communication channels, CPUs), among those
systems creates new constraints in the logic design process.
Although performance is still a key constraint, sharing of
resources creates the need for secure access to those resources
as well as the ability to deliver QoS guarantees. Applications
must be effectively isolated from each other in order to achieve
a predictable behavior of the entire system on a chip.

An architecture has been presented that achieves the goals
listed above. The Embedded Hardware Manager acts as a
hardware layer between the applications and the resources,
taking the role of resource manager and security agent.
The results show that it can prevent resource misuse and
information sharing violations while maintaining individual
QoS guarantees. At the same time, high performance is still
achieved.

REFERENCES

[1] S. A. McKee, W. Wulf, J. H. Aylor, R. H. Klenke, M. H. Salinas,
S. I. Hong, and D. A. Weikle, “Dynamic access ordering for streamed
computations,” IEEE Transaction on Computers, vol. 49, no. 11, Nov.
2000.

[2] J. B. Carter, W. Hsieh, L. Stroller, M. Swanson, L. Zhang, E. Brun-
vand, A. Davis, C.-C. Kuo, and R. Kuramkote, “Impulse: Building a
smarter memory controller,” in Proc. of the 5th IEEE Symp. on High-
Performance Computer Architecture (HPCA-5), Jan. 1999, pp. 70–79.

[3] Z. Zhang, Z. Zhu, and X. Zhang, “A permutation-based page interleaving
scheme to reduce row-buffer con¤icts and exploit data locality,” in
Proceedings of the 33rd Annual International Symposium on Microar-
chitecture, California, CA, Dec. 2000, pp. 10–13.

[4] S. Rixner, W. J. Dally, U. J. Kapasi, P. R. Mattson, and J. D. Owens,
“Memory access scheduling,” in ISCA, 2000, pp. 128–138. [Online].
Available: citeseer.nj.nec.com/rixner00memory.html

[5] S. A. McKee, “Hardware support for dynamic access ordering:
Performance of some design options, Tech. Rep. CS-93-08, 9, 1993.
[Online]. Available: citeseer.nj.nec.com/mckee93hardware.html

[6] C. Green, “Analyzing and implementing SDRAM and SGRAM con-
trollers,” EDN Access, Feb. 1998.

[7] C. Ykman-Couvreur, J.Lambrecht, D.Verkest, A. Nikologiannis, and
G. Konstantoulakis, “System-level performance optimization of the data
queueing memory management in high-speed network processors,” in
Proceedings of DAC 2002, New Orleans, Louisiana, 2002.

[8] R. Yan and S. C. Goldstein, “Mobile memory: Improving memory
locality in very large recon£gurable fabrics,” in Proceedings of the IEEE
symposium on Field-Programmable Custom Computing Machines, napa,
CA, 2002.

[9] F. Gharsalli, S. Meftali, F. Rousseau, and A. A. Jerraya, “Automatic
generation of embedded memory wrapper for multiprocessor soc,” in
Proceedings of DAC 2002, New Orleans, Louisiana, 2002.

[10] Denali Software Inc., “Databahn product information,” Available via
Internet from www.denali.com as /products databahn.html,
2001.

[11] W.-D. Weber, “Ef£cient shared DRAM subsystems for SoCs,”
Available via Internet from www.sonicsinc.com as /son-
ics/products/memmax/productinfo/docs/
DRAM Scheduler.pdf, 2001.

[12] OCP International Partnership, “Open core protocol speci£cation, release
1.0,” 2001.

[13] Silicore Corp., “Speci£cation for the wishbone system-on-chip(soc)
interconnection architecture for portable ip cores, revision b.2,” 2001.

[14] ARM, “Amba speci£cation, rev 2.0,” 1999.
[15] Micron Inc., “Small-outline SDRAM module MT4LSDT464(L)H,

MT8LSDT864(L)H data sheet,” 1999.
[16] J. W. Lockwood, N. Naufel, J. S. Turner, and D. E. Taylor, “Re-

programmable Network Packet Processing on the Field Programmable
Port Extender (FPX),” in ACM International Symposium on Field
Programmable Gate Arrays (FPGA’2001), Monterey, CA, USA, Feb.
2001, pp. 87–93.

