
Resource Management

in Hardware Systems

for Programmable Network Nodes

Von der Fakultät für Informatik, Elektrotechnik und Informationstechnik

der Universität Stuttgart zur Erlangung der Würde

eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

vorgelegt von

Carlos Macián

geb. in València

Hauptberichter: Prof. Dr.-Ing. Dr. h. c. mult. Paul J. Kühn

Mitberichter: Prof. Dr.-Ing. Georg Carle, Universität Tübingen

Tag der Einreichung: 19. 08. 2004

Tag der mündlichen Prüfung: 05. 02. 2007

Institut für Kommunikationsnetze und Rechnersysteme
der Universität Stuttgart

2007

”
There is no such thing as the truth.

The truth is always for someone
and for something.

”
Robert A. Cox (slightly reworded)

”
Life, all life, is about asking questions,

not about knowing answers.
”

Allie Keys, in the last episode of Taken

A mi iaio,
que hablaba poco
y dećıa mucho,
y que se hubiese sentido
orgulloso.

SUMMARY i

Since the advent of the World Wide Web, information exchange by means of
computer networks has experienced a true worldwide revolution. The Internet
has become ubiquitous and indispensable. Its original simplicity of design has
been used to build around it a very rich, ever expanding set of services, with the
help of a tremendously complex and diverse range of technologies. It is precisely
this unheard-of success, which is severely putting to the test the ability of IP-
based networks to scale with respect to the number and diversity of services that
can be offered on top of them, as well as the aggregate volume of traffic that can
be processed by and transported through the network and to the final user.

First of all, the Multiservice Internet is strained by the sheer diversity of
services that should be supported. Although all of them can separately make
use of the Internet to run acceptably, it is their interaction that represents a
problem. Secondly, the complexity of network management is aggravated by the
sheer volume of service instances that are active simultaneously worldwide. As a
consequence, every network node has an ever decreasing amount of time to process
an always increasing amount and diversity of information. This dual problem is
aggravated by the increasing concern by the users regarding security and Quality
of Service (QoS). Last but not least, innovation is, from the point of view of the
network operator, a blessing but also a jinx. Innovation implies the introduction
of new functionality in an existing infrastructure, for which it was not built.
The consequences are difficult to predict and require tight supervision. Network
reliability is the one asset, that a network operator would never risk endangering.
The increasing relevance of the Multiservice Internet implies, nevertheless, that
there is a strong demand and a strong incentive to bring constant innovation to
it, thus introducing additional tension into the networking world.

To augment network flexibility and reduce the complexity of operation, sev-
eral different approaches have been proposed. Of particular relevance in this con-
text are Active and Programmable Networks (A&PN), for they moreover try to
achieve a further goal in network evolution: Openness. From the A&PN perspec-
tive, complexity derives also from the fact that network operation, management
and update falls into the hands of a centralized instance, the network operator.
Their goal is to share those responsibilities among different parties, every one of
which will be responsible only for their respective service. This sharing of the
network resources implies not only a coordination problem, but mainly a security
concern for the incumbent operator and its customers. Besides, these approaches
have rarely achieved good performance results, another of the critical problems
of modern networking.

The technological trend in communication nodes points toward an increase in
the role of hardware and embedded systems for the support of communication
tasks. But on top of that, rapidly evolving standards, new services and proto-
cols and in general the necessity to rapidly react to market trends has pushed
equipment providers into considering more programmable solutions that some-
what prolong the useful life of their (very costly) equipment.

SUMMARY ii

Hence, the goal of this Thesis is to bring together these diverse technological
developments to provide the sketch of a novel network model encompassing per-
formance, flexibility, openness, security and QoS, while keeping the complexity
at acceptable levels. To that end, a combination of overlay approaches based on
programmable network ideas at the network level with programmable hardware
at the system level is at the core of the proposal. The main emphasis will re-
side in a novel resource management architecture for complex hardware systems
providing, besides high performance, security and QoS policies.

This work presents the author’s vision of an overlay network model able to
overcome the limitations and trade-offs mentioned above. It begins by acknowl-
edging the necessity of strong security checks in the form of access control, AAA,
encryption, sandboxes, etc. However, in order not to endanger performance and
flexibility in exchange for security, it clearly separates service admission and in-
troduction, which is subject to strong security checks, from service management
and operation, which is not. Once a service has been deployed, only run-time
checks are applied, which critically improves performance with respect to other
proposals. Furthermore, performance is also underpinned by the introduction of
not only programmable software, but also programmable hardware environments
in the network nodes. Flexibility is sustained by the programmability of the
platform, which extends to the control plane: Every service operator is allowed
to implement its own management interfaces and protocols. The key to achieve
flexibility without compromising security at the system level lies in a strong iso-
lation among services and between every service and the node platform itself.
In software, that isolation is reached through well-known methods: Sandboxes,
Execution Environments and the Operating System. In hardware, those mecha-
nisms are not adequate, for their view of, and hence their control over embedded
applications is too coarse. In order to prevent threats coming from the hardware
part of the applications, resource management has to happen at the hardware
level, too.

As a consequence, the Embedded Hardware Manager is presented. The EHM
provides isolation by acting as intermediate element between the applications
and the off-chip resources, as well as among the applications themselves. It acts
as scheduler, QoS manager and security agent for native hardware applications
multiplexed on a common platform. The EHM can work with a wide range of
applications and off-chip resources, as long as they have no critical delay require-
ments in the ns domain.

The EHM has been evaluated by means of a system emulation. Additionally,
a prototype has been designed, in order to consider the physical constraints set on
the architecture by a real platform. In this way, relative as well as absolute results
could be obtained. Isolation, scalability, QoS allocation in terms of bandwidth
and delay, resilience to security threats and overall efficiency were measured, as
well as overall performance (processed packets per second). The results are very
satisfactory in all areas, proving the feasibility and adequacy of the approach

SUMMARY iii

presented in this Thesis. Nevertheless, a number of restrictions also apply. First,
delay is the price to pay in exchange for isolation and QoS guarantees. Second,
the platform presented a number of inadequacies, which also curtailed the per-
formance achievable by the prototype. Still, the performance lies in the Gbps
range, which is much better than previous software proposals. Resource usage is
moderate and even small for the latest FPGAs.

ZUSAMMENFASSUNG iv

Seit dem Aufkommen des World Wide Web hat der Informationsaustausch
mittels Rechnernetze eine wahre weltweite Revolution erfahren. Das Internet ist
überall vorhanden und unentbehrlich geworden. Seine ursprüngliche Einfachheit
im Design ist deshalb verwendet worden, um über dieses Netz eine immer grössere
Dienste-Palette mittels einer ganzen Reihe von unterschiedlichen, zum Teil sehr
komplexen Technologien anzubieten. Aber gerade dieser Erfolg stellt eine Heraus-
forderung hinsichtlich der Skalierbarkeit von IP-basierten Netze in Bezug auf die
Anzahl und die Verschiedenartigkeit der angebotenen Dienste sowie die gesamte
Verkehrsbelastung dar.

Zum Ersten wird das Multiservice Internet durch die blosse Verschiedenar-
tigkeit der zu unterstützenden Dienste belastet; obwohl das Internet diese Dienste
alle mit akzeptabler Qualität im Einzelnen unterstützen kann, stellt ihre Inter-
aktion ein Problem dar. Zum Zweiten wird die Komplexität des Netzmanage-
ments durch das blosse Volumen der weltweit gleichzeitig aktiven Dienstinstanzen
vergrössert. Als Folge verfügt jeder Netzknoten über eine stetig abnehmende
Zeit, um eine ständig zunehmende Menge und Verschiedenartigkeit von Daten
zu verarbeiten. Dieses Doppelproblem wird durch das wachsende Bedürfnis an
Sicherheit und Dienstgüte verstärkt. Schliesslich kann somit eine Innovation,
vom Standpunkt des Netzbetreibers aus gesehen, sowohl Segen als auch Fluch be-
deuten. Innovation drückt sich in der Erweiterung durch neue Funktionalitäten
einer vorhandenen Infrastruktur aus, für die sie aber nicht eingerichtet wurde.
Die Folgen sind schwer vorauszusagen und erfordern eine strenge überwachung.
Netzzuverlässigkeit ist der Trumpf, den ein Netzbetreiber nie in Frage stellen
würde. Die zunehmende Bedeutung des Multiservice Internets bringt mit sich,
dass es eine starke Nachfrage und einen hohen Anreiz gibt, um Innovationen
ständig weiter einzuführen. Dennoch bewirkt dies eine zusätzliche Spannung in
der Netzwelt.

Um Netzflexibilität zu vergrössern und um die Netzmanagement-Belastung
zu verringern, sind einige unterschiedliche Vorgehensweisen vorgeschlagen wor-
den. Von besonderer Bedeutung in diesem Kontext sind Aktive und Program-
mierbare Netze (A&PN), die ein weiteres Ziel in der Netzentwicklung zu erre-
ichen versuchen, nämlich Offenheit. Aus der A&PN Perspektive bewirkt die
Netzmanagement-Komplexität, dass Netzbetrieb, Management und Update in
den Händen eines zentralisierten Agenten, des Netzbetreibers, liegen. Ziel ist es,
jene Verantwortlichkeiten unter unterschiedlichen Parteien aufzuteilen, so dass
jede nur für den jeweiligen Dienst verantwortlich ist. Dieses Teilen der Netzres-
sourcen weist nicht nur auf ein Koordinationsproblem, sondern hauptsächlich auf
ein Sicherheitsproblem für den Netzbetreiber und seine Kunden hin. Ausserdem
haben diese Vorgehensweisen selten gute Leistungsergebnisse erzielt.

Die technologische Tendenz in den Kommunikationsknotenarchitekturen weist
auf eine Zunahme der Rolle der Hardware und der eingebetteten Systeme für die
Unterstützung der Kommunikationsaufgaben hin. Aber sich rasch entwickelnde
Standards, neue Dienste und Protokolle und im allgemeinen die Notwendigkeit,

ZUSAMMENFASSUNG v

auf Markttendenzen schnell zu reagieren, hat die Hersteller dazu geführt, mehr
programmierbare Lösungen einzubeziehen, die die effektive Betriebsdauer ihrer
(sehr teuren) Ausrüstung weiter ausdehnen.

Folglich ist das Ziel dieser Dissertation, die erwähnten verschiedenen technolo-
gischen Entwicklungen zusammenzubringen und ein Konzept einer Netzarchitek-
tur vorzustellen, welche Leistung, Flexibilität, Offenheit, Sicherheit und QoS,
bei gleichzeitiger Beschränkung der Komplexität auf ein annehmbares Niveau
vereinigt. Zu diesem Zweck liegt im Kern der Arbeit eine Kombination von
Overlay-Ansätzen, die auf Programmable Networks-Ideen auf der Netzebene und
programmierbarer Hardware auf Systemebene basieren. Das Hauptgewicht liegt
in einer innovativen Ressourcenmanagementarchitektur für komplexe Hardware-
Systeme, die zusätzlich zu hoher Leistung Sicherheit und Dienstgüte (Quality of
Service) bereitstellt.

Diese Arbeit stellt die Vision eines Overlay-Netzmodells dar, welches fähig
ist, die oben erwähnten Beschränkungen und Kompromisse zu überwinden.
Die Arbeit beginnt damit, dass die Notwendigkeit starker Sicherheitsmassnah-
men in der Form von Zugriffskontrolle, AAA, Verschlüsselung, Sandboxes, etc.
begründet wird. Um jedoch Leistung und Flexibilität zu erreichen ohne die
Sicherheit zu gefährden, wird konsequent zwischen Diensteinrichtung und -
nutzung (abhängig von den Ergebnissen starker Sicherheitsüberprüfungen) durch
Service-Management und Betrieb unterschieden. Sobald ein Dienst eingeführt
worden ist, werden nur Laufzeitüberprüfungen angewendet. Als Folge davon
wird dadurch eine bedeutende Leistungserhöhung gegenüber anderen Lösungen
erreicht. Ausserdem wird die Leistungsfähigkeit zusätzlich durch die Einführung
programmierbarer Software und durch programmierbare Hardwareumgebungen
in den Netzknoten untermauert. Flexibilität wird durch die Programmierbarkeit
der Plattform unterstützt, die in die Steuerebene angreift: Jedem Dienstbe-
treiber wird erlaubt, seine eigenen Managementschnittstellen und -protokolle
einzuführen. Der Schlüssel, um Flexibilität auf Systemebene zu erzielen, ohne
die Sicherheit zu kompromittieren, liegt in einer starken Isolierung der Dienstin-
stanzen untereinander und zwischen jeder Dienstinstanz und der Knotenplat-
tform selbst. In der Software wird diese Isolierung durch weithin bekannte Meth-
oden erreicht: Sandboxes, Execution Environments und das Betriebssystem. In
der Hardware sind jene Konstrukte nicht anwendbar, da ihre Sicht von der Plat-
tform und folglich ihre Steuerungsmöglichkeiten über eingebettete Anwendun-
gen zu grob ist. Um die Bedrohungen zu verhindern, die direkt von Hardware-
Subsystemen der o.g. Anwendungen herrühren könnten, muss die Ressourcenver-
waltung auch direkt auf der Hardware-Ebene geschehen.

Daraus folgend wird in dieser Arbeit der Embedded Hardware Manager
begründet. Der EHM schafft die Trennung zwischen Diensten, als Zwischenele-
ment zwischen den Anwendungen und den off-chip-Ressourcen, sowie unter den
Anwendungen selbst. Er dient als Scheduler, QoS-Manager und Sicherheitsagent
für eingebettete Hardware-Anwendungen, die auf einer allgemeinen Plattform

ZUSAMMENFASSUNG vi

ablaufen. Der EHM kann mit einer breiten Palette von Anwendungen und off-
chip-Ressourcen arbeiten, solange sie keine kritische Randbedingung in Bezug auf
Verzögerungen im ns-Bereich einbringen.

Der EHM ist mittels einer System Emulation ausgewertet worden. Zusätzlich
wurde ein Prototyp entworfen, um die physikalischen Begrenzungen, die jede
reale Plattform hinsichtlich der Architektur besitzt, zu betrachten. Auf diese Art
konnten relative sowie absolute Ergebnisse erreicht werden. Isolierung, Skalier-
barkeit, QoS Allocation in Bezug auf Bandbreite und Verzögerung, Robustheit
gegen Sicherheitsbedrohungen, Effizienz und Leistungsfähigkeit (d.h., verarbeit-
ete Pakete pro Sekunde) konnten gemessen werden. Die Ergebnisse sind in
allen Bereichen sehr zufriedenstellend und unterstreichen die Machbarkeit und
Angemessenheit der Lösung, die in dieser Dissertation vorgeschlagen wird. Den-
noch treffen eine Anzahl von Beschränkungen durchaus zu. Isolierung und QoS-
Garantien werden einerseits durch zusätzliche Verzögerung geschaffen. Ander-
erseits wies die Plattform eine Anzahl von Unzulänglichkeiten auf, die auch die
Leistung, die durch den Prototyp zu erreichen ist, beschränken. Dennoch liegt
die erreichte Leistung im Gbps-Bereich, eine deutliche Verbesserung zu bisheri-
gen Software-Realisierungen. Der Ressourcenverbrauch ist mässig und für die
neuesten FPGAs sogar gering.

Contents

Contents vii

List of Acronyms x

List of Figures xiv

1 Introduction 1
1.1 The Multiservice Internet . 1
1.2 A Glimpse of the Future, a Glimpse of the Past 2
1.3 The Octopus Network Model . 4
1.4 Summary of Contributions . 4
1.5 Outline of the Thesis . 4

2 The Role of Routers in IP Networks 6
2.1 Router Tasks . 6
2.2 Router Architectures . 12

2.2.1 Basic Router Architecture 12
2.2.2 The Packet Classifier . 14
2.2.3 The Meter & Marker . 18
2.2.4 The Switching Fabric . 20
2.2.5 The Traffic Pattern Conditioner 24
2.2.6 The Routing Unit . 26
2.2.7 The Management Unit . 27

2.3 Evolution of Router Architectures 28
2.3.1 First Generation . 28
2.3.2 Second Generation . 29
2.3.3 Third Generation . 30

2.4 Router Types . 32
2.4.1 Core Routers . 32
2.4.2 Edge Routers . 32
2.4.3 Access Routers . 33

2.5 Router Technologies . 33

vii

CONTENTS viii

2.5.1 ASIC . 34
2.5.2 General Purpose Processors 34
2.5.3 Network Processors & FPGA 35

3 Related Work 38
3.1 Active & Programmable Networks 38
3.2 Security Implications of Mobile Code in Hardware Systems 43
3.3 QoS in IP Networks . 49

3.3.1 Integrated Services . 50
3.3.2 Differentiated Services . 53
3.3.3 MPLS . 54

4 The Octopus Network Model 58
4.1 Objectives of the Octopus Network Model 58
4.2 First Scenario: Security Gateways 59
4.3 Second Scenario: Network-supported Digital Rights Protection . . 63
4.4 Octopus Network Model Architecture 65

4.4.1 ONM Overview . 66
4.4.2 Service Introduction Process 67
4.4.3 Main Architectural Properties 69
4.4.4 The Burden of Service Management 70
4.4.5 Network Admission Node 71

4.4.5.1 Service Admission 71
4.4.5.2 Service Adaptation 73
4.4.5.3 Service Dissemination 74

5 Octopus Open Gateway Architecture 75
5.1 OOG Overview . 75
5.2 Integrated Active Router Architectures: 2.5G vs 3G 79
5.3 3G Line Card Architecture . 82

5.3.1 3G Line Card Functional Description 82
5.3.2 AHP Ring . 85
5.3.3 AHPM Functional Description 87

5.3.3.1 Ring Attachment Subsystem 88
5.3.3.2 Service Chain Management Subsystem 89
5.3.3.3 Services and EHM 90
5.3.3.4 Ring Master . 91

5.3.4 Interface to the CPU and Configuration Procedure 91
5.4 Service Introduction & Interaction Manager

Functionality . 93
5.5 Intra-service Communication . 95
5.6 Security & Resource Management in the OOG 97

CONTENTS ix

6 The Embedded Hardware Manager 99
6.1 Why Resource Management in Hardware for an OOG 99
6.2 EHM Design Criteria . 100
6.3 Embedded Hardware Manager Architecture 102
6.4 EHM Main Elements . 105

6.4.1 The Interface Between the Services and the EHM: OCP . . 106
6.4.2 Service Managers . 107

6.4.2.1 SDRAM Resource Usage Manager 108
6.4.2.2 I/O Resource Usage Manager 111

6.4.3 Resource Controllers . 114
6.4.3.1 Memory Controller Architecture 115
6.4.3.2 I/O Controller Architecture 117

6.4.4 Summary of Architectural Properties 118

7 EHM Evaluation 119
7.1 Evaluation Criteria, Methods and Goals 119
7.2 Platform Description . 123
7.3 Case Studies . 127

7.3.1 Encryption . 127
7.3.2 Accounting . 129

7.4 Evaluation of the Test Results . 131
7.4.1 QoS Evaluation . 132

7.4.1.1 Bandwidth Allocation 132
7.4.1.2 Bandwidth Utilization 135
7.4.1.3 Delay . 139
7.4.1.4 Fairness . 141

7.4.2 Resource Consumption and Scalability 143
7.4.3 Performance Evaluation 144
7.4.4 Security Evaluation . 147
7.4.5 Summary of Results . 148

8 Conclusions and Outlook 150

ANNEX

A Review of Some Relevant Active Network Proposals 153
A.1 FHiPPs and AMNet . 153
A.2 Joint Work at WashU and the ETHZ 156
A.3 University of Pennsylvania: Switchware 160
A.4 Carnegie Mellon University: Darwin 163

Bibliography 168

List of Acronyms

AA Active Application
AAA Authentication, Authorization and Accounting
ACL Access Control List
AES Advanced Encryption Standard
AF Assured Forwarding
AHP Advanced Hardware Platform
AHPM Advanced Hardware Platform Module
AN Active Network
ANTS Active Node Transfer System
A&PN Active & Programmable Networks
API Application Programming Interface
ASIC Application Specific Integrated Circuit
ATM Asynchronous Transfer Mode
b Token Bucket Depth
BHP Basic Hardware Platform
BIOS Basic Input/Output System
CIDR Classless Interdomain Routing
CDN Content Delivery Network
CPU Central Processing Unit
CRC Cyclic Redundancy Check
CR-LDP Constraint Based Label Distribution Protocol
DAN Distributed Code Caching for Active Networks
DER Dynamically Extensible Router
DES Data Encryption Standard
DD Device Driver
DHP Dynamic Hardware Plugin
DiffServ Differentiated Services
DMA Direct Memory Access
DNS Domain Name Service
DRAM Dynamic Random Access Memory
DSCP Differentiated Services Code Point
DSL Digital Subscriber Line

x

ACRONYMS xi

DSP Digital Signal Processor
DVI Digital Video Interface
EDIF Electronic Design Interchange Format
EE Execution Environment
EF Expedited Forwarding
EHM Embedded Hardware Manager
FEC Forward Error Correction
FHiPPs Flexible High Performance Platform
FIFO First-In, First-Out
FilterSpec Filter Specification
FlowSpec Flow Specification
FPGA Field Programmable Gate Array
FPX Field-Programmable Port Extender
FTP File Transfer Protocol
Gbps Gigabit per second
GMPLS Generalized Multiprotocol Label Switching
GPP General Purpose Processor
HDL Hardware Description Language
H-FSC Hierarchical Fair Share Curve
IC Integrated Circuit
ICMP Internet Control Message Protocol
IKR Institute of Communication Networks and Computer Engineering
IntServ Integrated Services
I/O Input / Output
IOS Internetworking Operating System
IP Intellectual Property
IP Internet Protocol
IPv4 Internet Protocol Version 4
IPv6 Internet Protocol Version 6
ISDN Integrated Services Digital Network
IS-IS-TE Intermediate System-Intermediate System – Traffic Engineering
ISO International Standards Organization
ISP Internet Service Provider
JTAG Joint Test Action Group
Kbps Kilobit per second
Mbps Megabit per second
MAN Metropolitan Area Network
MBS Maximum Burst Size
MIB Management Information Base
MMU Memory Management Unit
MPLS Multiprotocol Label Switching
MSoC Multiple Systems on a Chip
NAN Network Admission Node

ACRONYMS xii

NAPI Network Application Programming Interface
NAPT Network and Port Address Translation
NAT Network Address Translation
NID Network Interface Device
NIST National Institute of Standards and Technology
NP Network Processor
OCP Open Core Protocol
ONM Octopus Network Model
OOG Octopus Open Gateway
OS Operating System
OSI Open Systems Interconnection
OSPF-TE Open Shortest Path First – Traffic Engineering
P4 Programmable Protocol Processing Pipeline
PC Personal Computer
PCI Peripheral Component Interconnect
PLAN Programming Language for Active Networks
PLL Phase-Locked Loop
PNNI Private Node Network Interface
QoS Quality of Service
r Token Bucket Rate
RAD Reprogrammable Application Device
RAM Random Access Memory
RSpec Request Specification
RSVP Resource Reservation Protocol
RSVP-TE Resource Reservation Protocol – Traffic Engineering
RTCP Real Time Control Protocol
RUM Resource Usage Manager
SANE Secure Active Network Environment
SDH Synchronous Digital Hierarchy
SDK Software Development Kit
SDRAM Synchronous Dynamic Random Access Memory
SLA Service Level Agreement
SME Small and Medium Enterprise
SNMP Simple Network Management Protocol
SIIM Service Introduction & Interaction Manager
SIP Session Initiation Protocol
SoC System on a Chip
SOHO Small Office / Home Office
SPC Smart Port Card
SRAM Synchronous Random Access Memory
Svc Mgr Service Manager
TCP Transfer Control Protocol
ToS Type of Service

ACRONYMS xiii

TSpec Traffic Specification
TTL Time To Live
UDP User Datagram Protocol
UHP Universal Hardware Platform
VCI Virtual Connection Identifier
VHDL Very Large Scale Integration Hardware Description Language
VLSI Very Large Scale Integration
VM Virtual Machine
VOQ Virtual Output Queuing
VPI Virtual Path Identifier
VPN Virtual Private Network
WDM Wavelength Division Multiplex

List of Figures

2.1 The Functions of a Modern Router 7
2.2 Block Diagram of a Router: Functional Description. 13
2.3 Block Diagram of a Router: Detailed Description. 15
2.4 1st Generation Router: Single Processor, Shared Bus 28
2.5 2nd Generation Router: Cache-supported Interfaces, Shared Bus . 30
2.6 3rd Generation Router: Fully Distributed Parallel Processors,

Switching Fabric . 31
2.7 Performance vs. Flexibility in Router Technologies. 35

3.1 Generalized Model for Programmable Networks. 40
3.2 The Canonical Active Node Architecture. 42
3.3 Threats associated with Mobile Code. 44
3.4 The RSVP Reservation Process. 51
3.5 Hierarchical Tunneling in MPLS. 55
3.6 DiffServ on top of MPLS. 56

4.1 Distributed Security Gateway Scenario. 61
4.2 Individual Watermarking performed by Content Server. 64
4.3 Individual Watermarking performed by Programmable Network

Nodes. 65
4.4 Basic Elements of the Octopus Network Model. 66
4.5 Basic Elements of the Octopus Network Model. 68

5.1 Enhanced Active Network Node: The Octopus Open Gateway. . . 76
5.2 The OOG Basic Hardware Architecture. 77
5.3 AHPM Functional Representation. 79
5.4 OOG Architecture. First Option. 80
5.5 OOG Architecture. Second Option. 81
5.6 Decomposition of a Line Card in an Input and an Output Module. 83
5.7 OOG Line Card Architecture. Pre-Switching Part. 83
5.8 OOG Line Card Architecture. Post-Switching Part. 84
5.9 AHPM Functional Representation and Ring Master Structure. . . 88
5.10 OOG Configuration Bus between CPU and All Line Card Modules. 92

xiv

LIST OF FIGURES xv

5.11 Service-triggered Functionality Extension. 93
5.12 Intraprocess Communication Channels. 96

6.1 The Placement of the EHM in the AHP. 102
6.2 The EHM Architecture. 103
6.3 Distributed Access Control and Scheduling in the EHM. 105
6.4 SDRAM RUM Architecture . 108
6.5 Memory Data Retrieval and Write Procedure. 110
6.6 Packet Retrieval and Send Procedure. 112
6.7 Timing Successive Read and Write Operations in Different Condi-

tions. 116
6.8 Block Diagram of the Memory Controller 117

7.1 The Universal Hardware Platform. 124
7.2 UHP Configuration for the EHM Prototype. 125
7.3 Setup of the Encryption Application Testbench. 128
7.4 Setup of the Accounting Application Testbench. 131
7.5 I/O Bandwidth Allocation for Different Number of Applications. . 133
7.6 SDRAM Bandwidth Allocation for Different Number of Applications.134
7.7 Network Interface and SDRAM Bandwidth Utilization for Differ-

ent Number of Applications . 137
7.8 Network Interface and SDRAM Mean Access Delay for Different

Number of Applications . 138
7.9 Overall System Performance: The I/O Intensive Case. 145
7.10 Overall System Performance: The Memory Intensive Case. 146

A.1 The Flexible High Performance Platform (FHiPPs). 154
A.2 The Hardware Applet Concept. 155
A.3 Dynamically Extensible Router. 157
A.4 Architecture of a Port Processor. 159
A.5 The SANE Layering Structure. 161
A.6 Programmable Protocol Processing Pipeline. 162
A.7 The Darwin Network Model. 164
A.8 The Darwin Network Node Architecture. 165
A.9 The Grouping Tree Concept for Hierarchical Scheduling. 166

1 Introduction

1.1 The Multiservice Internet

Since the advent of the World Wide Web, information exchange by means of
computer networks has experienced a true worldwide revolution. The Internet
has become ubiquitous and indispensable. Its original simplicity of design has
been used to build around it a very rich, ever expanding set of services, with the
help of a tremendously complex and diverse range of technologies. It is precisely
this unheard-of success, which is severely putting to the test the ability of IP-
based networks to scale with respect to the number and diversity of services that
can be offered on top of them, as well as the aggregate volume of traffic that can
be processed by and transported through the network and to the final user.

First of all, the Multiservice Internet 1 is strained by the sheer diversity of
services that should be supported: Whereas in the beginning it was only exchange
of raw data, it now encompasses voice and video communication, file searching
and exchange, instant text communication, a myriad forms of e-business, sensor
network control, and more. Although all of them can separately make use of the
Internet to run acceptably, it is their interaction that represents a problem.

First, they are not isolated from each other but have to share a common
infrastructure. Every service has different requirements in terms of the network
characteristics, usually expressed in the form of their sensitivity to delay, jitter
or lack of adequate bandwidth, but also in their security or quality of service
requirements. The superposition of different service instances thus implies the
necessity of accurate network management by the network operators. The more
services are supported, and the more diverse they are, the more complex this
task becomes, to the point that up to 50% of all operational costs of a network
operator fall into this category.

But service diversity is not the only problem. Secondly, the complexity of
network management is aggravated by the sheer volume of service instances that
are active simultaneously worldwide. It is not uncommon for a core router in any
backbone network to support between 100.000 and 500.000 flows simultaneously

1The term ”Multiservice Internet” will be used throughout this work to refer to the com-
pound of mainly IP-based networks, protocols, services and applications, that are currently and
in the near future used for the mass exchange of information by means of computer networks.

1

Chapter 1. Introduction 2

at any given time. Every connection has its own requirements concerning the
functioning of the network that, in principle, need to be honored separately.
This augments the management complexity strongly. At the same time, the ever
expanding use of the network implies an ever expanding amount of traffic to be
processed and transported. As a consequence, every network node has an ever
decreasing amount of time to process an always increasing amount and diversity
of information. This dual problem is aggravated by the increasing concern by the
users regarding security and Quality of Service (QoS). These concerns add tight
boundary conditions to the way in which data can be handled, and at the same
time increase the amount of processing needed for every bit of information.

Last but not least, innovation is, from the point of view of the network op-
erator, a blessing but also a jinx. Innovation implies the introduction of new
functionality in an existing infrastructure, for which it was not built. The conse-
quences are difficult to predict and require tight supervision. Network reliability
is the one asset, that a network operator would never risk endangering. The
increasing relevance of the Multiservice Internet implies, nevertheless, that there
is a strong demand and a strong incentive to bring constant innovation to it, thus
introducing additional tension into the networking world.

To summarize, the Multiservice Internet presents hard requirements in terms
of scalability (in terms of number and diversity of service instances), flexibility
and performance while respecting the users’ security and QoS concerns. A further
downside is the increasing complexity of operation. As stated above, nevertheless,
innovation also presents ways to soothe these tensions.

1.2 A Glimpse of the Future, a Glimpse of the Past

To augment network flexibility and reduce the complexity of operation, sev-
eral different approaches have been proposed, as will be presented in chapter
3. Suffice it to say, that Overlay Networks, in one form or another, all pursue
these goals. Of particular relevance in this context are Active and Programmable
Networks (A&PN), for they moreover try to achieve a further goal in network
evolution: Openness. From the A&PN perspective, complexity derives also from
the fact that network operation, management and update falls into the hands
of a centralized instance, the network operator. Their goal is to share those re-
sponsibilities among different parties, every one of which will be responsible only
for their respective service. This sharing of the network resources implies not
only a coordination problem, but mainly a security concern for the incumbent
operator and its customers. Besides, these approaches have rarely achieved good
performance results, another of the critical problems of modern networking.

The technological trend in communication nodes points toward an increase in
the role of hardware and embedded systems for the support of communication
tasks. Although pure software systems have increased their performance impres-
sively in the last few years, application-specific hardware solutions for processing-

Chapter 1. Introduction 3

intensive operations still achieve orders of magnitude better results. In order
to combine that impressive performance with flexibility, a number of more or
less programmable hardware platforms have been developed. Their main ele-
ments are typically DSPs, Network Processors (NPs), FPGAs or combinations
thereof. The increasingly short development and life cycles of communications
systems, derived precisely from the innovation drive, has made the ASIC option
increasingly less appealing. The development costs for ASICs have dramatically
increased in recent times, to the point that hundreds of thousands of units have
to be sold to reach the investment break-even point. But on top of that, rapidly
evolving standards, new services and protocols and in general the necessity to
rapidly react to market trends has pushed equipment providers into considering
more programmable solutions that somewhat prolong the useful life of their (very
costly) equipment.

An additional factor in this search for hardware support has been the tech-
nological evolution of ICs. In recent years, the evolution in chip size, on-chip
memory and gate density opened the door to the integration of whole systems
on a single chip (SoC), thus facilitating the shift of whole tasks to the hardware
domain. At present, the sustained development in VLSI technology allows to go
one step further: The advent of Multiple-Systems-on-a-Chip (MSoC). State-of-
the-art chips can easily support several embedded micro-processors and a number
of specialized hardware modules concurrently. And yet, new constraints have to
be taken into account in this environment: The number of I/O pins grows at a
slower pace than gate density, provoking a mismatch in I/O bandwidth and pro-
cessing power. Furthermore, multiple systems (or subsystems) will have to share
those pins. An efficient way of sharing access to external resources is needed.

In this context, the way in which interfaces and the access to off-chip resources
(e.g. memory, I/O, external co-processors) are managed becomes critical for
the successful introduction of MSoCs. The emphasis so far has been mainly on
finding ways to extract the maximum possible performance (both in terms of
bandwidth and delay) out of those resources. While performance is clearly a
must, it is not sufficient. When several independent systems are sharing a chip,
two other criteria become critical: Security and QoS, just as it happens in other
aspects of networking. As with multitasking operating systems on a CPU, it is
unacceptable that a malicious (or simply misbehaving) component could block
the memory interface for the entire chip, or that it could flood the communication
channels with data, that ignores the SoC arbitration mechanism. Or even that
it would try to access reserved regions in off-chip memory that were granted
to other systems. QoS is also paramount: Different systems will have different
requirements in terms of delay sensitivity, performance, bandwidth, etc. Classical
approaches tend to share those resources fairly among competing systems. That
might not be enough in this new scenario, in which a more complex scheduling
may be needed to honor the different requirements of the systems.

Chapter 1. Introduction 4

1.3 The Octopus Network Model

The goal of this Thesis is to bring together these diverse technological devel-
opments to provide the sketch of a novel network model encompassing perfor-
mance, flexibility, openness, security and QoS, while keeping the complexity at
acceptable levels. To that end, a combination of overlay approaches based on
programmable network ideas at the network level with programmable hardware
at the system level is at the core of the proposal. The main emphasis will re-
side in a novel resource management architecture for complex hardware systems
providing, besides high performance, security and QoS policies.

1.4 Summary of Contributions

This work makes the following main contributions: First, it presents a new
characterization and taxonomy of router tasks and the mechanisms used to im-
plement them. This is followed by a thorough analysis and description of the
main elements composing a modern router architecture. These are necessary
prerequisites to identify how to integrate ”active” functionality in future node
architectures.

Second, this work reviews the main principles of Active & Programmable
Networks and analyzes why they were not successfully deployed in real networks.
The main weaknesses are identified in an apparently unsurmountable trade-off
between openness, performance and security.

Third, the Octopus Network Model is introduced. It represents a novel
Programmable Network architecture, which overcomes the trade-off mentioned
above. Its main characteristics are the separation between service admission and
service management and the introduction of a secure hardware programmable
platform.

Fourth, a novel node architecture, denoted Octopus Open Gateway, is pre-
sented. It integrates ”active” modules in the overall router architecture and
provides openness, performance and security at the node level.

Lastly, as a fundamental new element of the node architecture, a resource
management module for programmable hardware systems, called the Embedded
Hardware Manager has been designed and evaluated by means of hardware-close
functional and performance simulations. On top of the simulation studies, a
prototype realization has been designed. The Embedded Hardware Manager
is the cornerstone of the Octopus Open Gateway, ensuring openness and node
sharing without endangering performance or security.

1.5 Outline of the Thesis

The remainder of this Thesis is structured as follows: Chapter 2 analyzes
the area of router design and architectures and presents a novel characteriza-

Chapter 1. Introduction 5

tion thereof. Chapter 3 reviews the relevant previous research work most related
to this Thesis. It analyzes the general aspects of Active and Programmable
Networks. The main similarities and differences to this work will be presented.
Additionally, an evaluation of the security threats to routers derived from system
programmability, as well as an introduction to QoS in IP networks is included.
Further details on the proposals closest to this project have been included in
Annex A. Chapter 4 presents the Octopus Network Model and its main compo-
nents. Chapter 5 concentrates on the design of the main architectural element,
the Octopus Open Gateway (OOG). Chapter 6 then introduces the OOG’s re-
source management architecture for hardware systems, while chapter 7 presents
an evaluation of it. Chapter 8 finalizes the Thesis.

2 The Role of Routers in IP
Networks

This Thesis explores new avenues in communication node design. Paramount
among such nodes is the router, which has served as cornerstone of IP networking
for over thirty years. In this chapter, a novel analysis and taxonomy of the role
of routers in networking will be provided. Special attention will be paid to all
aspects of router design: Its basic functionality, the history of its evolution, the
main architectural characteristics and trade-offs and the technological trends.

2.1 Router Tasks

A router is an interworking unit, which main task is to forward incoming
traffic, namely datagrams, in the best direction toward their final destination.
This function is called routing [ITU94b]. Nowadays the Internet and its basic
underlying technology, the so-called ”TCP/IP protocol stack” [Pos81], dominate
data communications. For this reason, this discussion will be centered on the role
of routers in the Multiservice Internet, in order to become more concrete. These
network elements work on layer 3, or the Network Layer, of the Internet reference
model [Tan00]. The datagrams they process are accordingly IP datagrams, or
packets.

With the evolution in Internet functionality, nevertheless, the role of the router
has changed: Beyond providing reachability and efficient packet forwarding, a
number of additional tasks have appeared. They are the consequence of the de-
velopment from a unique, common, best-effort treatment of all traffic toward a
differentiated processing of it. On the one hand, the different services supported
by the Multiservice Internet have very different requirements regarding network
behavior. This certainly pushes the need to differentiate the traffic correspond-
ing to the different services and providing them with individual treatment. On
the other hand, the commercialization, individualization and worldwide spread-
ing of the Internet experience have brought the demand for user-tailored traffic
handling, for which the user is also willing to pay a price. A supporting set of
security, accounting & billing and quality-guaranteeing architectures have thus
emerged. Routers being the elements in charge of accepting packets into and
then forwarding them across the network, they become also responsible for the

6

Chapter 2. The Role of Routers in IP Networks 7

realization and support of this differentiation. The tasks of a modern router can
thus be classified as follows (see Fig. 2.1):

Traffic Management

Traffic Policy

Resource Management

Buffer

Policies:

Mgmt

Classification
Traffic

Scheduling

Admission

Tasks:

Mechanisms:

Subtasks:

Routing

Constrained
Routing

Protocols
Routing

Control
Traffic

Shaping

(In descending order of abstraction)

Security

AA Encrypt.

AA Authentication & Authorization

Tunneling

Reservation
Metering

Marking

Firewalling

Accounting & Billing Node Management

Signaling
ProtocolsBillingAccount.

Node
Mgmt Archs

Network, Node & User Management

Signaling Protocols

Figure 2.1: The Functions of a Modern Router

Traffic Policy. The starting point to define the router tasks and the meth-
ods to implement those tasks is the establishment of an overall traffic policy by
the network operator. A policy defines in somewhat abstract terms the goals,
acceptable methods of action and the set of rules employed when administering
a network [WSS+01]. A network policy is not restricted to technical aspects, but
can also involve business decisions. To a traffic policy belong elements like: the
granularity of traffic differentiation, which kind of guarantee is going to be given
to a certain traffic aggregate (absolute/relative), which security aspects shall be
covered, which information is desired regarding billing (per call, per user, etc.),
to name just a few. The mechanisms and corresponding configurations employed
to implement this policy can be grouped in three blocks, that will be referred
to as router tasks : Routing, Traffic Management and Network, Node & User
Management.

Routing. From the overall traffic policy a certain routing policy is derived.
As already stated, routing a packet consists on, according to the information
carried therein and the routing policy, calculating the best path to reach its final
destination and forward it along that path. The routing policy establishes a num-
ber of constraints on how this ”best path” is to be calculated. The most common
one is simply the minimization of the path length, measured as the number of
routers traversed (so called ”hops”). It is nevertheless possible to use several
criteria simultaneously (e.g. maximum available bandwidth with minimum to-
tal distance) to establish the path. Furthermore, a router can support different

Chapter 2. The Role of Routers in IP Networks 8

routing strategies for different traffic aggregates or even for different purposes.
The routing task would then be divided in a number of constraint-based routing
subtasks, as stated in Fig. 2.1. These subtasks are implemented by means of dif-
ferent routing protocols, which are the mechanisms used eventually to translate
the routing policy into router configurations and actions.

Traffic Management. In the past, the previous task was the main occupa-
tion of every router. Nowadays, that role corresponds to Traffic Management. In
the sense defined in [Cisa], traffic management represents the set of techniques
used to make traffic compliant with the goals specified in the traffic policy. More
specifically, the distribution of network resources among the different traffic ag-
gregates is one of its main objectives. It serves two purposes: First, deliver to
every traffic aggregate its corresponding service level (s. Section 3.3), accord-
ing to the traffic policy. Second, try to achieve high network utilization, avoid
network congestion (Traffic Control, [ITU02]) and, in case of necessity, redress
that situation (Congestion Control, [ITU02]). Together, these two aspects will
be summarized as the subtask Resource Management. Typically, the resources
to be managed in a data network are the link bandwidth and the buffer space in
the routers, tied to certain boundary conditions regarding maximum acceptable
delay and jitter for every traffic aggregate. Another relatively new concern in
traffic policies involves the definition of a security policy (s. Section 3.2).

Since the breadth of this task is enormous, the number of mechanisms em-
ployed for that purpose is also huge. The main ones will be shortly defined and
enumerated here, beginning by those corresponding to the subtask Resource
Management:

q Reservation: The most fundamental form of resource management is the
explicit reservation of a certain amount of resources for a traffic aggregate.
This may be static (performed by the network administrator) or dynamic
(using signaling protocols). Due to the bursty nature of most data sources,
there is an interest by the network operators to reserve less than the peak
amount of needed resources, in order to achieve a multiplexing gain. In
that case, a statistical instead of an absolute guarantee in access to those
resources is given [Kel00], [BZB+97], [Wro97].

q Traffic Scheduling: Although inside a router a logical (and often even physi-
cal) differentiation among traffic aggregates takes place, packets finally have
to be serialized prior to sending them on the link. The amount of packets
sent from each aggregate per time unit sets the bandwidth allocated to it
(generally according to a previous reservation), while the order in which
they are sent influences the delay and jitter that an aggregate experiences.
It is the role of an scheduling algorithm to control those decisions, so that
reservations will be respected [Zha95], [ITU02].

Chapter 2. The Role of Routers in IP Networks 9

q Traffic Shaping: While the role of traffic scheduling consists in servicing ag-
gregates so that reservations will be honored among them, traffic shaping
delays packets within a traffic aggregate, so that they better suit network
requirements. Burstiness, e.g., provokes high traffic peaks that might ex-
haust buffer space and/or provoke congestion in the network during short
periods of time. A controlled reduction of the source’s send rate to assuage
those bursts can go a long way in reducing that risk [BBC+98], [ITU02].

q Admission Control: Admission control implements the decision algorithm
that a router uses to determine whether a new aggregate can be granted the
requested service level without impacting earlier guarantees given to other
aggregates. This algorithm must be consistent with the type of guarantee
being supported (absolute/relative) and with the granularity of reservation
(individual flows or larger aggregates). This function can be performed
once, at the entrance point to the network, or on a local basis, depending
on the reservation mechanisms supported [BCS94], [ITU02].

q Buffer Management: As will be explained in more detail in 2.2, packets
usually have to be queued prior to processing at different points in the
router. An obvious reason for that is the effect of a traffic scheduler, as
explained above. In the absence of buffers for the interim storing of queued
datagrams, packet loss would result. Buffer management thus defines the
strategy, with which the space in those buffers is allocated to the different
traffic aggregates [RLG98]. Buffering presents a trade-off between packet
loss and packet delay and jitter: The larger the buffers, the smaller the
packet loss probability, but the longer the delay until a packet is served.
The convenience of a certain buffer management strategy depends in part
on the service characteristics accorded to a traffic aggregate. In a sense,
buffer management dictates how packets are written into the buffers, while
traffic scheduling defines how and when they are read out of them.

q Metering: Admission control is performed to ensure that guarantees given
to existing aggregates can be held by eventually preventing new aggregates
to enter the network. However, an additional mechanism is needed to en-
sure, that existing aggregates are not making use of more resources than
agreed upon. For that purpose, the temporal properties of a traffic stream
are measured and averaged in short as well as long intervals [BBC+98].
Should a breach of contract be established, it is the function of the marker,
scheduler and shaper to implement the traffic policy in this respect.

q Marking: In order to differentiate aggregates, an implicit (through classifi-
cation) or explicit (through classification and the inclusion of some tag into
the packet itself) marking has to be performed. This mark implicitly de-
fines the type of service to be provided to that packet or even to the whole

Chapter 2. The Role of Routers in IP Networks 10

aggregate [BBC+98], [ITU02]. As way of example, IPv6 [DH98] includes
a flow descriptor in its header, while the Differentiated Services architec-
ture [NBBB98] provides for a tag in the IPv4 header. Alternatively, RSVP
[BZB+97] uses implicit labels stored in the routers, but not in the packets.

The subtask Security has strongly contributed to the increase in the number
of mechanisms to be supported by routers, for it represents a completely new
dimension in router functionality. The following mechanisms can be cited:

q Firewalling: Although not every router serves as a firewall, all of them per-
form at least part of the tasks associated thereto. Its mission is to act as an
interface between two networks (typically a public, insecure network and a
private network) and regulate traffic between those networks for the pur-
pose of protecting the internal network from electronic attacks originating
from the external network [ANS]. To that end, a number of subtasks are
performed, which will not be further dealt with here 1.

q Authentication: Authentication is considered to be among the most relevant
security services, for many others rely on it in some form. Authentication
provides assurance of the identity of a claiming party as requested by a ver-
ifying entity [For94]. It can be distinguished between entity authentication,
in which a party involved in a communication presents a claim to a certain
identity, and data origin authentication, in which the originating instance
of the data is validated.

q Authorization: Authorization can be defined as the granting of rights con-
cerning access and manipulation of a certain resource by a foreign entity
[For94]. Here resource is used in a very broad sense, encompassing, among
others, communications capabilities, data or control information associated
with the configuration of a device (especially the router itself).

q Encryption: Among the newest additions to router functionality is the sup-
port for data encryption. The aim of this mechanism is the transformation
of data in order to hide its information, prevent its undetected modification
or its unauthorized use [For94].

There is a third group of mechanisms, which are both used for Resource Man-
agement and Security, and are thus listed separately:

q Classification: The cornerstone of differentiated traffic handling is the abil-
ity to discriminate incoming packets by inspecting their content and subse-
quently grouping them in separate classes [BBC+98]. It is fundamental for
the delivery of different quality levels to different aggregates as well as for

1A non-exhaustive list of those subtasks reads as follows: Proxying, encryption, tunneling,
filtering, monitoring and blocking.

Chapter 2. The Role of Routers in IP Networks 11

the implementation of security policies (separate dangerous from conven-
tional traffic, say) and accounting (e.g., summarizing traffic from a certain
kind or coming from a certain source). Because of its central role, it will
be dealt with in more detail in Section 2.2.

q Tunneling: Since routers base the decision on how to process packets ba-
sically on the information contained in the header, a widespread method
of insulating aggregates from the default treatment by a router consists in
encapsulating the original packet in a new one, with a header chosen ac-
cordingly to the desired treatment [Com00]. The reason to do so can, once
again, reflect quality, routing or security concerns, or even technological
necessity. This is the case, when two networks using the same protocols are
interconnected by a third one using a different stack.

q Signaling Protocols: The signaling process encompasses the interchange
of control information concerning the management of traffic aggregates or
of the network as a whole [ITU93]. As such, in order to coordinate the
decisions taken on every router on a local basis, signaling protocols are the
most common way used to support all other mechanisms described so far.
On an logical plane, they represent a parallel network for the purpose of
network and traffic control.

Network, Node & User Management. ”Management” is a very broad
and imprecise term. The sense given to it by the OSI terminology [ITU94b],
embodies a concern for the problems of initiating, terminating and monitoring
network activities, as well as assisting in their harmonious development. It also
comprises the handling of abnormal operations. A previous definition of Net-
work Management [KKR97] includes in the term five subtasks: Configuration
Management, Performance Management (including QoS therein), Security Man-
agement (mainly resource access control), Fault Management and Accounting
Management.

Traffic Management, defined above, deals with one aspect of this definition,
namely the supervision of the smooth network operation in the data plane: Its
activities are directly related to the handling of data traffic and the mechanisms
associated thereto. In this sense, it comprises parts of the Configuration, Perfor-
mance and Security Management, mainly.

Network, Node & User Management (Network Management, for short), deals
with the smooth and correct operation of the network elements themselves as well
as the compilation and distribution of accounting information. It then reflects
mainly the Fault and Accounting Management named above, as well as aspects
of the Configuration Management. The emphasis here is away from the data and
concentrated on the network as an abstract machine, which, independently of its
function, has to be kept in proper working order. In this sense, its subtasks can
be subdivided in:

Chapter 2. The Role of Routers in IP Networks 12

q Accounting and Billing. This subtask comprises the compilation of such
information concerning the network operation as are deemed necessary for
the accounting and billing processes. These aspects of network operation
fall outside of the scope of this work and will therefore not be further
addressed in this Thesis.

q Node Management. It comprises the supervision of the node itself as
well as its configuration, by means of some Node Management Architecture
as well as the use of Signaling Protocols, mainly to report status conditions
to some centralized supervisory instance. These are also aspects that are
not central to this work and will not be further deepened.

In this section, the main tasks realized by a router have been reviewed. The
mapping of those abstract tasks to a system architecture is the topic of the next
section.

2.2 Router Architectures

Modern routers share a common basic architecture [Awe01], [FKLS98],
[KS98], [KLS98], [PCB+98], [Par98]. The main differences among them are found
in the realization of the modules presented therein, although even at the mod-
ule level similarities abound. This section will analyze the main characteristics
of modern router architectures, pointing out the main trade-offs in router de-
sign. First, a brief overview of the architecture will be given, while details on the
different modules will be presented in subsequent subsections.

2.2.1 Basic Router Architecture

Figs. 2.2 and 2.3 represent the progress of a packet through a router and the
functions performed upon it. A number of basic modules can be identified, each
module performing a set of tasks according to the description presented in the
previous section. These basic modules correspond to a purely functional view of
a router. The physical realization of this functional architecture will be described
in section 2.3.

When a packet arrives at a router interface, the first module it encounters is
the Packet Classifier. Its main functions consist in validating the formal correct-
ness of the packet and then classifying it as belonging to a certain traffic class, so
that it can be treated according to its corresponding service level. Next, the op-
timum outgoing interface to reach its final destination is chosen in the so-called
route lookup process. Assuming that the packet was accepted for forwarding,
it will be adapted to the internal format used in the router (i.e. fragmented in
smaller chunks, appropriate for the internal bus width) and sent to the next mod-
ule. At any point in the process, a packet can be discarded (as represented in
the figure by the ”ground” connections). It is nevertheless convenient to detect

Chapter 2. The Role of Routers in IP Networks 13

invalid packets at an early processing stage, so that resources inside of the router
can be spared for valid packets. To this end, as many invalid packets as possible
should be discarded inside the Packet Classifier.

Packet
Classifier

Meter TrafficPacket Packet

Routing
Unit

Buffer
Mgmt

Classif.
Traffic

Shaping
Traffic

Scheduling

Buffer
Mgmt

Traffic
Scheduling

Routing
Protocols

Management
Unit

Signaling
Protocols

Pattern
Conditioner

Traffic
Shaping

in out&
Marker

Node
Mgmt

Accounting Billing

Firewalling Admission
Control

MeteringMarkingTunneling Encryption

AA

Switching
Fabric

Figure 2.2: Block Diagram of a Router: Functional Description.

In order for the Packet Classifier to perform the route lookup, the Routing
Unit runs a set of routing protocols, with which information it builds a routing
table containing the correspondences between addresses and output ports in the
router. This information is then passed on to the Packet Classifier.

When a data packet is considered to be apt for forwarding, it reaches the
Meter & Marker. Here, the behavior of the traffic flows with respect to their
accorded service levels is checked. Should a certain traffic stream, i.e., exceed its
accorded capacity, it corresponds to the Meter & Marker to reclassify the packet
as stated by the traffic policy, drop it, or schedule it as appropriate. The basic
element of a Meter & Marker is a Statistics Unit, which keeps track of resource
usage and also gathers the necessary information for the Accounting and Billing
processes. Furthermore, the Meter & Marker buffers the packet (or a pointer
thereto) in the corresponding queue for its class at the entrance of the Switching
Fabric.

The Switching Fabric connects all input interfaces with all output ports, re-
specting the QoS policies implemented by the Meter & Marker, i.e., serving its
input queues according to their priority, as defined by an allocation algorithm.
The switch can be as simple as a bus or as complex as a multi-stage switch-
ing network. After traversing the switch, packets are queued inside the Traffic
Pattern Conditioner. This unit receives packets destined to the same port (or
set of ports) and is in charge of serializing their departure. For that purpose, it

Chapter 2. The Role of Routers in IP Networks 14

implements a set of scheduling and shaping algorithms, which translate the QoS
policy set by the router administrator.

A number of circumstances can conduce a packet to the Management Unit.
Packets with unknown characteristics and yet not deemed erroneous is one of
them. The Management Unit runs a number of protocols, that deal with these
special cases. On top of that, all signaling packets are sent to this Unit for
processing. Lastly, the management of the node itself is also realized here, as
is the communication with a centralized network management instance outside
of the node. The relevant information for this task is gathered at the different
router modules and then polled by the Management Unit as needed.

2.2.2 The Packet Classifier

A router is a costly investment, especially if the number of ports and/or the
number of services that it offers are high. In order to optimize the investment
that this equipment represents, routers usually must work under heavy load con-
ditions. This implies that its resources (especially its processing power) are scarce
and must therefore be sensibly used. For this reason, one of the most important
tasks of a Packet Classifier is the detection of corrupted or otherwise invalid pack-
ets, so that they can be dropped as early as possible in the routing process. The
first set of tests that a Classifier performs on a packet are the so-called sanity
checks (s. Fig. 2.3). The formal validity of the packet is tested by asserting that:

q The IP version number corresponds to the one supported

q The IP header has the right length

q The total packet length is bigger than the header length

q The destination IP address contained corresponds to a standardized format
(i.e., to one of the 3 standard classes, A, B and C [FLYV93]).

q The CRC is valid. For efficiency reasons, it is usually updated at the same
time.

q The TTL value is valid. It is usually also decreased simultaneously.

These checks can be performed in parallel, which greatly contributes to minimize
the processing delay inside of a router.

Should a packet be considered formally valid, it corresponds to the router, in
the simplest case, to find an adequate output port to forward it. For that pur-
pose, the Routing Unit (s. Section 2.2.6) downloads a summary of all reachable
destinations and their corresponding output interfaces into the Packet Classifier.
This table is known as the forwarding table. In principle, different forwarding
tables can be downloaded and used for different aggregates, thus reflecting their
separate requirements. However, this rarely is the case in commercial routers.

Chapter 2. The Role of Routers in IP Networks 15

P
ac

ke
t

P
ac

ke
t

M
an

ag
em

en
t U

ni
t

D
at

a
P

ac
ke

t

IC
M

P

Lo
ca

l M
IB

R
ul

es
Ta

bl
e

Fo
rw

ar
di

ng
Ta

bl
es

P
ac

ke
t C

la
ss

ifi
er

C
on

tro
l

H
dr

P
ay

oa
d

Lo
ca

l M
IB

S
ho

rt
Te

rm
R

es
ou

rc
e

M
gm

t

R
ul

es
Ta

bl
e

S
ta

tis
tic

s
U

ni
t

Lo
ng

 T
er

m
R

es
ou

rc
e

M
gm

t

M
et

er
 &

 M
ar

ke
r

P
ac

ke
t

U
pd

at
e

B
uf

fe
r

M
an

ag
em

en
t

U
ni

t

In
pu

t
Q

ue
ue

s

Lo
ca

l
M

IB

 A
llo

ca
to

r

S
w

itc
hi

ng
 F

ab
ric

Tr
af

fic
 P

at
te

rn
C

on
di

tio
ne

r

O
ut

pu
t

Q
ue

ue
s

Lo
ca

l
M

IB

S
ha

pi
ng

 &
S

ch
ed

ul
in

g
R

ul
es

 T
ab

le

M
IB

R
S

V
P

P
ac

ke
t

G
en

er
at

or

S
N

M
P

...
...

P
ro

to
co

l I
nt

er
pr

et
er

s

Lo
ca

l
M

IB

B
G

P
v4

P
ac

ke
t

G
en

er
at

or

R
ou

tin
g

U
ni

t

P
IM

-S
M

Q
O

S
P

F
...

...

P
ro

to
co

l I
nt

er
pr

et
er

s

R
ou

tin
g

Ta
bl

e

A
cc

es
s

to
, I

nf
or

m
at

io
n

ex
ch

an
ge

 w
ith

 a
nd

 c
on

tro
l

of
 a

ll
th

e
M

IB
s,

 R
ul

es
Ta

bl
es

 a
nd

 S
ta

tis
tic

s
U

ni
t

P
ac

ke
t D

at
a

Tr
an

sf
er

C
on

tro
l

In
fo

rm
at

io
n

E
xc

ha
ng

e

N
od

e
C

on
fig

ur
at

io
n

U
ni

t

C
on

tro
l

U
ni

t

P
ac

ke
t

U
pd

at
e

Lo
ok

up
C

la
ss

ifi
ca

tio
n

S
an

ity
C

he
ck

In

O
ut

P
ac

ke
t

Figure 2.3: Block Diagram of a Router: Detailed Description.

Chapter 2. The Role of Routers in IP Networks 16

The task of searching the forwarding table for the best route is called route
lookup. Until around 1997 [DBCP97], [WVTP97], it was considered one of the
most critical router functions, since it is a complex operation that required much
precious time. The reason lies in the abolition of network classes and the in-
troduction of masks [FLYV93]. Classless Interdomain Routing (CIDR) allowed
networks of any size to be specified with the help of a network mask marking
the length of the network and host parts on an IP address. This allows, that
networks of different size share a common prefix (the first bits of the address),
although belonging to different institutions and residing in different locations.
Route lookup thus implies the search for the longest among all prefixes contained
in the forwarding table, that matches the destination IP address of every incom-
ing packet. It is this non-exact search procedure, which is very time-consuming.
Nevertheless, increasingly sophisticated algorithms produced a breakthrough in
the late 90s that seemed to solve the issue by increasing the performance of the
lookup process several orders of magnitude [TP99], [LSV99]. Most algorithms
represent variations of the classical binary tree search algorithm [Sed97].

An additional mechanism employed to accelerate the lookup process was the
use of caches. The main rationale was, that traffic presents a high degree of
locality, i.e., there is a high probability, that more than one packet destined to
the same address will reach the router within a short time [Awe01]. Thus, keeping
a cache of recently seen addresses and their corresponding output interfaces could
highly increase the performance of the lookup process. Nevertheless, nowadays
the advances in lookup algorithms and a loss of effectivity in caching make this
mechanism less relevant. Caching is losing effectivity because of the increase in
network capacity and reduction in locality: The more packets arrive per second
destined to different locations, the bigger should be the cache to maintain the hit
rate. The price/performance ratio of caches quickly diminishes with the cache
size due to technological limitations.

If differentiation is to be supported in a router, packet classification is the
fundamental mechanism. The first step toward delivering differentiated service
treatment is the ability to categorize packets into different ”groups” (classes,
flows, and so on). Each one of these groups of packets subsequently receives
different treatment in the router. Only after this classification mechanisms can
be applied to ensure a certain preferential treatment in terms of bandwidth, delay,
or any other criteria. Thus, if it is not achieved at wire speed, packet classification
can become the processing bottleneck of the router. The delivery of differentiated
treatment in the IP world is centered on the concept of flow2 [CAB99], [DH95]. It
represents a traffic stream that should be treated with the same service level. A
flow is identified by the content of two or more fields in its header. For example, a

2By this it is not meant, that differentiation always happens at this level of granularity.
A flow represents, nevertheless, the highest degree of granularity, that common differentiation
strategies propose.

Chapter 2. The Role of Routers in IP Networks 17

flow transporting a video communication between two people could be defined by
their destination and source addresses, plus the port numbers and the protocol
field. Even if traffic is aggregated in a small set of classes, there are points in
the network (the edges) where the aggregation/disaggregation of the traffic has
to take place. At those points, a potentially huge number of flows have to be
individually classified. Because the classification process has to be repeated for
every incoming packet and because the number of simultaneously active flows
in a router can be enormous, packet classification has tremendous performance
constraints.

Classification is done according to a set of filters (also called rules). These
rules describe the characteristics that define every traffic class in terms of the
header content. The usual definition of a filter F is an n-tuple of bit patterns,
either prefixes, ranges or exact values. Each element of the tuple, F[i], i∈[1, n],
is associated with a header field Hi in an IP packet. A packet matches a certain
rule F, if for all i, the i-th field of the header matches F[i]. Since rules can
overlap, more than one filter can match a certain packet. Thus, filters need to
have a unique priority that allows such conflicts to be solved. Given a set of rules,
packet classification consists in finding the rule with the highest priority among
those matching an incoming packet.

In judging the quality of a classification algorithm, there are three main vari-
ables to consider: The speed at which a matching filter is found (in the average
as well as in the worst case), the storage requirements of the chosen solution,
and the time it takes to make an update in that structure (i.e., to add or remove
a filter or rule). From these three criteria, most of the classification proposals
to date have attempted to find a satisfactory compromise between the first two
at the cost of very expensive updates, with rare exceptions. This seems like a
dangerous approach because the basic unit to be classified is the flow, and a flow
is intrinsically dynamic. For example, if a bandwidth reservation request for a
certain flow triggers the insertion of a new rule in the classifier, a delay of several
seconds would be unacceptable.

We divide the classification proposals found in the literature into four schools
(see [MF01] and the references therein):

q Packet classification can be seen as an extension to multiple dimensions
(multiple fields) of the IP route lookup problem. The most common ap-
proach to that problem, as stated above, has been to use search trees,
based on the concept of binary trees. Since very successful algorithms have
been developed in recent years for this, many efforts have been devoted to
extending such techniques to the more general case of packet classification.

q Another school of thought sees the multidimensional matching problem as
a special instantiation of the point location problem in a multidimensional
space, or in general takes geometrical space decomposition approaches.

Chapter 2. The Role of Routers in IP Networks 18

q Other solutions rely on a strong analysis of the content of a concrete dataset
to precompute an optimal search structure.

q A reduced set of essentially different approaches also exists.

In principle, the mathematical problem of fast packet classification in the
general case remains unsolved, especially for large sets of rules. Nevertheless,
advances in technology coupled with algorithms tailored for explicit applications
have proved to be sufficient for most users. The expected explosion in the size
of rule datasets has also not occurred. One reason lies in the failure of QoS
traffic delivery to the last mile, which would have provoked the need to perform
fine-grained classification at every edge router. Even then, classification in large
aggregates could keep the problem at bay. The other main application of this
technique is firewalling, which has indeed seen an enormous increase in relevance
due to a boom in networking security threats (s. Section 3.2). However, Firewalls
usually contain no more than a few thousand rules, still small enough for most
modern algorithms and systems to deal with.

The rules datasets reflect the traffic and security policies set by the system
administrator. They are usually introduced offline and can be static for long
periods of time. Firewalls and other traffic filtering applications, however, can
introduce a high degree of dynamics in the rule dataset structure. It should be
noted, that the classifier only differentiates traffic streams according to the exist-
ing set of classes. New classes and thus new rules might be created dynamically
in different scenarios. The detection of denial-of-service attacks, e.g., may trigger
the introduction of a new rule for the dropping of malicious packets. Traffic com-
ing from a new customer should be accounted & billed for, etc. The definition
of new traffic classes and the corresponding filters, however, is not the respon-
sibility of the Packet Classifier. Either they are introduced offline, or they are
dynamically introduced by the Meter & Marker (see next section).

2.2.3 The Meter & Marker

The main mission of this module consists in keeping track of the resource
usage by the different traffic aggregates. This task is generally called metering. It
serves different purposes: First, a certain quantity of resources has been allocated
for every traffic aggregate, either a priori (manually by a system administrator
or dynamically by some reservation protocol) or upon packet arrival (usually by
some scheduling algorithm). It is mandatory, in order to preserve the integrity
of the system as a whole and to isolate the different traffic classes, that such
resources will not be exceeded. For this purpose, resource usage is kept track of,
in the short as well as in the long term. In the short term, parameters like peak
bandwidth utilization and burst duration are evaluated, while in the long term,
average bandwidth utilization is the usual parameter under scrutiny.

Chapter 2. The Role of Routers in IP Networks 19

A second objective of metering is the evaluation of the overall resource usage
in order to perform admission control. The granting of resources to a new traffic
aggregate is certainly a long time activity. It is of critical importance, since once
admitted into the network, excess demand can only be fought through queuing
delay and packet loss, which is usually undesirable.

A third aspect regarding metering is the collection of data relevant to the
accounting and billing process, which happens in the Statistics Unit, s. Fig. 2.3.
Although the collection of these data takes place in this module, its summariza-
tion and eventual interpretation is usually performed by the Management Unit
and/or a centralized accounting infrastructure.

As stated above, metering implies the comparison of actual usage with ex-
pected usage. The Rules Table contains the information regarding expected usage
by the different traffic aggregates as well as the directives indicating how excess
resource usage should be treated. These rules table transpose the traffic policy
and control the working of all other submodules within the Meter & Marker.
Should a deviation from the expected behavior be detected, a number of actions
are possible (in Fig. 2.3 summarized as Packet Update). The most obvious one
is packet discarding, but packet loss is usually the last resort. More frequently,
a remarking takes place. Although the Packet Classifier implicitly marks traffic
as belonging to a certain class prior to delivering it to the Meter & Marker, that
decision can be revoked here according to some traffic degradation policy in re-
sponse to breaking the resource usage agreement. In principle, marking can be
implicit, derived from the queue in which a packet is stored (as in the Integrated
Services Architecture [BCS94]), or explicit. In this second case, marking can be
network-wide, in which the packet itself receives a tag in its IP header (as is the
case in the Differentiated Services Architecture [BBC+98], s. Section 3.3), or
locally valid. Tags, that are only valid within the router are usually appended to
the packet and use a proprietary format. However, they serve the same purpose
as the network-wide marking: To define the service level that will be accorded to
the packet. Once the packet leaves the Meter & Marker, its class is set for the
rest of the processing inside the router.

Under certain circumstances, it would be advisable, that the Meter & Marker,
upon detection of some undesirable condition, would update the rule dataset
in the Packet Classifier. In this way, future packets could be either directly
dropped or correctly classified according to some new policy derived from its
previous behavior. Such mechanisms are not uncommon in certain applications,
like dynamic firewall configuration.

Furthermore, it also corresponds to the Meter & Marker to detect and trigger
the creation of new traffic classes as needed. Flow detection techniques are used
for this purpose [CAB99], [LM97].

As is also the case for all other modules, a Management Information Base
(MIB) is included. It stores the information concerning the status of the module

Chapter 2. The Role of Routers in IP Networks 20

itself. It is regularly polled by the Management Unit, usually under request of a
central network management instance.

2.2.4 The Switching Fabric

As opposed to the Packet Classifier, the Meter & Marker and the Traffic Pat-
tern Conditioner, of which several instances can be found on every router, there
is only one Switching Fabric (also called Router Backplane or simply Switch) per
router. This responds to the physical placement of the different logical modules
in the overall architecture, as will be evaluated in Section 2.3. The Switch tem-
porarily interconnects every input and every output interface with each other and
coordinates the forwarding of packets among them. For that purpose, packets
may be fragmented in smaller chunks, adequate to the switch’s interface width.
An additional sought-after effect is the switching of constant-sized chunks, usu-
ally called cells. The main advantage vis à vis variable-length packets resides in
the complexity of the allocator, as will be described shortly.

A number of switch architectures are possible and there is a very rich literature
on this topic [CLO01], [CGMP99], [McK95], [MA98], [TY97], since switches have
found application in many communication network architectures and at various
layers in the OSI model. In this work only the main trade-offs in switch design
will be sketched.

Independent of its architecture, any interconnection device has to resolve the
following design problems:

q Internal Link Blocking: Depending on the architecture, it is possible that
contention occurs inside of the switch, i.e., that two chunks should simul-
taneously traverse the same spot inside the fabric. A switch with this
characteristic is called blocking, otherwise nonblocking. This can be solved
either by placing buffering capacity inside the switch, or by rearranging the
cells to be transferred prior to letting them enter the switch, so that no
contention will arise. In that case, buffering occurs at the fabric’s entrance.

q Output Port Contention: Switches are multiport devices. When several
inputs try to send cells to the same output, contention occurs in the access
to the outgoing link. This problem will always arise, independently of the
switch architecture. The only solution is some form of buffering.

q Head of the Line (HOL) Blocking: Due to the internal situation in the
switch, it can occur, that the first cell in the input queue can not be trans-
mitted in the present switching cycle (assuming that an input port disposes
of some FIFO buffering capability). In that case, subsequent cells in the
queue, which are destined to other outputs and therefore might have been
transmitted during the present switching cycle, are unnecessarily delayed.
This situation can be prevented either by the use of non-FIFO queues,

Chapter 2. The Role of Routers in IP Networks 21

which greatly increases the buffer management complexity, or by the im-
plementation of Virtual Output Queuing (VOQ, to be explained shortly).

q Multicast support: There are several situations in networking, in which it
would result advantageous to send the same information to several destina-
tions at once3. Switches are best placed to perform that replication, since
they interconnect every input with every output. Nevertheless, multicast
support considerably increases the complexity of the switch control logic.

The long tradition in switch design has produced a variety of ways to cope with
these design problems. Following [CLO01], switches can be classified according
to their multiplexing strategy:

Time Division: Characterized by having one single path to interconnect all
input and output ports. That one path is then multiplexed in time among them.
They can be further subdivided in shared memory and shared medium.

The first type, characterized by a common memory in which all input ports
write their packets and from which all output ports read, presents an excellent
multiplexing gain in memory utilization. On the downside, memory access speed
presents the limiting factor in overall switch performance. Due to this fact,
although they were popular in the 80s and 90s, shared memory switches are not
used nowadays in high-performance routers.

The second type, typically implemented as buses or rings, presents an evident
solution for multicast support. Nevertheless, the bus (which is the most common
form of shared medium switch) should present a capacity equal to the sum of
all inputs, in order not to become a bottleneck. The scalability of bus systems
is limited by the arbitration overhead in access to it and the bus capacitance,
which limits the maximum frequency. Thus, buses are still the most common
fabric in low-end routers due to their simplicity and low cost, but not in high-end
products.

Space Division: These switches present several paths between inputs and
outputs. This parallelism allows the transmission of several cells simultaneously,
thus highly increasing the maximum throughput of the switch. They are, there-
fore, the architecture of choice for modern high-speed routers. Two variants
exist: Single-path and multiple-path space division switches. Single-path
fabrics present only one path between any input-output pair. The second class
disposes of several paths between any two interfaces.

The most common representative of the single-path family is the crossbar.
It is basically an array of crosspoints, that are connected or left open according
to the desired connectivity. It is a very common choice, for its simplicity, good

3Here, multicast refers to the necessity of replicating packets inside of a switch, no matter
for what purpose. Layer 2 switches, for example, routinely perform this task when forwarding
frames to an unknown destination, independently of the higher layer packet being unicast or
multicast. ARP is another example of layer 2 multicasting. In this case, ARP requests are
explicitly broadcast to every possible recipient, and are also replicated inside of the switch.

Chapter 2. The Role of Routers in IP Networks 22

scalability, modularity and the fact of being intrinsically nonblocking. It presents
two main drawbacks, however: First, it scales with the square of the number of
ports, thus setting an upper limit on them, albeit high. Second, an allocation
algorithm is needed, which decides on the most efficient crossbar configuration,
according to the cells presented by the inputs and the state of the outputs. This
is a complex task, especially at high speed. Nevertheless, centralized as well as
distributed allocators exist for multigigabit routers.

Banyan networks represent a second subcategory of single-path switches. Al-
though self-routing and scalable in terms of complexity (even better than cross-
bars), they present the clear drawback of being blocking switches, their perfor-
mance decreasing quickly with size.

The multiple-path subcategory presents a variation of the Banyan network,
the augmented Banyan fabric. With the help of more stages in the fabric, multiple
paths between any two interfaces are introduced. They share nevertheless the
blocking drawback of all Banyan networks and add additional delay and routing
complexity.

3-stage Clos networks, on the other hand, are strictly nonblocking and have
a moderate complexity, which implies a good scaling property with the number
of ports. However, the nonblocking characteristic is achieved at the price of
rearranging the cells prior to transferring them through the fabric, which is a
complex, time-consuming task.

The two last exponents of this family can also be seen as add-ons to most other
designs. The multiplane switch simply replicates any previously cited structure
and sets them in parallel, so as to increase the overall throughput of the system.

The recirculation switch reinserts cells blocked by the output contention prob-
lem into the fabric input by using dedicated interfaces for this purpose. This cer-
tainly reduces the cell loss ratio in the fabric. But besides reducing the number
of true I/O ports, it presents the risk of out-of-order delivery of cells belonging
to the same packet stream or even to the same packet, if fragmentation was used
inside the router. This substantially increases the complexity of the control logic.

Summarizing, the two most commonly used switch structures nowadays are
the bus, for low-end products, and the crossbar for high-throughput switches,
often in a multiplane structure. The first approach is simple and cheap, while
the second is simple, sufficiently scalable with the number of ports, nonblocking
and presents a very high aggregate throughput. However, a new kind of switch
is emerging: The optical switch [KCY+03]. Conceptually, it can be designed
according to any of the schemes described above. Its main difference is the use
of optical instead of electrical paths inside of the switch. Its main advantages
are reduced power dissipation and consumption, enhanced scalability and the
possibility to remove the need for an allocator.

Still, even nonblocking switches have to introduce some sort of buffering to
deal with the output port contention problem or use recirculation, which, as has
been seen, presents important drawbacks. The first approach consists in placing

Chapter 2. The Role of Routers in IP Networks 23

the buffers at the output interfaces. In order to solve the contention problem, the
switching fabric has to be able to forward up to N cells to the same output within
one clock cycle, and the output buffer has to be able to store them in the same
amount of time. This is referred to as a speedup of N, meaning that fabric and
buffers have to run N times faster than the input ports. For high-speed routers,
achieving a speedup of N is technologically unfeasible, memory access times for
the buffers being the final limiting factor.

The alternative consists in placing buffer capacity at the inputs and adding
an allocator instance, that chooses the optimal constellation of input cells to be
transferred in a switching cycle, in order to maximize the throughput [McK95],
[CGMP99]. As stated above, high-speed, high-density4 routers need very fast
and very complex allocation strategies. In order to achieve sufficient conver-
gence speeds, heuristics are used, that try to come up with a suboptimal and
yet acceptable cell constellation within the time bound. As line speeds increase,
allocators become a bottleneck in switch throughput. Besides, variable length
packets present an additional challenge: The time necessary to switch them is
not constant, thus obligating the allocator to keep track of paths occupied by un-
finished packets in every new computation cycle. Since this highly increases the
allocator complexity, packet fragmentation in fix-sized cells is usually employed.

Input-buffered switches present an additional drawback: The HOL blocking
problem. In order to solve it, VOQ was introduced [McK95]. Basically, the in-
put buffers are divided in as many FIFO queues as output ports. Cells destined
to a certain outgoing interface are stored in the corresponding queue. In every
arbitration cycle, every queue from every input port can present a request to the
allocator. Although this increases the number of requests to be computed, the
switch utilization vastly increases. It has been proved [CGMP99], that input-
queued switches with VOQ and a moderate speedup of two can reach 100%
utilization, thus emulating output-queued switches with a speedup of N. Never-
theless, in order to perform traffic scheduling, as will be analyzed in the next
section, buffering is also needed at the output interfaces. Consequently, most
modern routers present a mixed form of input-output buffers in their switch de-
sign.

Finally, multicast support is guaranteed in most switches by introducing sep-
arate queues at the inputs for multicast traffic, so that it will not interfere with
unicast packets. Basically, a multicast packet can be forwarded across a switch
either by sending it to all its destinations at the same time, or by splitting the
transfer among a number of cycles. This last technique is known as fanout split-
ting. It has been shown to vastly reduce the mean delay time for multicast cells
[TY97].

4Routers with a large number of ports are usually referred as ”high-density” or ”highly
populated” routers.

Chapter 2. The Role of Routers in IP Networks 24

As has been seen, buffering takes place in different places in the router. Inde-
pendently of its situation, different strategies can be employed to set its size and
manage space usage within it. This is referred to as buffer management [CF98],
[FJ93], [GIGK95], [RLG98], [SLSC98]. Its global goal is the improvement of net-
work performance, which for best-effort routers, translates into minimizing buffer
overflow and packet loss. Additionally, buffer management policies also have an
impact in the delay and jitter suffered by packets. For routers supporting traffic
differentiation and QoS, therefore, buffer management has a triple impact on ex-
perienced end-to-end quality through its effect on delay, jitter and loss. Besides,
traffic differentiation implies, that the goal of minimizing packet loss and maxi-
mize network performance no longer holds: Buffer management must presently
ensure, that network utilization will be maximized while respecting the traffic
contracts of the individual packet aggregates.

2.2.5 The Traffic Pattern Conditioner

When packets arrive at the output interface, they have to be serialized in
order to be sent on the network link. Since modern routers perform traffic dif-
ferentiation, packets belonging to different aggregates will be sent with different
priority and frequency on the network. That is the task of the network scheduler.
Additionally, the router also adapts the traffic characteristics of each aggregate,
so that network utilization will be maximized and congestion avoided. This pro-
cess is known as shaping. Both tasks imply, that some packets, although arrived
at the output interface, will be held back while others with a greater priority5

are sent [Zha95]. For this purpose, they are buffered in queues prior to being
serviced. Since the granularity of differentiation can be very fine, the number of
output queues to be supported in a router can also be very large. That does not
present a technological problem nowadays. Besides, in order to keep the network
management tasks relatively simple, a tendency can be observed toward policing
large aggregates instead of flows, which means that in most cases few queues are
needed.

As was explained in the Switch section, entrance to the switching fabric (es-
pecially in input-queued or input-output-queued backplanes) already responds to
the traffic differentiation policy set by the administrator. A first scheduling and
shaping process is thus performed per input. Nevertheless, a second such process
is needed at the output links: The total amount of traffic belonging to a certain
aggregate and going out at a certain link is the sum of the packets supplied by all
inputs. That is only known at the output interface. Hence, from an overall sys-
tem perspective, link sharing according to the traffic policy can only be realized
per output in the Traffic Pattern Conditioner.

5By priority it is not meant, that a static preference is accorded to a packet or traffic
aggregate. It can well be, that a packet increases its priority during its queuing time, according
to other parameters, like e.g. the accumulated queuing delay.

Chapter 2. The Role of Routers in IP Networks 25

A number of criteria can be used to judge the goodness of a scheduling and
shaping process (also known as service discipline) [Zha95]:

q Efficiency: An important goal of any service discipline from the network
administrator’s point of view is the achievement of a high network utiliza-
tion.

q Protection: It is essential that the performance requirements of well-
behaved sources be kept, even in the presence of misbehaving users, network
load fluctuation and/or unconstrained best-effort traffic. Isolation among
aggregates must be thus guaranteed.

q Flexibility: Diverse traffic characteristics and performance requirements
must be equally well supported by the service discipline.

q Simplicity: In principle, complex algorithms might be in a better position
to reach the above mentioned objectives. However, the scheduling pro-
cess must be performed for every packet at line-speed, and thus must be
amendable to efficient implementation. Hardware-support is also desirable.
Simple although suboptimal algorithms are thus preferred.

A rich and sophisticated set of algorithms has been developed, that try to ap-
proximate the mathematically optimum result [PG93], [PG94], while reuniting
the characteristics mentioned above [Zha95]. Two main sorts of algorithms can
be distinguished: work-conserving and non work-conserving. The first sort al-
ways sends a packet to the network, if at least one queue is occupied and the
link is idle. The second class, non work-conserving, might leave a queue unserved
in the presence of an idle link, if the packets therein are deemed ineligible to be
sent. This certainly has an impact on average packet delay and jitter, as well
as the average system throughput. Nevertheless, non work-conserving strategies
have shown to be advantageous in setting lower bounds on overall network delay.
Which quality is preferred depends in part on the traffic characteristics to be
supported.

In this context, a much discussed strategy foresees the hierarchical sharing
of link bandwidth among parties [FJ95]. In this kind of strategy, every party
receives a guaranteed lower-bound on link capacity. That bandwidth is further
subdivided according to the traffic classes defined for that party. If necessary,
further recursion is possible. One of the advantages of this approach is, that
different service disciplines can be used for different traffic classes and/or users.
Thus, the bandwidth-delay requirements of every user should be better served.
Nevertheless, the interaction among different algorithms and the management
complexity of such a hierarchical structure are not negligible.

Summarizing, no universal solution has been devised for the traffic condition-
ing problem. Several algorithms are used, depending on the kind of traffic to be
served, the system characteristics and the expected user preferences.

Chapter 2. The Role of Routers in IP Networks 26

2.2.6 The Routing Unit

The main function of the routing unit is the compilation of the routing tables
to be used by the router. A routing table contains information on how to reach
any destination known by the router, as well as additional information regard-
ing that route: The distance (measured in hops, seconds or other metrics), the
Autonomous Systems traversed, a bandwidth estimation, etc. Destinations are
usually represented by a network address and its respective network mask. The
number of address bits relevant for the route estimation is referred to as a prefix.
Additionally, a routing table contains the identity of the output port to be used
to reach every destination.

A routing table contains an indication of the optimum routes only. I.e., in the
case, that several paths are possible to reach the same destination, the routing
table has to evaluate them according to a certain metric and choose the one
deemed best. The most common metric is the distance to the target, measured
as the number of routers to be traversed underway. The information concerning
all alternative routes is stored in a routing database. Should one of the optimum
routes not be usable for any reason, the database will be used to compute a new
path.

The number of routing tables in a router is not limited to one. If different
metrics are considered relevant for different uses (e.g., for special traffic classes,
like delay or jitter for real-time streams) or for different destinations (e.g. all
packets addressed to the IBM corporation shall traverse partner networks only),
several routing tables can be computed. It corresponds to the system manager
to configure the Packet Classifier in such a way, that the right table will be used
in every case.

Two elements are needed to compute a routing table: Information concern-
ing destinations and how to reach them, and an algorithm to calculate what is
considered optimum under some point of view, like e.g. the shortest path to the
target. Both elements are provided by the routing protocols. On the one hand,
a routing protocol controls the exchange of routing information among routers.
Every router sends its information to all of its neighbors, which in turn add their
own knowledge, summarize the total information and pass it on to their neigh-
bors. On the other hand, every routing protocol implements a routing algorithm,
in charge of calculating the best routes according to the metric chosen. The
two algorithms used in commercial routers are the Bellman-Ford algorithm and
the Dijkstra algorithm [Com00]. Nevertheless, other algorithms exist. Of special
interest are the attempts to take more than one metric into account (so-called
constraint-based routing [CNRS98]). However, it is known, that a multidimen-
sional optimization problem is a mathematically hard problem. Although many
approximations and heuristics have been tried, the inherent complexity of the
algorithm plus the management complexity of using it in today’s networks have
relegated them to mere academic exercises.

Chapter 2. The Role of Routers in IP Networks 27

Routing protocols, thus, generate the information used for building the rout-
ing tables. For the Packet Classifier to take a forwarding decision, though, the
only relevant information is the prefix to search for and the corresponding out-
going interface. Furthermore, according to the specific lookup (search) algorithm
employed, that information must be organized in a convenient way (a certain sort
of tree, say, or a bit vector structure). Hence, the Routing Unit must synthe-
size the content of the routing tables into so-called forwarding tables, which are
then downloaded into the Packet Classifiers. The table update is logically also a
Routing Unit task, to be performed asynchronously, every time a change in the
routing table occurs.

Routing protocols are software units, which typically run on a general purpose
processor. The Routing Unit is thus basically a general purpose processor with
specialized software.

2.2.7 The Management Unit

The last module present in Fig. 2.3 is the Management Unit. It veils for the
smooth operation of all other modules, as well as the communication of router
status information to a centralized network management infrastructure. Typi-
cally, the events that are of interest for the management infrastructure are those
related to performance monitoring, accounting, configuration control and fault
detection, isolation and correction. To that end, the Node Management Archi-
tecture, realized through the Node Configuration Unit, collects and maintains
information about those events, provides them to the network management and
responds to manager commands regarding changes in the router configuration.
The communication with the centralized management infrastructure, as well as
with other networking elements for the purpose of fault management (ICMP, e.g.)
is realized by a number of signaling protocols. The most widespread protocol is
SNMP [Sta98a], [Sta98b].

Additionally, the Management Unit is in charge of processing those packets,
that, although deemed correct by the Packet Classifier, can not be associated
to any existing packet aggregate (including best-effort) or require some form of
special treatment. Examples of those packets are management datagrams them-
selves, sent by a signaling protocol, or reservation requests sent by means of
RSVP, packets belonging to unknown protocols, etc. The Management Unit
typically is realized in a general purpose processor, in which a richer variety
of protocols can be supported than in other highly specific router modules. In
exchange, the time taken to process such packets is orders of magnitude larger
than in the default (hardware-supported) data processing path. That is why this
second way is usually referred as the ”slow path” of the router. Since manage-
ment tasks are usually not time-critical and seldom events, performance is not
a problem, as long as few data packets take the slow path. A possible network

Chapter 2. The Role of Routers in IP Networks 28

attack consists in overflowing the Management Unit with formally correct yet
bogus packets, that have to be processed by this module.

The modules described here correspond to a logical grouping of the multiple
tasks, that any modern router has to cope with. And still, as has been seen, there
are a number of design possibilities and trade-offs in their physical realization.
The next section will describe how those trade-offs have been resolved through
the last 25 years.

2.3 Evolution of Router Architectures

In the previous section, the main architectural trade-offs in router design
have been exposed. At present, the evolution in router architectures will be
explained through its main design decisions. Finally, the present design choices
will be highlighted and their shortcomings regarding functional flexibility will be
introduced.

2.3.1 First Generation: Single Processor, Shared Bus

Basically, commercial routers are composed of only three modules: A num-
ber of interface cards6, containing the ports that connect the router to different
transport links, some form of backplane to interconnect them and a controller
unit to perform the software tasks (mainly routing and management). Never-
theless, which functions have been taken up by which unit has greatly changed
through time [KLS98], [Awe01], [Par98].

CPU Memory

DMA

Interface
Card

MAC

DMA

Interface
Card

MAC

DMA

Interface
Card

MAC

Figure 2.4: 1st Generation Router: Single Processor, Shared Bus

6Interface cards are also known as ”line cards”, ”network cards” or even ”ports”.

Chapter 2. The Role of Routers in IP Networks 29

Since routers are expensive equipment and simultaneously critical for data
transport, they have to consistently provide reliability and performance under
extreme working conditions. One paramount goal of router design, hence, is to
provide constant high throughput independently of traffic pattern arrival.

Up until the last eighties/early nineties, routers where built around a central
CPU, which performed all the tasks (s. Fig. 2.4). The router was eminently a
software instance, where a number of extremely simple interface cards forwarded
all packets to the CPU for processing. Additionally, the CPU realized all the
routing and management functions described in the previous section. While the
routing decision was taking place, packets were usually stored in a centralized
memory, controlled by the CPU. Hence, any packet coming into the router had to
cross the internal bus twice, one to be transported to the CPU and a second time
to be sent to its destination output card. With increasing network capacity, the
scalability problems of this first router generation are centered on: The internal
bus, which, as has been seen in section 2.2, has limited throughput scalability and
the CPU. With increasing traffic and thus processing burden, the need arose to
distribute the processing among several instances and away from a single software
unit.

2.3.2 Second Generation: Cache-supported Interfaces, Shared Bus

Around the mid 90s, a new router architecture had been established. Its main
goal was to increase the processing power inside of the switch, while reducing the
effect of a slow internal bus. To that end, two main innovations were introduced:
Caches and multiple packet processors (generally referred to as ”forwarding en-
gines”), s. Fig. 2.5.

The most common innovation was the introduction of some processing power
on every interface, mainly to operate a local cache. Furthermore, several ports
were packed on every card. The idea was to keep a cache of recently seen ad-
dresses and the respective outgoing interfaces, so that packets would not have to
be sent to the main CPU for processing. Additionally, by supporting multiple
ports per card, a fraction of traffic could be routed without leaving the line card.
The main insight behind these decision was traffic locality: The fact that, due to
the packet train effect [PCB+98], there was a high probability of seeing packets
addressed to the same destination within a short period of time. Assuming that
a cache hit was considerably less costly that a full route lookup, routing deci-
sions could be accelerated. This solution worked well for some time. It could
not hold forever, though, for the following reasons: First, caches have to be built
and updated. The cost of thrashing the cache was very high. With increasingly
frequent changes in the routing tables due to an ever expanding, highly dynamic
Internet, cache update became costly. Furthermore, caches make only sense if
the hit rate is sufficiently high and if its cost is notably less than a full lookup.
As has been expressed before, advances in lookup algorithm design reduced the

Chapter 2. The Role of Routers in IP Networks 30

CPU
Forwarding

DMA

Interface
Cards

MAC

Engine
Forwarding

Engine
Forwarding

Engine

Route
Cache

Memory

DMA

MAC

Route
Cache

Memory

DMA

MAC

Route
Cache

Memory

Figure 2.5: 2nd Generation Router: Cache-supported Interfaces, Shared Bus

appeal of caches. Besides, higher network capacities also meant, that the num-
ber of active flows per router increased, thus reducing the cache hit probability
[TMW97]. In any case, cache efficiency is traffic pattern dependent, which is a
severe disadvantage. Hence, although caches are still useful, the exploitation of
traffic locality alone to achieve higher throughput does not suffice.

A parallel evolution was the replication of processing capacity: The intro-
duction of pools of forwarding engines. These modules would realize mainly full
route lookups and other tasks (like sanity checks, CRC update or TTL decre-
ment). Packet headers would then be sent over the bus to one of these engines,
which would answer the requesting card with the desired destination interface.
The packet, which had been buffered in the card, would then be sent directly to
the output interface, thus reducing the burden on the bus. Nevertheless, with
increasing throughput demands, the bus remained a bottleneck.

2.3.3 Third Generation: Fully Distributed Processing, Switching
Fabric

In the last ten years, a new router design has come to dominate the high-
end product offering. The two original bottlenecks (internal bus and centralized
processing) were eliminated through the introduction of switching fabrics and
fully distributed packet processing. On top of that, support for a bunch of new
tasks (QoS, firewalling and the like) was added.

The scalability limits of the internal bus were by then evident. There was
a necessity to introduce parallel forwarding capabilities between any two input-
output interfaces. With the success of ATM switch design, the solution was at

Chapter 2. The Role of Routers in IP Networks 31

hand: Most modern routers use switching techniques derived from those employed
in ATM. The remaining bottleneck, thus, was packet processing.

Routing &

Forwarding
Engine

Forwarding
Engine

Forwarding
Engine

Forwarding
Engine

Forwarding
Engine

Forwarding
Engine

Switching Fabric

Management
Processor

Controller
Card

Interface
Cards

Figure 2.6: 3rd Generation Router: Fully Distributed Parallel Processors, Switching Fabric

The solution employed was the introduction of packet processing on a per-
card basis. Full forwarding engines, performing all tasks of data packet process-
ing, were introduced on every multiport card. Caches lost part of their appeal
in front of massively parallelized engines, with specialized modules to perform
the different router functions: lookups, sanity checks, scheduling, etc. These
tasks, divided into very small and repetitive operations, were highly amendable
to hardware support, thus increasing performance yet again. Nowadays, most
data plane operations are realized with hardware support. The controller card
remains responsible for the generation of routing tables and for the management
tasks. Every engine receives a full forwarding table, and updates are usually re-
alized via hot-swapping memory banks. New modules have been introduced in
the cards to take care of emerging operations like packet filtering, access control,
scheduling, encryption, etc. The architecture of choice at present is depicted in
Fig. 2.6 and can be found in such commercial products as the Cisco 12000 [Cisb],
[Cisc], [Cisd] or Juniper’s T640 [Juna], [Junb].

In spite of all evolutions, routers remain essentially closed, highly special-
ized systems. This provides reliability and high performance, but at the cost of
flexibility. The last 5-10 years have witnessed a tremendous expansion in rout-
ing functionality, which has obligated router vendors to constant architecture
redesigns and network operators to costly hardware and software updates. In
times of crisis, such investments are highly unwelcome. A search for increased
functional flexibility and adaptability started, which was pioneered by the Ac-

Chapter 2. The Role of Routers in IP Networks 32

tive and Programmable Network research community. But before exploring their
proposals for increased flexibility, a short revision of the router types and their
special requirements should be offered.

2.4 Router Types

Not every commercial router supports the broad set of mechanisms described
in Section 2.1. Depending on the application scenario, the requirements and
boundary conditions change. In this section, the three main scenarios in which
routers are employed will be described, as well as the resulting typical equipment
configurations.

2.4.1 Core Routers

Core routers are also referred to as ”backbone” or ”high-end” routers. They
are placed inside of the main backbone networks. They accordingly intercon-
nect links at the highest aggregation levels, typically several tens to hundreds
of Gbps. In this scenario, routers have a reduced set of high-capacity ports and
typically support only one technology: Either IP over ATM, or IP over Frame
Relay or (increasingly) Packet over SDH/WDM. Since they transport the bulk of
internetworking traffic, twin paramount requirements are reliability and through-
put. The first is achieved by means of dual power sources, module replication,
protection, etc. The second is achieved by reducing the functionality to its min-
imum expression: Typically, backbone routers support a reduced set of routing
and management protocols and perform no additional task besides simple packet
forwarding (i.e., they do not perform packet filtering, firewalling or encryption).
Nevertheless, they do have to support traffic differentiation, albeit in general in
the form of a few large aggregates. Because of their strict requirements and large
customer base served, price plays only a relative role in their purchase. It is in
this scenario where full-fledged third generation routers can be found.

2.4.2 Edge Routers

Edge (or ”Enterprise”) Routers serve in two main scenarios: Either as inter-
faces between large backbones and smaller ISPs, or as interface between ISPs and
large corporations. They can also be found performing a dual role as core/edge
routers in medium sized corporations, that prefer a unified solution to a number
of specialized appliances. Depending on the concrete environment, edge routers
must provide a large number of ports to interconnect branch offices, smaller ISPs
or even SMEs. Furthermore, a broad spectrum of (legacy) technologies must be
supported, as well as different granularities for every technology. Because of this
environmental heterogeneity, also a large number of protocols and services must
be supported. On top of that, QoS and traffic differentiation usually depend on
edge router processing prior to accepting traffic into the backbone. Flexibility

Chapter 2. The Role of Routers in IP Networks 33

and a very broad service palette are thus the most critical requirements for en-
terprise routers. Nevertheless, price plays a big role in this market segment, since
the customer base is much smaller than in core routers. Since the number of
ports is large, an interface card cost as low as possible is mandatory.

The usual form of such routers floats between the second and third generations
explained before. Performance is indeed a requirement, but falls at least an
order of magnitude below backbone routers. Their distinctive characteristic is a
large number of additional and specialized software and hardware modules, to
implement the set of value-added services required in this environment: VPN,
encryption, firewalling, web- and mail-filters, proxying, NAT, etc. Processing
power is thus more important than forwarding capacity.

2.4.3 Access Routers

This ”low-end” routers interconnect final users with their ISPs. Tradition-
ally, they were little more than modem concentrators, directing traffic to an
edge router. However, the sharp increase in broadband access technologies has
forced more forwarding power and functionality into this segment. The hosting
of value-added services into these routers has obligated to upgrade their capa-
bilities. Nevertheless, their main requirement is still to remain cheap. It can
be envisioned a convergence in functionality toward the edge router, especially if
broadband access becomes commonplace. At the moment, though, they are still
the last reduct of the first generation router, where a pure centralized software
solution takes the whole processing burden.

SOHO routers are the last step in the router hierarchy. They are the counter-
part of the access router in the end-user’s home. Although they are taking up an
increasing functionality (firewalling, packet filtering and VPNs, especially), they
remain very simple devices: A few Fast Ethernet interfaces for internal use, an
ISDN or DSL uplink and a software processor.

2.5 Router Technologies

To realize the ”intelligence” or the processing elements in routers, four dif-
ferent technologies can be found as main building blocks: Application Specific
Integrated Circuits (ASICs), General Purpose Processors (GPPs), Network Pro-
cessors (NPs) and Field Programmable Gate Arrays (FPGAs). They represent
different choices in the trade-off between performance, flexibility and cost. Ac-
cordingly, these technologies find their use in the different scenarios described in
section 2.4: The access, edge and core routers. In this section, the nature of the
trade-off mentioned above will be explored.

Chapter 2. The Role of Routers in IP Networks 34

2.5.1 ASIC

ASICs and GPPs represent the two extremes in the performance vs. flexibility
trade-off (s. Fig. 2.7). ASICs are the result of a careful design in order to obtain
the fastest possible circuit to realize a certain well-defined function. To that end,
the classical advantages of hardware systems are exploited, mainly parallelism
and pipelining. Such application-specific circuits are consequently several orders
of magnitude faster than the equivalent realization in software. Because of their
hardware nature, however, these circuits are absolutely inflexible: No functional
adaptation is possible. Accordingly, these circuits are not suitable for the real-
ization of non-mature functions (i.e., those which are still in the standardization
process). It also makes updates extremely expensive, since the chip has to be
substituted. Such upgrades follow the natural evolution of service development,
though, since every new release usually brings modifications and extensions to the
original functionality. Furthermore, correcting bugs is also an impossible mission
in ASIC design, once the fabrication process has started.

In general, hardware systems are well suited for the realization of repetitive,
bitwise, processing-intensive tasks with limited variability. This derives from the
intrinsic characteristics of hardware designs: Every new branch in a task has to
be realized as an additional circuit, no matter how often it is called. Thus, high
variability implies high resource usage and high cost. On the other hand, repeti-
tive bitwise operations allow for a high degree of parallelism and pipelining with
limited resources, presenting the optimum use of hardware systems. Accordingly,
ASICs are not well suited for control plane functions.

The design of an ASIC mask is a long process, which is a drawback in times
of ever increasing competition and pressure to bring new products to the market.
The consequences of buggy or otherwise non-compliant designs furthermore in-
crease the number and complexity of tests to be performed prior to fabrication.
As a consequence, ASICs are a technology only adequate for mature, established
functions, which can be used in hundreds of thousands or even millions of iden-
tical chips, so that the investment will pay off. ASICs can be found basically in
the data plane of core routers, where performance is the most critical parameter.

2.5.2 General Purpose Processors

At the other extreme of the scale GPPs can be found. They present the
standard in programmability and, even more importantly (as will be seen in the
discussion about NPs and FPGAs), GPPs are easy to program. Furthermore, a
large community of professionals exist, which master the software skills used in
their programming. Accordingly, the development of software-based networking
solutions is, relatively speaking, an unproblematic and cheap task. Neverthe-
less, GPPs present a clear bottleneck in terms of performance: In principle, all
tasks related with packet processing would have to be realized by the GPP. They
contain usually only one or two processors, which presents a limited field for par-

Chapter 2. The Role of Routers in IP Networks 35

allelism even in the presence of multi-threading techniques. Context-switching,
to configure the CPU with the necessary state for every application is a heavy
overhead, as well as the successive software layers on top of the hardware, which
add abstraction (and thus easiness of programming) as well as delay. Access to
peripheral elements, like interfaces or memory, also add latency to data process-
ing. As a consequence, GPPs are usually only employed to realize the control
plane of modern nodes, since the control plane presents the most variability and
complexity. Only access routers, where the price is the discriminating factor, use
software solutions in the data plane.

2.5.3 Network Processors & FPGA

It is precisely between the two extreme positions represented by ASICs and
GPPs, that the most interesting developments in router technology can be ob-
served nowadays. Especially for the edge domain, although increasingly also in
the access (as price decreases and performance requirement increases) and the
core (as the performance gap with ASICs decrease and the need for flexibility in-
creases), two competing technologies are found: NPs and FPGAs. As represented
in Fig. 2.7, they combine a high degree of programmability with increasingly high
performance, thus simplifying the trade-off exposed at the beginning of this sec-
tion.

GPP

ASIC

F
le

x
ib

il
it

y

Performance

NP

FPGA

Hybrid

Figure 2.7: Performance vs. Flexibility in Router Technologies.

Network Processors are typically multi-processor systems [Eng03], [PC03],
[VCY03]. They include a GPP, for the realization of complex, non-performance
critical tasks, and a number of small processing elements, alternatively known as
micro engines, pico processors, etc. These micro engines are in principle small
versions of a GPP, but with a networking-adapted microinstruction code and

Chapter 2. The Role of Routers in IP Networks 36

without intermediate software layers (generally not even an Operating System).
The main rationale is the distribution of the data plane packet processing tasks
among the micro engines, either in a parallel or pipelined structure. The first
variation allows for the simultaneous processing of several packets, where every
micro engine performs all tasks. The second allows for the distribution of the
processing in several steps, so that every processor is specialized in one of them.
Also in this case several packets can be simultaneously processed.

As can be seen, the main motivation for network processors is to achieve the
advantages of classical hardware systems without sacrificing flexibility. Neverthe-
less, in order to achieve high throughput, a detailed knowledge of the exact NP
architecture is mandatory: The programmer usually has to distribute the origi-
nal application in a number of parallelizable operations, which is a complex task.
Furthermore, those operations have to be described in the most efficient way for
the exact micro engine architecture, which usually implies writing it directly in
assembler. Additionally, the application has to be distributed along the processor
hierarchy (GPP, micro engines), which brings along a communication overhead
and additional complexity. Although NPs are still software systems, they are
difficult and burdensome to program and need special skills [Her01]. Scheduling
tasks among processors, so that they will all be doing useful processing most of
the time is a non-trivial task [WPF03].

A limiting factor in NP performance is the access to peripheral elements, as
in GPPs. Among them, memory is the most critical [McK04], [ABC+03]. In
order to hide the latency incurred in accessing off-chip memory (where typically
packets and state will be stored), multi-threading is used in the micro engines:
While a thread is blocked waiting for data to be fetched, another thread makes
use of the processor cycles. This goes a long way in reducing the effect of latency,
but it still represents a limiting factor, since networking is a very data-intensive
domain.

In spite of its multi-processor architecture, NPs are still basically general pur-
pose software systems. Processing-intensive tasks, like encryption, are still better
realized in hardware, due to their inherent parallelism and heavy bit-shuffling
characteristics. To that end, most NPs include dedicated hardware-based co-
processors that perform these kinds of task: Address lookup, encryption, pattern-
matching and related functions are common occurrences. This co-processors are
implemented in ASICs or FPGAs.

FPGA-based systems present the complementary approach to NPs. FP-
GAs are composed of an array of logic blocks placed in an infrastructure of in-
terconnections [Sik01], [Wan98]. Both the logic blocks and the interconnections
can be configured. The first represent a basic logic function (i.e., ”A • B + C”),
while the interconnections transport the results of a logic block to another one.
Consequently, an FPGA, which includes thousands of such logic blocks, can im-
plement very complex logical functions. Additionally, modern FPGAs include
complementary elements on-chip: memory blocks and interfaces are the most

Chapter 2. The Role of Routers in IP Networks 37

common ones [Altc]. An increasingly frequent occurrence is the introduction of
so-called ”microprocessor cores” [Altb]: Synthesized functions, which provide the
functionality of small processors, exactly as micro engines do. Alternatively to
these ”soft cores”, ”hard cores” are GPPs pressed on the same FPGA chip, with
integrated interfaces to it [Alta], [Xil]. This reduces greatly the communication
overhead between the GPP and the logic, in the same way that on-chip memory
reduces the access latency. As a consequence, FPGAs provide an attractive al-
ternative to NPs in exactly the same segment. The main difference between the
two is the role given to pure hardware design: In NPs, software is still the tool of
choice to program the functionality, even if it is in a hardware-close language like
assembler. In FPGA-based systems, the logic is directly designed using hardware
description languages like VHDL or Verilog, which are intrinsically adapted to
realizing parallel processing and pipelining.

The drawbacks of FPGA-based systems are not unlike those of NPs: The par-
allelization and pipelining of complex tasks is a burdensome issue which implies
a long design cycle. On top of that, the pool of programmers with VHDL or
Verilog knowledge is much smaller than for C or even assembler. Even with the
introduction of on-chip memory, most systems require external banks to be used
as packet buffers. Bringing data in and out of an FPGA is as costly as in a NP.
Still, when performance is a dominant issue, FPGA-based systems are the more
powerful solution, while keeping absolute flexibility.

The edge segment is thus living a technological revolution. An increased push
for more flexibility and functionality, while keeping up with performance has
provoked the emergence of NPs and FPGA-based architectures. A clear trend can
be seen to the inclusion of hybrid systems, that combine both elements to some
degree. Many specialized products have emerged for different niche applications,
which in some form try to merge the flexibility of software systems with the
performance of hardware designs. These hybrid approaches will certainly claim
an increasing market segment in the future.

3 Related Work

In this chapter, the previous work most related to the ideas presented in
this Thesis will be reviewed. Essentially, three main fields are concerned: The
area of Active & Programmable Networks, which lies at the heart of the Thesis’
motivation, is the first one. Security in hardware programmable systems, which
sets a number of boundary conditions and requirements to the design presented
in chapters 4, 5 and 6 is the second. Lastly, the fundamentals of QoS in the
networking environment will be explored, as well as the most prominent proposals
in the area.

3.1 Active & Programmable Networks

Since the field of Active & Programmable Networks has seen an explosion
of approaches in recent years, it does not seem plausible to review them all
here. An introduction to their main common characteristics and motivation,
on the one hand, and a review of the projects most relevant for the present
work, on the other, will be provided instead. Fairly comprehensive surveys of
existing proposals, including interesting analysis and comparisons, can be found
in [CMK+99], [Pso99], [TSS+97].

The rationale behind the Active & Programmable Network idea is the trans-
formation of data networks from simple bit-transporting pipes to service-aware
programmable platforms. In a sentence, Active Networks try to re-introduce ”in-
telligence” into the network, so that value-added data processing does not exclu-
sively happen on external equipment (typically end-user equipment or third-party
servers). In this context, the first and paramount goal is to simplify the develop-
ment, introduction and management of new services, that either are realized in
the network, or at least get support from it [CMK+99], [TSS+97], [Pso99]. The
underlying assumption is, that the network can realize certain services (or parts
of them) more efficiently than nodes located outside of the network. Some exam-
ples are: Distributed, dynamic network management, Virtual Private Networks,
data mining, media transcoding and web caching.

Even beyond considerations of which value-added services can take advantage
of this new paradigm, it is a fact, that modern networks are assuming an ever
increasing number of tasks. Coupled with this, the acceleration in technical evo-

38

Chapter 3. Related Work 39

lution implies, that innovation comes about in ever shorter cycles. Enterprises
compete in terms of time-to-market and life cycles shorten. The unfortunate
consequence is, that non-mature or non-stable product versions are brought to
the market, which subsequently need frequent updates, bug fixes and / or sub-
stitution, once more stable specifications or standards have been agreed upon.
Nowadays, introducing these functional changes in public networks is a long and
burdensome task, which implies manual software and hardware substitution wher-
ever an update is needed. The second main goal of Active Networking is thus to
prepare the network to efficiently accept frequent partial functionality changes,
without disturbing other services running on it.

The third objective of Active Networking concerns network management. The
increase in functionality, that modern networks have suffered, has also brought
about an increase in network management complexity. The impact of new services
on the existing infrastructure, the so-called ”feature interaction”, is always a
source of concern for network operators. The cause resides, at least partially, in
the monolithic approach to management: Every operator runs its network more
or less as a single entity, where many different services and technologies coexist.
The management must, accordingly, control them all. Active Networking takes a
different stance: It asks for open management of the individual services, so that
every service provider, or even every user can configure the network according
to his/her needs. This certainly foresees the isolation of the different services
and users from each other, so that no interference among them shall occur. The
side effect of such an approach would be, however, that the management burden
for the network operator would be greatly reduced. Only the basic functionality
would have to be directly managed by it, leaving the individual value-added
services to third-parties1.

From the point of view of the network operator, however, a number of concerns
arise: The impact of such openness on the security and safety of the network
is paramount. On top of that, a possible degradation in network performance
derived from additional functionality and the new mechanisms needed to support
such openness are an additional fear. It is against these concerns, that the Active
Network proposals have to be evaluated.

The transformation from ”passive” to ”active” networks implies furthermore
a different view of the network: It now represents an intelligent platform, which
provides three main resources to services running on it: Bandwidth, processing
power and storage. This implies abstracting the network resources at different
levels, in order to make them usable: From the data link, at the lowest level,
through the virtual router to be managed by a service operator, up to the virtual

1This would presumably transfer a large portion of the profits to the service provider, and
might therefore make it an unattractive model for the network provider. But first, most network
operators are also service providers. And second, the value of the network as a service-aware
platform would increase, making it appealing to a number of other service providers and end
users, hence increasing the network provider’s customer base.

Chapter 3. Related Work 40

network composed of all resources involved in delivering a service to a number
of users. Accordingly, the node resources have also to be abstracted, so that
they can present a homogeneous interface to the different network programmers.
Network Application Programming Interfaces (NAPI) are, hence, a critical re-
quirement of Active Networking. This NAPIs can be seen as the equivalent of
Software Development Kits (SDK) for traditional applications: They describe
the functionality offered by the network and how to use it. The idea is to pro-
vide a basic set of NAPIs, on the basis of which more complex applications and
whole virtual network architectures might be constructed (s. Fig. 3.1). Another
basic requirement is the provision of mechanisms for safe resource partitioning
among virtual networks. Otherwise, service interference and inconsistent network
configuration would follow.

HW

Node OS

HW

Node OS

Network Programming Environment

Programmable Network Architecture

Node Interfaces

Network Programming
Interfaces

Figure 3.1: Generalized Model for Programmable Networks.

Another critical point in Active Networking, derived from the network ab-
straction discussion, is the differentiation between transport hardware and con-
trol software. In the eyes of this community, the role of hardware systems is
a simple one: Accept instructions from the software, and move bits around ac-
cordingly. The whole ”intelligence” resides in the control software, in which also
more complex applications are realized. Classical AN approaches dismiss, thus,
the role of hardware and typically let its characteristics be abstracted by the
Operating System.

What most AN proposals share is then, an infrastructure for the uncoordi-
nated deployment of services in a network, with support for the transport and
installation of the code necessary for it, including safety and security architec-
tures. The management of the services is left in the hands of the service opera-
tors and/or the users. A number of variants can be found in the literature, but
most comply with this description [Cal99],[BS99], [CSZL01], [GPS+00], [KP01],
[MRLC98], [CMK+99], [TSS+97], [Pso99]. Out of this broad characterization,

Chapter 3. Related Work 41

however, two main schools have emerged: Active Networks and Programmable
Networks.

q Active Networks: Some proposals, like ANTS [WLG98] proposed a rad-
ical change of paradigm: Network nodes shall be seen as giant virtual ma-
chines, inside of which different programs would run. Every incoming active
packet, now termed ”capsule”, would accordingly transport not only a set
of data, but also the code with the functionality required to process it. The
code would be compiled in the virtual machine and would operate on the
data, prior to being sent out. Although this approach offered maximum
dynamics and granularity of operation (network functionality was changing
with every packet), it also presented strong problems in terms of perfor-
mance and security. The reasons lie at hand: Since every packet contains
code and thus a potential threat, security checks have to be applied on the
data plane, to ensure its safety. Furthermore, the complexity of applica-
tions being transported by capsules was limited by the maximum size of a
packet, thus preventing the realization of services beyond trivial operations.

q Programmable Networks: In this view, active packets are still supported
by many proposals, but more complex applications are stored in reposito-
ries. These applications can reside locally on the node or be downloaded
from an external repository, either on-demand (triggered by the arrival of
a packet, that needs such functionality) or a priori, according to some
scheduling algorithm. The main difference, besides supporting bigger ap-
plications, is the separation between ”minor” and ”major” functionality
changes, especially in terms of their security implications. Bigger applica-
tions imply a bigger risk for the safety of the node, since they represent an
important alteration of its functionality. Hence, more heavyweight security
checks should be performed on them. This can happen before download
or activation, thus, precluding performance degradation in the data plane.
Smaller applications, that can be transported in active packets have a lim-
ited scope of action and they can be efficiently controlled by limiting their
capabilities through Access Control. Only lightweight checks are necessary.
In some approaches, even different programming languages were developed
for both kinds of programs.

Most projects in the field of A&PN share a common node architecture, as
defined in [Cal99]. The model, reproduced in Fig. 3.2, consists of four main ele-
ments: Active Applications, Execution Environments, a Node Operating System
and a hardware platform.

The Active Applications (AAs) represent the actual services being imple-
mented in the node. Typically, they are executed in controlled runtime environ-
ments, called Execution Environments (EEs). They are similar to the virtual
machine concept: EEs control the access to common resources by the AAs, that

Chapter 3. Related Work 42

AA

EE

AA

EE

NodeOS

HW

Figure 3.2: The Canonical Active Node Architecture.

run on it. In this sense, AAs are equivalent to Applets in Java. Several EEs can
be simultaneously active in a node, provided that they all respect the interface
with the NodeOS. Every service provider, for example, might develop its own EE
optimized for its applications and download it into the nodes, in which they run.
This is the reason why the ultimate node resource management has to be real-
ized by the NodeOS. Analogously to the EE, the NodeOS controls access to the
actual node resources (CPU, memory, interfaces, etc.) by the EEs. In this way,
interference among EEs is prevented. Otherwise, its tasks are the usual ones for
a networking operating system, with one capital exception: It presents a strongly
abstracted view of the hardware resources to the EEs, so that portability and
usability of networking AAs is increased. Typically, resources are summarized
in four categories: Threads (computation), channels (bandwidth), memory and
flows (data paths). Direct access by the EEs to the hardware resources is thus
precluded for usability as well as security reasons.

In spite of all the efforts, though, the unsolved problem for both Active and
Programmable Networks is how to solve the performance vs security vs openness
trade-off. Typically, existing proposals achieve a good score on at most two of
them. This obviously represents a strong drawback for its successful introduction
in public networks.

A number of proposals have strongly influenced the work in this Thesis. Some
present a commitment to performance and flexibility, like the work under direc-
tion of Prof. Zitterbart. Others try to combine strong security with performance,
like the joint work at the Washington University in St. Louis and the ETH
Zürich, or the Switchware project at the University of Pennsylvania. Resource

Chapter 3. Related Work 43

management at the network and node level is the emphasis of the Darwin project
at Carnegie Mellon. Since the design presented here borrows heavily from the
lessons learned from them, and because they exemplify the broader category of
A&PN, Annex A has been devoted to their review.

3.2 Security Implications of Mobile Code in Hardware
Systems

As was explained in the introduction, the openness proclaimed by Active and
Programmable Networks brings along acute security threats for the network op-
erator. The ability given to third parties to participate in node management and
especially the introduction of Mobile Code2 into such architectures introduces a
number of additional threats to the correct network operation. This is undoubt-
edly one of the main reasons, why Active Networks have not achieved widespread
success. Since the proposal presented in this Thesis also relies in open nodes
supporting Mobile Code, the nature of such threats will be analyzed in this sec-
tion. The emphasis will be put on the dangers specifically derived from the open
node management and the ability to introduce functional changes through the
download and installation of foreign code. Other threats derived from possible
attacks to the code while being transported or to the software repository are not
specific to an open node and will not be addressed here.

More concretely, it is assumed, that any code being downloaded into a node
has not been compromised (which can be enforced by using encryption, signatures
and/or hashing techniques) and that the sending source has been authenticated
and authorized to perform such a task (s. Fig. 3.3) [Kar01]. Moreover, once in-
troduced into the destination node, the code might suffer attacks from within the
node, which could turn an otherwise safe program into a threat. This possibility
arises only if the node management itself is unsafe. Because of that, the emphasis
will be set on the threats that Mobile Code implies for an otherwise well-behaved
node and on which measures can be taken to guarantee, that its safety will not
be compromised.

Under these assumptions, Mobile Code can provoke two kinds of attacks on
the hosting node [Eck01]:

q Passive Attacks: The goal of these attacks is to compromise the system con-
fidentiality: To obtain unauthorized information from the system without
altering its state. Access to memory ranges associated to other applications
is a typical example.

2The term Mobile Code refers in this context to code which is introduced into a node
dynamically. It is not meant to refer to self-transporting code, as is the case with Mobile
Software Agents or analogous technologies [Pso99]. In the context presented here, code is
retrieved and installed into a node under the control and surveillance of some (hierarchically
superior) management instance.

Chapter 3. Related Work 44

Source Node Destination Node

Mobile Code

Unsafe Transport Network

Threat to

Threat from

the Node

the Node

Figure 3.3: Threats associated with Mobile Code.

q Active Attacks: In this case, the state of the system is modified. This in-
cludes illegally modifying data stored in the node, as well as process state
or even creating new processes. Alternatively, the availability of a certain
resource might be compromised. This implies a restriction in accessing that
resource for authorized parties. A classical example could be the thrashing
of a memory interface with senseless requests, which although immediately
discarded by the memory controller, nevertheless block the memory inter-
face to other modules.

In order to protect a system from attacks, a number of techniques can be
employed:

q Access Control: The task of Access Control is a double one: On the one
side, it controls and schedules access to resources according to a set of rights
associated to every user-resource pair. On the other, it has to ensure that
the requesting units are properly identified and that their rights have not
been altered. Although this prevents resource misuse, it does not ensure,
that the application making use of it implements the functionality, which
was proclaimed by its designer. Putting it in other words, it can not guaran-
tee the safety of the code, defined as the compliance between the advertised
functionality of a module and its real functionality [Eck01]. Still, Access
Control is implemented in some form or other in all Operating Systems
and other forms of software, like virtual machines. A good example of this
technique is the widespread use of virtual memory concepts.

q Proof-Carrying Code: In order to guarantee the code safety, a relatively
novel approach consists in sending with the code a proof, that its execution
does not violate the safety policy of the receiving system [NL98]. This

Chapter 3. Related Work 45

eliminates the need for run-time checks. Nevertheless, the scalability of
this technique with the number of policies and applications is obviously a
matter of concern. In any case, in order to prove the safety of an application,
a complete specification of its functionality has to be provided. This task
could be performed with the help of formal methods. Unfortunately, a
thorough description of all possible states, that a program might reach
is a very hard task to achieve and the analysis of its compliance with a
certain safety policy is far from being trivial. Hence, this technique is not
widespread.

q Safe Programming Languages: Many attacks can be realized exploiting
security holes in the programming language itself. Never ending loops, for
example, can hang a process for ever, using up processing time in a useless
manner. To eliminate such holes, a number of projects have tried to come up
with safe programming languages [AAKS98a], [Int95]. Among others, the
characteristics of such languages include strong typing, exception handling,
transactions and no direct memory operations. The main problem with
these languages is, that they strongly restrict the functionality and the
expressiveness of the language. This reduces their usability and they enjoy
therefore little success.

As a consequence, from the above mentioned mechanisms only Access Control
is in widespread use in most modern systems. Although Access Control plays a
very important role in protecting against passive as well as active attacks, it
can not ensure the safety of the code. The possibility of ”acceptable” behavior
(from a syntactic and resource-usage point of view) which, nevertheless, results
in a malevolent attack (from a semantic point of view) is still present. It is this
semantic threat, which is mostly used by attackers: Security holes in complex
applications, configuration errors, software bugs and defective security measures
are exploited to that end. Access Control can only mitigate the effect of those
attacks, but not prevent them.

In principle, in a node providing programmability at the software as well as
at the hardware level, attacks to both software and hardware are possible. In
reality, though, software attacks dwarf hardware ones. The reasons lie at hand:
In order to perform a hardware attack, a detailed knowledge of the platform is
necessary. Furthermore, the heterogeneity in the platforms (different components,
different architectures) is much larger than for software systems. Last but not
least, access to the hardware infrastructure is usually more complex than access
to the software, since one of the typical tasks of an Operating System is precisely
to abstract (read: hide) the concrete platform details.

Software attacks are easier to perform: On the one hand, the de facto
monopoly in office software enjoyed by Microsoft presents a unitary software
platform for attackers. This monopoly is also present in the networking world,
where Cisco and its IOS play an overwhelmingly dominant role. Accordingly,

Chapter 3. Related Work 46

in the PC & Server market as well as in the networking equipment one, attack-
ers can tailor their efforts to only two platforms and be sure, that their efforts
will have a broad effect. On the other hand, as stated above, software controls
the functionality of the whole platform, hardware included. Hence, exploiting a
software bug can have disastrous consequences even at the hardware level.

In the face of these threats, a number of security architectures for Active
Networks and Active Nodes exist [MLP+01], [Kar01], [LYR02], [AMK+01]. They
all share a set of common goals and techniques, which will only be mentioned
here. The goals they pursue with respect to securing the node against malicious
mobile code are:

q Isolation among service providers: Assuming, that several service providers
will share a common platform (a programmable node) to run their services,
it is of capital importance, that they will not interfere with each other.
Their individual levels of QoS have to be kept, and passive and active
attacks by a service provider against the others have to be blocked.

q Isolation among services: Arguably, from the point of view of the node, it
is irrelevant, whether two services pertaining to the same service provider
and running on the same platform interfere with each other, as long as they
do not affect foreign applications. Nevertheless, most security architectures
try to come up with mechanisms to provide inter-service isolation in all
cases.

q Enforcement of resource usage agreements: As stated above, individual QoS
levels have been agreed upon a priori. It is the role of the security architec-
ture to enforce such agreements, not only to prevent resource misuse, but
also to provide for a coherent accounting.

q Node protection against unexpected service behavior: From the point of
view of the network operator, the fundamental requirement of a security
framework is the maintenance of node integrity. On the one hand, the node
shall keep on working uninterrupted in the presence of any unexpected
service operation. On the other hand, furthermore, the performance and
safety of the node itself shall not be endangered thereby. Otherwise, the
network operator would effectively lose control of its network, putting its
reliability at risk. This is, without doubt, the main reason behind the lack
of success for Active Networking: The fear of unreliable network behavior
by the network operators, in spite of the different security proposals.

As stated in the previous section, the proposals found in the literature rely on a
combination of 3 approaches to guarantee these goals: Execution Environments,
Operating Systems and Safe Languages. Basically, all these proposals perform
some form of Access Control, as defined above, by both the Execution Environ-
ment (for intra-operator isolation) and the Operating System (for inter-operator

Chapter 3. Related Work 47

isolation). The Execution Environment has a Virtual Machine-like role, while the
Operating System regulates access to low-level node resources, that are shared
by all applications. Since most Active Network architectures are pure software
designs, in which the hardware resources are abstracted by the OS, their secu-
rity architectures do not contemplate providing extra mechanisms directly at the
hardware level.

Nevertheless, programmability at the hardware level presents a different
panorama in which additional security threats are possible. As will be explained
in Chapter 4, the design presented in this Thesis provides the operator with a
platform within the node for the deployment of hardware applications, so that
the performance requirements of modern networks can be kept up with. The evo-
lution of IC technology in recent years makes this possible. The evolution in chip
size, on-chip memory and gate density opened the door to the integration of whole
systems on a single chip (SoC), thus facilitating the translation of whole tasks to
the hardware domain. At present, the sustained development in VLSI technology
allows to go one step further: The advent of Multiple-Systems-on-a-Chip (MSoC).
In this context, companies are specializing in developing system building blocks
to be integrated in bigger designs. Clear examples of these so-called Intellectual
Property (IPs) blocks are memory controllers, interfaces, serializer-deserializers,
etc.

As a consequence, complex systems consist of an amalgam of third-party and
in-house developed blocks. The interaction among them is a source of possible
conflict, since the system integrator has no access to the details of the IPs, which
are delivered as ”executables”: Synthesized VHDL code with an interface descrip-
tion for compatibility. I.e.: Future chips could host several independent systems,
composed of partially unknown and uncontrollable modules, which will never-
theless have to share a common pool of off-chip resources (memory banks, I/O,
buses, etc). In this context of shared ICs, a number of threats to the hardware
integrity suddenly become relevant.

The main difference to software attacks is the additional possibility to perform
attacks at the electrical signal level [Had99]. The trick here is to provoke high
currents in selected interconnection entities inside the chip, which can provoke
the physical destruction of the hardware. This is possible even with restricted
information about the hardware platform: It suffices with access to some I/O
pins. Assuming, that they are used to interconnect the chip to some external
data source, like a memory bank, by simply configuring them as output instead
of input pins such currents will occur due to the mismatching electrical levels set
at both ends. Although the destruction of the platform can not be guaranteed,
the risk of damage and/or overheating is greatly increased. This new kind of
threat can be downplayed (although not completely solved) by performing code
sanity checks prior to installation. In such checks, the logical configuration of
the interconnection entities are validated prior to installation. If these tests are

Chapter 3. Related Work 48

performed off-line, they do not necessarily represent an additional latency in the
integration of new functionality to a programmable system.

A second class of hardware threat are attacks at the logical signal level. In
those cases, signals are generated, which although electrically correct, make no
sense for the rest of the system. The goal is to drive the system into an unpre-
dictable state. In order to prevent such attacks, a thorough testing with known
test vectors would be necessary prior to installation in the hosting system. As
with Proof-Carrying Code, exhaustive testing is close to impossible for similar
reasons.

The last type of threat intrinsic to programmable hardware systems are anal-
ogous to classical software threats: A valid operation cycle, from the electrical as
well as from the logical point of view, is used to perform a malicious task. The
dangers and mechanisms to reduce them are basically the same as for software
systems.

In principle, it could be argued, that sufficiently strong surveillance by the
OS should suffice to ensure adequate security. The problem with that argument
is threefold:

q Hardware abstraction hits performance: The reason why certain functions
are realized in hardware is basically to achieve better performance. To
that purpose, the details of the platform have to be known to the de-
signer, so that the solution proposed takes advantage of its characteristics.
If such details are obscured by the OS, the advantages of hardware design
are strongly diminished. As a consequence, hardware programmability only
makes sense, if unrestricted access to the platform is possible. Furthermore,
even to the OS many details of the concrete hardware implementation are
hidden: I.e., which I/O pins are used to access memory is not an informa-
tion, that the OS disposes of. Accordingly, a number of attacks could not
be detected or solved by the OS, since it lacks sufficient information about
their nature.

q Different time scales: In order to guarantee compliance with the security
policy in the presence of programmable hardware modules, their behavior
should be surveilled by the OS. Of particular importance is the access to
shared resources like memory, buses, peripherals, etc. Unfortunately, the
time scale relevant for these resources is orders of magnitude finer than for
software systems. As an example, the Linux OS performs a context switch
among processes every 10 ms. A hardware application trying to access an
SDRAM memory bank expects an answer in a few ns. This discrepancy
implies, that software can not effectively control hardware operations, for
any reactions to unexpected behavior would take too long to be detected
and solved.

Chapter 3. Related Work 49

q Security hole for pure hardware modules: In the presence of logic blocks
realized completely in hardware, with little or no communication with soft-
ware instances, the situation mentioned above leaves a number of security
holes open: A hardware module, whose behavior toward the software inter-
face is correct, might nevertheless misbehave at the hardware level without
possibilities for the OS to efficiently control it. This opens the door for
hardware attacks at all levels: electrical, logical and semantic.

Summarizing, the opening of network nodes to hardware programmability
brings a forgotten set of hardware threats to new relevance, which traditional
security infrastructures are not prepared to cope with. One of the aims of the
present work is to explore the possibilities to control and prevent such threats
by implementing Access Control directly a the hardware level. This will strongly
influence the design choices presented in Chapter 6.

3.3 QoS in IP Networks

The definition of Quality of Service (QoS) is a matter of some dispute
[ITU94a], [CNRS98]. In this work, and following [BDH+03], QoS will be used in
the following sense: ”A set of context-dependent (i.e. on the user and the service)
requirements to be met by the network end-to-end to provide a degree of satisfac-
tion to a user of the service”. A QoS architecture describes a structured solution
to meet those requirements. As stated by this definition, what satisfies the user
requirements depends strongly on the type of service and the user environment.
This includes parameters like technical capabilities (bandwidth, processing power
on the end user’s equipment), price and others. Nevertheless, the emphasis in
this work, as in the definition, is set on the network. It is the QoS architectures,
that have been developed for network QoS support that will be reviewed, as well
as their impact on router design. Generally speaking, because there are diverse
services and users, their requirements are best served by separating their traffic
into classes and giving them a differentiated treatment. That is the purpose of
the following two QoS architectures developed for IP networks.

There are a number of parameters that quantify QoS3, the most common of
which include total delay (caused by transport, queuing and processing), delay
variations (jitter) and consistent data throughput capacity (bandwidth). The
required level of each parameter, and thus the service level expected, is set in
a contract between the users and the network. The contract is called the Ser-
vice Level Agreement (SLA). Additionally, it includes other relevant data like
the minimum mean time between failures, actions that will be taken in case of

3As already mentioned, other parameters are equally important in the setting of a QoS level,
like the price or the disposability of the service. In this work, however, the focus will be on
the technical strategies employed in the network to ensure a certain traffic behavior. Other
techniques (i.e. economic), can be found in [BDH+03].

Chapter 3. Related Work 50

contract breach by any party, etc. This contract can be static or dynamic. In
the first case, it is set among the parties a long time prior to data transmission,
usually has a long validity and applies to large traffic aggregates. Dynamic SLAs,
on the other hand, are negotiated in the connection establishment phase and are
usually only valid for the duration of it. The granularity unit is usually the flow.

3.3.1 Integrated Services

The first approach to QoS in IP networks tried to emulate the hard guar-
antees given by the telephone network and by ATM. It was called Integrated
Services (IntServ) and its basis was the reservation of bandwidth for traffic flows
between the sender, receiver and all interconnecting routers [SB95], [Whi97],
[XN99], [BCS94]. Each flow is an individual, uni-directional data stream from
the sender to the receiver. IntServ is able to reserve resources from the source to
the destination address with the requirements of the sender’s application. There-
fore special functionality in routers and applications is necessary. It also implies
that information (”state”) about every reservation and its corresponding packets
has to be kept in every router in the path.

Since applications have different needs in terms of bandwidth, delay and jitter,
the IETF has defined several service classes for IntServ to separate the flows
into traffic types. As way of example, videoconferencing requires an absolute
guarantee and an upper bound on delay, whereby non-critical applications like
FTP do not need any higher guarantees than best effort. This classification helps
to define the kind of service that a certain application type needs, but the actual
reservation is done on a flow-by-flow basis.

Every service class has a different hard limit on bandwidth, delay and jitter.
They are:

q Guaranteed Service: It provides stable upper bounds on delay, with the
desired bandwidth between sender and receiver. Therefore this service class
can be seen as a leased-line emulation.

q Controlled Load: This service class delivers the datagrams with a very high
probability of small delay and little loss. Nevertheless, higher loss and delay
are possible for a fraction of the traffic. It emulates a virtual lightly loaded
best effort network.

q Best Effort.

To perform and coordinate the reservation process along the data path, a sig-
naling protocol was necessary. Therefore the Resource ReSerVation Protocol
(RSVP) was introduced [BZB+97], [Wro97], [Her00]. The RSVP sender sends
a reservation request along the path. The actual reservation takes place on the
reverse direction through the sending of a reservation message by the receiver.

Chapter 3. Related Work 51

Senders characterize outgoing traffic on lower and upper bounds on delay,
jitter and bandwidth. Then, a RSVP path message (Path) is sent to the receiver
to install reverse routing information in each router and to characterize the sender
traffic with the traffic specification (TSpec). Each intermediate router on the
path downstream between source and destination must update and store path
state information (s. Fig. 3.4). The state information is identified by the sender
template.

Path

Path

Path

Resv

Resv

Resv

P
a
th

R
e
sv

Path

Resv

Figure 3.4: The RSVP Reservation Process.

For the reservation the receiver sends back a reservation message (Resv) after
receiving the Path message from the previous hop. The Resv message contains
a request specification (RSpec) indicating the service type, a filter specification
(FilterSpec) characterizing the packets for which the reservation is done, an in-
dication of the reservation style and optionally but generally used, a reservation
confirmation object to indicate to the sender, that it should acknowledge the
reservation establishment. The RSpec and the FilterSpec together are called the
flow specification (FlowSpec). The Resv message goes back upstream the path
to the sender and at all intermediate hops the resources are then reserved for
the flows (s. Fig. 3.4). Hence, the reservation is receiver-based. This approach
is advantageous for multicast transmissions, where (frequently only) one sender
streams data to a group of receivers. If the sender had to reserve the resources
itself, it would have to reserve bandwidth individually for every receiver. As it
is, the sender requests bandwidth for a multicast group and the receivers, if they
are available, reserve the resources individually. This also makes the addition of
new receivers during a transmission easier.

Both states, the path and the reservation have a defined time-out, often 30
seconds. Therefore they must periodically refresh their states in all routers in
order not to get the reservation torn down. The path state has to use the Path
message and the reservation state has to use the Resv message for the periodic

Chapter 3. Related Work 52

refresh, known as ”soft-state”. Soft-state is used to enable the router to modify
the resources very fast and to prevent dead reservations from blocking resources
in the case of network or user malfunction or disconnection.

If something goes wrong when a router gets the Path message, a path error
message (PathErr) is sent back toward the sender to indicate the error to him. A
reservation error message (ResvErr) is sent back to the receiver if the reservation
could not be established. Reasons for this could be an admission control failure,
unavailable bandwidth, requesting a service which is not supported, a bad flow
specification or an ambiguous path.

To end a normal communication in IntServ the messages path tear (PathTear)
and reservation tear (ResvTear) are used to explicitly tear down the two reserva-
tion states. The PathTear travels toward the receiver and the ResvTear travels
toward the sender.

The main drawback of IntServ resides in its poor scalability. The fact, that
state information must be kept and periodically updated for every flow and on
every router imposes a double burden on the router: On the one side, a storage
burden, since routers do not usually dispose of the same amount of memory as
PCs do. On the other, a processing burden, derived mainly from the classification
operation: With every incoming packet (and at every router), the classifier has
to detect to which flow it belongs and which treatment is adequate. Flows are
usually identified by several header fields, which represents a hard search problem
(s. Section 2.2). This is aggravated if the number of flows is large, as is the case
in today’s backbones.

Other disadvantages are related to its introduction in modern networks: In
principle, every router along every possible path must support RSVP and its
associated reservation mechanisms, if an end-to-end guarantee is to be given.
This represented a strong drawback in its applicability, especially in the early
stages of deployment.

The orthogonality between the resource reservation and the routing processes
is another cause of concern in the IntServ architecture. Since data networks use
a shortest-path routing algorithm to decide the route to be taken by a packet, in
absence of routing changes all packets directed to the same egress point will take
the same route, even if there are alternatives. As a consequence, the shortest
paths between any two network edge points tend to concentrate most of the
traffic. Inner backbone links, which are shared by many end-to-end paths are
the ones most affected. As a consequence, it can very well be, that a certain
reservation can not be accepted along the shortest route, because those links
are saturated. The reservation request will then be rejected, even if there are
alternative routes, which would comply with the reservation specification. The
opposite also applies: If a routing change occurs and the route taken by packets
belonging to a reservation is deemed suboptimal (although valid), they will be
re-routed along a shorter path. That does not mean, however, that the new path

Chapter 3. Related Work 53

disposes of enough resources to accept the new reservation. MPLS, as will be
explained shortly, leverages this problem.

Its scalability problems provoked the search for alternatives. Several reser-
vation protocols (and their associated mechanisms) were developed [AFB98],
[PS99], that tried to overcome its limitations. Nevertheless, it proved unfeasi-
ble to achieve hard guarantees and fine granularity with stateless routers and
scalability. In this trade-off, a second approach emerged, that sacrificed granu-
larity and provided only soft guarantees: Differentiated Services.

3.3.2 Differentiated Services

The major goal of DiffServ [GEH+98], [XN99] was to make QoS support more
scalable by reducing the state, that had to be kept at the routers (albeit not
eliminating it completely) and also the processing burden, especially at the core
routers. To that end, the following strategy was devised: Incoming packets are
classified at the network edges according to their header content. This complex
classification associates the packet to one of a small set of possible traffic classes.
Traffic differentiation takes place at this higher level of granularity. Furthermore,
other routers along the path do not reclassify the packet, neither do they perform
a route lookup on it. The edge router sets a mark in the IP header, indicating the
class to which it belongs. All subsequent routers check this marking and forward
the packet accordingly. Since this is a unidimensional, exact matching problem,
with a reduced set of possibilities, the search time is much faster that doing a full
route lookup. This procedure somewhat imitates the VCI/VPI checking scheme
in ATM networks. By reducing the number of aggregates and thus the state
to be kept and removing the classification process from core routers, scalability
strongly improves.

Although resources are statically reserved for every class at configuration time,
DiffServ does not provide hard guarantees, not even at the class level. Every class
is set in a priority scheme. Different priorities define only a relative relationship
among classes (”A will be treated better than B”) but no quantitative values (”A
will get 10 Mbps and 50 ms delay”). Hence, DiffServ is incapable of guaranteeing
(in a strict sense) delay and bandwidth bounds, as opposed to IntServ. The use of
resources by every class is monitored and enforced by metering, marking, shaping
and scheduling.

Furthermore, the classes only define the service level on a local basis. I.e., al-
though a higher priority class will always be treated with greater deference, every
router can redefine the amount of resources associated to it and the exact treat-
ment (in terms of scheduling, shaping and the like) that it will receive. Although
a network-wide consistent policy can be implemented by the administrator, by
coordinating the configuration of all routers, internetworking remains unsolved.
Different network operators are usually involved in most data communications.
Even if they all support the DiffServ architecture, class definitions and their as-

Chapter 3. Related Work 54

sociated resources are not subject to standardization. Thus, their policies do not
have to be compatible. Consequently, end-to-end coherence in QoS delivery can
not be guaranteed.

The mapping between traffic types and classes is also not subject to stan-
dardization. It falls on the hands of the administrator (or the end user, if such
capability is provided) to decide, which traffic segment will be forwarded in which
class.

The IETF introduced two further service classes for DiffServ:

q Premium Service respectively Expedited Forwarding: This class is often
called Expedited Forwarding (EF) and is used to transmit the packets with
the highest priority and to set a minimum on delay and jitter between the
packets.

q Assured Service respectively Assured Forwarding: The Assured Forwarding
(AF) is divided into four subclasses, each one is divided into three subsec-
tions with increasing drop precedence (i.e. packet loss probability). These
classes ensure a higher priority than BE for traffic which can stand a higher
delay and jitter than EF, like elastic video and audio streams.

q Best Effort

A marking for the packets was necessary to distinguish the service classes.
Therefore a field in the IP Header was used. The so called Differentiated Services
Code Point (DSCP) is a redefined Type-of-Service (TOS) byte in the IP header.
References [NBBB98] and [BBC+98] define the DSCP of all Service Classes men-
tioned before. With these 6 bits an upper limit of 64 available classes is declared.
This maximum amount of classes leads to the scalability of DiffServ, because the
number of state information is proportional to the number of service classes, not
of active flows. Since the marking is transported in every packet, no signaling is
necessary to set up paths or reserve resources. This simplifies the operation of
DiffServ networks.

A last issue in Differentiated Services networks corresponds to the usability
of its 64 maximum classes. Studies have shown [DP00], that the interior classes
enjoy a very similar treatment under a broad range of scenarios. The question
thus arises, if it makes sense to sustain that many classes or if 3 or 4 would
not suffice. From a market perspective, furthermore, it is difficult to convince
customers, that they should pay more for a higher class, although the difference in
service level is both unknown (since DiffServ does not quantify its guarantees) and
small compared with adjacent classes. That is one of the reasons why commercial
DiffServ offerings are restricted to very few classes.

3.3.3 MPLS

Multiprotocol Label Switching (MPLS) [RVC01], [AJ02], [XN99] represents
an integration effort, drawing inspiration from ATM, IntServ and DiffServ. It was

Chapter 3. Related Work 55

not specifically designed as a QoS architecture, yet it has become the technology
of reference for QoS support in modern networks. Its main goal was to attend
to operator concerns regarding network reliability, survivability and utilization
[AMA+99]. On top of that, the explosion in demand for VPN solutions trig-
gered an interest in tunneling technologies, that helped to isolate traffic streams
belonging to different customers.

Primarily, MPLS is a topology-driven stackable tunneling technology: It sup-
ports the establishment and management of paths between network edges at
different aggregation levels (s. Fig. 3.5). In this sense, it is very similar to the
functionality, that PNNI had for the establishment and management of virtual
channels and virtual paths. The main difference is that in ATM networks the
label stack (and thus the aggregation hierarchy) was limited to 2 (VCI/VPI). As
in ATM, once established, the virtual paths are fixed and will not be altered by
autonomous routing decisions, except in case of link failure or malfunction.

Traffic Aggregates
(Different Granularities)

Label Stack: 7/3/9

Label Stack: 7/3
Label Stack: 7

Figure 3.5: Hierarchical Tunneling in MPLS.

In MPLS, tunnels are set up with the help of two protocols:

q Constraint-based routing protocol: It is in charge of finding a way between
the two endpoints prior to the tunnel establishment. A specific MPLS goal
was to take into account more factors than just the hop count, especially
in order to support load balancing and thus achieve a higher network uti-
lization. Additionally, re-routing in case of link failure was to help improve
network survivability and reliability.

q Signaling protocol: Once a path has been found, it corresponds to the sig-
naling protocol the establishment of the tunnel. This includes the reserva-
tion of such resources as might be needed in the routers and the interchange
of labels among them, exactly as was the case in ATM networks, for labels

Chapter 3. Related Work 56

have a local significance only. A MPLS tunnel is thus identified by the
chain of labels being involved end-to-end.

MPLS tunnels
One per DiffServ class

Figure 3.6: DiffServ on top of MPLS.

Classical protocols had to be adapted in order to integrate the new functional-
ity envisioned by MPLS. For that purpose, routing protocols were extended with
so-called Traffic Engineering capabilities. The two main exponents are Open
Shortest Path First – Traffic Engineering (OSPF-TE) and Intermediate System-
Intermediate System – Traffic Engineering (IS-IS-TE). Nevertheless, the multi-
metric path calculation problem can also be used to account not only for operator
needs (like higher network utilization) but also for customer needs: QoS parame-
ters can also be taken into account. Thus, MPLS routing protocols are confronted
with the task of establishing edge-to-edge tunnels responding to certain QoS and
Traffic Engineering constraints. As was explained before (s. Section 2.1), gen-
eral multi-metric optimization problems are NP-complete. This forced to include
heuristics into the protocols to make the calculation tractable. Furthermore, in
order not to induce a high processing burden, the number of tunnels and their
dynamics are very low. As stated above, MPLS tunnels are topology-driven, i.e.:
They are established between network edge pairs. Since network topologies have
a slow rate of change, once calculated, they can be kept for long periods of time.
Furthermore, they are generally calculated off-line and set up at configuration
time, instead of being set up on-demand. This allows to outsource the heavy
mathematical calculations to processors outside the routers most of the time.

Chapter 3. Related Work 57

Even if QoS support was desired, in order to keep the number of tunnels (and
thus the management complexity) low, virtual paths could be only established
for large aggregates. DiffServ is the architecture of choice for QoS support in
MPLS networks: A reduced set of parallel tunnels is established between any
two network edges, one per DiffServ class (s. Fig. 3.6). Resources are associated
and scheduled according to their priorities. Nevertheless, contrarily to DiffServ,
a signaling protocol was developed to automate the tunnel establishment and
the corresponding resource reservations. For this purpose, two main contend-
ing protocols emerged, Constraint Based Label Distribution Protocol (CR-LDP)
and Resource Reservation Protocol – Traffic Engineering (RSVP-TE), the last of
which is an extension of the classical RSVP protocol designed for IntServ.

MPLS represents, thus, a control plane for the establishment and management
of QoS tunnels. In the data plane, packets are treated like in DiffServ networks:
They are classified at the edge and receive a label stack upon ingress in the
network. Subsequent routers perform only a label swapping operation instead
of a route lookup, plus the necessary metering, scheduling and shaping opera-
tions. This forwarding plane is usually realized in hardware to achieve better
performance and scalability.

Lately, the MPLS framework has been extended to be used as a unified control
plane for IP-over-optics networks. This is referred to as Generalized MPLS (GM-
PLS) [Man03]. It presents a coordinated set of protocols for routing, signaling
and link management.

Summarizing, MPLS reunites a number of advantages both for operators and
customers: First, it presents a (relatively) low management burden. Only a
controlled set of tunnels is established. Since they are topology-driven, they are
static over long periods of time. Second, it supports Traffic Engineering (in the
operator’s sense: as a means to increase reliability, survivability and network
utilization) as well as QoS (DiffServ with a very limited number of classes). Both
in a simple form, but also at low cost in terms of complexity. MPLS is meanwhile
the architecture of choice in modern all-IP networks.

4 The Octopus Network Model

After reviewing in past chapters the most relevant work on Active and Pro-
grammable Networks, as well as its implications for the security of networks and
nodes, this chapter will present the Octopus Network Model (ONM). It represents
a new attempt at achieving a balance between openness, security and performance
in the context of Programmable Networks. First, two case studies, that elaborate
on the necessity and applicability of the architecture will be presented. Next, the
main characteristics and properties of the ONM will be discussed. A more elab-
orated description of its main elements will conclude the chapter. Because of its
central role in the architecture, the discussion on the Octopus Open Gateway will
be deferred until next chapter.

4.1 Objectives of the Octopus Network Model

In a word, the goal of the Octopus Network Model is to transcend the openness
vs security vs performance trade-off, that has severely limited the usability of
Active and Programmable Networks in real-life scenarios.

The aims of this work are thus twofold: First, to augment network flexibility,
i.e., its ability to expand its functionality quickly and efficiently. This aim de-
rives from the observation, already mentioned in the Introduction, that an ever
expanding set of services is being delivered online. Although the Multiservice
Internet is based on a very flexible set of core protocols, the introduction of
new services presents an increasingly burdensome task. First, because having a
flexible data transport technology does not mean, that there is an equally flex-
ible infrastructure to manage the network. And second, the interaction among
services presents a threat to the safe introduction or alteration of functionality.

The second goal involves fostering the innovation potential of new network
services by providing an infrastructure capable of managing disruptive new ser-
vices without endangering network performance, reliability or security. Innova-
tion needs freedom to develop novel and unexpected functionality and the ability
to manage that functionality. Hence, simple and powerful network interfaces are
needed, so as not to constrain that freedom. Furthermore, those interfaces must
be low-level, providing access to the raw network capabilities. Abstractions from
those capabilities would imply the impossibility of tailoring them to the necessi-

58

Chapter 4. The Octopus Network Model 59

ties of new services, thus unnecessarily limiting what is possible and what is not.
As a last requirement, not only must service development be as free as possible,
but also its management. Since disruptive services can per se not be foreseen,
management interfaces should be left to the design and control of the service
developer.

Summarizing, this work foresees the separation of the network operator in two
distinct roles: First, the ”new” network operator, which would be in charge of
data transport and basic functionality, as well as providing an extensible, service-
friendly platform. Second, the service operator will have the role of introducing
and managing new value-added functionality in the network. Obviously, both
roles can be taken up by the same company, although they are logically separated
activities.

In order to clarify the kind of service extensibility, that is herewith envisioned,
the following two sections will review typical scenarios. At the same time, the
relevance of Programmable Network-based solutions in those scenarios will be
highlighted.

4.2 First Scenario: Security Gateways

Security Gateways are a relatively new kind of network node. With the in-
creasing concern with security, specialized devices have appeared, that perform
these tasks. In the past, routers had performed all networking-related activities.
However, security-related tasks are usually very computing-intensive and can be
seen as an add-on to pure bit transport and routing. Consequently, in order not
to endanger the performance and stability of pure packet forwarding (the most
critical part of networking), this new kind of appliance was created.

The role of Security Gateways can be simply stated as inspecting traffic and
deciding if it represents a threat to the network to be protected. Should it be
so, then some defensive measure should additionally be taken. This includes not
only preventing incoming traffic from performing active attacks, as defined in
Section 3.2, but also passive ones, like retrieving confidential information about
the network configuration. In the first category such functions fall as firewalling,
intrusion detection, deep packet inspection for application filtering, virus and
worm scans, etc. In the second category, Network and Port Address Translation
(NAPT), proxying, encryption, logging and accounting can be identified, among
others. Most of these tasks involve some sort of packet classification up to the ap-
plication layer. This is a repetitive, very computing-intensive task, well amended
to hardware implementation. In fact, most Security Gateway appliances use some
form of hardware support to achieve the needed performance.

It might nevertheless be justified to ask, if such appliances are needed at all,
since anti-virus programmes and firewalls are typically also present in end user
devices, especially PCs. The fact is, that some of the tasks mentioned above,
like NAPT, can not be performed by corporate users, since their goal is precisely

Chapter 4. The Octopus Network Model 60

to hide the existence of individual computers behind the Gateway in the first
place. Furthermore, a number of additional concerns arise with the end user-only
solution: First, not all end nodes have necessarily anti-virus programmes and
firewalls installed. Even if this would be the case, there is no way to ensure,
that those programmes are up-to-date and consistent with the corporate security
policy. Next, typically the network administrator has no access to the end nodes,
thus preventing her to enforce the corporate policy in the way that a Security
Gateway does. Besides, common programmes have a tendency to forgo threat
analysis coming from the inside, i.e., from computers within the network to be
protected. Hence, to keep a coherent and up-to-date network-wide security policy,
Security Gateways plus end user firewalls and anti-virus programmes are needed.

In spite of it all, attacks and/or erroneous configurations, especially in end
nodes, can not be completely prevented. A typical example would be an insider
disconnecting her firewall and bringing in an infected diskette. Consequently, a
centralized Security Gateway solution, situated at the entrance to the corporate
network (a very common solution) is also suboptimal. The reasons are clear:
Such a solution can not prevent attacks from the inside. Indirectly, it relies on
cooperative user behavior and is therefore prone to malevolent and/or dangerous
actions. To prevent this, a distributed topology of Security Gateways has been
proposed [CLS+04], [LMK+03], as depicted in Fig. 4.1. By placing appliances
between critical network areas (departments, segments, server farms, etc.), the
spreading and reach of attacks can be minimized. None the less, in order to
coordinate the distributed set of appliances and keep a coherent policy, some
remote management mechanism is needed.

In this context, a number of questions can be asked about the ideal charac-
teristics of a Security Gateway and its relationship to Programmable Networks.
First, Security Gateways will frequently fall under the management of a central-
ized management instance and will not be open, like in a Programmable Network
environment. Second, most providers deliver their products with an integrated
software suite, which can not be expanded with third-party code. Under these
circumstances, there seems to be no relationship with Active and Programmable
Networks. And yet, Security Gateways could greatly profit from Programmable
Network-like architectures.

First, the security and safety of its firmware are strong concerns, due to the
critical task performed. For such functions as are realized in software, in order
to achieve good performance, they are typically implemented in the OS kernel.
As many IOS examples have shown, the risk for network equipment derived from
bugs or security flaws in networking code is tremendous. This is especially so
for the appliance charged with protecting the rest of the network. Accordingly,
it seems advisable to introduce protection mechanisms similar to those present
in A&PN: Execution Environments (Virtual Machines) and Access Control for
node-critical resources. For such applications as are not performance-critical
(management applications, for example), this solution should be viable. For the

Chapter 4. The Octopus Network Model 61

Internet

Sec Gw

Server Farm

Department A

Department B

Sec Gw

Sec Gw

Department C

Figure 4.1: Distributed Security Gateway Scenario.

rest, a trade-off exists. A possible way out of it involves the use of programmable
hardware. Nowadays, FPGAs support the inclusion of microprocessors in their
structures, be it as synthesized soft-cores or co-located hard-cores (s. Section 2.5).
By placing performance-critical software in such cores, a double goal would be
achieved: First, the intercommunication burden to the hardware platform, which
introduces a considerable overhead, would be greatly reduced. Second, by isolat-
ing the applications in separate processors, the risk of interaction and the effect
of misbehavior could be diminished. Access Control mechanisms located at the
hardware level between such processors and the rest of the system could help in
the task.

The inclusion of hardware support is common in Security Gateways, as ex-
plained above, as the only means to achieve the necessary throughput. It might
be argued, that software-based system performance is rapidly increasing. None
the less, at least in the mid-term there is no sign, that software solutions will
be able to achieve the necessary throughput. If, furthermore, traffic keeps in-
creasing at its current pace, the mismatch between software system performance

Chapter 4. The Octopus Network Model 62

and traffic processing needs might actually increase. In that context, hardware
support will play an even greater role. Section 3.2, reviewed why software control
of programmable hardware systems can not achieve good security. In proprietary
solutions, like the ones presently in the market, it might be admissible to accept
the lack of security checks at the hardware level, although it represents a clear
risk. Nevertheless, the more functionality is placed in hardware, the more critical
its security becomes. In this scenario, Access Control and QoS management at
the hardware level could highly contribute to eliminate such risks.

Furthermore, besides the threats coming from potentially malicious (or mali-
ciously modified) code, a second set of threats exist. The number of tasks imple-
mented by a Security Gateway is large, and hence also the number of applications
(in software and hardware) running on it. Without strong resource and security
control, as provided by Virtual Machines and hardware resource managers, the
risk of malfunctions due to application interaction is real.

Dynamics also represent an important factor. A critical element in Security
Gateways is the ability to rapidly react to new threats. The inclusion of new
classification rules to detect attacks or regular expressions to identify new worms
are but two examples of updates. Additionally, new algorithms to better detect
threats or to cipher code are continuously emerging. On top of that, the range
of tasks being performed by these network elements has greatly expanded since
their inception, only a few years ago. As a consequence, these appliances have to
support a high degree of upgradability, at the software as well as the hardware
level. There is no real difference between performing an upgrade and installing
a new service, especially in programmable hardware. In both cases, the FPGA
has to be (partially) reprogrammed. In this sense, Security Gateways have to
support mechanisms for remote functional extension, exactly as Programmable
Networks do.

Although a centralized Security Gateway solution is common, distributed ap-
proaches are increasingly relevant. In order to keep a coherent security policy and
manage such distributed systems, mechanisms have to be provided to download
and install programs in a coordinated way. This also involves authenticating and
authorizing such downloads and digitally signing the code.

In short, a high-performance distributed Security Gateway architecture with
upgrade capability presents the same characteristics as a classical Programmable
Network and can profit from the mechanisms developed for them.

There are, nevertheless, some differences between this scenario and ”classical”
A&PN scenarios. The first is related to openness. As seen in Section 3.1, one
of the goals was to open network nodes to service management by third parties.
This scenario is not considered realistic for Security Gateways. The second main
difference resides in the service placement. Most A&PN proposals foresaw the
alteration of existing routers to support new functionality. In this case, Security
Gateways are separate, independent devices situated beyond the public network.
None the less, the case study presented here shares many commonalities with

Chapter 4. The Octopus Network Model 63

those proposals, and the architectural implications certainly hold. The next
section addresses the missing links with traditional Active Networks.

4.3 Second Scenario: Network-supported Digital Rights
Protection

One of the main arguments behind A&PN was, that some services are better
supported inside the network than on end-devices. This derives from the fact,
that certain services can take advantage of information and capabilities, that only
the network possesses. A number of services were mentioned in this context: Me-
dia transcoding, web caching, Virtual Private Networks (VPN). In this case study,
a new and increasingly relevant example will be presented: Network-supported
Digital Rights Protection.

The distribution of digital content over the web presents obvious dangers for
the property rights’ holder. The ability to easily and cheaply reproduce the con-
tent without quality degradation is seen as a tremendous drawback by music
companies, video stores and the like, and prevents them from selling their prod-
ucts online. One promising technique to fight against piracy is watermarking:
A discrete mark is introduced in the media stream (typically by imperceptibly
changing some media attribute, like luminance or color in a video stream), that
allows to identify the content’s proprietor. To be really effective, though, it must
be possible to identify the origin and destination1 of every stream, so that illegal
copying can be brought to justice if detected. An additional requirement is non-
repudiation: It must be possible to univocally identify the customer, even if she
claims not to have been involved in the transaction.

Individual watermarking can be performed by the content provider’s server
during download (s. Fig. 4.2), but this solution presents several drawbacks: First,
watermarking is a processing-intensive operation, which, in order to be person-
alized, would have to be performed for every stream being downloaded from the
server. This would greatly increase server load and accordingly decrease its scal-
ability. Second, non-repudiation is a non-trivial task in the presence of address
forgery and/or password stealing. Third, for every transaction, a new media
stream has to be transported over the network, since individual watermarking
prevents caching.

Network support can offer an advantageous alternative (s. Fig. 4.3). If the
watermarking functionality could be distributed among several nodes, strategi-
cally placed near the customers, a triple advantage could be obtained: First, the
load could be shared among the nodes, improving scalability. Second, caching
would be an option, thus transporting only a few untagged streams through the

1The relevant information in this case is not the network address, but the customer identity.
The relationship in an e-business scenario, like the one presented here, is established between
the selling company and the buying customer.

Chapter 4. The Octopus Network Model 64

Movie Provider

Watermarking

Clients
Clients

Clients
("20th Century Fox")

+

Many tagged streams

Figure 4.2: Individual Watermarking performed by Content Server.

network from the content provider to every caching/watermarking node. This
would save costs both in terms of bandwidth and money. Third, since every
customer is uniquely identified by its physical network termination point, non-
repudiation is guaranteed. On top of that, a number of additional services could
be bundled with watermarking: The network operator, which is generally seen as
a trustworthy party by its customers, could perform the accounting and billing
for digital transactions, in the way that Deutsche Telekom is already doing [Tel].
Plus, secure delivery, QoS, etc. could be offered as complementary services for
an ”integral network-supported e-business solution”.

This approach presents also a better scalability with the number of content
providers and services offered. Assuming that not every service is needed in every
node at the same time, by using programmable nodes it would be possible to ob-
tain a multiplexing gain in the use of the equipment, depending on the load and
market situation. As way of example, consider the load variations according to
the time of day. It would be impractical to have a static cache distribution in the
network, since the requirements regarding which services are needed and where
they are needed strongly depend on non-technical factors (an important news
update, the release of a successful movie or song in a certain country, etc.) Pro-
grammable Networks provide the capability to dynamically relocate functionality
on an as-needed basis. In practice, Network-supported Digital Rights Protection
represents the establishment of a dynamic overlay controlled by the network.
Should there be different overlays for the different providers or services, this sce-
nario is indistinguishable from the classical A&PN proposals, except in one point:
The management of the nodes remains under the control of the network operator.

Chapter 4. The Octopus Network Model 65

Movie Provider

Watermarking

Clients

Clients

Clients
("20th Century Fox")

Watermarking

Few untagged streams

Figure 4.3: Individual Watermarking performed by Programmable Network Nodes.

Network support is nevertheless not mandatory. Content Delivery Networks,
e.g., build a parallel server infrastructure, which provides caching and content
delivery, using the network exclusively for transport purposes. It would certainly
be thinkable, to perform watermarking in those servers. The point here is, how-
ever, not that an Active Network approach represents the only way of delivering
this service, but that it presents an advantageous alternative. Furthermore, a
CDN could equally profit from a Programmable Network approach, in as far as
its ability to dynamically relocate functionality is concerned.

The other parallels drawn in the previous section, concerning the relevance
of software and hardware security and management, the necessity of hardware
support, etc. equally apply in this scenario.

Summarizing, the goal of the Octopus Network Model is to offer a Pro-
grammable Network-like infrastructure to support service models as depicted
in these two case studies. It accordingly represents a superset of the functions
and mechanisms needed by both scenarios, i.e.: It can be used to support cen-
trally managed services in a small networking environment as well as multiple
open network-wide overlays. It pays special attention to the related security and
performance issues, while trying to achieve a balance with flexibility and usability.

4.4 Octopus Network Model Architecture

This section presents the design of a network architecture, which realizes the
set of goals described at the beginning of the chapter. However, this architecture
has not been implemented, since the emphasis of this Thesis lies on the resource

Chapter 4. The Octopus Network Model 66

management structure needed at the hardware level, one critical aspect of Pro-
grammable Networking, which has not been addressed before. Accordingly, not
all aspects of the network architecture have been analyzed in the same depth,
and some details would only be thoroughly clarified in the context of a complete
implementation. The goal, however, is to present the basic structure of such an
architecture, including its main elements, and a sound analysis of their feasibility.

4.4.1 ONM Overview

Fig. 4.4 presents the main elements of the Octopus Network Model (ONM).
This proposal is a pure Programmable Network architecture, i.e., it only allows
the downloading of new services from external repositories. Furthermore, the
possibility to perform such downloads in real-time when triggered by a (data)
packet arrival are considered not viable. The reasons will be explained shortly2.

Network Admission Node

Service Operator Octopus Open Gateways

Svc Management If

Service Repository

Svc Introduction If

Svc Introduction If

Svc Introduction If

Svc Admission If

Conf. Database

Figure 4.4: Basic Elements of the Octopus Network Model.

The ONM envisions five main architectural elements:

q Service Operator. It is the network representative of the firm wishing
to deploy a new service. It keeps the implementation of its service (the
”code”) in a repository under its control, which might be placed outside of
the network operator’s network (e.g., in a server within the firm).

The service operator negotiates with the Network Admission Node the con-
ditions upon which its service can be deployed. After the deployment pro-

2However, once a new service has been admitted and installed in the network, as will be
shown, it enjoys a wide freedom to implement a different behavior. In particular, any single
service might decide to use its allocated resources to implement a capsule-like service or to
perform packet-triggered downloads. The ONM allows it, as long as this is done within the
limits of its Execution Environment.

Chapter 4. The Octopus Network Model 67

cess, the service operator manages its service through self-defined interfaces,
without network operator’s intervention.

q Service Repository. Stores the code for all services belonging to one
service operator. After the negotiation phase between Network Admission
Node and the service operator, the former triggers and controls the code
download.

q Network Admission Node (NAN). Represents a central element of the
architecture, especially for security purposes (admission control). It is re-
sponsible for the negotiation of an SLA with the service operator, stating
under which conditions a new service can be deployed. Especially rele-
vant for the purposes of this work is the resource usage negotiation (s.
Section 4.4.5). It furthermore performs the selection of which nodes will
contain the service and the code adaptation to the Execution Environment
contained therein. Lastly, it controls the download of the service code into
the nodes.

q Configuration Database. It contains a copy of the actual configuration
of all (active) network nodes. It is managed by the NAN for the purpose
of code adaptation.

q Octopus Open Gateway. The second main element of the ONM, it
presents a software and hardware programmable platform for active net-
working in an integrated active router. It ensures openness, security and
performance at the system level.

It interacts with the NAN for the purpose of service download. After the
service introduction phase, the service operator directly manages the ser-
vices running on every OOG.

In the next section, the interworking of these elements will be clarified. The
process from service definition to service deployment and ulterior management
will be explained. The rest of the chapter will then review the details of the main
architectural elements introduced here.

4.4.2 Service Introduction Process

Fig. 4.5 presents the situation in which a service operator wishes to introduce
a new service in a subset of a network operator’s nodes. De facto, this amounts
to instantiating a new overlay network by reallocating part of the network’s re-
sources. It should be noticed, that in principle, the whole process is automated
and takes place through the use of communication protocols and without human

Chapter 4. The Octopus Network Model 68

intervention, analogously to RSVP3. This happens in five steps (numbered 1–5
in Fig. 4.5):

Network Admission Node

Service Operator Octopus Open Gateways

Svc Management If

Service Repository

Svc Introduction If

Svc Introduction If

Svc Introduction If

Svc Admission If

Conf. Database

1

2

3
4

5

6

Figure 4.5: Basic Elements of the Octopus Network Model.

1. Placing Service Code in a Repository. In a first step, which might
happen long before service introduction, the service operator stores the
code relative to its new application on a service repository. This is a code
server generally located outside of the public network and pertaining to the
service operator itself.

2. Service Admission Control. In a second step, a negotiation takes place
between the service operator and a network representative, known as the
Network Admission Node (NAN), through the Service Admission Interface.
This negotiation involves, first of all, the mutual authentication of the par-
ties. Additionally, the NAN must authorize the service operator to perform
a service introduction. As part of that process, a network resource negoti-
ation takes place. The service operator must communicate which amount
of resources, and of which type, it wishes to allocate for its new service.
Next, the NAN will check both the availability of resources and if the ser-
vice operator has the right to claim them (this process will be described in
more detail in Section 4.4.5). Should the answer be positive, the third step
is started. Otherwise, the admission process is aborted.

3. Download Service Code to the NAN. The third step involves the down-
load of the service code from the repository to the NAN, which is triggered

3”In principle” because, as is also the case in RSVP, human intervention is not precluded.
None the less, since one of the goals is the simplification of the service introduction process, an
automated procedure is preferred.

Chapter 4. The Octopus Network Model 69

by the service operator. This involves equally a mutual authentication, plus
the authorization by the NAN. In order to ensure the integrity of the code,
digital signatures are used. Additionally, encryption is used to prevent code
theft. The safety of the code can not be proved, since the use of formal
methods, including Proof-Carrying Code is not sufficiently advanced.

4. Code Adaptation. The fourth step involves the code adaptation to the
node environments. First of all, the affected nodes are selected, as will be
explained in Section 4.4.5. Next, the code has to be adapted to the node
architectures and their actual configuration. The service admission process
is critical for the network security, and will be accordingly performed only
under NAN control.

5. Code Dissemination. Once the code has been compiled, the final step
is its downloading to the corresponding nodes, which is performed by the
NAN. Besides the code itself, the NAN downloads the resource reservation
agreement for the service, so that it can be enforced at the nodes.

For service admission purposes, the OOGs have no direct relationship with
the service operator or its repository, which diminishes risks. Nevertheless,
to further improve security, the OOGs build a web of trust with the NANs
by interchanging certificates. This also scales better and is less complex
than managing a certificate infrastructure among all repositories and nodes.
Additionally, during service download, an authentication process and the
use of digital signatures takes place among NAN and OOGs to ensure the
validity and integrity of the code.

It should be highlighted, that once the service has been installed in the OOGs,
no further intervention by the network operator will be needed for its management
(step six in Fig. 4.5). The resource negotiation performed in step two together
with the usage enforcement and security mechanisms implemented in the OOGs
and described in Section 5.1 guarantee compliance. Accordingly, the service op-
erator is left free to implement its own management interface and control and
configure its service directly, without network operator intervention.

In summary, this fully automated five step process allows the introduction of
new network functionality in a matter of minutes and gives full management con-
trol to the service operator, thus greatly improving the flexibility and openness of
the network. How to achieve it without sacrificing performance and maintaining
security will be addressed in the following sections.

4.4.3 Main Architectural Properties

The Octopus Network Model transcends the openness–security–performance
trade-off, which was hampering the advancement of active networking, by means
of the following architectural features:

Chapter 4. The Octopus Network Model 70

q Separation between service admission, control and management.
While service admission and resource usage control remain in the hands of
the network operator, service management lies unconstrained under service
operator control. This is a unique feature of the ONM in the A&PN realm.
This decoupling allows for a great deal of service development freedom,
without compromising the security of the network.

q Unrestricted access by the service operator to the programmable
hardware. On the one hand, the introduction of FPGAs allows a much
better performance than traditional software proposals. On the other, FP-
GAs present a very flexible platform to develop customized systems. Since
there is no restriction imposed on the service operator through predefined
APIs, the development of innovative services is greatly simplified.

q Resource management in hardware and software at the system
level. By removing security checks from the data plane, performance is
boosted. In order not to endanger security herewith, special resource man-
agers are placed both at the software and hardware runtime environments.
At the hardware level, this represents a completely new approach to secure
active networking. This allows for a total openness and shareability of the
node among different service operators in a controlled environment.

q Separation between active and passive router parts. As will be
seen in section 5.1, the new active services run on an integrated, albeit
completely disjoint platform within the router. The goal is, on the one
side, to decouple traditional services, under direct control from the network
operator, from new services. This also simplifies security enforcement. On
the other hand, however, it also makes the architecture compatible with
existing routers, which could be upgraded with an Advanced Hardware
Platform (AHP, s. Section 5.1) on an as-needed basis.

q Fully automated service introduction. This was necessary to increase
the usability of the architecture. Furthermore, the Service Admission Inter-
face allows for the negotiation of dynamic SLAs between service operator
and a network representative (NAN) without human intervention.

Hence, the ONM and particularly the OOG represent a further step in the
development of A&PNs toward designs adequate for deployment in real-life sce-
narios. These features will be further discussed throughout the rest of the chapter.

4.4.4 The Burden of Service Management

This architecture envisions service providers behaving as true service oper-
ators. This implies the possibility not only of developing services free of un-
necessary constraints (restrictive APIs, fixed tools, limited functionality), but

Chapter 4. The Octopus Network Model 71

also directly managing its own services. This might represent too much freedom
for some Operators, who like to be spared the burden of dealing with low-level,
hardware-close APIs and having to develop their own management software on
top of the code itself. Besides, the operation and maintenance of a network service
is a complex and expensive task. The ONM allows for intermediate solutions,
in which certain companies may develop such building blocks for third-parties
and others might outsource the management, exactly in the way in which it hap-
pens today. The main difference, though, lies in the intrinsic possibility for any
company to access the lowest level of network programmability, if ready-made
solutions do not fit their needs. In this way, innovation is fostered.

4.4.5 Network Admission Node

The NAN is a critical element in the security architecture of the ONM. It
performs three critical functions: Service admission, service adaptation and ser-
vice dissemination. It is an intermediary for the negotiation of resources and the
introduction of network services.

The main rationale behind this network element is the separation of the con-
trol and management plane security from data plane security. Security checks
have an important cost in terms of processing time and power. In order not to hit
performance, this work tries to place most of the security burden on the control
and management plane, which has no real-time constraints and changes rarely.
In exchange for more ”heavyweight” checks in this plane, the requirements on the
data plane (i.e., those which have to be performed for every packet or flow) are
simplified. That is the reason why the Octopus Network Model can not support
a capsule-based approach, since the performance cost on the data plane would
make it impractical for real networks.

4.4.5.1 Service Admission

Beyond taking most of the burden of security control away from the data
plane, the service admission process serves another purpose: The automated
negotiation of the technical and administrative conditions, under which a new
service can be introduced in the network.

Accountability and predictability are key concerns when introducing new
functionality in a network. To that end, the ONM foresees the negotiation of
a Service Level Agreement (SLA) between service operator and network opera-
tor prior to service introduction. The time scale is thus in the order of weeks
or months. That SLA is valid for the whole life of the service, except if a re-
negotiation takes place. A reason could be an increase in traffic volume addressed
to the service, which would request more resources, or the upgrade of the service
code.

Such an SLA would include an administrative part (which will not be consid-
ered here) as well as a pure technical part. Especially relevant in the latter is the

Chapter 4. The Octopus Network Model 72

characterization of how many resources and of which type will be needed by the
service.

In this context, it is important to ask which resources are considered and how
can they be described. The network resources considered here and included in
the SLA are basically of three types: Link capacity (bandwidth), storage space of
different kind (e.g. SDRAM for applications, but also FPGA logic cells to install
services) and processing power (”CPU cycles”). Additionally, the traffic behavior
should also be included (i.e., a description equivalent to the TSpec in IntServ or
to the ATM traffic contract). In the SLA, the resource amount can be expressed
as an absolute value (”the service needs 10 Mbps and 50 MB”) or as a range of
acceptable values (”either 10 Mbps and 50MB or 5 Mbps and 100 MB”).

However, providing an absolute reference for these resources is a complex mat-
ter, since the ”value” of a unit is technology and implementation dependent. I.e.,
a Pentium II ”cycle” does not allow the same computational power as a Pentium
IV ”cycle”. And the number of cycles needed by an application depends on the
processor architecture as well as other factors. Furthermore, how to compute
the amount of resources needed by an application in the general case is also a
difficult task. In both cases, benchmarks exist, but an absolute solution is dif-
ficult to achieve. Nevertheless, this will not be dealt with in this Thesis. The
reader is referred to the literature for proposed approaches [CCF+01], [ABC+03],
[WPF03].

The NAN is in charge of checking the availability of the resources needed by
the service. To that end, the NAN keeps a database with the actual configura-
tion and resource usage of every node under its supervision. Since the NAN is
only concerned with services and not with individual flows, it is the aggregated
volume of reserved resources which is of main interest, not the instantaneous
load. This information is then used to calculate which nodes should be selected
to support the new service, according to their actual load and other constraints,
like geographical location. With this information, the SLA can be signed.

Since network resources are scarce, choosing a constellation of nodes to in-
stall a new service involves an optimization problem. In most cases, this multi-
dimensional optimization is NP-hard. It follows that heuristics have to be used.
Transformations, meaning trading some amount of a resource for another, in the
expectation, that the overall performance will be kept constant, are in princi-
ple possible, provided that the service behavior is known with enough detail.
Again, the reader is referred to the relevant literature for additional information
[CCF+01].

The SLA has to be enforced. To that end, the resource usage agreement is
downloaded together with the service code, to every individual node, so that the
NodeOS, for the software part, and the Embedded Hardware Manager, for the
hardware part, can re-schedule their resource sharing policy. Both perform access
control and resource management in the data plane in their respective domains
(see Chapter 6).

Chapter 4. The Octopus Network Model 73

4.4.5.2 Service Adaptation

Once a service has been admitted for introduction and a set of nodes have
been chosen to implement it, code adaptation has to take place. This implies:

q Adapting the software code to the runtime environment. This can be obvi-
ated for platform-independent code, like Java. Nevertheless, in networking
environments most code is optimized for the precise platform in which it
will run, in order to obtain maximum performance. At a minimum, the
code has then to be compiled for the new environment.

q Integrating the hardware code into the FPGA configuration. Unlike soft-
ware systems, FPGAs have to be reprogrammed whenever a change in func-
tionality is necessary. Nowadays, however, partial reconfiguration without
interrupting running services is possible.

Still, integrating new code in a partially full FPGA involves synthesizing
the new code for that particular FPGA technology and placing and routing
it so that it fits with the modules already present. This is a long and
computing-intensive task.

q Reconfiguring the EHM and the NodeOS. As explained before, the new
resource reservations have to be included in both resource managers. In
the case of the NodeOS, this only implies a few system calls. For the EHM,
which itself is a hardware module, a number of configuration registers have
to be updated.

In principle, this adaptation could be performed by the service operator or
by every individual node, instead of by the NAN. This would present a number
of disadvantages, however: The service operator generally lacks the information
concerning the exact configuration and equipment of every network operator’s
node. Additionally, the configuration of NodeOS and EHM being crucial for
SLA enforcement, can not be left in the hands of the service operator.

Compiling or otherwise adapting code to an specific platform (e.g., performing
the placing and routing for HDLs) is a relatively long and computing-intensive
process. Network nodes are dimensioned to work under heavy loads and have thus
not enough spare capacity to regularly perform such tasks without impacting their
throughput.

Hence, the NAN is best placed to realize the adaptation, with the help of the
configuration database introduced before.

In principle, code portability among platforms is a desirable feature, which
has been often targeted by A&PN researchers. For the ONM, this is not deemed
possible. In this architecture, the active network nodes, known as Octopus Open
Gateways (OOG) present a programmable platform for software as well as hard-
ware applications. As a consequence, the service code will include a combination

Chapter 4. The Octopus Network Model 74

of software and hardware description languages (HDLs). While code portabil-
ity is possible (with some non-negligible restrictions) for software applications,
it is Utopian for programmable hardware. Since hardware designs are strongly
dependent on the characteristics of the underlying platform, for which they are
optimized, no portability beyond the behavioral level is possible. Furthermore,
even in the software case, performance-critical applications are usually coded on
a machine-dependent fashion at a very low level, commonly in C or even assem-
bler. Under these circumstances, no completely platform-independent form of
code can be directly downloaded from the repository to the network nodes.

4.4.5.3 Service Dissemination

The last step on NAN functionality is the download of service code and re-
source usage specification to the participating nodes. The Darwin project, in-
troduced in Annex A, presents a suitable platform for the realization of this and
other NAN tasks. It represents a starting point for the ONM software architec-
ture. In this context, the Beagle protocol could serve the purpose of signaling
and downloading protocol for code dissemination.

At the system level, code dissemination implies the reconfiguration of NodeOS
and EHM, as has been explained before. Both tasks are taken up by the Service
Introduction & Interaction Manager (SIIM), part of the Octopus Open Gateway
architecture, and which will be introduced in section 5.4. Once this task is
finished, the service can be activated and start operation.

In summary, a full automation of the whole process (negotiation, polling of
node resource availability, optimization, code adaptation, dissemination and ac-
tivation) is possible without disrupting node activity, as has been shown, e.g. in
[LMK+03].

It remains to be said, that because of its critical role in the architecture, the
NAN could represent a single point-of-failure and scalability bottleneck. Never-
theless, the NAN is only needed at service introduction, which is a comparatively
rare event. Hence, scalability and performance is only a secondary problem for the
NAN. A single NAN could very well serve as point of entry for a whole network,
thus avoiding the coordination problems associated with distributed systems, as
exemplified by the work on Bandwidth Brokers [NJZ99]. None the less, to pre-
vent failures, a set of stand-by NANs should be in place to substitute the active
NAN in case of malfunction.

This chapter has presented the fundamental elements of the Octopus Net-
work Model, as well as its architecture. Within the ONM, the Octopus Open
Gateway plays a predominant role, as the programmable software and hardware
platform for value-added services. The next chapter is consequently devoted to
its architecture and characteristics.

5 Octopus Open Gateway
Architecture

The OOG is the cornerstone of the ONM, together with the NAN. This chap-
ter is devoted to its architecture, which realizes the principles of openness, security
and performance at the system level.

After an overview of the OOG characteristics, the description of the node and
its different elements will be given: Line Card, AHP, AHPM and the intercon-
nection thereof and with the BHP and CPU. A discussion of the OOG’s impact
on service architectures and the necessity of resource management at the AHPM
level conclude the chapter.

5.1 OOG Overview

The OOG represents this Thesis’ vision of an Open Active Node. Open, be-
cause it concedes great freedom to the service operator to design and manage
its service instances without network operator interference. Active, because the
introduction of value-added services in the nodes is allowed. Unlike most of its
predecessors, it introduces programmability at the software and hardware level,
in order to achieve both flexibility and performance. In this sense, it expands
the classical understanding of an active node architecture with an additional ap-
plication layer underneath the NodeOS (s. Fig. 5.1). Additionally, a Service
Introduction & Interaction Manager (SIIM) module has been introduced, to ex-
plicitly deal with service instantiation and control, as explained below.

A representation of the OOG’s basic architecture is depicted in Fig. 5.2. It is
divided in three main modules: A Basic Hardware Platform (BHP), an Advanced
Hardware Platform (AHP) and a CPU. The BHP implements the basic packet
forwarding and routing functionality. In itself, it can be regarded as a common
router. The AHP is the software and hardware programmable platform avail-
able to the application developer. Both are interconnected by a set of interfaces
(s. Section 5.3). The CPU represents an additional software environment for
applications, but it also integrates the SIIM functionality. Besides, it hosts the
Routing and Management Unit (s. Section 2.2).

The OOG is conceived as an integrated node. The reason lies in the necessary
interaction between some BHP functions, like routing table management and

75

Chapter 5. Octopus Open Gateway Architecture 76

AA

EE

AA

EE

NodeOS

HW

AA

EE

AA

EE

NodeOS

Forwarding Engine

AAS
er

vi
ce

 In
tro

du
ct

io
n

&
In

te
ra

ct
io

n
M

an
ag

er

Pkt Classif

Classic AN-Arch. OOG-Arch.

Sw-Services

Hw-Services

Figure 5.1: Enhanced Active Network Node: The Octopus Open Gateway.

packet classification, the SIIM and the AHP. Nevertheless, from a logical point
of view, AHP and BHP are separated instances. If they are interconnected by an
internal backplane or by a network connection is, in principle, an implementation
detail without a big impact on the network architecture as a whole. It is none
the less necessary, that the interconnection between BHP and AHP may take
place at different points along the forwarding process. Value-added services do
not necessarily take place always on the same processing stage: E.g., encryption
is typically the last step before packet transmission, while decryption is the first.
This represents another reason for the co-location of AHP and BHP, although
they might be implemented in two separate devices.

The advantages of keeping the AHP and the BHP logically and architecturally
separated are threefold:

q Security. The BHP realizes the fundamental functions of a communication
node, i.e., packet forwarding and routing. This functions are necessary
for every packet passing through the node, no matter which other service
or destination it might be addressed to. Accordingly, the BHP will stay
under the exclusive control of the network operator. For security purposes,
a clear-cut interface toward the service operator-controlled AHP is a great
help. The possibility to deny access to the BHP in case of malfunction is
herewith granted to the network operator.

Chapter 5. Octopus Open Gateway Architecture 77

Basic Hardware Platform (BHP)

AHP Module

Advanced Hardware Platform (AHP)

(AHPM)

TPCM&MPkt Classif To
Network

From
Network

RAMRAM

FPGA

uP

RAMRAM

FPGA

uP

RAMRAM

FPGA

uP

RAMRAM

FPGA

uP

CPU

Figure 5.2: The OOG Basic Hardware Architecture.

q Extendability. Including a set of AHPs in a router implies an additional
(costly) investment. In order to facilitate its upgradability (and hence its
useful life), a modular design is to be favored. Furthermore, a modular
design allows it to scale better with traffic demands. A complete separation
between AHP and BHP, furthermore, allows the replacement of elements
of both parts without disrupting the other.

q Retro-compatibility. Active routers will not be deployed worldwide at once.
Hence, a migration scenario is necessary. By allowing the possibility of
adding AHPs as separated modules in selected existing routers, a transi-
tion path is opened. By keeping interaction between BHP and AHP at a
minimum, retro-compatibility is simplified.

The AHP is composed of AHP Modules (AHPMs) interconnected by an inter-
nal ring. Every AHPM disposes of an FPGA, with the possibility of integrated
embedded microprocessors, some memory, and interfaces to the rest of the node.
This modular approach allows to keep the node scalable with the number of
services as well as with the processing power needed.

It is basically in these AHPMs, that data plane applications will be realized:
The microprocessors provide a software development platform, while the FPGAs
provide the hardware programmable environment. Their tight coupling allows a

Chapter 5. Octopus Open Gateway Architecture 78

reduced intercommunication overhead for both parts of a service. Management
plane applications (or parts thereof) run on the additional CPU.

As stated before, the ONM sets a high importance on security. To this end,
applications running on the CPU (by definition, not time-critical), are only al-
lowed to run inside predefined Virtual Machines (VMs). The Virtual Machine
performs resource management tasks for the applications which run on it. Typi-
cally, applications belonging to the same service operator will share one. Within
a VM, a service operator is free to distribute its allocated resources as it pleases.
In order to avoid inter-VM interference, the NodeOS enforces the resource usage
associated with every VM. In this way, the network operator keeps control of the
overall node resource management, while allowing individual usage policies for
the service operators sharing it.

On the AHPMs, though, such OS control for software applications is not pos-
sible, since there rarely is an embedded OS present. The overhead associated
with several software abstraction layers would tremendously degrade the micro-
processor’s performance. Because of this, it is not possible to safely share an
embedded microprocessor among several service operators. However, it is per-
fectly feasible to share it among services belonging to the same operator, since
only his applications would be affected in case of malfunction.

In addition to microprocessor code, applications will also be realized in the
form of native hardware modules (typically as Verilog or VHDL code). These
modules will also be synthesized and placed on the FPGA, sharing resources
with the microprocessor and its applications.

In order for this to work, the equivalent of a Virtual Machine or sandbox at
the AHPM level is necessary. Such a hardware sandbox would realize resource
management functions directly in hardware, so that the microprocessor applica-
tion modules would not interfere with hardware modules running on the FPGA
or with other AHPMs. Vice versa, it must also be guaranteed, that hardware
modules running on the FPGA will interfere neither with each other nor with the
microprocessor, nor with the rest of the AHP.

This interference by hardware and software modules sharing an AHPM can
happen at several levels: First, direct interaction, through attempts to intercept
another module’s interfaces. Second, an indirect, and by far easier and equally ef-
fective way of interfering relies on access to shared off-chip resources, like memory
banks or intercommunication channels to the rest of the platform. These could
take the form of denial-of-service attacks (blocking access to a certain resource by
other modules) or passive attacks (accessing memory ranges allocated to other
applications, thus getting information on them).

As noted in the Introduction, growing IC density allows to place whole systems
on a single FPGA, as well as multiplexing hardware modules corresponding to
different applications on the same chip. The number of I/O pins per FPGA,
which allow to bring data in and take data out of the chip, can by far not grow
that fast, for technological reasons. Furthermore, there is a multiplexing gain in

Chapter 5. Octopus Open Gateway Architecture 79

Embedded Hardware Manager

. . . .

To

Svc 0 Svc N-1

SDRAM

AHPM

CPU Bus

I/O Channel

Figure 5.3: AHPM Functional Representation.

pooling certain resources, like memory, together in bigger modules rather than
providing an individual smaller module per application. The reasons comprise
performance, overall size requirements, power consumption and, as a whole, cost.
Hence, in the midterm applications running on a FPGA will have to share a
common set of off-chip resources. In this context, some form of regulation has to
be implemented in the access to those resources.

As a consequence, the hardware sandbox mentioned before has a double role
to accomplish: On the one hand, it must control direct interactions among appli-
cation modules within the FPGA (including the microprocessors). On the other,
it must regulate access to shared off-chip resources (s. Fig. 5.3). Both of these
tasks are taken up by the Embedded Hardware Manager (EHM) described in
the next chapter, and which constitutes the first attempt at coordinated resource
management for open and programmable hardware systems, that the author is
aware of.

5.2 Integrated Active Router Architectures: 2.5G vs 3G

As explained in section 2.3, the trend in router design is toward a fully dis-
tributed system in the data plane, with some central intelligence for control and
management plane tasks. The main rationale behind it is to increase data plane
throughput with respect to older, more centralized schemes. The idea behind an
active router is to perform an additional set of value-added functions in the data

Chapter 5. Octopus Open Gateway Architecture 80

and control planes. Hence, the necessity of ensuring high performance is even
more stringent than on common routers.

Nevertheless, two different architectures can be envisioned, depending on the
role played by the active router (corporate edge, ISP edge or core, s. Section 2.4)
and the amount of traffic requiring ”active” treatment.

Switching Fabric

.
.

.
.AHPM

Forwarding
Engine

Forwarding
Engine

. . . .

Forwarding
Engine

Forwarding
Engine

Routing &
Management

Processor

Interface Cards

AHPM

Interface Cards

To the
Net

To the
Net

Figure 5.4: OOG Architecture. First Option.

Fig. 5.4 depicts a design based on a mixture of the principles of second and
third generation routers, hence the naming ”2.5G router”. On the one side,
it presents a set of ”traditional” 3G line cards, with fully distributed packet
forwarding functionality, interconnected by a parallel backplane for increased
internal throughput. On the other, it envisions a common pool of AHPMs (the
”active” part), analogous to 2G forwarding engines for additional functionality.
These AHPMs dispose of an internal data packet cache, so that packets sent to
them for processing do not have to be written back to line card memory.

The main disadvantage of this design lies in the repeated traversal of the
backplane for active packets. At a minimum, a packet requiring active treatment
has to traverse the backplane twice: Once to reach the AHPM, and a second
time to be sent to the destination line card. However, the possibility of ”chains
of services” (i.e., packets that have to be processed by several services consec-
utively, like watermarking plus encryption) implies, that packets might have to

Chapter 5. Octopus Open Gateway Architecture 81

wander from AHPM to AHPM several times, before reaching the output line
card. Hence, the aggregated backplane throughput needs to be strongly larger
than the aggregated line card speed, or only a small fraction of the traffic could
be served by the AHPMs.

The advantage, nevertheless, lies in its architectural simplicity, its lower cost
and its compatibility with existing systems: This design could be a first step
in the transition toward deploying active routers, since it fits well in existing
3G designs, which present specialized line cards for specific operations, on top
of forwarding ones [Cisb]. AHPMs would then appear as ”normal” cards for
existing routers. With only a moderate software update in the Management Unit,
the basic advantages of A&PNs could be realized, albeit with some restrictions.
Basically, the interaction between AHPMs and BHP would have to be kept to a
minimum for lack of adequate interfaces, and probably would have to be delegated
to the Management Unit.

Switching Fabric

BHP + AHP

Routing &
Management

Processor

Interface Cards Interface Cards

To the
Net

To the
Net

Figure 5.5: OOG Architecture. Second Option.

A fully integrated solution is presented in Fig. 5.5. In this case, the AHP
is integrated in every line card, although it remains a separate unit inside of it
(represented by a ring in the figure). Active processing is realized inside of every
line card. Hence, packets have to be transported only across the ring in case of
processing by multiple AHPMs. Full active processing is possible, without hitting
backplane throughput. Furthermore, the communication with the BHP is a lot

Chapter 5. Octopus Open Gateway Architecture 82

easier, for a direct set of interfaces have been envisioned for it (s. Section 5.3). Fig.
5.5 represents the logical evolution toward active 3G routers: The throughput
and scalability of the 3G design is far superior than in the 2.5G case, but so is
also the cost. Edge routers in big networks will probably necessitate the former,
while lower speed networks or transitional semi-active routers will fall back on
the latter.

5.3 3G Line Card Architecture

The AHPM design presented in section 5.3.3 fits equally well in both designs,
i.e., it can be implemented as a stand-alone 2.5G line card or as a module inside
of a 3G interface card. The main difference lies only in a modification of its
interfaces, as will be explained shortly. Hence, this section will be centered on
the 3G line card architecture, which represents the next step in router evolution.

5.3.1 3G Line Card Functional Description

A functional representation of the line card design is presented in Figs. 5.7 and
5.8. It has been divided in two for clarity, but both modules together compose a
single card, as depicted in Fig. 5.6. Accordingly, fig. 5.7 contains the elements
involved in pre-switching processing, i.e., before an incoming packet is sent across
the internal backplane to its outgoing interface card (marked as ”input” in fig.
5.6). Fig. 5.8, which has an analogous structure, contains the post-switching
modules (marked as ”output” in fig. 5.6). An example of pre-switching pro-
cessing is the decryption of an incoming data stream, previous to its routing,
watermarking, etc. A post-switching example is the encryption performed on an
outgoing packet, after having been routed, its TTL decremented, etc.

The card is composed of the following main elements:

q Packet Buffer and associated Memory Controller. Incoming packets are
stored in the Packet Buffer and kept there until a switching decision has
been made. In a router, typically only control information and the packet
header are passed to the different modules for processing.

The Memory Controller regulates access to the Packet Buffer for all other
card components.

q Advanced Hardware Platform (AHP). Presented as a ring, it contains the
AHPMs, which will perform the value-added packet processing. Besides the
AHPMs, the ring contains a number of additional stations, which perform
the role of interfaces to the BHP elements as well as to the Packet Buffer.

q Basic Hardware Platform (BHP). It is composed of the main functional
blocks of any router architecture, as presented in section 2.2. Together, the
BHP elements realize a traditional stand-alone router.

Chapter 5. Octopus Open Gateway Architecture 83

Switching Fabric

Routing &
Management

Processor

Interface Card Interface Card

Packet
In

Packet
Out

Packet
Out

Packet
In

Input

InputOutput

Output

Figure 5.6: Decomposition of a Line Card in an Input and an Output Module.

.

.

.

.

Pkt Buffer

Mem Ctrler

Pkt Classif M&M Queues

AHPM

AHPM

PC If

M&M If

Switch If

PB If

AHP

Packets
from

Network

Packets
to

Switch

Info
to

Allocator

Control Information

Packet Payload

BHP

Figure 5.7: OOG Line Card Architecture. Pre-Switching Part.

To better illustrate its characteristics, the path of an incoming packet across
the line card will be explained.

Upon arrival at the input interface, the packet is stored in the Packet Buffer.
Additionally, a copy of the packet header is sent to the Packet Classifier. Subse-
quently, the Packet Buffer sends a reference of the packet storage location to the
Packet Classifier, so that it can be retrieved after processing.

Chapter 5. Octopus Open Gateway Architecture 84

Traditional routing decisions affect only the packet header, especially its des-
tination address (for route lookup), TTL (decrement) and CRC (integrity check).
Even more complex functions, like packet classification or firewalling, generally
involve only information contained in the layers 3 (IP) and 4 (TCP/UDP) header
fields. Hence, to improve performance by reducing the amount of information to
be transported from module to module, only the IP and TCP/UDP headers, plus
some extra control information, will be used in most router modules.

BHP

.

.

.

.

Pkt Buffer

Mem Ctrler

Svc Allocator Queues TPC

AHPM

AHPM

SA If Queue

TPC If

PB If

AHP

Packets
from

Switch

Packets
to

Network

Control Information

Packet Payload

If

Figure 5.8: OOG Line Card Architecture. Post-Switching Part.

It is the role of the SIIM (s. Section 5.4) to establish the order in which
packets will be sent to the different services by which they have to be processed.
These ”chains of services” are associated to the corresponding classification rule
in the Packet Classifier and contain:

q A list of the services, that shall process the packet. This is given in the
form of a hierarchy of addresses: The card in which the service resides,
the AHPM address within the card, and the service identifier within the
AHPM.

q An indication, whether a service in the chain also performs processing on
the packet payload or not. This information is passed to the SIIM by the
NAN during the service introduction phase. This serves to accelerate and
facilitate packet retrieval in the AHP.

When the packet header reaches the Packet Classifier, two possibilities arise:
If it was a packet, which does not need processing in the AHP, its service chain
only contains the address of the output interface. It is then directly passed to

Chapter 5. Octopus Open Gateway Architecture 85

the Meter & Marker (M&M) and eventually to the Input Queues. Otherwise,
the Packet Classifier passes the header, the service chain and the pointer to the
payload position in the Packet Buffer to the first AHPM in the list. If that
AHPM lies in the same card, the information is passed via the Packet Classifier
ring interface (PC If). If it resides in a different card, it is passed to the M&M.

In the ring, the AHPM containing the first service in the chain receives the
header, service chain and pointer from the Packet Classifier. If additionally the
payload is required for processing, it is retrieved from the Packet Buffer via the
Packet Buffer ring interface (PB If) and cached on the AHPM. The pointer is
accordingly updated to signal the new packet location.

After processing, the control information is sent to the next service in the
chain. If it happens to be on the same card, it is sent across the ring, together
with the payload, if needed (”push” operation). If not, the control information
is sent to the M&M via the M&M ring interface (M&M If).

After arrival of the control information to the Input Queues, the whole packet
is retrieved and switched. The updated pointer indicates if it was still stored in
the Packet Buffer or in some AHPM. In the second case, the packet is directly
retrieved from the AHP via the Switch ring interface.

On the post-switching side, the operation is analogous: The complete packet
is again stored in a Packet Buffer and header, service chain and the updated
pointer are passed to the Service Allocator.

The Service Allocator is a simple demultiplexer: If AHP processing is nec-
essary, it passes the control information to the AHP via the Service Allocator
ring interface (SA If), analogous to the Packet Classifier. From this point, the
procedure is identical to the pre-switching case, with one exception: The Traf-
fic Pattern Conditioner (TPC) takes the final scheduling decision, retrieves the
packet and sends it to the network.

The architecture presented here keeps a clear-cut separation between AHP
and BHP, which facilitates ONM security policy implementation. Besides, the
interaction between them is reduced to a minimum set of clearly defined inter-
faces.

As is typical for modern router architectures, it increases performance by
working mainly with headers and storing packets in a separate buffer. Only if
active applications require the packet payload will it be retrieved from memory.

In the following section, the AHP ring, which interconnects all AHPMs in
a card, will be described. Special attention will be paid to the mechanisms
introduced to improve performance.

5.3.2 AHP Ring

Processing elements in a router typically exchange packet headers. AHPMs,
additionally, also have to interchange packet payloads for more complex appli-
cations. Additionally, AHPMs have to retrieve and send data to the BHP at

Chapter 5. Octopus Open Gateway Architecture 86

different points in the processing chain. Hence, a high throughput is necessary
in this scenario1.

Having an AHP per card, complex and costly interconnection structures
should be avoided, for scalability reasons. Besides, due to the small physical
scale, mechanisms with large delays in access to the medium (like some token-
passing rings or shared buses) are also impractical.

The final choice for the AHP fell on a slotted ring, after comparing three
different options: Bus, crossbar and ring. In summary, the advantages of rings
against its competitors in this scenario are:

q Like crossbars, slotted rings allow parallel transmission of several pieces of
information. This is a performance advantage vs buses.

q Although crossbars can have even better scalability and performance than
rings, they also present a much higher complexity and increased resource
consumption. This derives from the control elements needed for their op-
eration (allocators, etc.)

q For small distances and slots of short duration, as is here the case, rings
present a small delay overhead, especially if explicit tokens are avoided.

Furthermore, rings are very efficient (i.e., they have a very high utilization),
since they avoid collisions in access to the medium. This derives in high through-
put. All in all, a slotted ring presents a good compromise between high through-
put, simplicity, moderate resource consumption, small delay, and high efficiency.

The ring is divided in slots of constant duration and equivalent to 64 byte.
This size allows for the transmission of a typical packet header (roughly 40 byte),
plus the service chain and a pointer to the packet storage location2. Thus, in most
cases AHPMs can interchange all relevant information in only one slot time.

To ensure fairness, one slot is reserved for every station in the ring. To that
end, every station lets N-1 free slots pass by before occupying one itself, N being
the total number of stations in the ring. The slots are freed upon reception of
the information (”early slot release”), which allows for slot reuse and increases
efficiency.

However, packets take much longer to send than control information. A typ-
ical 1500 byte packet needs roughly 24 slots to be transported across the ring,

1As way of example, assume an aggregated card bandwidth of 10 Gbps. If 10% of packets
require AHP processing, of which 50% need the payload, the data volume entering the ring
yields 500 Mbps. Nevertheless, these orders of magnitude do not present any kind of problem
for current technology.

2A simple calculation suffices to show this: A complete ACK TCP packet is 40 byte in size.
Plus, 32 bit to transport the storage pointer. This leaves 20 byte for the service chain. Accord
31 bit to code every service identifier (maybe 15 bit to code the card – clearly too much –, 8 to
identify an AHPM in the card and another 8 to identify the service inside of the AHPM), plus
1 bit to signal if the payload is needed. This gives a total of 5 elements per service chain per
slot.

Chapter 5. Octopus Open Gateway Architecture 87

so it would take 24*N slot times. To increase the packet transport speed in the
ring, the total amount of slots is bigger than the amount of stations. The extra
slots are reserved for packet transmission and regulated by a Ring Master (s.
Section 5.3.3).

Whenever an AHPM needs to send a whole packet to another station, it re-
quests the extra slots from the Ring Master via an interrupt line. Upon receiving
the grant, it can use the extra slots consecutively (i.e., in a burst) on top of its
reserved one. Assuming a mere 4 slots reserved for the purpose, a whole packet
could be transported in 6 bursts or 6*N slot times3.

The choice of two slot types is a compromise between fast packet transmission
and long waiting times for control information exchange.

By reserving one slot per AHPM, a roughly equal load per station is assumed.
Certainly, this does not have to be the case. A way of overcoming large deviations
of this assumption, is to periodically evaluate the AHPM load and rearrange the
services therein to optimize the traffic distribution. This task could be performed
by the SIIM on a daily or even weekly basis.

5.3.3 AHPM Functional Description

The AHPM represents the software and hardware programmable platform
put at the disposal of the service operator. Physically, it is composed of a FPGA
with embedded microprocessors, some external memory and interfaces to the
ring, the CPU (s. Section 5.3.4) and the external memory. The FPGA provides
the programmable hardware environment, while the embedded microprocessors
provide the software environment. Additional, non-time-critical applications run
inside Virtual Machines in the CPU.

The AHPM is functionally divided in three blocks (s. Fig. 5.9):

q Ring Attachment Subsystem: Composed of a Slot Manager, input and
output queues, a delay register and a multiplexer. Its function is to regulate
access to the ring.

q Service Chain Management Subsystem. Composed of the Packet Cache
and its Manager, the Service Chain Manager and the Service Chain Table.
It manages the service chains corresponding to packets being processed in
this AHPM, as well as the passing and retrieving of control information and
payload associated to them.

3Again as way of example, assume a ring with 6 AHPMs and 4 interfaces to the BHP, plus
4 reserved slots for packet transmission. Hence, N=14. For a 32-bit ring at 200 MHz, the time
needed to transmit a whole packet is: T = 6 ∗ N ∗ tslot = 6 ∗ 14 ∗ 40ns = 3.36µsec. On an
interchange between Stuttgart and Berlin, taking roughly 10 ms and traversing some 50 routers
(all of them active), this implies an overhead of 1,68% in total delay.

Chapter 5. Octopus Open Gateway Architecture 88

CPU

Master
Slot Mgr

ToFrom

Slot Request
Queue

Slot

From
AHPMs

To
AHPMs

Bus

Ring Ring

. . . .

Grants

Cache
Mgr

Cache

Svc Chain
Mgr

Svc Chain
Table

SvcEHM

Slot Mgr

Svc 0 Svc N-1

Register

RAM

AHPM Ring Master

Control Information

Packet Payload

Ring
Attachment
Subsystem

Service Chain
Management
Subsystem

Services
and EHM

Figure 5.9: AHPM Functional Representation and Ring Master Structure.

q Services and EHM. The services are introduced by the service operator and
are in charge of processing the packets. Their functions can be very diverse:
Encryption, watermarking, transcoding, intrusion detection, etc.

The EHM regulates the access of the services to the ring, the CPU, the
off-chip memory, the packets and any other shared resources present in the
system. It is the critical element to enforce the security and QoS policy of
the network operator at the node level.

Additionally, a Ring Master is present to schedule access to the extra slots
reserved for packet interchange. Because of its simplicity, it can be integrated
with one of the AHPMs or be present as a separated module4.

In the following paragraphs, the operation of these blocks will be further
explained.

5.3.3.1 Ring Attachment Subsystem

This block manages the AHPM attachment to the ring. Basically, incoming
data are delayed in a register to check if the slot was free or busy, and, in the
second case, if the information transported therein was addressed to this AHPM.
As explained before, addressing is coded in every service chain element as a 3-
tuple (card, AHPM, service). The Ring Attachment Subsystem checks only the

4This second option would be more appropriate, especially if additional functionality is
placed on the Ring Master. The introduction of QoS in the ring to give precedence to some
packets or stations over others would be a case in point. Such extensions have not been included
in this work.

Chapter 5. Octopus Open Gateway Architecture 89

address contained in the first element of the service chain, since the ordering in
the chain is also the processing order by the services.

Should the slot be free, and assuming that this AHPM has data to send, two
possibilities arise: If the Slot Manager signals, that this is ”his” assigned slot,
information will be retrieved from the output queue and sent. Otherwise, the
slot will be passed to the next station unaltered.

The Slot Manager is basically a counter. It lets pass by N-1 free slots before
granting access to the ring, in order to ensure fairness. If additional slots have
been assigned by the Ring Master to send a packet, the counter is updated
accordingly.

If the slot was not free (recognizable either by a ”free bit” at the beginning
of the slot or by a non-empty service chain) or if this AHPM had no information
to send, the slot will be again forwarded unaltered.

If the information contained in this busy slot was addressed to this AHPM,
its content is copied into the input queue and the slot is freed before passing it
over. In this way, it can be reused by the next station and higher efficiency is
possible.

5.3.3.2 Service Chain Management Subsystem

The main element in this block is the Service Chain Manager. It keeps a
table containing all service chains corresponding to packets being processed in this
AHPM. Additionally, it is charged with retrieving and passing control information
and payload associated to those packets.

When control information concerning a new packet arrives, the Service Chain
Manager stores it in the Service Chain Table. If payload was not needed for
processing, it passes the packet header to the EHM. Otherwise, two possibilities
arise: If the payload is still in the Packet Buffer, the Service Chain Manager sends
a request to the Packet Buffer Interface and waits. If the packet had already
been cached at some AHPM in this card, it will come shortly after the control
information, by using the packet transmission slots. No request is necessary in
this more common case, hence reducing delay.

Upon payload arrival, the Service Chain Manager directs it to the Cache
Manager, which stores the payload in the local Cache. The Cache is built of
on-chip SRAM modules, much faster than off-chip SDRAM5. Hence, passing
packets among AHPMs is much faster than retrieving them from the Packet
Buffer. Additionally, memory interfaces are a common performance bottleneck
in modern communication nodes (s. Section 2.5.3). Writing packets back to the
Packet Buffer whenever a service has finished processing would greatly strain the
memory interface. With local caches, the load is distributed and performance

5Modern FPGAs include a large amount of on-chip RAM modules (e.g., several Mbit in an
Altera’s STRATIX II device [Cor]). Hence, storing a few packets on-chip presents no techno-
logical challenge nowadays.

Chapter 5. Octopus Open Gateway Architecture 90

increased. These are the main reasons for introducing a local cache in every
AHPM.

The Cache Manager basically keeps track of the storage location of all packets
in the Cache and passes this information to the Service Chain Manager, in order
to update the control information in the Service Chain Table. It also passes the
payload to the EHM and retrieves it from there, under Service Chain Manager
supervision.

Whenever the service is finished with the processing, the Service Chain Man-
ager receives the (maybe altered) header and updates the control information: It
writes in the new header, removes the first element in the service chain (already
processed) and, if the payload had been retrieved from memory or some other
AHPM, it updates the storage location with a pointer to its local cache. The
payload is written back into the Cache.

If more than one service shall process this packet, several possibilities arise:

q Next destination is also in this AHPM. In this case, the header (and the
payload, if needed) is passed to the EHM with a new service identifier,
exactly as before.

q Next destination is in another AHPM in this card. The updated control
information is retrieved from the Table and sent to the ring by using the
reserved slot. If the payload is needed by the next service, a request is sent
to the Ring Manager for additional slots. Upon receiving the grant, the
packet is retrieved from the Cache and sent (”push operation”). The Cache
is freed. Otherwise, the packet stays in the cache, until some other service
or the switch send a request for it (”pull” operation).

q Next destination lies in another card, or this was the last element of the
service chain. In this case, the control information is sent to the M&M
Interface, so that it will be eventually switched across the backplane. If
the payload had been cached, the Switch Interface will send a request for
it whenever the switch’s allocator allows. Additional slots will then be
requested from the Ring Manager, and the payload will be sent directly to
the Switch Interface.

In all cases, after passing the control information (and the payload, if neces-
sary), the Service Chain Table is updated and this information removed.

5.3.3.3 Services and EHM

As stated above, the services are the instances in charge of processing the
packets. The goal of the EHM, which will be analyzed in the next chapter, is
to ensure that no interference can arise among services, or between the services
and the node itself. The EHM is hence the most critical element in the OOG
architecture, for it falls upon it to ensure that the additional performance and

Chapter 5. Octopus Open Gateway Architecture 91

openness derived from the AHP are not at the price of diminished security or
resource usage control.

5.3.3.4 Ring Master

Finally, the Ring Master manages the extra slots reserved for packet trans-
mission. Basically, it contains a queue, where the AHPMs write their requests,
and a point-to-point signal to every AHPM to give the grants. The algorithm
employed to distribute the slots can be a simple Round Robin, in order to en-
sure fairness with respect to the stations. Alternatively, Weighted Round Robin
could be employed, where the weights are proportional to the average number of
requests sent in the past. In this way, fairness with respect to the actual load of
every AHPM could be achieved.

All extra slots in every cycle are assigned to only one station. The rationale
is to quickly complete the transfer of a whole packet, so that the receiving service
can begin its processing. Multiplexing several requests in one burst would delay
the start of service processing in all requesting stations.

5.3.4 Interface to the CPU and Configuration Procedure

The CPU plays a double role in most router architectures. On the one
side, it realizes the routing and management functions. Hence, it must receive
and process all signaling and routing packets. On the other, though, it is also
charged with the configuration and management of the node itself and the mod-
ules therein.

The architecture of the CPU itself will not be considered here, since it is a
common general purpose processor plus the corresponding periphery. However,
the interchange of information with the BHP and AHP does imply important
architectural decisions. Those are the aspects that will be dealt with in this
section.

For the double function performed by the CPU, two interfaces have been fore-
seen in the OOG. First, the CPU is connected to the backplane as an additional
station (s. Fig. 5.5). Hence, all signaling and routing packets will be forwarded
to it by the line cards as if they were addressing any other interface card. This
simplifies packet forwarding.

Second, a configuration interface is also included. Typically, configuration is
a rare process, seldom with tight real-time constraints. Furthermore, the amount
of data involved is much smaller than for packet forwarding. On top of that,
configuration implies a 1 to N relationship between the CPU and the line cards,
hence making parallel interconnects useless. Consequently, a bus presents the
simplest but also sufficiently high-performance solution for this task.

Accordingly, a separated configuration bus interconnects the CPU with all
line cards in the router. Inside of every card, this bus is terminated by a Bridge
(s. Fig. 5.10). The Bridge is interconnected via two internal buses with all BHP

Chapter 5. Octopus Open Gateway Architecture 92

.

.

.

.

Pkt Buffer

Mem Ctrler

Pkt Classif M&M Queues

AHP

CPU
Configuration

BusBridge

Figure 5.10: OOG Configuration Bus between CPU and All Line Card Modules.

and AHP modules in the line card. The function of this Bridge is to interpret the
address of the commands sent by the CPU and select the module to be addressed.
Furthermore, configuration of hardware systems mainly involves the writing or
reading of registers. Hence, a second Bridge function lies in interpreting the
commands sent by the CPU (using any proprietary management protocol) and
translating them to simple write and read operations over the adequate registers.

However, in order to allow for management freedom by the service operator,
the Bridge shall not interpret such configuration messages as are addressed to
services inside of the AHPMs. In that case, the Bridge simply forwards the
CPU message uninterpreted. In the AHPM, they are internally forwarded to the
service. In this way, the service operator can design and use any management
protocol of its choice, without restrictions. This fosters development freedom and
innovation.

Such a configuration bus, nevertheless, is not adequate for the transmission
of big amounts of data, as would e.g. be needed to reprogram an FPGA if new
services had to be included. This would introduce an unnecessarily long configu-
ration delay, on the one hand, and block the configuration bus to other cards or
modules, on the other. For that purpose, the backplane is used. Large amounts
of configuration or management information are sent across the backplane with
a special packet header. In this way, no extra complexity in packet forwarding
is introduced, while fast configuration is enabled. On the CPU side, the control
of the configuration bus falls on the Device Driver, while the control over the
backplane connection falls on the scheduler (s. Section 5.5).

Chapter 5. Octopus Open Gateway Architecture 93

5.4 Service Introduction & Interaction Manager
Functionality

Network reliability is one of the critical assets, that network operators depend
on to build a reputation. Accordingly, they would very reluctantly endanger that
reliability by sharing node management with third parties. In order to achieve this
goal, two requirements have to be met: On the one hand, the node integrity must
be protected from service misbehavior. That is the task of the different resource
management mechanisms introduced in this and the next chapter. On the other,
the network operator must keep the final control over the node. Since there is
no such thing as ”absolute security”, the possibility to control the activation and
removal of services must lie on its hands. This is the task realized by the Service
Introduction and Interaction Manager (SIIM).

In a shared node, furthermore, it is in the interest of all, that a third party
acts as a judge of last resort. Service interaction can not be solved by service
brokering among the interested parties, except if cooperation mechanism have
been built in in their design [Kec02]. This is a strong and unnecessary constraint
in service design, if an overruling entity can solve such interactions in the interest
of node and service stability.

S1

S2
FTP

S2.1

SIIM

Code
Repository

S2 code

S2 code

S2.1 code

Execution Environment

Figure 5.11: Service-triggered Functionality Extension.

The SIIM acts as the interface to the NAN. It is in charge of keeping track
of, and communicating resource availability in the node. It also downloads the
code belonging to a new service and installs it in the appropriate (software and

Chapter 5. Octopus Open Gateway Architecture 94

hardware) Execution Environment. Additionally, it must reprogram the different
resource management mechanisms to redistribute node resources and enforce its
usage agreements. The SIIM must also introduce the necessary filtering rules in
the packet classifier, so that packets needing treatment by the new service will be
accordingly forwarded. This is another information, that is negotiated between
NAN and service operator in the Service Admission phase. For certain services,
also the routing tables might have to be updated. This, nevertheless, is a process
which, unlike traditional Active Network Nodes, can not be performed by the
service. Routing and classifying are critical processes for the reliability of the
node. A mischievous service might divert packets, which it does not have the
right to handle, by modifying those mechanisms. In order to prevent that, only
the SIIM itself carries out such tasks. In general, the OOG architecture does not
allow direct interaction between services and resources, which are common to the
whole node for security reasons.

Once this task is performed, though, the service operator is free to further
manage, refine or enhance its service as it pleases. Since a service runs on a safe
environment, it is allowed to download additional modules from service operator-
specific repositories without NAN intervention. As represented in Fig. 5.11, a
service instance (S2) might instantiate, as part of its service offering, a download
service like FTP. It might then retrieve an additional sub-service (S2.1) and share
its resources with it. The interfaces to the system as well as the overall allocated
resources to S2 must remain unaltered. Since to enforce this is the competency
of the SIIM, S2 can not endanger applications beyond its sandbox. It must
be pointed out, that the ONM presents no mechanisms to check the safety of
the code, since that presents unsurmountable technological challenges. Only its
authenticity and integrity was guaranteed. It is in the interest of the service
operator, to perform analogous checks in its own extensions, even if the network
operator does not force him to.

A particular case is represented by the realization of capsule-based approaches
within a service. The ONM foresees the forwarding of canonical IP packets, which
precludes the inclusion of different layer 3 headers or even of radically different
capsule structures. Nevertheless, as long as capsules present externally an IP
header for packet forwarding and classification, services are free to encapsulate
within their own formats. This allows the transport of code within packets, which
will be interpreted by the service in traditional capsule fashion. Analogously,
service extensions can be downloaded upon packet arrival, as long as they can
be performed by the service itself, as in the previous example (Fig. 5.11). In
this sense, the ONM presents a Programmable Network framework, within which
Active Network architectures can also be realized.

An additional task performed by the SIIM regards such traffic aggregates, that
shall be processed by several services consecutively (so-called ”chained services”).
An example could be a data stream, which shall first be watermarked and then
encrypted prior to transmission. Assuming that both services are implemented

Chapter 5. Octopus Open Gateway Architecture 95

on an OOG, the SIIM has to handle their necessary interaction. As stated before,
it would represent a strong development freedom restriction, if services had to be
aware of each other, in order to cooperate. Furthermore, it would open a new
avenue for possible conflict, since misbehaving services could deny cooperation,
e.g. by not passing a packet to the corresponding next service, de facto performing
a denial-of-service attack. As in the previous case, the alternative consists in
introducing a middleware element in charge of chaining services. During the
packet classification update process, if the SIIM detects two overlapping rules,
it internally creates a list of services, that correspond to that rule. The packet
classifier then passes the packet to the first service in the chain, together with the
list of services. As was explained in section 5.3, a special module in the AHPM
manages the list. Upon processing completion by the first service, that module
intercepts the packet in its way to the network and diverts it to the next service.
In this way, cooperation among services is not needed.

In spite of this, a problem exists: How to handle services, which alter the
content or the state of a packet and how to establish the right order in the ser-
vice chain. It might be, that the next service in the chain will not be able to
perform its processing due to that alteration. As an example, consider the water-
marking plus encryption example: If the processing would be performed in the
opposite order (first encryption, then watermarking), the second service would be
incapable of recognizing the packet stream as a video session, and watermarking
would fail. This is one dimension of the feature interaction problem. To be able
to solve such dependencies, the first step is to provide an accurate description of
system behavior, not unlikely with the help of formal methods. In this concrete
example, though, it might suffice with a description of which information regard-
ing packet and/or associated state is needed by every service, and which changes
will be performed on them. This amounts to an interface description. With that
information, dependencies should be recognizable and an adequate chaining pos-
sible. None the less, this topic is beyond the scope of this Thesis. Further details
can be found in [Kec02].

5.5 Intra-service Communication

A value-added service developed for the OOG can consist both of software
and hardware modules. As already explained, software modules can be developed
for the management plane, in which case they would run on a Virtual Machine
inside a general purpose processor. Software for the data plane, on the other
hand, needs to be tailored to the platform and can not be placed on top of
several abstraction layers. To prevent security threats and, at the same time,
enhance performance, it will run on embedded processors on the FPGAs. The
hardware modules will be directly developed for the FPGAs. In such distributed
applications, the intra-service communication and data interchange can have a
determinant impact on performance. Depending on its implementation, it can

Chapter 5. Octopus Open Gateway Architecture 96

also negatively affect application interference, especially if applications are al-
lowed to directly communicate with each other. To prevent both effects, a dual
communication system for intra-service communication is foreseen. Inter-service
communication is not allowed beyond Execution Environment boundaries, i.e.,
only services belonging to the same service operator can ”talk” to each other.

NodeOS DD

AHP

CPU

Network

App 1

App 2

Net If

Net If

S
ch

ed

Figure 5.12: Intraprocess Communication Channels.

Traditionally, a software component interchanges data and control informa-
tion with a hardware component via a Device Driver (DD, s. Fig. 5.12). The
use of Device Drivers presents two disadvantages: On the one hand, they are
usually not developed for high throughput. On the other, Device Drivers are
multiplexers, in the sense, that they have to provide access to the hardware for
all applications running on the system. As a consequence, a DD can be seen as a
shared communication resource, that has to be shared according to the resource
usage policy. Besides, a DD is a kernel instance, and has thus the capability to
endanger the system stability, if it would be compromised. It must accordingly be
protected from the applications. The ONM Device Driver for intercommunication
with the AHP consequently presents a very simple API to the applications, which
simplifies its management. Additionally, it includes a scheduler to regulate access
to the AHP, instead of simply serving requests as they come. Together with the
scheduler, Access Control mechanisms restrict the visibility of AHP resources to
the applications. The rationale behind it is to prevent sniffing information from
the AHP by software modules. This channel will be used for the interchange of
configuration and control information, as well as small amounts of data, since it
can not provide high throughput.

Chapter 5. Octopus Open Gateway Architecture 97

The second communication channel is a traditional network interface, like
Gigabit Ethernet. This interface will be used for massive data interchange (e.g., to
download a new FPGA configuration). The network interface inside the NodeOS
foresees the use of a scheduler to regulate bandwidth usage, like Deficit Round
Robin. The cost incurred with this solution, which provides good isolation and
throughput, is the additional delay incurred by the network interface. On top
of that, the interchange of small amounts of data would incur a high overhead
penalty, since packet formats include a constant amount of header information.
This solution, however, directly allows the implementation of AHP and BHP in
different devices interconnected by a network, if desired.

5.6 Security & Resource Management in the OOG

Security is the main concern of the OOG, together with performance. To that
end, besides the security checks performed for the introduction of new services
(described in the previous sections), runtime checks are performed. Since the
validity and the integrity of the source code has already been validated through
the service admission process, runtime checks should concentrate on safety and
QoS issues, i.e., resource management mechanisms. Taking advantage of the
information provided by the NAN on agreed service resource usage, resource
management is performed at four different levels:

q At the Execution Environment level: EEs schedule access to their allocated
resources. This comprises Access Control, on the one hand, and QoS, on the
other. This second aspect corresponds to the access frequency and band-
width associated with every application and every resource, like memory or
I/O. Nevertheless, since several EEs can be active on a OOG at the same
time, these checks are not sufficient.

q At the Operating System level: To distribute resources and enforce usage
among EEs, a third party is needed. This role is played by the OS. As
explained before, the OS gives the network operator the ultimate control
over the node, in case of application misbehavior not caught by its respective
EE.

q At the Device Driver level: As a part of the OS, the Device Driver plays a
very special role, since it regulates access to the other application modules
residing in the AHP. For that purpose, access control and scheduling are
replicated here.

q At the AHPM level: Modules implemented directly in hardware can not
be satisfactorily controlled by the OS (s. Section 3.2). Thus, to prevent
interaction at the hardware level, an Embedded Hardware Manager has to
be implemented. It will take up the Access Control and scheduling tasks
for the embedded microprocessors and hardware applications.

Chapter 5. Octopus Open Gateway Architecture 98

As can be seen, the functions realized at the four levels are essentially the
same. In principle, it could be argued, that this represents an unnecessary over-
head. Nevertheless, this replication is necessary, since the different mechanisms
solve the same problems within different scopes and time granularities. This de-
rives from the fact, that different resources and applications have different access
patterns. A memory access by a hardware module must be, e.g., satisfied within
a few clock cycles, while a packet transfer to (or from) the network interface may
last for thousands. The granularity of control spans several orders of magnitude.
On top of that, some resources and applications are directly managed by the ser-
vice operator, while others are controlled by the network operator, which implies
a different scope. Within the node, it was shown, that the OS does not have
a thorough sight of all resources, since many platform-dependent details at the
hardware level are hidden from it.

This chapter has presented the Octopus Open Gateway architecture, this
Thesis’ vision of an active router. In such shared nodes, resource management
plays a critical role in guaranteeing network reliability. Without that, network
operators would never accept this new paradigm, in spite of its other advantages.
While most Active & Programmable Network proposals have dealt with the issue
of resource management for software systems, its counterpart for hardware or
embedded systems has not been widely studied. The reason lies in the neglect
of shared programmable hardware systems in those proposals. The following
chapter will analyze an architecture to share the AHP while providing safety and
QoS guarantees to every individual application.

6 The Embedded Hardware
Manager

The last two chapters presented a general description of the Octopus Net-
work Model and its main components, which represent this Thesis’ vision of an
overarching programmable network architecture. In this section, one of the most
critical and less studied elements of such an architecture will be reviewed: A
security and QoS management entity for hardware resources, denoted as the Em-
bedded Hardware Manager (EHM). A first section will summarize the necessity
of such an entity. Next, the overall EHM architecture and its main characteristics
will be presented. Last, a more detailed description of the composing elements
will take place.

6.1 Why Resource Management in Hardware for an OOG

As it is, modern network nodes perform a myriad of functions in hardware.
The OOG, more concretely, presents a programmable hardware platform to sup-
port value-added services in the form of digital circuits. It is the sharing of this
platform, which demands resource management within the AHP.

The OOG has been designed as an open node, in which different service
operators can place and operate their services directly and independently of each
other and of the network operator. The risks associated with sharing a platform
among different services could be listed as: Degraded performance caused by a
misbehaving application, breaking the QoS agreements with the other services,
illegally retrieving information related to other applications, mischievous service
manipulation and node crash (s. Section 3.2).

Even for simpler, centrally managed nodes with programmable hardware plat-
forms, similar concerns arise. Such hardware designs, like any other big software
project nowadays, are not entirely developed by the service programmer. Parts
of it are bought from other companies in the form of pre-processed, synthesized
building blocks. Such is the case with standard interfaces, microprocessor cores,
PLLs, etc. The result is a variety of applications, including blocks from different
manufacturers, running concurrently on the same platform. In this scenario, bugs
and unpredictable service interactions are always a possibility.

99

Chapter 6. The Embedded Hardware Manager 100

If open nodes are foreseen, the risks are accordingly higher. To prevent such
dangers, an effective isolation among services has to be introduced. Section 3.2
reviewed the mechanisms employed in software, and also the reasons why OS
control of hardware applications is not sufficient. Hence, to guarantee safety,
security and QoS in a programmable hardware platform, access control and re-
source management at the hardware level have to be performed.

The goal of the Embedded Hardware Manager is, thus, to take up these tasks
and hence to replicate the functions performed by the OS at the hardware level.
To a large extent, similar mechanisms can be used, with adequate translation to
this new domain. The development of a coherent, integrated security and QoS
policy for programmable hardware platforms has not been attempted before.
With increasingly powerful FPGAs and myriads of functions being performed in
hardware, such a module as the EHM becomes indispensable.

6.2 EHM Design Criteria

The OOG in general and the EHM in particular were designed with three
goals in mind concerning their field of application:

q Shareability. Envisioned as an open node, it had to support different ap-
plications from different service providers.

q Applicability in different networking scenarios. To be able to cope with
innovative services, it must be capable of coping with very different re-
quirements.

q Performance. The goal is to design an active router capable of working on
real networks, especially in the MAN and edge area.

From these goals, several design criteria for the EHM were derived:

q Universality of design: The goal was to create an instance, that could be
adapted to a variety of node architectures and, especially, to a variety of
applications and off-chip resources. Nevertheless, hardware modules are
too close to the platform to be portable: Bus widths, number and kind of
SDRAM modules, type of CPU, etc. are parameters, that have to be known
for a working implementation of the EHM. Hence, the goal was to design a
portable architecture, although accepting that any implementation thereof
would necessarily be bound to the chosen platform.

q Service independence: The EHM should be capable of accommodating a
broad palette of service behaviors in order to be useful. In that respect,
the interface between the EHM and the applications plays a fundamental
role, since it limits the interactions possible between both. In order not to
restrict service functionality, it has to support a varied set of modi: Single

Chapter 6. The Embedded Hardware Manager 101

word access, bursts of known or unknown length, a flexible set of control
signals, etc.

q Individual QoS guarantees per application: Different applications will have
different requirements when accessing the same set of resources, depending
on their uses of them. Conversely, they can also require different kinds of
resources, like SRAM or SDRAM. Accordingly, the access pattern must be
set per application and be flexible enough to accommodate individual uses.

q Security / isolation among applications: As stated before, application inter-
ference is unacceptable. This encompasses not only QoS interference, but
also access to and/or modification of data or state associated with another
application. This involves what and to which purpose to access, while the
previous point deals with when and how to access shared resources.

q Scheduling specialized per resource: Different off-chip resources present very
different operation patterns. SDRAM memory and the network interface,
to choose but two, both can be seen as burst-oriented sources of information
for the applications. However, their operation time scales are very different,
with SDRAM working in the ns area (a few words) and the network interface
in the µs area (a few thousand words). Accordingly, to regulate access to
them different scheduling algorithms will be needed.

q High throughput and utilization: Performance is the reason to introduce
hardware in networking systems. Hence, the EHM must not greatly reduce
system throughput in order to be useful. In order to be efficient (and not
only effective), utilization must be kept at a high level, too.

q Modest resource consumption and complexity: FPGAs are increasingly
resource-rich, in terms of logic cells as well as additional building blocks,
like on-chip memory or interfaces. Nevertheless, advances in FPGA capac-
ity and power should derive in more real-estate for the application program-
mer and not for EHM consumption. Only a moderate resource usage would
be acceptable.

q Limited additional delay: The price to pay by introducing an intermediary
between the services and the off-chip resources is additional delay and jitter.
Since overall end-to-end delay nowadays is limited by queuing and process-
ing delay at the intermediate nodes, the EHM must not add long loops in
the process, in order to be adequate for real-time as well as non-real-time
applications.

From the above mentioned criteria, an inherent limitation emerges: Limited
scalability. The complexity of a module dealing with scheduling N inputs and
M outputs will be somewhat in the order of O(N ×M). Although this strongly

Chapter 6. The Embedded Hardware Manager 102

depends on the architecture chosen, it remains intuitively true e.g. for the re-
sources used by the EHM in terms of interfaces. Furthermore, there is a limit
to the multiplexing gain achievable with limited delay. Sharing a SDRAM bank
among 100 applications, no matter what access pattern they show or how good
the chosen scheduler is, does not seem very reasonable due to the long maximum
access delay. Hence, the architecture presented here is only useful for a limited
number of applications running concurrently on an FPGA. Nowadays, the pos-
sibility of sustaining more than one application per device is barely emerging.
Thus, the solution presented here will be adequate still for years to come.

6.3 Embedded Hardware Manager Architecture

The role of the EHM, thus, is to act as an intermediary among the services
running on every AHPM FPGA and between those services and external resources
to be shared, like SDRAM modules, network interfaces, CPU, etc. (s. Fig. 6.1).
It will be in charge of guaranteeing isolation among services. To that end, access
control mechanisms and scheduling algorithms will be used.

Embedded Hardware Manager

. . . .

To

Svc 0 Svc N-1

SDRAM

AHPM

CPU Bus

I/O Channel

.

.

.

.

AHPM

AHPM

PC If

M&M If

Switch If

PB If

AHP

(Ring If)

Figure 6.1: The Placement of the EHM in the AHP.

From the point of view of the realization, hardware applications are synthe-
sized VHDL or Verilog code. Accordingly, the EHM is implemented also as a
VHDL module. The main difference is, that it can be conceived as a piece of ”in-

Chapter 6. The Embedded Hardware Manager 103

frastructure”: For the applications, it represents their interface to the resources
and is a fix element of the system. Figure 6.2 presents the basic architecture.

App 0

Controller
Other

General
Responder

Data path

Control path

RU Manager
SDRAM

Master 0
OCP OCP

Slave
I/O

Other

. .
 .

. .
 .

Controller

. . .

OCP

Svc Mgr 0

EHM

Offchip

Offchip
Other

RU Manager

RU Manager

Memory

Controller
I/O

DRAM

Offchip
I/O

Svc Mgr N−1Master N−1
as in Svc Mgr 0

To all buses

App N−1

Figure 6.2: The EHM Architecture.

Every system or application present in the chip has access to the off-chip
resources exclusively through the EHM. In this way, bypassing the security and
scheduling mechanisms is prevented. As an interface between the applications and
the EHM a fully compliant version of the Open Core Protocol (OCP) interface
[OCP01] has been chosen, as explained in section 6.4.1.

Access control and scheduling are implemented in the Embedded Hardware
Manager in the form of distributed algorithms running on the Service Managers
(Svc Mgr). There is one Service Manager per application. Every Svc Mgr controls
access to all shared resources (memory, I/O, etc.) for its application. To that
end, it is divided in a set of Resource Usage Managers (RUMs), one per shared
resource. It is in the RUMs, that the scheduling and access control algorithms are
actually implemented for every application-resource pair, as will be described in
section 6.4.3.1 for the DRAM case and in section 6.4.3.2 for the network interface
case.

Obviously, an application’s QoS and security requirements vary depending on
the resource: E.g., a computing-intensive application like image processing might
need a lot of memory bandwidth and less I/O capacity, while encryption barely
uses memory access but requires packet processing at wire speed, thus intensively
using I/O channels. Furthermore, the capabilities and access patterns of every
resource are also different: Single-access (as in SRAM) vs bursts (as in DRAM),
single burst (as in memory access) vs multiple bursts (packet transfer), etc. Every
RUM is therefore optimized for its specific resource.

The EHM receives the relevant information to configure these elements from
the Network Admission Node during the service introduction process. The QoS

Chapter 6. The Embedded Hardware Manager 104

and access rights associated with every new application are downloaded from the
NAN together with the application code, as was explained in chapter 4.

Communication between an application and a resource can be bidirectional.
RUMs control the transfer of requests from the service to the corresponding
resource, responses being handled by the General Responder.

Access requests are passed to the Resource Controller, which polls every Svc
Mgr following a certain strategy. E.g., for the SDRAM Controller, two different
strategies have been implemented to give access to memory. The first and simplest
is a round-robin scheduler, that grants access to the bus to every Svc Mgr in turn.
The second implementation tries to optimize memory usage by dividing time in
so-called epochs. Requests being served in an epoch will be rearranged to better
utilize memory and minimize the overhead associated with DRAM management.

The interconnection between the Service Managers and the Resource Con-
trollers has been realized with a set of buses, two per Controller: One for control
information and one for data transfer.

These buses can be seen as multiplexers: Every bus interconnects all Service
Managers with one Controller, and vice versa. More precisely, every RUM inside
a Service Manager has access to one of these bus pairs, the one associated with
its corresponding resource, as depicted in Fig. 6.2. The scalability of such a
solution is limited, as was analyzed in the section on router interconnects (s. Sec-
tion 2.2.4). In the general case, a switching matrix would be a better alternative.
Nevertheless, the election of a bus array was made considering the inherently
limited scalability of the overall EHM design. A switching matrix would need
far more resources, due to its higher complexity (allocator, VOQs, buffers, etc.)
The bus array, thus provided sufficient scalability with far greater economy of
resources and simplicity.

For clarity, the operating mode of the EHM has been exemplarily represented
in Fig. 6.3: Two applications, I and J, have a request (e.g., read, write, interrupt)
for a certain shared resource, k. This request is sent to their corresponding Svc
Mgr, which forwards it to the appropriate RUM for resource k (RUM k). The
RUM performs two checks on the request: If it has the right to access the resource
in the way stated in the request (AC, in the figure), and if it has enough resources
available to do so (represented as a token bucket with parameters b and r, see
also section 6.4.2.1). The value of the token bucket parameters and the access
restrictions are individually set for every application and resource by the SIIM,
hence the notation ACI,K , bI,K , etc. Obviously, the token bucket parameters are
not independent of each other: The SIIM ensures, that the overall request rate
does not exceed 100% of the resource’s capacity.

Should the RUM deem the request acceptable in terms of QoS and security,
it is signaled to the resource controller responsible for resource k. The controller
then schedules the requests following the algorithm chosen by the designer and
serves them accordingly.

Chapter 6. The Embedded Hardware Manager 105

App J

. .
 .

.
. .

 .
.

Resource
Controller k

I

J

0

N-1

bIK, rIK

Svc Mgr I

RUM k

REQ2

REQ1

REQ1

REQ2bJK, rJK

Svc Mgr J

RUM k

ACI,K

ACJ,K

App I

REQ2

Figure 6.3: Distributed Access Control and Scheduling in the EHM.

6.4 EHM Main Elements

Since the EHM contains modules, which are either application or resource
specific, adequate examples had to be chosen to illustrate the architecture. To
that end, two RUMs and two applications were designed and implemented, which
represent two extremes in their resource requirements and behavior.

First, an SDRAM RUM and its corresponding Controller were implemented.
Memory being one of the fundamental resources for any application and one of the
constant elements of any system architecture, it seemed an appropriate choice.
The second set consists of an I/O RUM and its corresponding Network Interface
Controller. Since this Thesis is concerned with networking equipment, access to
the transmission medium was a second fundamental choice. Additional modules
could be included, since the EHM presents the claim to be applicable for most
shared resources.

None the less, a clear limitation exists: The EHM adds delay to resource
access. Hence, it is unsuited for applications/resources with extremely stringent
deadlines. An example would be an application accessing an SRAM module. The
scheduling overhead to share the SRAM interface alone would dwarf the usual
access delay of around 3 clock cycles. Nevertheless, such tight deadlines are
usually dealt with within the FPGA scope by integrating such elements on-chip.
SRAM being again the best example, any modern FPGA has a pool of SRAM
blocks, that can be individually associated to designs running on the chip. Since
such memory blocks are not shared, no need to supervise them via EHM exists
in the first place.

Chapter 6. The Embedded Hardware Manager 106

To illustrate the usage of the EHM by different applications, two were de-
signed: An accounting application and an encryption module. The first is a very
memory intensive service, while the second requires packet processing at wire-
speed, being thus very I/O intensive. Together, they represent two extreme cases
in resource usage for both types of RUM and Controller presently included in the
EHM. Details on these applications will be given in the next chapter.

The following sections describe the different architectural elements in more
detail.

6.4.1 The Interface Between the Services and the EHM: OCP

Independently of the concrete standard finally chosen, a number of require-
ments were set on this interface. Isolation among applications being a key con-
cern, it followed, that a point-to-point interface between service and EHM was
a convenient solution, since it absolutely prevents interference. An alternative
would have been to use tristate buffers on the application side. The choice was a
trade-off between logic and interconnection resources: The former solution is more
interconnection-intensive, the latter more logic-intensive. Finally, the overall de-
cision falling on the use of the OCP standard, it followed that the point-to-point
solution had to be adopted, for it is the one used by OCP.

The advantages of that interface were many: It is an open standard, thus not
tying to any vendor-specific solution. Furthermore, its characteristics are well
adapted to the needs of a system on chip: It is an extremely flexible interface
thanks to its many optional signals, which allow to adapt to a vast range of system
behaviors. It is general-purpose, thus allowing the interconnection of a wide range
of applications (microprocessors, memory controllers and peripherals). It allows
bursts of different sizes and is a point-to-point interface, thus eliminating any
possibility of interference in accessing the EHM among the different applications
on the chip.

Since the EHM design is a general, platform- and technology-independent
resource manager, it can also support other standard, non-proprietary interfaces,
that could further ease the integration of third-party products, like the Wishbone
[Sil01] and AMBA [ARM99] interfaces. The EHM was successfully tested with
all three interfaces (OCP, Wishbone, AMBA).

Any interface presents two sides. In this case, as represented in Fig. 6.2, an
OCP Master module has to be integrated with the application, while an OCP
Slave resides within the Service Manager. This represents the only severe con-
straint set by the EHM to application developers. For that reason, the interface
had to be sufficiently flexible to accommodate a large variety of access patterns.
At the same time, it had to be close enough to the hardware platform, so as not
to artificially obscure the exact desired behavior. Additionally, being a module,
with which all applications have to comply, it was advantageous to rely on a

Chapter 6. The Embedded Hardware Manager 107

non-proprietary standard, which would facilitate its adoption by developers. The
OCP standard accommodates all those requirements, as explained in [OCP01].

Requests coming from an application are locally acknowledged by the OCP
slave, in order not to block the OCP interface, which otherwise would have to
wait for the response (e.g. data coming from a read request to SDRAM) before
being freed for subsequent transactions. This provides a certain multiplexing gain
in interface usage. Whenever a response is ready to be transfered to the applica-
tion, it is sent to the General Responder, which acts as a multiplexer, serializing
responses coming from different resources, potentially simultaneously. Although
the present implementation serves every resource in a round-robin fashion, the
General Responder could assign priorities to them, in case that certain requests
had more stringent delay requirements.

The Service-EHM interface is the only access point to off-chip resources for any
application. This is the only way to ensure access control and QoS enforcement.
Otherwise, applications could circumvent the EHM and directly access the I/O
pins with help from its own logic. To prevent this, the EHM has to surveil
all FPGA I/O pins. This measure also prevents most hardware attacks at the
electrical level, as explained in section 3.2.

Additionally, an aggressive resource usage policy is implemented. Should an
application try to access unauthorized resources or surpass its QoS share (as
defined by the Service Manager), the interface is shut down by the OCP Slave,
preventing any further interchange between application and resource. In case
of QoS exhaustion, the policy so far is to keep it closed until the usage level
falls under its maximum allowed limit. Should any form of security breach be
detected, the interface will be shut down indefinitely and an alarm will be sent
to the system administrator.

The OCP interface presents to the application a single attachment point to
off-chip resources. Internally, though, the application may include a number
of logical interfaces: For different purposes (e.g., data/signaling), for different
execution paths (e.g., threads), for different resources (e.g., memory, I/O) and
even for different instances of the same resource (e.g., memory bank 1, memory
bank 2). Every application thus has to multiplex access to all shared resources
on the OCP interface. How that multiplexing is done is application specific and
falls under the responsibility of the application programmer.

The interface is a critical factor in the EHM design, for it defines which kind
of behavior is possible. In that sense, it could constrain development freedom,
if not chosen carefully. The choices made here try to combine a maximum of
freedom with an effective security and QoS policy.

6.4.2 Service Managers

A Service Manager reunites and coordinates all Resource Usage Managers as-
sociated with an application, as well as being the interconnection point to off-chip

Chapter 6. The Embedded Hardware Manager 108

resources. It serves the requests from the application and delivers the responses
from the resources. To illustrate its behavior, in this section two representative
RUMs will be described.

The total number of Svc Mgrs depends on the number of applications, while
the total number of RUMs depends on the number of shared resources. In prin-
ciple, these modules could be dynamically instantiated in the EHM whenever a
new application or resource is included in the system. Modern FPGAs allow this,
thanks to the partial reconfiguration support. The EHM architecture is modular
enough to allow it.

None the less, in its present form, the EHM presents a constant number of
Svc Mgrs and RUMs. In order to include new ones, a whole new EHM instance
has to be programmed in the FPGA, hence interrupting service operation. This
is due to the fact, that the FPGAs employed at the IKR do not support partial
reconfiguration.

6.4.2.1 SDRAM Resource Usage Manager

The SDRAM Resource Usage Manager (RUM) regulates access to the data
interface according to the security and QoS policies chosen. For that, it performs
two functions: It controls resource usage and also checks the validity of memory
addresses being accessed. Figure 6.4 presents the basic architecture.

Ctrl RAM Data RAM

Container

To memory
controllerSlave

Token Bucket

From OCP

SDRAM RUM

Figure 6.4: SDRAM RUM Architecture

The SDRAM RUM is functionally similar to a Memory Management Unit
(MMU) in a computer, with a number of important differences:

q The EHM is a distributed system. An MMU is a central instance regulating
access to memory for diverse subsystems and peripherals. In the EHM, the

Chapter 6. The Embedded Hardware Manager 109

equivalent functionality is distributed among all SDRAM RUMs, plus the
SDRAM Controller.

q Emphasis on individual QoS guarantees. MMUs are usually designed to
achieve high utilization. The EHM, additionally, provides hard individual
QoS guarantees and isolation to every application.

q Runtime programmability. The EHM presents a set of registers, where
the scheduling parameters and the address range associated with every
application (to be explained shortly) are written. In this way, the QoS
policy can be changed by the SIIM (under NAN control) at runtime without
disrupting service operation.

Since access to memory will be granted according to a scheduler, it can not
be guaranteed that a request will be answered immediately. Hence, some form of
intermediate buffering is needed. The SDRAM Resource Usage Manager performs
that function. It can be seen as a queue storing the write and read requests, plus
the corresponding data in the case of a write. This role falls on the Container
and its associated Control and Data RAM in Fig. 6.4.

To control resource usage, a scheduler has been used that represents a good
compromise between ease of implementation, performance and effectiveness. Es-
pecially important is that the scheduler will not allow large jitters in the access
to the bus. In packet schedulers, for example, the time unit is large: It is the time
needed to send a whole packet to the network. But in memory access, the time
unit is much smaller, since it is only the time needed to send a data burst, which
is typically at least an order of magnitude shorter than a packet. Hence, delaying
a burst the equivalent of a packet transmission time might be unacceptable for
delay-sensitive applications. That eliminates many current schedulers used in
networking.

To set an upper bound in delay and jitter and yet allow the burstiness typical
of memory access, a combination of token buckets [Tan00] is used. There is
a Token Bucket for every application. Its parameters (denoted as b and r in
Fig. 6.3) are chosen to reflect the bandwidth and burst size accorded to that
application and thus represent the mechanism to grant different QoS to different
applications, according to their needs. b represents the bucket depth, which
indirectly sets the maximum burst size allowed by the bucket. r is the token rate
and sets the long-term throughput assigned to this application.

Furthermore, the maximum time that an application can use the bus is limited
by the maximum burst size. Once exhausted, the Memory Controller grants
access to the next application with a pending request. In this way, the maximum
delay is known and bounded to (N − 1) × MBS, where N is the number of
applications and MBS represents the maximum time allowed to transmit the
maximum burst size on the OCP.

Chapter 6. The Embedded Hardware Manager 110

The Container stores the requests and corresponding data in a small set of
on-chip RAM. Access to memory is granted to these requests in a first-come-first-
served basis. Storing requests is independent from actually delivering them to
the Memory Controller. That process is controlled by the Token Bucket. Once
a request has been made to the Memory Controller, the RUM must wait for a
grant before the data can actually be delivered. Depending on the version of
the Memory Controller, requests are served either in a round-robin fashion or
according to a performance-maximizing strategy, as described in section 6.4.3.1.

Svc OCP Slave SDRAM RUM I/O Ctrler
General

Responder

Write Req

Write Req

Write Req
Token and Address Check

Req Scheduling
Local Grant

Token Decrement

Read Req
Read Req

Read ReqToken and Address Check

Req Scheduling
Local Grant

Read Req Info

Data

DataRead Req Info

Data

Data
Read Req Info

Data

Data

Data

Data Data

Data

Data

Data

Data Retrieval
Token Decrement

W

R

t

ACK

ACK

Figure 6.5: Memory Data Retrieval and Write Procedure.

Nevertheless, a malicious application might request bus usage to transmit a
shorter burst and once granted, try to use up the maximum allowed time. To
prevent this, the RUM keeps track of actual usage and discounts tokens accord-

Chapter 6. The Embedded Hardware Manager 111

ingly. Once the limit has been reached, the transaction is aborted if it was not
finished by then. In this way, bus misuse is prevented.

The second task of the RUM is to map requested memory addresses to the
address space granted to the application. For that purpose, a virtual memory
scheme is used. Only the low bits of the address bus are taken into account by the
RUM. It then prefixes the high order bits according to a virtual address table and
compares the resulting address with the last valid address for that application.
If the requested position falls out of bounds, the request is dropped. In this way,
peeking into memory or even altering its content is prevented.

The implemented strategy is certainly not the only one possible. Nevertheless,
this choice was made looking for bounded jitter, good isolation and implementa-
tion simplicity (so that it would suit a hardware implementation).

A typical write (denoted with a ”W”) and read (”R”) operation have been
depicted in Fig. 6.5. In the write cycle, the SDRAM RUM stores the data and
waits until enough tokens have been amassed. At the same time, the address is
checked (”Token and Address Check”). The Memory Controller schedules the
requests and gives the grants accordingly (”Req Scheduling”). Upon reception of
the corresponding grant, the RUM decrements the token counter and sends the
data. The counter can be decremented before transmission, since the data are
locally stored and the transmission time is constant.

In the read cycle, since the data are delivered to the application with a certain
delay, some extra control information (”Read Req Info”) has to be given back in
order to univocally identify the request.

6.4.2.2 I/O Resource Usage Manager

The I/O or Network Interface Manager follows a similar approach to the
one described above, with some important alterations derived mainly from its
different operation time scale. A typical packet send and packet retrieval cycle
has been exemplarily depicted in Fig. 6.6. In principle, the I/O RUM tasks are
analogous to the SDRAM RUM’s: To schedule access to the network interface
(to receive or send packets) and to check if an application has the right to access
a certain incoming packet.

Packets are relatively big pieces of information. In the previous case, bursts
could be stored in an intermediate container and then scheduled and rearranged
because the delay introduced by the process was small in absolute terms. Fur-
thermore, rearranging requests in accessing SDRAM made sense, because there
is a variable overhead associated with preparing memory banks to be read and
written to. Both conditions do not apply in this scenario. First, the delay as-
sociated with sending or receiving a packet from the network interface is several
orders of magnitude larger than normal memory burst lengths. Accordingly, the
additional delay incurred by buffering a packet in the RUM prior to scheduling it
would be unacceptable. Secondly, access to the network interface has a constant

Chapter 6. The Embedded Hardware Manager 112

Svc OCP Slave I/O RUM I/O Ctrler
General

Responder

Write Req

Write Req

Write Req

Req Scheduling
Local Grant Write Grant

Write Grant

Write Grant

Tick Counter Starts

Data
Data

Data
Data

Data

Data
Data

Data

Data
Tick Counter Stops

ID Storage

Notif

Notif

Read Req
Read Req

Read Req

Req Scheduling

Local Grant

Read Req Info

Data

DataRead Req Info

Data

Data
Read Req Info

Data

Data

Token Decrement

W

R

t

Notif

ID Check

Packet Retrieval

Token and Address Check

Token and Address Check

ACK
ACK

Figure 6.6: Packet Retrieval and Send Procedure.

Chapter 6. The Embedded Hardware Manager 113

overhead, so that it makes no sense to reorder requests at this stage1. On top
of that, the on-chip memory bits necessary to buffer packets in every RUM prior
to transmission would be considerable, while providing no real advantage. As a
consequence, no intermediate packet storing takes place in the RUM, which is
then reduced to a Token Bucket plus some control logic.

As in the previous case, the Token Bucket controls resource usage by the ap-
plication. Prior to sending a packet, a check on the amount of available tokens
is performed (”Token and Address Check” in the figure). Should they not suffice
to serve the request, it will remain open until enough tokens have cumulated.
Since requests are not stored in the RUM, there is no local acknowledgment by
the OCP Slave. When a request can be served by the RUM, it notifies the I/O
Controller, which schedules grants for every RUM in round-robin fashion (”Req
Scheduling”). Upon grant reception, the General Responder notifies the applica-
tion, which can then send its packet directly to the network (”Write Grant”).

Misuse would still be possible, in that upon grant reception the application
refuses to send data. Since the bus between RUM and I/O Controller is reserved
for the duration of the transaction, a denial-of-service attack would de facto be
performed. To prevent this, as soon as the grant is received by the RUM (”Local
Grant”), a Tick Counter is started. This Tick Counter keeps track of the time
actually used by the application. This value will be decremented from the Token
Bucket state, no matter how long the packet was. Additionally, a limit is set
to the maximum transfer duration, which roughly corresponds to the maximum
packet size. Should the Tick Counter reach this limit, the transaction will be
aborted.

In this way, a double test is performed: First, upon reception of the request,
the RUM checks if the minimum necessary amount of tokens to transmit a packet
of the notified size is in principle available. Second, when the transfer actually
takes place, the application is billed for the resources really used, and denial-of-
service attacks are prevented.

Receiving packets from the network follows a somewhat different procedure:
Upon packet arrival at the node, a notification is sent to the EHM. The I/O
Controller then notifies the corresponding application (via its RUM, ”Notif”).
It then falls on the application to request the packet from the network interface
(”Read Req”). The RUM then checks the number of tokens, and whenever they
suffice, it forwards the request to the I/O Controller and acknowledges the op-
eration to the application (”ACK”). The I/O Controller will eventually deliver
the desired packet via the General Responder. The rationale behind this separa-
tion between read request and read response lies in the additional delay incurred

1Note that the EHM is not responsible for performing output scheduling. The scheduling
implemented here only concerns access to the Traffic Pattern Conditioner by the applications,
for packets being sent to the network. There, an additional scheduling based on classes, marks
or reservations can take place. Conversely, packets arrive to the EHM from the Packet Classifier
on a FIFO basis.

Chapter 6. The Embedded Hardware Manager 114

during a read response. Since packets are not stored locally on the EHM, a read
implies requesting and retrieving the data from the external network interface,
which might take considerable time. In order not to block the application for so
long, once the read request has been granted and issued, it is acknowledged. In
this way, the application is free to employ the time until data arrival in some use-
ful processing. The General Responder will send an indication to the application
whenever the data are ready.

The second task to be performed by the RUM would be to validate requests
by an application to receive certain packets. Otherwise, it would be possible
for an application to claim a packet addressed to some other application, which
implies an identity theft. This is prevented by building a table storing the appli-
cation associated with every incoming packet upon arrival2 (”ID Storage”). This
table will be checked every time a read request is issued by an application (”ID
Check”). Since network nodes have to process packets at wire-speed, the number
of packets awaiting processing will be small3. Accordingly, this check can be more
efficiently centralized at the I/O Controller. Distributing the task among RUM
would unnecessarily use a larger amount of resources. The exact mechanism will
be described in section 6.4.3.2. Obviously, no checks are necessary for packets
originating from the application and going to the network.

As can be seen, the mechanisms are in principle very similar to the ones
employed in the SDRAM RUM, but adapted to the intrinsic characteristics of
the network interface. Consequently, similar advantages have been achieved,
mainly resource misuse prevention, identity theft prevention, QoS guarantees
and bounded maximum delay.

6.4.3 Resource Controllers

These elements are the direct interface to the off-chip resources. They must
accordingly be optimized for the exact amount and type of resource present in
the platform. I.e, their protocols toward the resources can be proprietary and the
controllers themselves are not portable among platforms. It should be noted, that
these are the only elements of the EHM, which are not platform-independent. As
far as a standardization process succeeds in developing common protocols for
the most common off-chip resources, like SDRAM modules or Gigabit Ethernet
interfaces, the controllers will improve their portability. As way of example,
SDRAM products from different manufacturers are, to a large extent, already
compatible.

2This information is delivered by the packet classifier together with the packet header itself,
as explained in section 5.3.

3The packet ID table has been implemented as a circular list. If an application refuses to
retrieve its packets (e.g. because of internal processing overload), after a certain time they
will be overwritten. Hence, packet loss is possible, but only if the application can not process
packets at the arrival rate.

Chapter 6. The Embedded Hardware Manager 115

6.4.3.1 Memory Controller Architecture

The Memory Controller4 depicted in figure 6.8 is designed to maximize mem-
ory usage within an epoch. An epoch is defined as the time needed to serve all
active requests from the SDRAM RUMs at the moment of polling. The con-
troller will then rearrange those requests to minimize the overhead associated
with DRAM operation, as described shortly, and serves them accordingly. Once
finished, a new epoch begins with a new polling phase.

DRAM efficiency is highly dependent on the access pattern. In particular the
throughput depends on the burst length of the access, the address being accessed
and the type of access (read/write). DRAM is partitioned in multiple banks to
enable parallel access to the memory locations. Within each bank it is arranged in
rows (pages) and columns. In case of successive memory requests on the DRAM,
typically, there is very little delay involved between the two memory transactions
if the second memory request operates on the same page as the previous request
(page hit). There is a larger penalty if the second request operates on the same
bank but different row than the one activated by the previous request (page miss).
The penalty is smaller if the second memory request incurs a bank miss. In order
to improve the efficiency of DRAM, some optimizations are required which can
avoid the page miss, bank-miss and maximize the page-hits. The arbiter (memory
controller) needs to permute the memory requests in such a way that it reduces
the number of conflicts and improves the throughput.

The memory controller developed for this project uses Micron SDRAM mem-
ory MT8LSDT864 [Mic99]. However the design principles discussed here apply
to any generic SDRAM.

Figure 6.7 shows how two successive memory operations can be executed
under different conditions for the SDRAM used. A simplified representation of
the timing diagram is shown where each box is equivalent to a clock cycle. Only
the command and data bus are shown in the figure, the upper row showing the
commands.

The mnemonics and the color code for the commands are also illustrated in
the figure. The idle time in the two data transactions on the data bus is the
reason for a loss in the SDRAM efficiency. There is a delay between two data
transactions whenever there is a turn around from a read to a write operation or
vice-versa. The penalty is larger when the following memory access incurs a page
miss. All the transactions ending with SM in the figure are page misses. The
penalty is maximum when there is write to read turn around and a page miss,
too. In order to improve the efficiency of the DRAM, the page hits have to be
favored and turn arounds and page misses have to be avoided.

4This Controller was mainly designed and implemented by Sarang Dharmapurikar [DL01],
currently a graduate student at the Applied Research Lab, Washington University in St. Louis
(sarang@arl.wustl.edu), during the author’s stay at that institution. My contribution consisted
in introducing the ”epochs” and integrating it with the overall design.

Chapter 6. The Embedded Hardware Manager 116

WWSH

WWD

WWSM

RWSH

RWD

RWSM

RRSH

RRD

RRSM

WRSH

WRD

WRSM

ACTIVE

WRITE

READ

PCH

DATA1

DATA2

RW : Read folowed by Write

RR : Read followed by read

WW : Write followed by Write

WR : Write followed by Read

D : Different bank operation

S : Same bank operation

M : Page miss

H : Page hit

Figure 6.7: Timing Successive Read and Write Operations in Different Conditions.

The SDRAM controller is split up in a Request Selector and a Request Exe-
cuter (s. Fig. 6.8). The Request Selector logic takes the pending requests (one
from each module) and selects a request among them which, if executed at the
appropriate time, maximizes the SDRAM data bus utilization. It makes use of a
brute force technique to find the best among the pending requests. It compares
the pending requests supplied to it against the current memory operation and
decides which of the transactions shown in the figure 6.7 the pending request
corresponds to. The address of the pending request and the operation type (read
or write) are compared against the address and the operation type of the current
access. The result of the comparison indicates the transaction type that a mem-
ory request represents. The request which corresponds to the transaction with
the least penalty is chosen and passed to the Request Executer.

The Request Executer logic executes the selected request at the appropriate
time. It issues commands to the SDRAM at appropriate clock cycles in a state-
machine fashion. Since the basic scheme allows two requests to have overlapping
operations (termination of one request and the initiation of the next request)
two state machines are required to control the SDRAM interface. If one state
machine is busy executing commands for a request then the new request is loaded
into the other state machine. If both state machines are busy, then the Request

Chapter 6. The Embedded Hardware Manager 117

Comparator

Comparator

Comparator
Type

Logic

Next

Request

State m/c2

Current ReqRequest from
App 1

Request from

Request from
App N

App 2

Request Selector Request Executer

SDRAM Controller

Selection
State m/c1

Transaction

SDRAM

Figure 6.8: Block Diagram of the Memory Controller

Executer refuses to accept any new request and the scheduling operation has to
be repeated.

It is the epoch concept that ensures throughput optimization without com-
promising QoS. The order in which memory requests are enqueued depends only
on the Token Buckets. This ensures that every application will get its accorded
bandwidth. At the cost of some extra jitter, the memory controller rearranges the
requests that the Token Buckets have enqueued to achieve better overall through-
put. Since the request permutation occurs only at the beginning of every epoch,
the additional delay that a request can suffer is bounded.

6.4.3.2 I/O Controller Architecture

Contrarily to the SDRAM Manager, the network interface manager does not
perform any optimizations in packet delivery. Basically, packets are received and
delivered in FIFO order. It must be noted, though, that the order in which pack-
ets are delivered to the EHM by the Packet Classifier might already be policy-
dependent and hence responds to an implicit optimization. Conversely, packets
are taken from the applications following a round-robin sequence to achieve fair-
ness. This fairness is weighted by the Token Buckets placed in every RUM.

Packets arriving from the network contain an indication regarding the applica-
tion to which they should be delivered. This indication is used for two purposes:
One, to send a notification to the corresponding RUM, so that the packet can be
claimed by the application in due course. And two, to build a small database of
pending packets. This database contains a univocal packet ID and the applica-
tion ID to which it should be delivered. Upon reception of a read request from
a RUM, the packet and application ID contained therein are compared against
the ones in the database. If they do not match, an identity theft was underway
and the request is silently dropped. Otherwise the packet is requested from the
network interface card and upon arrival, it is sent to the General Responder.

Chapter 6. The Embedded Hardware Manager 118

The I/O Controller must also adapt the packets to the data format used by
the network interface card internally. In this case, a proprietary format existed
for the platform for which the prototype was developed. Since this is platform-
specific, it will be discussed in more detail in following chapters.

6.4.4 Summary of Architectural Properties

In summary, the architecture controls resource usage and provides protection
of the system from misuse by (sub) modules. It efficiently uses the OCP inter-
face, since bus requests can be placed while data operations are in progress, hence
making good use of request multiplexing. By using a general-purpose interface
the details of the resource being accessed are hidden from the application. This
simplifies application design and increases re-usability in the face of changing
components. It also allows the same interface and overall architecture to manage
access to different kinds of resources, such as communication channels, off-chip
buses and CPU. The abstraction represented by the interface is nevertheless not
so high so as to obscure or mislead the functioning of the resources. It is impor-
tant to note that an efficient use of the hardware resources presupposes a detailed
knowledge and control of their operation. Excessive abstraction usually implies
a loss of efficiency and performance in exchange for easier handling. This archi-
tecture also delivers good performance and controlled, bounded delay, which is
important for most applications, that are not completely delay-insensitive. Last
but not least, the proposed design scales sufficiently well with the number of
applications to be useful in years to come.

In order to evaluate this architecture, a number of tests have been conducted.
It is the task of the next chapter to describe the evaluation criteria set, the
methods employed and the tests conducted, as well as to interpret the results
and draw the pertinent conclusions.

7 EHM Evaluation

In this chapter, the EHM architecture presented in Chapter 6 will be evalu-
ated. First, the methodology used and the goals and criteria of the evaluation
will be enumerated. In order to cover a broad spectrum of possible application
scenarios, two extreme case studies have been chosen, which will serve as basis
for the tests. Since a meaningful evaluation of a hardware system can only be
performed under consideration of the real platform to be used, a short descrip-
tion of the Universal Hardware Platform (UHP), developed at the Institute of
Communication Networks and Computer Engineering (IKR) of the University
of Stuttgart, will also be presented. Subsequently, the tests themselves will be
explained, as well as the results obtained and the conclusions that can be derived
thereof. A short summary of results will conclude the chapter.

7.1 Evaluation Criteria, Methods and Goals

As was presented in Section 6.2, the EHM was designed to fulfill a number
of criteria. The aim of this chapter is to evaluate, to what extent that goal
was achieved. First and foremost, the EHM had to provide independent QoS
guarantees, especially bandwidth allocation. Second, since the safety of the code
can not be guaranteed with existing mechanisms (s. Section 3.2), service isolation
was of paramount importance. Third, the performance of the system has to be
sufficient for present and near future communication nodes. Lastly, the EHM had
to provide enough scalability in terms of the number of applications managed
simultaneously.

A number of methods could have been employed to evaluate the EHM. They
all present different advantages and drawbacks, which will be shortly reviewed
here.

Analysis. Mathematical analysis is a powerful tool for the characterization and
evaluation of communication systems. Nevertheless, because of this sys-
tem’s complexity, analysis could only be applied to selected portions of the
overall problem. Furthermore, analysis is realized under a certain degree of
abstraction from the real scenario. As will be explained shortly, that elimi-
nated the possibility of obtaining some of the relevant information regarding
the design.

119

Chapter 7. EHM Evaluation 120

Prototyping. This involves as a first step the design of the hardware system
with the help of some hardware description language. Subsequently, a
functional verification through hardware-close simulation would be done,
to check the overall high-level correctness of the design. In order to obtain
measurable test results, however, the consequent next step would have been
the prototypical realization of the whole system, followed by a set of mea-
surements. This is a very valuable approach, in that it allows to measure
long-term reactions of the system and obtain results based on real traffic.
There are two sets of drawbacks with this approach however, both deriving
from the prototype.

The development of the prototype of a communications node is a very
burdensome and complex task. As will be discussed in section 7.2, one
of the principal limitations lies on the closeness or else of the prototype
to real-world implementations of the architecture. Typically, small-scale
prototypes are used to check the validity and feasibility of a design. They
can not be used for performance measurements, since their implementation
has to make a number of concessions to available technology, development
effort and budget. Only a product-close, full-blown prototype, built from
scratch for a specific purpose would solve these problems, at the price of
higher resource usage in terms of price, time and effort. Such a prototype
was out of the scope of this Thesis.

Furthermore, the test of a certain new module, like the EHM, nevertheless
needs the support of an important amount of additional prototype infras-
tructure in order to work, diverting a big portion of the resources into
non-central elements of the design. Hence, the realization of a valid proto-
type presented some strong disadvantages, which might be solved with the
help of simulation techniques.

Simulation/Emulation. Simulation techniques rely on good modeling to con-
centrate on testing the fundamental characteristics of a design, hence saving
time and effort. It furthermore presents the possibility of performing tests
under a broad set of different scenarios with relatively low burden. The sim-
ulation of a complex system can be performed at different levels of abstrac-
tion, depending on the simulation model and the degree of detail chosen.
For hardware-close works as the one described here, the chosen technology
plays a fundamental role in the feasibility and performance of the design,
as well as the physical constraints. Vice versa, the design is strongly influ-
enced by the existing technology and its limitations. Hence, very abstract
simulations, albeit very useful to validate the correctness of the design, are
of little help to evaluate a hardware system, and consequently are not used
here.

Chapter 7. EHM Evaluation 121

One of the characteristics of VHDL and other hardware description lan-
guages, is their ability to describe digital systems at different degrees of
abstraction, allowing simulations to be performed at all levels. In this way,
a project can be incrementally refined and evaluated through simulation
until it reaches deployment stage. At the lowest level of abstraction, the
simulated design is identical to the real system. It is then an emulation.
Most results presented in this Thesis are derived from those emulations.

The one drawback of simulation and emulation techniques is the time-scale.
Because they have to reproduce and keep track of every event happening in
the model or system, they are very processing-intensive. As a consequence,
the more complex the simulated design, the shorter the time slot, that can
be simulated in finite time. Hence, emulation is not well suited for the
long-time evaluation of systems.

In this Thesis, a system emulation in VHDL plus pre-prototyping (synthesis
and place and route) has been chosen as method to evaluate the EHM. It presents
a middle way between pure prototyping and pure simulation, which allows to
recreate the technological limitations surrounding the system without incurring
in the overhead or lack of real-life relevance of a prototype.

Nevertheless, a number of parameters can not be extracted from simulation,
especially those related with the physical limitations of the circuit. The maximum
system clock frequency, which influences performance by setting a limit on the
cycle duration of the design, is one of them. This derives from the fact, that
the maximum clock frequency depends on the number and characteristics of the
elements (flip-flops, registers, etc.) present in the critical path of the circuit, as
well as from the delay derived from the non-infinite speed of light in the medium.
Physical resource usage is another such case: The exact number of gates needed
to realize the circuit is dependent on the technology used. The same applies to
memory bits, logic cells, etc. In order to obtain this information, the design has to
be synthesized and placed and routed for a concrete prototyping platform, taking
into account the exact architecture and components (FPGA, memory banks,
buses, etc.) present. With that information, the relative information obtained
from the emulation can be translated into absolute values (e.g. from the number
of clock cycles per operation to the maximum packets per second that can be
processed).

The most relevant information for the purpose of evaluating the goodness of
the design, however, lies in the relative parameters derived from the emulation:
E.g., efficiency, defined as the number of clock cycles employed in data transmis-
sion vs total number of cycles (including overhead), is in itself a relative value,
and gives a much better image of the quality of the design that the absolute
performance. Isolation and QoS, for their part, are more concerned with the
bandwidth percentage obtained by every application in the face of overload than

Chapter 7. EHM Evaluation 122

with absolute bits per second. Additionally, absolute values for hardware sys-
tems suffer of an inevitable limitation: Technology dependency. While relative
values reflect the architectural characteristics of a design, absolute values also
have to take into account the limitations imposed by the platform. I.e., the same
architecture, transported to a different platform (be it by changing the platform
architecture itself or simply by substituting its components for different ones)
would deliver completely different results.

Accordingly, the emphasis of this evaluation will lie on the relative results,
which reflect the architectural characteristics of the design, much more than
on absolute results, which necessarily have to take into account the boundary
conditions set by the platform. This is not to deny, that absolute values, precisely
because they reflect the limitations imposed by existing technology, are of great
importance: Assuming a realistic platform, they allow to judge the usefulness
of the design for a certain scenario. By taking also into account the probable
evolution of the technology, the results can be extrapolated to the near future.
For that reason, absolute values will also be provided. Still, a clear distinction
between the effect of the architecture and of the platform in the results will be
made throughout this chapter. These absolute values derive from the synthesis
and place and route process, as stated before, and not from measurements on an
actual prototype.

A second set of limitations in the evaluation of this design derive from the
scenario itself. Since the EHM acts as a middleware between a set of applications
and a set of common resources, its performance depends on both the former and
the latter. As way of example, SDRAM memory performance, which will affect
the EHM performance, depends on the data locality and the access pattern. The
behavior of the applications themselves (which resources they use, with which
frequency, using which distribution) also has an impact in the overall system per-
formance. In order to cope with this variability, a ”test case”-based approach has
been chosen. As was explained in the previous chapter, two extreme examples of
off-chip resources were modeled: SDRAM memory and a Fast Ethernet/Gigabit
Ethernet interface. They represent not only two fundamental elements of any
communication node nowadays, but also have very different characteristics, espe-
cially in terms of access granularity (a few bytes vs thousands of kilobytes) and
access delay. By modeling these two extreme examples, most other cases could
be represented as points in the space defined between them. Following the same
approach, two very different applications were modeled. First, an accounting
application, which could be used for AAA purposes in any communication node
(details will be given in section 7.3). This application has to keep track of flow
activity and is thus very memory intensive. Second, an encryption application
as would be found in any VPN-supporting node. Encryption is a very processing
and data intensive operation, since every packet flowing through the system has
to be ciphered. Again, the behavior of these applications reflects two extremes,
that serve to delimit the space of the feasible.

Chapter 7. EHM Evaluation 123

Summarizing, the evaluation of the EHM is based on two case studies, which
set the limits within which a very broad palette of applications and resources
would fall. The method used for it has been the emulation of the design in VHDL
at the lowest level of abstraction, being the exact same design that would go into
the prototype. The emphasis of this evaluation lies in showing the feasibility
of the approach presented in this Thesis, as well as its adequacy to solve the
problems described in previous chapters.

7.2 Platform Description

The Institute of Communication Networks and Computer Engineering (IKR)
of the University of Stuttgart already disposes of a platform for rapid prototyping
of network nodes, that has been named the Universal Hardware Platform (UHP,
[Jun02]). That platform has served as reference for the design and evaluation of
this work. In this section, its main characteristics will be examined.

Before describing the UHP, though, a number of provisos are necessary. First,
the design and development of the UHP itself was not part of this Thesis and
the author was not involved therein. Second, although the design presented here
and used for the evaluation of the EHM was adapted to the characteristics of the
UHP, it was never actually tested thereupon. All results presented in this work
are based on the system emulation (described in section 7.3) and the synthesis
and place and route processes, as stated in the previous section. A description of
the UHP is nevertheless necessary to understand the technological and physical
constraints, that were built into the system emulation to take into account the
characteristics of a real prototype.

The UHP is composed of two main components:

q A set of modular, stackable boards, containing the basic elements of any
communication device.

q A central VHDL-library for basic logic designs, that serve to control the
hardware building blocks and perform the basic functions of any network
node, e.g. retrieving frames from a card and storing them in memory, prior
to being processed inside the node.

The main rationale behind the UHP, is that all communication nodes consist
basically of the same elements:

q (Programmable) logic

q Processors

q Memory

q (Network) Interfaces

Chapter 7. EHM Evaluation 124

By providing those elements in the form of stackable building blocks, a ”hard-
ware construction kit” for network nodes could be realized.

The main system functionality is embodied in the logic design. By providing
a central library of basic functions, the UHP allows the designer to concentrate
on the specific extensions needed for its system. In this way, a prototype for the
EHM could be designed and put together more efficiently than beginning from
scratch.

UHP1UHP2

FPGA

UHP3

SDRAM

Expansion Buses

Expansion Slot

Figure 7.1: The Universal Hardware Platform.

There are basically three kinds of UHP hardware boards (s. Fig. 7.1):

q UHP1: Used as a central interconnecting board, it is composed of a cen-
tral FPGA of Altera’s APEX family [Cor], an SDRAM socket and some
additional management interfaces (e.g. JTAG and serial). Additionally, it
contains two buses connected to the central FPGA, with four expansion
slots each, to stack UHP2 cards.

q UHP2: Often used as the recipient of most of the system’s logic, it also
contains an FPGA of the same family, as well as four expansion sockets for
smaller UHP3 cards.

q UHP3: These smaller cards are mounted on the UHP2s and contain no
programmable logic. They were designed to contain the necessary periph-

Chapter 7. EHM Evaluation 125

eral elements. Several of them have been produced containing additional
SDRAM or SRAM memory banks, Ethernet or ATM interfaces in different
flavors (e.g., optical and copper, Fast and Gigabit Ethernet), DVI inter-
faces, etc.

The central VHDL logic repository basically contains the modules necessary to
control all peripherals (interfaces and memory) located in UHP3s. Additionally,
it contains an elementary forwarding engine, that provides the basic functionality
of every switching node: It retrieves frames from the interfaces, stores them in an
intermediate SDRAM buffer and passes them over to an unspecified application
for processing. Alternatively, it retrieves frames from the application and sends
them further to the selected network card. On top of that, a number of more
specialized applications have been included, which are of no interest for this
Thesis.

In order to test the EHM, the emulation testbench assumes the following con-
struction (s. Fig. 7.2): One UHP2 stacked with a UHP3 containing an SDRAM
module serves to accommodate the whole EHM logic and the encryption and
accounting applications (depending on the test). Additionally, it contains the
logic necessary to transport the data over the interconnection bus to the central
FPGA on the UHP1. That bus protocol was also developed by the author in the
course of this work.

FPGA

SDRAM SDRAM

FPGA

GigEth

GigEth

FPGA

UHP1 UHP2UHP2

Bus logic
EHM logic

Application logic

Bus logic x 2
Forwarding Engine

Bus logic
Gigabit Ethernet logic

UHP3 UHP3

UHP3

Figure 7.2: UHP Configuration for the EHM Prototype.

The UHP1 contains another set of SDRAMs, which serve as packet buffer
upon retrieval from the network interfaces. Additionally, the FPGA contains the
logic in charge of interfacing with both buses and the forwarding engine in charge
of receiving, forwarding and storing packets to/from the network interfaces and
the EHM. On top of that, a softcore processor has also been programmed for
management functions.

Chapter 7. EHM Evaluation 126

The second UHP2 has been equipped with two UHP3s to support two Gigabit
Ethernet interfaces. The central FPGA only contains the logic necessary to
retrieve frames from them and pass them to the UHP1 via the interconnecting
bus.

The prototype would work as follows: Packets arrive in one of the Gigabit
Ethernet ports and are passed to the UHP1 for buffering in SDRAM. Additionally,
a copy of the packet is sent to the EHM-UHP2 as arrival notification. After
checking the availability of resources, the EHM-UHP2 requests the packet, which
is retrieved from the UHP1 and processed. Packets that are generated by the
applications in the UHP2 are directly forwarded by the UHP1 to the Gigabit
Ethernet ports without intermediate buffering. The accounting application (s.
Section 7.3.2) stores the statistics related to the individual flows in the SDRAM
modules directly connected to the EHM-UHP2.

This design, then, provides all the necessary elements to test the EHM. Un-
fortunately, as was discussed in the previous section, there are also a number
of limitations introduced by the physical and logical characteristics of the plat-
form. First, the working of the forwarding engine, as stated, involves the sending
of incoming packets to the EHM-UHP2 twice: Once as arrival notification, and
a second time as ”real” data. Additionally, the engine stores the packets first
in SDRAM instead of fetching them directly from the Gigabit interface buffer
and passing them directly to the EHM-UHP2. These two effects introduce an
additional delay in the system and strongly reduce the overall performance.

Second, the presence of the system buses to interconnect the UHP2s and
UHP1 introduce, once again, an additional delay. Additionally, due to physical
limitations, the buses can only be driven with a maximum frequency of 50 MHz,
which sets an upper limit on the overall performance of the prototype, as designed,
of 3.2 Gbps half-duplex or 1.6 Gbps full-duplex. Since the bus protocol introduces
a small amount of additional overhead, this has to be understood as raw capacity
and a theoretical, unreachable maximum.

Third, the format differences between the Gigabit Ethernet interfaces, the
forwarding engine at the UHP1 and the EHM involve a series of adaptations, that
also consume resources (logic and time). Accordingly, a small degradation of the
maximum performance and clock frequency and an increase in gate consumption
and delay are unavoidable.

Nevertheless, as stated before, this limitations mostly affect the absolute per-
formance of the system, but not its architectural (relative) qualities. They are
related to the physical and logical characteristics of the platform and do not im-
pede the evaluation of the EHM as such. Furthermore, they are necessary to
reflect the effect and necessary concessions to technology and physics. A hard-
ware system can not be thoroughly evaluated without taking these factors into
account. The prototype, as presented here, has been tested through emulation
by respecting all the physical boundary conditions examined in this section. In
section 7.4, the results of the tests run will be presented and analyzed.

Chapter 7. EHM Evaluation 127

7.3 Case Studies

7.3.1 Encryption

Encryption is a fundamental element of modern Security Gateways (s. Sec-
tion 4.2) and other networking devices, like VPN clients. With the increasing
relevance of the Multiservice Internet, more and more economic transactions and
sensitive information interchange happen on the network. For this reason, con-
cerns with data and user security are mounting, and with them, the relevance of
such mechanisms as ciphering.

As a case study, encryption was chosen for being characteristic of a set of
applications, like video or audio transcoding, forward error correction, etc., which
are very processing intensive as well as data intensive. The former means, that a
set of complex operations has to be performed on the data, usually at the bit or
block level. The latter stands for the fact, that usually such applications operate
flow-oriented, i.e., all packets belonging to one or more flows have to be processed.
Typically, important portions of the traffic have to be dealt with in this way.

The encryption standard chosen for the implementation of this case study is
the Advanced Encryption Standard (AES, [Nat01]). The main reason for this
choice was the high importance that AES will achieve in the future, since it has
recently been approved by the National Institute of Standards and Technology
(NIST) of the United States of America as the official successor of the Data
Encryption Standard (DES). DES was discontinued because of security issues
primarily concerning its short maximal key length of 56 bit. The algorithm used
in AES is Rijndael [DR98], a symmetric iterative block cipher supporting block
and key sizes of 128, 192 and 256 bit, though only a block size of 128 bit is applied
when using AES. The basic principle of an iterative block cipher is to repeatedly
apply a series of mathematical operations (a single such series is called round
transformation or round) to the block that has to be en-/decrypted1. All rounds
consist of the same types of operations executed in the same order, although their
actual parameters may be different in each round.

A completely new implementation of the algorithm was developed for this
work [HMS03]. The implementation used here only supports Electronic Code
Book Mode, i. e. every single block is en-/decrypted independently of the others.
En- and decrypter use a block and key size of 128 bit and thus require 10 rounds
to process one block of data [DR98]. They are realized using a structure based
on an inner-loop pipeline with two stages. In its present form, the design can
provide a maximum performance of roughly 1.2 Gbps.

In the first test scenario (depicted in fig. 7.3), a stream of packets arrives
from a packet generator simulating the IP network to the EHM. There, they are
passed to the I/O Controller and finally to one of a set of encryption applications
for ciphering. After encryption, the packets are sent back to the network inter-

1In most such ciphers — including Rijndael — there are slight modifications to this scheme.

Chapter 7. EHM Evaluation 128

face, represented by a packet sink. All elements in the figure were implemented
in VHDL. Only the EHM modules were afterwards synthesized and placed and
routed to establish their maximum frequency of operation and resource consump-
tion, since the other elements were only required for the tests and do not belong
to the original design.

In the envisioned prototype (s. Fig. 7.2), all elements left of the vertical
dotted line in fig. 7.3 would lie in the EHM-UHP2. All other testbench elements
represent the UHP1 and UHP2 containing the Forwarding Engine and Gigabit
Ethernet interfaces, respectively. The UHP Adapter emulates the EHM interface
to the UHP bus.

Crypto
Meter

Svc

I/O
Controller

I/O
Meter

Crypto
App 0

Crypto
Meter

Crypto
App 7

Mgr 0

Svc
Mgr 7

Packet
Generator

Packet
Randomizer

. .
 .

.

. .
 .

. UHP
Adapter

Crypto
App i Testbench Element

XY
Meter Meter

Svc
Mgr i EHM Component

EHM-UHP2 UHP1 and
Ethernet-UHP2

Packet
Sink

Figure 7.3: Setup of the Encryption Application Testbench.

The Packet Randomizer randomly generates values between 0 and 100 at con-
stant time intervals equivalent to the maximum packet rate (see below). With
every value, a destination address corresponding to one of the encryption applica-
tions is generated, with a probability equal to the bandwidth percentage accorded
to the application. The address is given to the Packet Generator, which puts to-
gether a valid 1500-byte IP packet addressed to the corresponding application.

In the prototype (s. Section 7.2), every time a new packet arrives at the
network card, it is stored in memory (external to the EHM) and a copy of it passed
to the EHM. This triggers an arrival notification by the I/O Controller to the
relevant Service Manager. The packet can not be directly sent to the application,
because the disposability of tokens has to be checked first, in order to guarantee
the QoS shares (s. Section 6.4.2.2). Should enough tokens be available, the
Service Manager answers with a read request. The I/O Controller then retrieves

Chapter 7. EHM Evaluation 129

the packet and passes it to the application. Packets are subsequently encrypted.
Before they can be sent to the network again, the Service Manager checks anew
the disposability of tokens and, if sufficient, sends a write request to the I/O
Controller. Upon reception of the corresponding write grant, the packet is sent
out to the network card. The process is repeated for every incoming packet.
Accordingly, in the test scenario, the Packet Generator first sends a copy of
the packet to the I/O Controller, and upon reception of a request, re-sends it.
Encrypted packets are received by the Packet Sink and discarded.

This procedure has an obvious drawback: The time penalty incurred because
of the handshaking process, plus the fact, that incoming packets are in fact re-
trieved twice: Once when the card sends them to the EHM (which is used as an
”arrival notification”) and a second time when they are passed to the applica-
tion. The reason for this lies in the characteristics of the prototype, as explained
earlier, and is not related to the EHM itself. As a consequence, an increase in
performance of approximately 50% would be possible, simply by removing this
double retrieval. Nevertheless, an arrival notification of some sort is mandatory,
since the availability of resources has to be checked prior to sending the packet
to the processing application.

As shown in the figure, meters were co-located with the applications to log
packet activity, especially arrival and departure time (Crypto Meter). Addition-
ally, another meter (I/O Meter) was implemented and placed next to the I/O
Controller, to log the arrival and departure times of every packet, as well as the
interval between sending a packet notification and receiving a packet retrieval
request (s. Section 6.4.2.2). Since the VHDL simulator keeps track of all events
in terms of absolute clock cycles, there is a direct relationship between the sim-
ulation time and the real time, based on the clock cycle duration.

Over 10.000 packets were sent and received in all emulation runs. The number
of active applications varied from 1 to 8, and the bandwidth share for every
application varied from 5% to 95% of total bandwidth, as will be further explained
in section 7.4.

To estimate the maximum system performance, packets were sent at increas-
ingly higher rates until loss began to appear. This was repeated under different
numbers of applications and bandwidth granularity, in order to estimate the
worst-case scenario. That is the value that will be shown in the results section.

7.3.2 Accounting

One of the most critical elements for the further development of the Multiser-
vice Internet is its economic viability. New services are increasingly introduced
only, if there is a business model to back them up. Accordingly, architectures that
enable the accounting and billing of service usage are mandatory for the future
of networked services [SV99]. The accounting application presented here serves

Chapter 7. EHM Evaluation 130

additionally as a representative of memory intensive applications, like graphics,
full motion video, etc.

In this implementation, incoming packets are sent to the application. Upon
reception, it evaluates if the packet corresponds to an existing flow or to a new
one, which is then initialized. Next, a number of information items from the IP
header are extracted and stored temporarily in on-chip SRAM. Packets are not
sent again to the network, since it is assumed, that the accounting application
receives only a copy of it, while the original is directly forwarded to its final
destination.

In parallel to that process, the application regularly retrieves the information
concerning every existing flow, which is stored in off-chip SDRAM. It then up-
dates the flow statistics with the information collected since the last refresh (and
which had been stored in on-chip SRAM) and writes it back into SDRAM. The
collected statistics summarize the birth and death time of every flow, the amount
of bytes received, the packet size distribution, the update time distribution, the
total number of packets, etc. These items are considered exemplary of the infor-
mation needed to evaluate service usage, but they do not pretend to be accurate
or exhaustive.

In the tests, only this second process was measured, since the goal was to eval-
uate the performance and behavior of the memory, hence the scenario depicted in
fig. 7.4. Every application (Account App 0..7) is responsible for a small number
of flows. A fixed address range has been reserved to store the information corre-
sponding to every flow. Every accounting application retrieves the information
corresponding to one of its flows from off-chip SDRAM at periodic intervals in
round-robin fashion. The physical SDRAM element has been substituted by an
SDRAM Emulator furnished by the manufacturer [Mic]. Next, the updated flow
information is rewritten into memory. In the prototype, all modules would reside
in the EHM-UHP2, except the SDRAM module, which would lie in a UHP3 (s.
Fig. 7.2).

As in the previous example, meters have been placed within the applications
and next to the SDRAM Controller (Acc Meter, RAM Meter). They are in
charge of logging arrival and departure times of read and write requests, as well
as of the corresponding data, to help calculate the system’s throughput and delay
characteristics.

The overall update rate was higher than the memory access rate, so that
the system was tested under permanent overload. Loss could not occur, since an
application could only perform an update with permission of its Service Manager,
which would otherwise keep it in a waiting state (s. Section 6.4.2.1). The Service
Managers logically allow for a maximum of 100% memory usage only. Since
the applications could perform their updates at a higher rate than allowed, the
measurements reflect the bottleneck effect by the EHM and especially the Memory
Controller (SDRAM Controller in the figure).

Chapter 7. EHM Evaluation 131

Acc
Meter

Svc

SDRAM
Controller

RAM
Meter

Account
App 0

Acc
Meter

Account
App 7

Mgr 0

Svc
Mgr 7

SDRAM
Emulator

. .
 .

.

. .
 .

.

Crypto
App i Testbench Element

XY
Meter Meter

Svc
Mgr i EHM Component

Figure 7.4: Setup of the Accounting Application Testbench.

All updates included a 16 word burst to read the information from mem-
ory, first, and an equally long burst to write it back again, second. Arguably,
this deterministic access pattern has an effect in the overall efficiency attainable.
Although this is true, the fact that requests from several applications are multi-
plexed and that their bandwidth shares are very different, together with the use of
request re-arrangement within every epoch minimizes this determinism. Further-
more, since virtual memory is used to prevent interference among applications,
the access locality to information stored in memory is very low. Consequently,
the access pattern presented here is quite unfavorable to efficient memory usage
and can thus be used as a conservative estimate.

In all emulation runs, around 125.000 updates were performed. The number
of active applications varied from 1 to 8 and the allocated memory bandwidth
for every application ranged from 5% to 95%.

7.4 Evaluation of the Test Results

As was stated at the beginning of this chapter, the EHM will be evaluated in
terms of its efficacy maintaining QoS, its efficiency and overall performance, its
ability to guarantee isolation among applications and its scalability. The following
sections present the results of the tests based on the case studies explained in
previous sections.

Chapter 7. EHM Evaluation 132

7.4.1 QoS Evaluation

7.4.1.1 Bandwidth Allocation

A first battery of tests is represented in Figs. 7.5 and 7.6. In those tests,
an increasing number of applications were active simultaneously, either from the
accounting type or from the cipher type. The offered load was always enough
to saturate the system (overload condition). The EHM ensured a controlled
sharing of the resources among the applications according to the policy set by the
administrator. In these experiments, an increasingly large amount of bandwidth
was reserved for a reference application, to test the reaction of the system to the
number of applications and the granularity of allocated bandwidth.

Fig. 7.5 shows the results for the network interface case. Ideally, the obtained
bandwidth during the measurement (y axis) should perfectly coincide with the
requested bandwidth (x axis). This ideal case is represented by the 45 degree line
plotted in all figures as reference. As can be seen, independently of the number
of applications and the amount of bandwidth allocated, which ranges from 5%
to 95%, the measurements fall within 1.5% of the reference line. The measured
values are represented by the triangles with the measured bandwidth obtained
presented next to them. The best linear fit for those measurements has also been
plotted. As can be seen, it corresponds to an almost perfect fit of the 45 degree
ideal case for all bandwidth shares. The obtained bandwidth is consistent with
the requested one for any number of applications, with no noticeable variations in
scale. This represents an almost ideal scenario concerning the isolation capacity
of the EHM: Independently of the number of applications and the amount of
bandwidth reserved by them, any reference application will always get its share
undisturbed. This was one of the most critical goals of the EHM.

Fig. 7.6 shows the results for the memory interface case. Analogous data
to the previous case was plotted in these diagrams. With only one noticeable
exception, all values follow the pattern discussed before: They almost perfectly
fit the ideal case for bandwidth allocation. One important conclusion of these
diagrams regards the reaction of the EHM to different time scales. While SDRAM
works with 16 word bursts, the network interface reserves bandwidth for 375
word bursts (1500 bytes, the classical length for Ethernet frames). In spite of
the 20 times longer allocation time, the bandwidth is fairly allocated in all cases.
Accordingly, it is safe to imply, that most application types within these two
extreme cases would present the same behavior. The EHM is thus fit to serve a
wide variety of different applications and off-chip resources.

It deserves to be mentioned, that all these tests were run with an inhomoge-
neous mixture of bandwidth shares allocated to the different applications. I.e.,
the available bandwidth was distributed very ”unfairly” among the applications
in every run. The rationale behind it was to test, if the EHM was able to keep
the QoS guarantees in the face of very inhomogeneous mixtures.

Chapter 7. EHM Evaluation 133

5.3

12.96

39.82

74.7

0 20 40 60 80 100
Requested Bandwidth (%)

0

20

40

60

80

100

R
ec

ei
ve

d
B

an
dw

id
th

 (%
)

8 Apps

Bandwidth Allocation for a Reference Application

(a)

5.31

13.99

40.55

74.49

0 20 40 60 80 100
Requested Bandwidth (%)

0

20

40

60

80

100

R
ec

ei
ve

d
B

an
dw

id
th

 (%
)

7 Apps

Bandwidth Allocation for a Reference Application

(b)

5.3

16.75

50.23

74.75

0 20 40 60 80 100
Requested Bandwidth (%)

0

20

40

60

80

100

R
ec

ei
ve

d
B

an
dw

id
th

 (%
)

6 Apps

Bandwidth Allocation for a Reference Application

(c)

5.1

19.4

50.62

74.81

0 20 40 60 80 100
Requested Bandwidth (%)

0

20

40

60

80

100

R
ec

ei
ve

d
B

an
dw

id
th

 (%
)

5 Apps

Bandwidth Allocation for a Reference Application

(d)

4.74

25.62

49.61

74.08

0 20 40 60 80 100
Requested Bandwidth (%)

0

20

40

60

80

100

R
ec

ei
ve

d
B

an
dw

id
th

 (%
)

4 Apps

Bandwidth Allocation for a Reference Application

(e)

4.78

33.1

49.61

73.9

0 20 40 60 80 100
Requested Bandwidth (%)

0

20

40

60

80

100

R
ec

ei
ve

d
B

an
dw

id
th

 (%
)

3 Apps

Bandwidth Allocation for a Reference Application

(f)

Figure 7.5: I/O Bandwidth Allocation for Different Number of Applications.

Chapter 7. EHM Evaluation 134

5

12.5

38.14

71.26

0 20 40 60 80 100
Requested Bandwidth (%)

0

20

40

60

80

100

R
ec

ei
ve

d
B

an
dw

id
th

 (%
)

8 Apps

Bandwidth Allocation for a Reference Application

(a)

5.26

14.29

40

75

0 20 40 60 80 100
Requested Bandwidth (%)

0

20

40

60

80

100

R
ec

ei
ve

d
B

an
dw

id
th

 (%
)

7 Apps

Bandwidth Allocation for a Reference Application

(b)

5.26

16.7

47.4

73.7

0 20 40 60 80 100
Requested Bandwidth (%)

0

20

40

60

80

100

R
ec

ei
ve

d
B

an
dw

id
th

 (%
)

6 Apps

Bandwidth Allocation for a Reference Application

(c)

5.13

20

50

74.4

0 20 40 60 80 100
Requested Bandwidth (%)

0

20

40

60

80

100

R
ec

ei
ve

d
B

an
dw

id
th

 (%
)

5 Apps

Bandwidth Allocation for a Reference Application

(d)

5

25

50

75

0 20 40 60 80 100
Requested Bandwidth (%)

0

20

40

60

80

100

R
ec

ei
ve

d
B

an
dw

id
th

 (%
)

4 Apps

Bandwidth Allocation for a Reference Application

(e)

5

33.33

50

75

0 20 40 60 80 100
Requested Bandwidth (%)

0

20

40

60

80

100

R
ec

ei
ve

d
B

an
dw

id
th

 (%
)

3 Apps

Bandwidth Allocation for a Reference Application

(f)

Figure 7.6: SDRAM Bandwidth Allocation for Different Number of Applications.

Chapter 7. EHM Evaluation 135

Tables 7.1 and 7.2 present a representative excerpt of the results for the I/O
test case. As can be observed, in spite of the very unequal bandwidth allocation
shares among applications (1% for an application, 75% for another2), the EHM
maintained the QoS allocated to each with an accuracy within 1.1% in all cases.

App Nr req (%) obt (%)

App0 4 4.90
App1 1 1.22
App2 4 3.90
App3 4 4.17
App4 75 74.70
App5 4 4.30
App6 4 3.88
App7 4 2.93

Table 7.1: Inhomogeneous Bandwidth Distribution Among Applications: I/O, 8 Apps

App Nr req (%) obt (%)

App0 5 6.15
App1 15 14.97
App2 5 4.80
App3 75 74.08

Table 7.2: Inhomogeneous Bandwidth Distribution Among Applications: I/O, 4 Apps

Tables 7.3 and 7.4 show analogous results for the SDRAM case. In this case,
the maximum deviation from the expected allocation falls within 0.3% of the
expected value for the cases chosen. In general, all values fall within 1.5% of
their target.

7.4.1.2 Bandwidth Utilization

Fig. 7.7 presents the utilization of both the I/O and SDRAM interfaces.
Utilization is defined as the number of cycles used for data transmission over
the total number of emulated cycles. It must be noticed, that strictly those

2As will be seen in section 7.4.3, 1% of the total available I/O bandwidth corresponds to
roughly 4–12 Mbps, depending on the FPGA chosen and the number of active applications.
Analogously, 1% of the SDRAM bandwidth corresponds to 4–20 Mbps. The scenario laid
down in this Thesis foresees active applications serving large traffic aggregates (service op-
erator model). Hence, allocating such small bandwidth fractions per application would be a
contradiction. It has been used in the emulation only to test the theoretical limits on system
behaviour.

Chapter 7. EHM Evaluation 136

App Nr req (%) obt (%)

App0 4 4.82
App1 1 1.20
App2 4 4.82
App3 75 74.70
App4 4 4.82
App5 4 4.82
App6 4 4.82
App7 4 4.82

Table 7.3: Inhomogeneous Bandwidth Distribution Among Applications: SDRAM, 8 Apps

App Nr req (%) obt (%)

App0 5 5.00
App1 15 15.00
App2 5 5.00
App3 75 74.99

Table 7.4: Inhomogeneous Bandwidth Distribution Among Applications: SDRAM, 4 Apps

cycles in which data was transported over the interface were considered in the
first category. The overhead associated with the interface itself (handshaking,
address transmission, etc.) has been explicitly removed from the ”useful” cycles,
although it is immanent to any interface. The goal was to provide an absolute
lower utilization threshold, that could serve as a safe estimate of the goodness of
the system.

As can be seen, the SDRAM utilization index increases with the number of
applications, showing a certain multiplexing gain until it reaches its maximum
for 3 applications. This effect derives from the memory scheduler itself. It was
originally designed and optimized for 3 applications, hence its optimal behavior
for that case. Due to the overhead incurred in the request selection process to
optimize memory access, for the access pattern presented in the experiments the
maximum utilization value can not be exceeded. That access pattern presents an
equal share of write and read operations with very low locality, due to the use of
virtual memory for the applications. Since the memory blocks allocated to every
application fall very far from one another, there is no locality between requests.

Nevertheless, the maximum value (and constant for more than 2 applications)
of 76.2% is a very good result for a SDRAM controller. A trivial controller,
which would serve requests on a first-come, first-served basis, would reach an
efficiency of a mere 40% (see reference [DL01] for a detailed discussion on the
topic). This derives from the high overhead associated with SDRAM memory

Chapter 7. EHM Evaluation 137

0.32

0.604

0.762 0.762 0.762 0.762 0.762 0.762

0 1 2 3 4 5 6 7 8 9
Number of Applications

0

0.5

1

B
an

dw
id

th
 U

til
iz

at
io

n

SDRAM Bandwidth Utilization
as a Function of the Number of Applications

(a)

0.456 0.456 0.438
0.405 0.398 0.374 0.369 0.351

0 1 2 3 4 5 6 7 8 9
Number of Applications

0

0.5

1

B
an

dw
id

th
 U

til
iz

at
io

n

Network Interface Bandwidth Utilization
as a Function of the Number of Applications

(b)

Figure 7.7: Network Interface and SDRAM Bandwidth Utilization for Different Number of
Applications

preparation for access. By introducing the epoch concept and performing request
rearranging within an epoch, the best possible operation order is achieved, even
in the presence of low locality. Other known schedulers would reach this efficiency
only in the presence of extremely high locality [DL01]. The price to pay is an
additional jitter, since a request scheduled to be served can be delayed up to
(N − 1)×MBS cycles in the worst case, where MBS represents the Maximum
Burst Size measured in cycles and N is the number of requests present in this
epoch. The effect of delay will be discussed shortly.

In the case of the I/O interface, the utilization presents a much worse behavior.
In the first place, it decreases with the number of applications, albeit very slowly.
Secondly, it peaks at 45.6% for only two applications. This is due mainly to three
factors, all associated directly with the prototype. In the first place, as explained
before, there is a very costly handshake process: For every incoming packet, a
notification is first sent to the service manager, so that the token disponibility
will be checked. Then, a read request is generated, followed by a grant by the
I/O controller. Only then is the packet retrieved from an external buffer and
passed to the application. This process introduces an overhead, which increases
with the number of applications active. Second, because of the construction of
the forwarding engine, a packet has to be completely retrieved twice before it can
be passed to the application. The main reason lies in the lack of enough on-chip
memory in the UHP FPGAs to accomodate several full packets while scheduling
their delivery to the applications. It follows, that by simply using more modern
FPGAs and without touching the architecture, an increase of roughly 50% in the
utilization would be attainable. Additionally, a less burdensome handshaking

Chapter 7. EHM Evaluation 138

93.75

221.86
284.36

415.61

546.86

678.12

809.35

940.6

0 1 2 3 4 5 6 7 8 9
Number of Applications

0

100

200

300

400

500

600

700

800

900

1000

1100

M
ea

n
D

el
ay

 O
ve

rh
ea

d
(%

)

SDRAM Access Delay
as a Function of the Number of Applications

(a)

93.75

121.86

84.36

115.61

146.86

178.12

209.35

240.6

0 1 2 3 4 5 6 7 8 9
Number of Applications

0

50

100

150

200

250

300

M
ea

n
E

xc
es

s
D

el
ay

 O
ve

rh
ea

d
(%

)

SDRAM Access Delay in Excess of RR
as a Function of the Number of Applications

(b)

63.7 63.32

99.93

129.07

163.84

187.92
197.47

224.9

0 1 2 3 4 5 6 7 8 9
Number of Applications

0

50

100

150

200

250

300

M
ea

n
D

el
ay

 O
ve

rh
ea

d
(%

)

Network Interface Access Delay
as a Function of the Number of Applications

(c)

Figure 7.8: Network Interface and SDRAM Mean Access Delay for Different Number of
Applications

process, based on a request-response procedure between service manager and
I/O controller would allow for further efficiency increases. As a consequence, it
can be expected, that with the here proposed changes, utilization would reach
values closer to 70-75%. None the less, it must also be noticed, that even such
a low utilization value is enough to reach a performance in the Gbps area for
multiple encryption applications running simultaneously, even considering all the
limitations of a prototype designed as proof-of-concept and not optimized for
speed. Software solutions commercially available are still far behind.

Chapter 7. EHM Evaluation 139

7.4.1.3 Delay

As was stated before, in the presence of overload, delay is the price to pay
in exchange for guaranteed bandwidth. Fig. 7.8 presents the results concerning
SDRAM access time and network interface access time for the emulation. Plot-
ted are the average delay overhead vs the number of multiplexed applications.
Overhead is calculated as the number of cycles that it took to perform a read or
a write, minus the ideal duration of the operation (which is equal to the num-
ber of words, if a word could be written/read every cycle), divided by the total
number of cycles (see equation 7.1). Again, this comparison is done against the
theoretical, in practice unreachable, ideal case, in order to provide a safe lower
bound of the system’s performance.

Total Overhead(%) =

N∑
i=0

Cyclesi−PktSizei

PktSizei

N
× 100 (7.1)

At first sight, the overhead introduced by the EHM in memory access seems
huge. Furthermore, it grows above linearly with the number of applications. This
must be interpreted with care, however. Delay in the system derives from two
different sources: On the one side, the overhead introduced by the memory con-
troller itself in order to schedule, rearrange and serve requests coming from the
applications. On the other, from the way in which the requests are passed to the
controller. As explained in section 6.3, requests are presented to the memory and
I/O controller firstly in a weighted round-robin fashion, the weights being set by
the state of the Token Buckets associated with every Service Manager. In the
case of the SDRAM tests, greedy applications were used, which always had infor-
mation to retrieve or write to memory. Under these circumstances, the minimum
average waiting time for an application will be the same as the maximum and
equal to (N−1)×MBS, where N is the number of active applications and MBS
the Maximum Burst Size. This follows from an application having to wait for
every other application being served, before obtaining access to memory again.
Hence, in order to test the overhead introduced by the architecture itself and
not by the access pattern, Fig. 7.8 (b) presents the delay plot discounting the
round-robin effect. I.e., (N − 1)×MBS cycles are subtracted from the overhead
calculation, to account for the ”greedy source” effect.

With these provisos, the overhead introduced by the EHM through the sig-
naling and scheduling effects responds much more precisely to the expectations.
As can be seen, it grows sub-linearly with the number of applications, which is a
very convenient scalability property. The overhead peaks at 240.6% for 8 appli-
cations. This implies, that when memory is multiplexed among 8 clients, every
request takes roughly 3.5 times more cycles to be served than when only one

Chapter 7. EHM Evaluation 140

(ideal) application is present3. The relevance of this fact must be compared with
the architecture of modern networking applications. On the one side, the most
critical parameter in networking is throughput, not delay. On the other, however,
applications frequently require data stored in memory to continue data process-
ing. Long delays can thus have a big impact in overall performance. Nevertheless,
the point has been reached, in which most networking applications would need
more memory bandwidth than is physically available, even with exclusive, non-
multiplexed access. In order to overcome that limitation, modern applications
present a multi-threading behavior: Several strands of processing are intertwined
and share a number of off-chip resources. In this way, when one thread is wait-
ing for data coming from memory, another thread typically uses the processing
resources to advance in a parallel task (s. Section 2.5.3). Under this assumption,
the effect of delay on overall performance can be minimized. Still, a trade-off
exists between the multiplexing effect and the delay penalty introduced, which
has to be balanced for any given scenario.

An interesting effect is the delay minimum being reached for three applica-
tions. As explained before, this derives from the memory controller architecture,
which was originally optimized for three applications.

The results for the network interface are summarized in Fig. 7.8 (c). In this
case, the bottleneck lies in the application as well as in the network interface
itself. As was explained in previous sections, packets are received twice before
being passed to the applications. These, in turn, need almost 1000 cycles to
process a 1500 byte packet. Since the time needed for a packet to be transmitted
over the 32 bit wide network interface spans only 375 cycles in the ideal case, loss
could occur depending on the traffic arrival pattern. Hence, in order to avoid loss,
back-to-back packet arrivals were prevented by introducing an inter-packet gap.
The maximum performance derives then from this inter-packet gap and from the
double arrival effect. Under this conditions, though, it can be appreciated that
the delay behavior of the system is similar to the SDRAM case. There is no
round-robin effect, since the sources are not greedy, meaning that a packet has to
arrive before it can be processed. The EHM-provoked overhead is strongly sub-
linear with the number of applications and peaks at 224.9% for 8 applications4.

3Using the performance results of section 7.4.3, with a packet size of 1500 byte and a clock
frequency of 55.34 MHz (corresponding to a Stratix FPGA), the following exemplary results
can be given: The minimum time needed for a 16-word burst write operation (overhead equal to
0) under such circumstances is 16/55.34 MHz = 289.1 ns. Since there are 8 active applications
being served in round-robin fashion, the total delay would comprise 289.1 × 8 = 2312.8 ns in
the ideal case. The EHM incurs in a total delay of (940.6/100)× (16/55.34 MHz) = 2720 ns.
Hence, the delay difference between the EHM and the optimum for this example yields a mere
407.20 ns or 17.60%.

4Under the same conditions as in the previous example, the ideal delay incurred in send-
ing a 1500 byte packet yields 375/55.34 MHz = 6.77 µs. The EHM needs (224.9/100) ×
(375/55.34 MHz) = 15.24 µs. The difference comprises 8.47 µs per packet. In an interchange
between Stuttgart and Berlin, with an overall estimated delay of some 10 ms and 50 active

Chapter 7. EHM Evaluation 141

This is somewhat smaller than for the SDRAM case. This effect derives from
the fact, that the signalling overhead is basically constant per transaction. Being
transactions in this case of longer duration, its effect is milder.

7.4.1.4 Fairness

Regarding the ability of the EHM to guarantee isolation and fairness, it was
important to ensure, that the relative position of an application in the scheduling
process (i.e. first, last, somewhere in between) would not affect its QoS. Tables
7.5, 7.6, 7.7 and 7.8 summarize the results in this respect. The tables are exem-
plary for the whole battery of tests, independently of the bandwidth distribution
chosen among the applications and the number of applications. Analogous re-
sults were also obtained for the delay distributions. For clarity, only two sets of
tables are presented here: For 8 and 4 applications, respectively, and only for
bandwidth distribution.

App Nr req (%) obt (%)

App0 12.50 12.50
App1 12.50 12.50
App2 12.50 12.50
App3 12.50 12.50
App4 12.50 12.50
App5 12.50 12.50
App6 12.50 12.50
App7 12.50 12.50

Table 7.5: Effect of the Position in the Bandwidth Distribution: SDRAM, 8 Apps

App Nr req (%) obt (%)

App0 25.00 25.00
App1 25.00 24.99
App2 25.00 24.99
App3 25.00 24.99

Table 7.6: Effect of the Position in the Bandwidth Distribution: SDRAM, 4 Apps

In table 7.5, eight accounting applications were simultaneously active. An
equal share of the overall bandwidth was allocated to each, in order to test the
effect of the position within the scheduling process. As always with memory tests,

routers in the path, this additional delay would imply an overhead of 50× 8.47 µs = 423.5 µs,
which amounts to only 4.2% of total delay.

Chapter 7. EHM Evaluation 142

the system was running in overload. The table presents the required bandwidth
(the theoretically allocated share) and the obtained bandwidth according to the
measurements. As can be seen, a perfect match was obtained for all applications.
The test with four applications also sharing equal bandwidth portions, reflected
in table 7.6, presents the same pattern.

App Nr req (%) obt (%)

App0 12.50 13.00
App1 12.50 12.96
App2 12.50 11.27
App3 12.50 13.17
App4 12.50 12.22
App5 12.50 13.51
App6 12.50 11.68
App7 12.50 12.20

Table 7.7: Effect of the Position in the Bandwidth Distribution: I/O, 8 Apps

App Nr req (%) obt (%)

App0 25.00 26.00
App1 25.00 24.32
App2 25.00 25.62
App3 25.00 24.06

Table 7.8: Effect of the Position in the Bandwidth Distribution: I/O, 4 Apps

Table 7.7 summarizes the results for eight encryption applications sharing
access to the network interface. The system was running at the maximum per-
formance without loss. As can be observed in the table, the values are somewhat
further from the ideal than in the previous example. This is due to the coarser
granularity of allocation, since packets can not be interrupted or segmented when
in transmission, even if tokens have been exhausted. Larger deviations are then
possible. Nevertheless, no deviation exceeds 1.3% of the theoretically allocated
bandwidth, no matter which number of applications and bandwidth distribution
pattern chosen.

A second interesting observation is, that in spite of this slight variations in
bandwidth, the relative position within the scheduler plays no definite role. In
other words, there is no recognizable bias e.g. toward the first or the last appli-
cations. Fairness is thus maintained.

These conclusions are corroborated by the results of table 7.8.

Chapter 7. EHM Evaluation 143

7.4.2 Resource Consumption and Scalability

One key concern in the design of the EHM was its scalability. Conversely, in
order to prove useful, the EHM had to show a moderate consumption in terms
of FPGA resources (logic elements, pins, RAM bits), so that a sufficient number
of complex applications could fit onto the chip. The results of the synthesis and
place and route processes are summarized in tables 7.9 and 7.10.

Device APEX 20K1000EPC652-1 STRATIX EP1S80B956C6

Logic Elements 8169/38400 (21%) 6741/79040 (8%)
RAM Bits 121224/327680 (36%) 108936/7427520 (1%)
I/O Pins 155/488 (31%) 155/691 (22%)
fmax 37.39 MHz 52.68 MHz

Table 7.9: Resource Consumption for the APEX and STRATIX FPGAs (3 Apps).

Table 7.9 shows the EHM resource usage for an Altera APEX FPGA [Cor],
which powers the UHP1. However, since the inception of the UHP, two further
FPGA generations have emerged, which shows how fast these technologies are
evolving. The next version of the UHP will very probably be based on the newer
Stratix family, or in the recently commercialized Stratix II [Cor]. In order to give
a glimpse of the EHM’s performance in a more up-to-date prototype, resource
usage for the Stratix family is also included. This comparison also serves to
highlight the effect, that technology has on performance, for exactly the same
architecture.

Two different EHM configurations were synthesized. The minimum meaning-
ful EHM configuration comprises the two resource managers (I/O and SDRAM),
plus three service managers (i.e., support for three applications). For less than
three applications, the EHM represents an excessively complex solution. These
results are summarized in table 7.9. Additionally, table 7.10 summarizes the re-
source consumption for the maximum configuration deemed appropriate: Both
resource managers plus support for eight applications.

Device STRATIX EP1S80B956C6

Logic Elements 12721/79040 (16%)
RAM Bits 282376/7427520 (3%)
I/O Pins 155/691 (22%)
fmax 55.34 MHz

Table 7.10: Resource Consumption for the STRATIX FPGA (8 Apps).

The number of necessary I/O pins are set by the nature of the off-chip re-
source interfaces, and is therefore constant and independent of the EHM as such.
The number of used on-chip RAM bits, on the other hand, were a cause of major

Chapter 7. EHM Evaluation 144

concern. They are used as intermediate buffers in the service managers and in
the resource controllers. Accordingly, they increase strongly with the number of
supported applications. The APEX family contains a reduced number of embed-
ded memory blocks, which represented an important limitation for the prototype
design. Hence, only the minimum EHM version was fitted into it, leaving the
more demanding one for the Stratix device.

As can be observed, logic cell consumption and RAM bit usage are negligible
in the Stratix case, even for the maximum EHM configuration. Well over 80%
of logic resources and over 97% of memory resources can still be allocated to
applications. Even for the older APEX device, roughly 80% is still free for other
designs.

As way of example, the resource consumption of the encryption application
used in the tests has been summarized in table 7.11. As it is, seven such ap-
plications would easily fit in the Stratix device together with a full-blown EHM
design.

Device STRATIX EP1S80B956C6

Logic Elements 8770/79040 (11%)
RAM Bits 25008/7427520 (0.33%)
I/O Pins 185/691 (27%)
fmax 103.95 MHz

Table 7.11: Resource Consumption of the Exemplary Encryption Application for the
STRATIX FPGA.

Hence, it can be derived, that resource consumption is not a limiting factor
for EHM scalability, at least up to (and even beyond) eight simultaneously active
applications sharing the chip.

7.4.3 Performance Evaluation

Overall system performance is determined by three factors: Circuit efficiency
(utilization, ρ), maximum clock frequency and internal bus width (see equation
7.2). These factors, for their part, are determined in part by the design itself.
However, the maximum system frequency is strongly dependent on the technology
used. As was explained in the previous section, two further FPGA families have
appeared since the inception of the UHP. In order to provide a more accurate
picture of the performance possibilities of the EHM, data has also been included
for both Stratix and Stratix II families, on top of the APEX device. All results
are based on the emulation tests run, plus the information concerning maximum
frequency obtained in the synthesis, place and route process.

Throughput = ρ×Word Size× fmax (7.2)

Chapter 7. EHM Evaluation 145

The performance gain related strictly to technological evolution can be ob-
served by comparing the maximum frequencies obtained for the APEX and
Stratix devices (see tables 7.9 and 7.10): An almost 50% frequency increase.
At the moment of writing, the IKR does not dispose of the libraries necessary to
synthesize the design for a Stratix II device. Hence, for completeness, a further
50% increase in frequency between Stratix and Stratix II has been extrapolated,
following the previous observation and the information given by the manufacturer
[Cor]. As a consequence, the performance results for the Stratix II given in this
section assume a maximum frequency of 83.1 MHz, 50% more than the 55.34
MHz obtained in table 7.10.

0 1 2 3 4 5 6 7 8 9
Number of Applications

0

200

400

600

800

1000

1200

1400

To
ta

l T
hr

ou
gh

pu
t (

M
bp

s)

APEX 20KE
STRATIX
STRATIX II

Network Interface Throughput
as a Function of the Number of Applications and FPGA Technology

(a)

Apps APEX (Mbps) STRATIX (Mbps) STRATIX II (Mbps)

1 545.15 807.52 1212.59
2 545.24 807.52 1212.59
3 523.52 775.64 1164.73
4 484.75 717.21 1076.98
5 476.54 704.81 1058.36
6 447.74 662.31 994.54
7 441.90 653.45 981.24
8 420.37 621.58 933.38

(b)

Figure 7.9: Overall System Performance: The I/O Intensive Case.

Performance results, expressed in absolute bps, are summarized in figs. 7.9
and 7.10. The former represents the tests for the encryption applications accessing
the network interface, while the latter gathers the information of the accounting
applications interacting with off-chip SDRAM. Both figures present a graphical

Chapter 7. EHM Evaluation 146

comparison of the three FPGA families, as well as the exact numerical values
obtained for all tests.

As could be expected, in both cases the performance as a function of the num-
ber of applications follows the value of ρ, presented in section 7.4.1, s. Fig. 7.7.
In the I/O case, throughput peaks at roughly 1.2 Gbps for two applications and
the Stratix II family, and almost 1 Gbps for eight applications in the same case.
Results for the APEX device are logically more modest, with only 420 Mbps for
eight applications. As explained in section 7.4.1, a number of optimizations are
possible, which would draw utilization into the 70-75% range without affecting
the overall architecture. In that case, the APEX results would increase to some
600 Mbps in the eight application case, while the Stratix II results would top at
1.5 Gbps in the same configuration. This represents almost an order of magnitude
more than existing software solutions, even for this proof-of-concept prototype5.

0 1 2 3 4 5 6 7 8 9
Number of Applications

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

To
ta

l T
hr

ou
gh

pu
t (

M
bp

s)

APEX 20KE
STRATIX
STRATIX II

SDRAM Interface Throughput
as a Function of the Number of Applications and FPGA Technology

(a)

Apps APEX (Mbps) STRATIX (Mbps) STRATIX II (Mbps)

1 382.87 566.68 850.94
2 722.67 1069.61 1606.16
3–8 911.72 1349.41 2026.31

(b)

Figure 7.10: Overall System Performance: The Memory Intensive Case.

In fig. 7.10 the results for SDRAM access have been plotted. As can be
observed, up to 2 Gbps can be achieved, thanks to the better utilization of this

5For comparison, the results from recent Rijndael performance tests realized on an other-
wise completely idle 1.8 GHz Pentium 4 running one instance of the GnuPG crypto engine
(version 1.2.2) and the OpenSSL crypto library (version 0.9.7b), both widely used in the Linux
environment, yield 241.83 Mbps and 375.43 Mbps, respectively [Dev].

Chapter 7. EHM Evaluation 147

resource controller. It must be noticed, however, that a 32 bit interface controller
was used internally. Would a 64 bit memory interface have been used, as is
commonplace nowadays, all results would simply double.

Summarizing, the results presented here are quite modest for the APEX de-
vice. This derives, on the one hand from the design itself, which was envisioned
as feasibility study and was therefore not optimized for speed. On the other,
though, a very strong technological effect can be identified. By comparing the
performance reached with different FPGA families available on the market, the
potential of the EHM is unveiled, showing much better results, which lie an order
of magnitude over existing active networking software solutions. Such results, in
the Gbps area, allow to contemplate the use of the EHM at the network edges
and even in the MAN core.

7.4.4 Security Evaluation

As was explained in section 3.2, the opening of network nodes to hardware
programmability brings a forgotten set of hardware threats to new relevance,
which traditional security infrastructures are not prepared to cope with. One of
the aims of the present work was to explore the possibilities to control and prevent
such threats by implementing resource management directly a the hardware level.
The emphasis was set on the threats that Mobile Code implies for an otherwise
well-behaved node and on which measures could be taken to guarantee, that
its safety will not be compromised. The safety of the code itself inserted in an
active node can not be guaranteed by existing means. Basically, the additional
mechanisms introduced at the hardware level are access control techniques and
scheduling.

In the first category fall such techniques as virtual memory. Every applica-
tion uses a number of bits to code the addresses, where its information shall be
stored. The physical memory present in the system, however, is much larger
than the sight that the application has. The Service Manager prepends an offset
to that address, so that reading or overwriting information concerning another
application is not possible.

For the network interface case, it would be in principle thinkable, that an
application request incoming packets addressed to another one, e.g. in order to
perform a denial of service attack. That would amount to an identity theft. This
possibility has been excluded, since the I/O controller receives information from
the packet classifier, as to which application has the right to request a certain
packet. That information is stored together with a packet identification. Upon
request, an identity check is performed before the packet is passed. An application
can furthermore not pretend to be another one, since the Service Manager has a
hard-coded identifier, which is used indirectly to identify the application. Since
the application has no interface to that information, that form of identity theft
is excluded.

Chapter 7. EHM Evaluation 148

Other forms of application interference are also prevented. Through the use of
point to point interfaces between the applications and the EHM, it is physically
impossible to disturb the communication of other applications. Within the EHM,
the token buckets together with the round-robin scheduler ensure a guaranteed
bandwidth allocation with known and bounded delay.

Still, it would be possible for an application to request access to a certain
resource, for which it has the right and enough tokens, and once granted, try
to overuse it by no relinquishing it in due time. That option is also eliminated
through the introduction of Maximum Burst Sizes (MBS). For every operation,
a Maximum Burst Size, measured in clock cycles, is given. A timer starts to
count as soon as a grant was given to the application. Independently of the
application’s behavior, if the timer reaches the value MBS, the transaction is
immediately aborted and the interface to the resource is freed. Additionally,
MBS tokens are subtracted from the application’s bucket, in order to reflect the
real usage. Overuse is thus not possible beyond the MBS limit, and real usage
instead of announced usage is accounted for.

Additionally, the architecture foresees the surveillance of all chip I/O pins
by the EHM. This means, that no application would have the right to directly
connect to an I/O pin, de facto bypassing EHM’s control in access to off-chip
resources. This can be easily prevented, since the integration of new applications
in the overall chip design happens in the NAN, under direct control of the network
operator. Such surveillance prevents a broad set of attacks at the electrical signal
level, as explained in section 3.2.

Summarizing, the mechanisms introduced in the EHM allow for an efficient
and complete isolation among applications. This protects applications from each
other and from the system. However, the system also has to be protected from
the applications. Guaranteed enforcement of resource usage agreements is also
provided, due to its importance not only for isolation but also for accounting.
To a degree, unexpected service behavior is also accounted for, in that resource
overuse is immediately penalized. However, no system is bug-free and no claim
to absolute security can be taken seriously.

7.4.5 Summary of Results

This chapter has described the tests performed on the EHM design, as well
as the rationale behind them. It has checked those results against the design
goals presented in previous chapters. One of them was the desire to provide
service isolation, among applications but also between the applications and the
platform itself, for security reasons. As has been discussed, QoS guarantees, but
also resource usage limitation are enforced by the EHM. Analogously, the system
itself quickly reacts against unauthorized or unexpected behavior, cutting off
access to the shared resources by the misbehaving application.

Chapter 7. EHM Evaluation 149

The design is in a position to deliver a throughput level, which active network-
ing solutions had not reached before in such a shared and open environment. In
spite of this, delay has shown to be a problem for such applications or resources,
which have very stringent delay requirements on top of high throughput require-
ments.

Technology, as well as the prototyping platform itself, has a very strong impact
on the overall absolute system performance. In order to separate the technological
effect from the intrinsic characteristics of the design, a comparison for different
FPGA families was performed. This comparison showed the capacity of the
design to perform in the Gbps area and thus keep up with the necessities of
modern networking.

Resource usage was very moderate in all cases, falling even to negligible values
in more modern, bigger FPGAs. As an overall conclusion, this chapter has shown
the feasibility and the adequacy of the proposed solution to deal with the goals
set at the beginning of this Thesis.

8 Conclusions and Outlook

This Thesis started with the observation, that the Multiservice Internet is
suffering under its own success. The increasing diversity of services being offered
over it, and the sheer number of service instances simultaneously active are a
double scalability problem. As a result, the management of modern communica-
tion networks is increasingly complex and costly. A trade-off exists between the
desire for network flexibility, performance needs to cope with traffic demands and
management complexity.

Several proposals have emerged to overcome this trade-off. The one that serves
as inspiration for this work is the research in the area of Active and Programmable
Networks (A&PN). The principle behind A&PNs is to transform the network from
a mere bit-transporting pipe into a service-aware open programmable platform.
The main assumption behind it is, that some services are better realized in, or
at least supported by, the network itself. In spite of considerable effort, however,
these approaches have faced severe problems: There seems to be a trade-off
between security and openness and between flexibility and performance. The
goal of this Thesis was to sketch a novel network model that would overcome
those trade-offs, providing performance, flexibility, openness, security and QoS
simultaneously, with acceptable complexity.

This work begins with a novel taxonomy and characterization of router tasks,
mechanisms and architectures in chapter 2. This new analysis of the role of
routers in modern networks was made necessary by the expansion in router func-
tionality in the last years. Especially the introduction of traffic management tasks
(basically, resource management and security) has had an tremendous impact on
router design and architectures. The increased router complexity has also driven
to specialization, with the appearance of a wide variety of router-like networking
devices like security gateways, firewalls, SOHO routers, etc. In parallel, a strong
technological evolution has taken place, with an increasing reliance in hardware
support to achieve sufficient performance. Programmable hardware is playing an
important role in overcoming the trade-off between flexibility and performance.

Chapter 3 explored the possibilities that A&PN opened for the future of
router design, as well as its main limitations. One of the most critical problems
derives from the emphasis on openness and management by third-parties. This
complicates the achievement of sufficient security levels. The introduction of

150

Chapter 8. Conclusions and Outlook 151

programmable hardware presents new risks, for which traditional proposals, based
mainly on pure software solutions, are not prepared to cope with. QoS, on top
of that, is a necessary element of any modern router, and its main principles and
approaches were also reviewed in this chapter.

Chapter 4 presented the author’s vision of an overlay network model able to
overcome the limitations and trade-offs mentioned above. It begins by acknowl-
edging the necessity of strong security checks in the form of access control, AAA,
encryption, sandboxes, etc. However, in order not to endanger performance and
flexibility in exchange for security, it clearly separates service admission and in-
troduction, which is subject to strong security checks, from service management
and operation, which is not. Once a service has been deployed, only run-time
checks are applied, which critically improves performance with respect to other
proposals. Furthermore, performance is also underpinned by the introduction of
not only programmable software, but also programmable hardware environments
in the network nodes. Flexibility is sustained by the programmability of the
platform, which extends to the control plane: Every service operator is allowed
to implement its own management interfaces and protocols. The key to achieve
flexibility without compromising security at the system level lies in a strong iso-
lation among services and between every service and the node platform itself.
In software, that isolation is reached through well-known methods: Sandboxes,
Execution Environments and the Operating System. In hardware, those mecha-
nisms are not adequate, for their view of, and hence their control over embedded
applications is too coarse. In order to prevent threats coming from the hardware
part of the applications, resource management has to happen at the hardware
level, too.

As a consequence, chapter 6 presents the Embedded Hardware Manager. the
EHM provides isolation by acting as intermediate element between the applica-
tions and the off-chip resources, as well as among the applications themselves. It
acts as scheduler, QoS manager and security agent for native hardware applica-
tions multiplexed on a common platform. The EHM can work with a wide range
of applications and off-chip resources, as long as they have no critical delay re-
quirements in the ns domain. The EHM has been tested by means of two extreme
case studies, which serve as boundaries for a broad set of scenarios. The test cases
involve a processing and data intensive application, on the one hand (encryption)
and a memory intensive application, on the other (accounting). In order for the
tests to be complete, the corresponding resource managers for off-chip SDRAM
and a Fast Ethernet/Gigabit Ethernet network interface have been implemented.
These two case studies present very different characteristics in terms of operation
time scale and granularity of operation, besides representing applications and
resources ubiquitous in modern communication systems.

The EHM has been evaluated in chapter 7 by means of a system emulation.
Additionally, a prototype has been designed, in order to consider the physical
constraints set on the architecture by a real platform. In this way, relative as

Chapter 8. Conclusions and Outlook 152

well as absolute results could be obtained. Isolation, scalability, QoS allocation in
terms of bandwidth and delay, resilience to security threats and overall efficiency
were measured, as well as overall performance (processed packets per second). As
documented in chapter 7, the results are very satisfactory in all areas, proving the
feasibility and adequacy of the approach presented in this Thesis. Nevertheless,
a number of restrictions also apply. First, delay is the price to pay in exchange
for isolation and QoS guarantees. This disqualifies the EHM for use with ex-
tremely demanding resources in terms of maximum delay, like SRAM. Second,
the platform presented a number of inadequacies, which also curtailed the per-
formance achievable by the prototype. Third, the goal of the architecture being
to serve as proof-of-concept, no attempt was made to optimize its implementa-
tion for performance. Undoubtedly, further optimizations in the implementation
would be possible, without noticeably altering the overall architecture. Still, the
performance lies in the Gbps range, which is much better than previous software
proposals. Resource usage is moderate and even small for the latest FPGAs.

And yet, there is still a long way to go to realize the vision of the Octopus
Network Model. Only an sketch of its principal elements has been attempted here.
The full realization of the OOG is still pending, comprising both its software and
hardware parts. Both exist as separate instances: The EHM and associated
hardware platform has been presented in this work. Previous proposals, like
Darwin, could be adapted to serve as the software part. The integration is the
missing link.

The completion of the NAN comprises two different strands of work: On
the one side, the realization of the interface to the code repositories, including
authentication, authorization, etc., seems more a matter of implementing existing
solutions than of research. On the other side, however, the automation of the
service inclusion in existing designs implies an important amount of research in
tool support for system design.

The negotiation protocol between the user and the network is also a pending
issue, although existing signaling protocols offer a very good starting point. A
true explosion of signaling in IP networks for all kinds of uses and services can
be observed recently, with SIP and RTCP being only two examples.

As a last word, the dangers of openness remain a critical issue. In spite of
hardware resource management and software sandboxes and other techniques, a
large amount of real-life experience has to be summoned, before the fears of the
network operators can be safely put aside.

This Thesis tries to lie the groundwork for the successful realization of an
open, secure programmable overlay network for the future Multiservice Internet.

A Review of Some Relevant
Active Network Proposals

A.1 TU Braunschweig / Universität Karlsruhe: FHiPPs
and AMNet

The AMNet project was initiated at the TU Braunschweig under the direction
of Prof. Dr. Martina Zitterbart. When she was called to the University of
Karlsruhe, the project moved along and was continued there, where it was further
developed. AMNet was initially an Active Networking approach to better support
multicast in IP networks [WZ98]. However, the project quickly evolved into
a Programmable Network infrastructure for general functionality enhancement
[FHSZ02]. In its early version, it also comprised a programmable hardware board
for the support of processing-intensive tasks [HMP00], but in later publications
it seems to have lost relevance, converging to an all-software proposal. In fact,
the authors clearly state their goal to develop nodes, which will be placed at the
network edges or even outside the data path. The idea in this second case would
be to redirect packets, that need special treatment to those nodes by influencing
the routing decisions at the edges. The marginalization of the hardware support,
on the one side, and the decision to move away from the main data path, on the
other, show a renounce to achieve high performance, one of the critical success
criteria for Active Networking presented in previous sections. In fact, their own
numerical results [FHK+03], present a maximum achievable throughput of 68
Mbps for a simple exemplary application.

AMNet relies on a DNS-like structure of code repositories for the distribution
of applications. Authorization, authentication and signature mechanisms are
also foreseen for increased security and integrity. Contrary to other approaches,
this proposal renounces explicitly the use of virtual machines for performance
reasons, relying on native code instead. The compiled application, thus, resides
in the repository. To account for OS and hardware diversity, several versions of
the code might be developed and stored in the servers.

To account for the security issues associated with downloading native code,
two main elements are introduced. On the one hand, a resource negotiation takes
place between the node and the repository prior to download. In this phase the

153

Appendix A. Review of Some Relevant Active Network Proposals 154

resource needs of the service and the resource disposability at the node are com-
pared, as well as the rights associated with the new application. If the code is
admitted, a runtime access control infrastructure surveils the application’s re-
source usage [HSS+02]. Basically, this infrastructure is placed as an intermediate
layer between the application and the OS. All system calls issued by the service
are intercepted and compared against a resource monitoring database. Should an
application exceed its associated resource limits, the call is rejected. The three
resources surveilled are bandwidth, processing power and memory space. For all
other checks, like access to memory space associated to other applications, AM-
Net falls back on the UNIX access control infrastructure, which is used as the
underlying NodeOS.

Arguably, the most novel elements of their architecture are related with their
hardware platform, known as the FHiPPs (Flexible High Performance Platform,
[Har02]). It is composed of four main elements, depicted in Fig. A.1: A DSP
board, an ATM interface, an embedded CPU and a set of FPGAs interconnected
by a switch fabric. These elements are located in two boards attached to a
host via the PCI bus. Because of the diversity of reconfigurable equipment, the
FHiPPs is suitable for the efficient support of very different applications. None
the less, this same heterogeneity makes the platform complex to program and
manage, thus presenting a trade-off between flexibility and usability.

DSP

Board

PCI-based

Host
Embedded CPU

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

FPGA

ATM

Interface

To Network

Figure A.1: The Flexible High Performance Platform (FHiPPs).

A very interesting component of the architecture is related to the intercon-
nection between the hardware platform and software running on the host PC. In
principle, the reprogramming of the FHiPPs should present a new API (realized

Appendix A. Review of Some Relevant Active Network Proposals 155

as a device driver) to the software on the host, in order to efficiently use its new
capabilities. In order to support such ”dynamic device drivers”, the Happlet con-
cept was developed, which stands for ”Hardware Applet”. The introduction of
new functionality in the hardware platform (including the corresponding driver)
is done by using this mechanism.

A pseudo device interface is permanently installed in the host machine, and
serves as multiplexing point to access the hardware. Associated with it, there is a
hardware manager, which provides basic functionality to integrate new happlets,
initialize them and remove them, if needed. A Happlet consists of two main
parts: A host code segment, which consists of the driver itself, plus indications
for the introduction and configuration of new code into the hardware platform.
The second part is called the hardware code segment, which contains the DSP,
FPGA or CPU code itself (or a mixture thereof for more complex applications, s.
Fig. A.2). In this way, the introduction of new functionality and the introduction
of the communication mechanisms between that hardware functionality and the
control software is realized in one coordinated step. Happlets also reside in the
code repositories and are downloaded from there exactly like software plugins.
In order for other (software) services to communicate with the hardware in the
AMNet context, a pseudo-application is instantiated in the host, which serves
as ”software-representative” of the hardware platform. Other services can thus
communicate with this application through normal channels (e.g., sockets) for
the purpose of interchanging information or packets. The pseudo-application,
then, sends the relevant data to the corresponding Happlet via the pseudo-device
interface.

Client
Pseudo
Device

HW
Manager

Happlet
(Host Code)

Happlet
(FPGA Code)

Happlet
(DSP Code)

User Space Kernel Space FHiPPs

Figure A.2: The Hardware Applet Concept.

In spite of its undoubtful merits, the AMNet initiative presents a number
of weaknesses. The first affects the use of native code. Although an access
control infrastructure is in place, it is restricted to checking the total amount of
resources used by every application, with the goal of avoiding overload situations.

Appendix A. Review of Some Relevant Active Network Proposals 156

A number of other attacks are possible, as stated above, against which only the
default UNIX mechanisms are used. Furthermore, since applications run outside
a virtual machine, code bugs can still drive all active services down, even if they
do not make the node crash. But the main drawback of using native code is
associated with the Happlets. Since device drivers are dynamically installed in
the OS kernel, a much more critical threat exists: A bug in this code could indeed
bring the whole node to a halt by provoking an OS crash. Against this possibility
no protection has been devised.

The second set of threats are directly associated with the FHiPPs platform.
Since AMNet assumes a centralized node management and the correctness of
the code installed therein, no runtime checks are performed at the hardware
level. As explained in Section 3.1, a number of attacks are therefore possible.
These threats are indeed mentioned in [Har02], but no access control or resource
management architecture to prevent service interaction at the hardware level is
deemed necessary.

Summarizing, the AMNet approach has developed a very flexible software
and hardware platform for Active Networking. Nevertheless, the resource man-
agement and security parts are somewhat insufficient, especially at the hardware
level.

A.2 Work at the Washington University in St. Louis and
the ETH Zürich

At the Washington University in St. Louis, a number of mutually related
projects have been conducted in the last ten years. Their main common goal was
to investigate network node architectures, that would allow simultaneously high
performance (in the multi-Gbps domain) and functional flexibility and extensi-
bility. The project most closely related with active networking was developed in
collaboration with the Eidgenössische Technische Hochschule Zürich, which pro-
vided the input for the software architecture of the Distributed Code Caching for
Active Networks (DAN) [DDPP98], [DPP+99]. The latest stage of this ambitious
work is the Dynamically Extensible Router (DER) [KDK+02], which in a way
reunites all previous (and sometimes parallel) efforts.

The DER consists of four main modules (s. Fig. A.3): A Control Processor,
an ATM Switch Core interconnecting a number of Port Processors and their
respective Line Cards. The Control Processor runs the management and routing
software and it will be explained shortly. The Switch Fabric is in reality a multi-
Gbps ATM switch entirely designed and developed at Washington University,
known as WUGS [CFFT97]. However, in the DER it is used simply as a high
performance backplane to interconnect the Port Processors, which realize the
data plane functionality of the node. The Line Cards provide conversion and
encoding for the target physical layer.

Appendix A. Review of Some Relevant Active Network Proposals 157

Control

ATM Switch Core (WUGS)

FPX

Processor

SPC

Line
Card

P
o
rt

P
ro

ce
ss

o
rs FPX

SPC

FPX

SPC

.

L
in

e
C

ar
d
s Line

Card
Line
Card

.

Figure A.3: Dynamically Extensible Router.

The Port Processors contain a Field Programmable Port Extender (FPX)
board [LNTT01], a Smart Port Card (SPC) board [KDK+02], or both (s.
Fig. A.4). The FPX presents a platform for the support of data plane function-
ality realized in programmable hardware (so called ”Dynamic Hardware Plugins
(DHP)” [TTL01]), while the SPC includes an embedded processor for software-
based applications (”Software Plugins”), also on the data plane. In spite of this
duality, the authors envision, that most high-level packet processing will be re-
alized in the SPC. The FPX will take charge of low-level, processing-intensive
tasks like packet classification, pattern matching, route lookup and the like.

The SPC basically consists of an embedded Intel Pentium processor, some
DRAM, an FPGA that provides south bridge functionality and an ATM host-
network interface. The SPC runs a version of the NetBSD OS modified for active
networking.

The FPX is composed of two FPGAs, five memory banks and two network
interfaces. Functionally, it is divided in two main subsystems: The Network
Interface Device (NID) and the Reprogrammable Application Device (RAD),
s. Fig. A.4. The RAD contains the synthesized VHDL code modules, that
implement the desired functionality, like encryption or route lookup. The current
FPX version supports two RAD-modules in the same FPGA. Each module has
dedicated interfaces to two memory banks for its own use. The NID controls how
packets are routed to and from the RAD modules. It also provides mechanisms to
dynamically load hardware modules over the network. Partial reconfiguration is
possible, thus enabling the update of one RAD module without interrupting the

Appendix A. Review of Some Relevant Active Network Proposals 158

packet processing on the other. The NID, then, provides the basic infrastructure
for the introduction and management of hardware modules. The RAD presents
a set of standardized interfaces to the application programmer, equivalent to a
set of APIs for software applications. This facilitates code development.

The introduction of new applications into the router is managed by the DAN
architecture. Basically, it follows a Programmable Network approach, in which
plugins (software and hardware) are stored in a hierarchy of code repositories,
analogous to the DNS. The Control Processor, besides running the usual routing
and management protocols (OSPF, SNMP, etc), is also in charge of plugin man-
agement. Capsules are used for management purposes, but in order to improve
performance, they do not carry code themselves. Capsules carry an indication (a
”pointer”) of the plugin to which they should be directed. Several such pointers
will be carried, if a chain of plugins should process the packet. Normal packets
do not carry such indications: The relevant plugin for their processing is detected
through packet classification at the router interface. Should a plugin be needed,
which is not currently installed in the router, it will be downloaded on-demand
from a repository. Obviously, plugins can also be downloaded by an administra-
tor off-line. To protect the integrity and validity of the code, repositories have
to go through an authentication and authorization process, and plugins are digi-
tally signed. Nevertheless, and again in order to improve performance, the DER
project renounces to the idea of virtual machines for their inherent overhead.
Plugins are written in a common high-level language (like C), compiled at the
repository and downloaded as an executable by the node. There, it runs as native
code, just as any other application. The DAN architecture foresaw a limited re-
source management entity for software applications. Basically, that entity would
monitor the CPU cycle and memory consumption by the plugins. Although re-
ferred only as a monitor, it is easy to see, that that entity could be expanded to
actually perform some form of resource control.

The performance of the DER components is, without any doubt, the best in
the whole Active Networking community. Their node design is, at the same time,
very flexible. However, a number of concerns related to the security and openness
assets arise. They can be summarized by saying, that they do not perform any
kind of runtime security checks. In the first place, the fact of bypassing the
use of virtual machines (or equivalent constructs) for software plugins severely
impacts the safety of their design. Even if the plugins are signed, by neither
performing checks on their correctness, nor any kind of resource management,
code bugs or malicious programmers can easily compromise the node integrity.
This feature alone would make their design unsuitable for real-life deployment.
The same applies for their hardware plugins, which do not undergo any kind
of safety, security or resource control. Obviously, no isolation among plugins
(software or hardware) exists. In the second place, their architecture, although
foreseeing dynamic functionality extension, is ill-suited for true sharing. The lack
of runtime checks is complemented by a centralized management architecture (the

Appendix A. Review of Some Relevant Active Network Proposals 159

Figure A.4: Architecture of a Port Processor.

Appendix A. Review of Some Relevant Active Network Proposals 160

Control Processor), which controls the introduction and removal of all plugins.
No provision for service operator-specific access to the plugins is foreseen.

The DER is then truly high-performance and flexible, albeit neither secure nor
open. Nevertheless, in a closed environment, like present networks, it provides
a network operator with an incremental step to increase the flexibility of their
nodes, as long as they keep strict controls on their software and protect them
from external access.

A.3 University of Pennsylvania: Switchware

The origins of the Active Networking activities at the University of Pennsyl-
vania can be traced back to the Protocol Boosters project [FMS+98]. Its main
goal was to develop the possibility of dynamically installing protocol extensions
in network nodes without having to replace the existing software. In a way, the
idea was similar to linking LINUX modules to the kernel on-demand. From that
first ”active” initiative, two main strands emerged: On the one side, a platform
for Booster support in hardware was developed, and on the other, a secure Active
Network architecture was designed.

The SwitchWare project [AAH+98] developed an architecture, which sup-
ported active capsules and active extensions (i.e., bigger applications stored in
repositories, also known as ”switchlets”) simultaneously. The main emphasis of
SwitchWare, though, was on developing a secure infrastructure for Active Net-
working [AMK+01]: Code and node integrity, authentication and authorization
were its main concerns. It should be pointed out, however, that they were not con-
cerned with safety: The goal was to devise an infrastructure, that would retrieve
unaltered the right code from the right place and allow it to do only authorized
operations. If, on the other hand, the code itself performed semantically illegal
operations, or was otherwise buggy or malicious, its consequences remained ob-
scure. Equally, resource management beyond traditional OS mechanisms was not
considered [AAK+00].

The approach was to try to achieve security without penalizing performance.
To that end, the use of virtual machines was avoided. Additionally, heavyweight
security checks were introduced at the boot or compile time, leaving only more
lightweight operations for the runtime environment. In order to achieve this goal,
a new programming language was developed (Programming Language for Active
Networks, PLAN [AAKS98a]) and a second one was adapted (Caml [AAKS98b]).
PLAN was a very simple, very restrictive language, to be used in active capsules.
Its functionality was minimal, so as to be safe. As way of example, PLAN does
not allow to change state information in a node, it can only operate on the
content of the capsule itself. Obviously, this approach was unusable for bigger,
more complex applications. To that purpose Caml was used. To ensure a secure
environment in which to run Switchlets, the Secure Active Network Environment
(SANE) architecture was developed (s. Fig. A.5).

Appendix A. Review of Some Relevant Active Network Proposals 161

Modified BIOS

Boot Block

Core Switchlet

Loader

OS Kernel

Kernel Space

User Space

Libraries/Switchlets

AEGIS ROM

ALIEN

Figure A.5: The SANE Layering Structure.

At the basis of the SANE architecture [AAKS98b] lies a secure bootstrapping
procedure, called AEGIS. The main idea is to check the integrity of every piece of
code involved in the bootstrapping process prior to allowing it to take control of
the node. With the help of a modified BIOS and a minimum set of axiomatically
safe code, every layer is checked with the help of digital signatures, until the node
is up and running.

On top of the OS, two further elements, jointly called ALIEN, manage the
Switchlets. The Caml loader is responsible to interpret Caml bytecode and serves
as an interface to the OS (LINUX). Additionally, it dynamically loads switch-
lets on-demand. The Core Switchlet represents the API for user-programmed
Switchlets. It also implements access control by means of module thinning (see
below).

The choice of Caml as a programming language derived from its security char-
acteristics: It supports strong typing, module thinning, garbage collection and
dynamic module loading. Strong typing prevents uncontrolled casts, that might
provoke errors at runtime. Module thinning adapts the interface seen by the ap-
plications depending on their access rights. In this way, the language itself allows
to restrict the functionality seen by an application. Garbage collection prevents
the deallocation of memory, its subsequent reallocation to another application
and the peeking into it by a re-claiming previous module, which would equate
with ”spying”. Furthermore, pointing to deallocated memory can provoke sys-

Appendix A. Review of Some Relevant Active Network Proposals 162

tem crashes. Garbage collection prevents such effects. Dynamic module loading
was a pre-requisite of Programmable Networks. The SwitchWare approach, then,
relied heavily in a programming language choice, that limited the expressiveness
of programs to a secure subset.

As mentioned before, this impressive security construct nevertheless neglected
an evaluation of Switchlet safety. Alternatively, it could have introduced strong
resource management mechanisms and virtual machines to prevent service inter-
ference and the endangering of node stability. Under these circumstances, buggy
code could still provoke system misbehavior.

A second weakness lies in its performance limitations. Although providing
good performance for basic applications in a software environment, SwitchWare
is not apt for deployment even in modern MANs. To solve this problem, the
use of the Protocol Booster hardware platform in the context of SwitchWare was
proposed. The Programmable Protocol Processing Pipeline (P4, s. Fig. A.6 and
[Had99], [HS97]) was basically a pipeline, in which every element was an FPGA.
The idea was to distribute processing-intensive Boosters (like a FEC module)
among a set of hardware processing elements in a pipelined fashion. A Switching
Array served to manage the pipeline ordering, thus also allowing the dynamic
introduction and removal of functionality from individual FPGAs. An external
host controlled the P4 configuration, triggered the update of FPGA code and
implemented a signaling protocol for the coordination of Boosters in a network-
wide scenario. The P4 was designed for ATM networks running at OC-3 speeds
(155 Mbps).

Bypass FIFO

Switching Array

FPGA FPGA

OIFIIF

FPGA

Controlling
Host

Header fields forwarding

.

Data path

Control path

ATMATM

Figure A.6: Programmable Protocol Processing Pipeline.

Appendix A. Review of Some Relevant Active Network Proposals 163

This design represents a first try at developing a hardware platform for Ac-
tive Networking that could overcome its performance limitations. Under that
perspective, and as proof-of-concept, it was a success. Nevertheless, a number of
limitations should be mentioned: Due probably to technological limitations, the
platform does not foresee the access to external resources by the FPGAs (e.g.
DRAM banks), thus limiting their processing possibilities. The platform was de-
signed as a pipeline, and although it could also support several services in parallel,
adequate management mechanisms to prevent module interference are missing.
Furthermore, the platform does not perform any kind of resource management
or safety checks either, which makes sense, assuming that it is controlled by a
single, trusted party. In an Active Networking environment, though, such con-
trols are indispensable. In due fairness, however, the dangers of hardware attacks
were analyzed and discussed in [Had99]. As already mentioned, the technologi-
cal limitations of FPGA technology in 1997 did not allow for a more ambitious
performance goal than those 155 Mbps, which nowadays seem insufficient.

Summarizing, SwitchWare presents the most ambitious try at a secure Active
Networking architecture to date. Together with the P4, it presents a promising
mixture of secure software and high-performance hardware (at that time), which
could lead to feasible Programmable Networks. The restriction of programming
languages might reduce the flexibility and usability of the proposal to some de-
gree.

A.4 Carnegie Mellon University: Darwin

The Darwin project at Carnegie Mellon University [CCF+01], [GSTF00],
[GS01] wanted to design all necessary elements for the establishment, manage-
ment and support of overlay networks (s. Fig. A.7). The present vision of over-
lays brings to mind approaches, that are independent of the physical network,
like Peer-to-Peer applications. The goal of Darwin was different: The overlays
running on top of a certain infrastructure had to be able to access, configure and
share the physical network’s resources. Every service provider would have control
on the allocation of its share of network resources, in isolation from all others.
The resources provided by the network, as stated in section 3.1, were abstracted
to be bandwidth, memory and processing capacity in the network nodes.

In order to accomplish its goal, Darwin envisions four different elements in
their architecture:

q A high-level resource broker called Xena.

q Runtime resource management instances, called Delegates.

q A hierarchical scheduling algorithm (H-FSC).

q A management protocol called Beagle.

Appendix A. Review of Some Relevant Active Network Proposals 164

Xena

Applications

Beagle

Network

Classifier
Route

Lookup

Scheduler

Delegates

Active Node

Figure A.7: The Darwin Network Model.

Xena’s mission is to perform admission control on new overlay establishment
requests, map the description of resources needed by the overlay to network
equivalents, keep track of available network resources, optimize resource usage at
the network level (for that purpose, semantic-keeping transformations of overlay
descriptions can be performed by Xena) and allocate those resources in the net-
work nodes. It is realized in an independent node and can also serve as proxy for
such applications, that are not able to communicate their resource requirements
themselves.

Delegates are instantiated by Xena in the corresponding nodes upon creation
of a new overlay (a ”Virtual Mesh” in Darwin terminology). Two kinds of del-
egates exist: Control plane delegates and data plane delegates (s. Fig. A.8).
Together, they are roughly equivalent to the Execution Environment and the
Active Applications described in section 3.1. The control plane delegate is char-
acterized by its resource requirements, its runtime environment and the flows
and state, which it is allowed to manipulate. It basically receives the instructions
relative to resource allocation sent by Xena and accordingly configures the node
in which it runs. This configuration implies reserving certain resources and also
implementing a security policy. To that end, the delegates use Access Control
Lists (ACL), which summarize the rights of programs associated to this delegate
over node resources and packets. Additionally, delegates run on a Java virtual
machine, which presents a safety architecture of its own. The data plane del-
egate (the Active Application) represents the functionality to be performed on
the traffic: Compression, encryption, etc. The control plane delegate adds filters
to the packet classifier to direct the relevant packets to the data plane delegate.

Appendix A. Review of Some Relevant Active Network Proposals 165

It can also alter the routing table and related information to set tunnels, choose
alternate routes, etc. for its managed traffic.

Xena Applications

Routing Beagle Control
Delegates

RCI Event Notification

Local Resource Manager

Classifier
Route

Lookup

Data
Delegates

Scheduler
Packet

In
Packet

Out

Figure A.8: The Darwin Network Node Architecture.

To prevent interference among delegates, besides the ACLs, a hierarchical
scheduling algorithm is used. As other such algorithms, it has the property of
dividing a resource among entities in a tree fashion (s. Fig. A.9). Every branch
falls under the control of a certain entity (in this case, a control plane delegate),
which can further divide it as it pleases. In this way, a control plane delegate
can share a number of resources among several data plane delegates under its
surveillance. Since delegates can only operate on their branch of the resource
tree, interference among them is prevented.

The Beagle signaling protocol transports the messages between Xena and the
delegates. At delegate establishment, it first transports the resource limitations
for the new service to the NodeOS, which will enforce them by using its own
set of ACLs. Afterwards, the code instantiating the delegates (control and data
plane) is transported to the node and installed. This includes authentication and
authorization between Xena and the node. From that moment on, Beagle serves
as a signaling protocol for any changes, that might occur on the network state. In
a way, Beagle realizes a similar function to RSVP, but for whole overlays instead

Appendix A. Review of Some Relevant Active Network Proposals 166

Globales Virtual Mesh

Provider BProvider A

Video Audio

I-Frames
P-Frames

B-Frames . . .

eVPN1 eVPN2

.

.

. . .

Figure A.9: The Grouping Tree Concept for Hierarchical Scheduling.

of individual flows. It also presents an idealized view of the node resources to
Xena, so that optimization procedures will be performed there.

As can be seen, every one of these elements has a different scope and repre-
sents a different resource aggregation level as well as a different time scale: Xena
performs the optimization and allocation of resources at the network level. The
time-frame for such activities would be in the order of minutes to hours. The
delegates transform these instructions into a node configuration, which would
take place in the sub-second domain. Once configured, the scheduling algorithm
ensures QoS enforcement at the packet level (microseconds). Beagle is the pro-
tocol in charge of transporting the instructions from Xena to the Delegates and
vice versa.

Darwin presents a comprehensive architecture to introduce and manage over-
lay networks integrated with the underlying infrastructure. Nevertheless, a num-
ber of issues remain unsolved. First, the architecture stops right underneath the
”service layer”: The mechanisms described refer only to raw resources. A service
overlay would need similar solutions to find, index, reserve and organize service
instances or components to form a coherent, usable whole. This is an area, which
has been addressed elsewhere [BS99].

Secondly, the introduction of resource brokers presents a number of well-
known, unsolved problems: Scalability for big networks is only one of them.
Additionally, the interaction between brokers pertaining to (administratively)

Appendix A. Review of Some Relevant Active Network Proposals 167

different networks is a critical point for end-to-end coherence. Furthermore, the
optimization problem to be solved is NP-hard, which forces the use of heuristics.
The quality of such heuristics, as well as how easy it might be to find them, is
an open point.

Thirdly, Darwin allows delegates to directly configure the basic features of a
network node, like the routing tables or the classification rules. This is arguably a
dangerous move, for those features affect the whole of the traffic, not only packets
belonging to a certain overlay. As was explained in chapter 4, strict separation
of fundamental router tasks from value-added services (like overlays) seems to be
a more secure and equally flexible solution.

Lastly, the introduction of programmability at the hardware level is not con-
sidered, neither the risks associated with hardware attacks to the system. This
drawback severely penalizes the performance achievable with Darwin.

As a conclusion, Darwin is a thorough, comprehensive architecture, which has
addressed two aspects deemed critical for an Active Network proposal: Usability
and security, albeit with some weaknesses. Performance, on the other hand, was
sacrificed from the beginning.

In this last section, the A&PN projects closest to this Thesis’ own work have
been reviewed and their strengths and weaknesses highlighted. Their choices in
the performance vs security vs openness trade-off have been exposed. They serve
as a reference to compare the choices made in the Octopus Network Model to
overcome that trade-off.

Bibliography

[AAH+98] D. S. Alexander, W.A. Arbaugh, M.W. Hicks, P. Kakkar, A.D.
Keromytis, J.T. Moore, C.A. Gunter, S.M. Nettles, and J.M. Smith.
The SwitchWare Active Network Architecture. IEEE Network Maga-
zine, May/June 1998.

[AAK+00] D. S. Alexander, W.A. Arbaugh, A.D. Keromytis, S. Muir, and J.M.
Smith. Secure Quality of Service Handling: SQoSH. IEEE Communi-
cations Magazine, April 2000.

[AAKS98a] D. S. Alexander, W. A. Arbaugh, A. D. Keromytis, and J. M. Smith.
PLAN: A Packet Language for Active Networks. IEEE Network Special
Issue on Active and Controllable Networks, 12(3):37 – 45, 1998.

[AAKS98b] D. S. Alexander, W.A. Arbaugh, A.D. Keromytis, and J.M. Smith.
A Secure Active Network Environment Architecture: Realization in
SwitchWare. IEEE Network Magazine, May/June 1998.

[ABC+03] F. Arts, P. Barri, I. Clemminck, A. Niemegeers, B. Pauwels, G. Tailde-
man, and M. Vrana. Network processor requirements and benchmark-
ing. Computer Networks, 41, 2003.

[AFB98] W. Almesberger, T. Ferrari, and J.Y. Le Boudec. SRP: A scalable
resource reservation protocol for the Internet. Computer Communica-
tions, 21, 1998.

[AJ02] D.O. Awduche and B. Jabbari. Internet Traffic Engineering Us-
ing Multi-Protocol Label Switching (MPLS). Computer Networks,
40(1):111–129, 2002.

[Alta] Altera Corp. Excalibur Device Overview Data Sheet. Available at
www.altera.com.

[Altb] Altera Corp. NIOS 3.0 CPU Datasheet. Available at www.altera.com.

[Altc] Altera Corp. Stratix II Device Handbook. Available at www.altera.com.

168

BIBLIOGRAPHY 169

[AMA+99] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus.
RFC2702: Requirements for traffic engineering over MPLS. Internet
Engineering Task Force (IETF), September 1999.

[AMK+01] D.S. Alexander, P.B. Menage, A.D. Keromytis, W.A. Arbaugh, K.G.
Anagnostakis, and J.M. Smith. The Price of Safety in an Active Net-
work. Journal of Communications and Networks, 2001.

[ANS] ANSI. Available at www.atis.org/tg2k/.

[ARM99] ARM. AMBA Specification, Rev 2.0, 1999.

[Awe01] J. Aweya. IP Router Architectures: An Overview. International Jour-
nal of Communication Systems, 14:447–475, 2001.

[BBC+98] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss.
RFC2475: An Architecture for Differentiated Service . Internet Engi-
neering Task Force (IETF), December 1998.

[BCS94] R. Braden, D. Clark, and S. Shenker. RFC1633: Integrated Services
in the Internet Architecture: an Overview . Internet Engineering Task
Force (IETF), June 1994.

[BDH+03] L. Burgstahler, K. Dolzer, C. Hauser, J. Jähnert, S. Junghans,
C. Macián, and W. Payer. Beyond Technology: The Missing Pieces
for QoS Success. In Proceedings of the ACM SIGCOMM Conference,
Karlsruhe, Germany, August 2003.

[BS99] M. Brunner and R. Stadler. The Impact of Active Networking Techno-
logy on Service Management in a Telecom Environment. In Proceedings
of the 6th International Symposium on Integrated Network Manage-
ment, 1999.

[BZB+97] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. RFC2205:
Resource ReSerVation Protocol (RSVP) – Version 1 Functional Speci-
fication . Internet Engineering Task Force (IETF), September 1997.

[CAB99] J.A. Copeland, R. Abler, and K.L. Bernhardt. IP flow identification
for IP traffic carried over switched networks. Computer Networks, 31,
1999.

[Cal99] K. Calvert. Architectural Framework for Active Networks Version 1.0.
Active Network Working Group, July 1999.

[CCF+01] P. Chandra, Y. Chu, A. Fisher, J. Gao, C. Kosak, T.S.E. Ng,
P. Steenkiste, E. Takahashi, and H. Zhang. Darwin: Customizable
Resource Management for Value-Added Network Services. IEEE Net-
work, 2001.

BIBLIOGRAPHY 170

[CF98] D.D. Clark and W. Fang. Explicit Allocation of Best-Effort Packet De-
livery Service. IEEE/ACM Transactions on Networking, 6(4), August
1998.

[CFFT97] T. Chaney, J.A. Fingerhut, M. Flucke, and J.S. Turner. Design of a
Gigabit ATM Switch. In Proceedings of Infocom, 1997.

[CGMP99] S. Chuang, A. Goel, N. McKeown, and B. Prabhakar. Matching Out-
put Queuing with a Combined Input/Output-Queued Switch. IEEE
Journal on Selected Areas on Communications, 17(6), June 1999.

[Cisa] Cisco Systems Inc. Available at business.cisco.com/glossary/.

[Cisb] Cisco Systems Inc. Cisco 12816 Router Data Sheet. Available at
www.cisco.com.

[Cisc] Cisco Systems Inc. Designing Service Provider Core Networks to De-
liver Real-Time Services. Available at www.cisco.com.

[Cisd] Cisco Systems Inc. The Evolution of High-End Router Architectures.
Available at www.cisco.com.

[CLO01] H.J. Chao, C.H. Lam, and E. Oki. Broadband Packet Switching Tech-
nologies. John Wiley & Sons, Inc., 2001.

[CLS+04] C. Clark, W. Lee, D. Schimmel, D. Contis, M. Koné, and A. Thomas.
A Hardware Platform for Network Intrusion Detection and Prevention.
In Proceedings of the Third Workshop on Network Processors and Ap-
plications (NP-3), Madrid, Spain, February 2004.

[CMK+99] A.T. Campbell, H.G. De Meer, M.E. Kounavis, K. Miki, J.B. Vicente,
and D. Villela. A Survey of Programmable Networks. ACM Sigcomm
Computer Communication Review, 29(2):7–24, April 1999.

[CNRS98] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick. RFC 2386: A
framework for QoS-based routing in the Internet. Internet Engineering
Task Force (IETF), August 1998.

[Com00] D.E. Comer. Internetworking with TCP/IP, volume 1: Principles, Pro-
tocols, and Architectures. Prentice-Hall, 4th edition, 2000.

[Cor] Altera Corp. Homepage. www.altera.com.

[CSZL01] G. Carle, H. Sanneck, S. Zander, and L. Le. Deploying an Active
Voice Application on a Three-Level Active Network Node Architecture.
In Proceedings of the 3rd International Working Conference on Active
Networks. IFIP-TC6, Springer Verlag, September/October 2001.

BIBLIOGRAPHY 171

[DBCP97] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small For-
warding Tables for Fast Routing Lookups. In Proceedings of the ACM
SIGCOMM Conference, 1997.

[DDPP98] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner. Router Plugins:
A Software Architecture for Next Generation Routers. In Proceedings
of the ACM SIGCOMM Conference, 1998.

[Dev] C. Devine. AES Encryption Benchmark. Available at
www.cr0.net:8040/code/crypto/aesbench/.

[DH95] S. Deering and R. Hinden. RFC1883: Internet Protocol, Version 6
(IPv6) Specification . Internet Engineering Task Force (IETF), De-
cember 1995.

[DH98] S. Deering and R. Hinden. RFC2460: Internet Protocol, Version 6
(IPv6) Specification . Internet Engineering Task Force (IETF), De-
cember 1998.

[DL01] S. Dharmapurikar and J. Lockwood. Synthesizable Design of a Multi-
Module Memory Controller. Technical Report WUCS-01-26, Applied
Research Lab, Washington University in St. Louis, September 2001.

[DP00] K. Dolzer and W. Payer. On Aggregation Strategies for Multimedia
Traffic. In Proceedings of the 1st Polish-German Teletraffic Symposium
(PGTS2000), Dresden, Germany, September 2000.

[DPP+99] D.S. Decasper, B. Plattner, G.M. Parulkar, S. Choi, J.D. DeHart, and
T. Wolf. A Scalable High-Performance Active Network Node. IEEE
Network Magazine, January/February 1999.

[DR98] J. Daemen and V. Rijmen. AES Proposal: Rijndael. NIST AES Pro-
posal, 1998.

[Eck01] C. Eckert. IT-Sicherheit. Oldenbourg Verlag, 1st edition, 2001.

[Eng03] T. Engbersen. Guest editorial: Network processors. Computer Net-
works, 41, 2003.

[FHK+03] T. Fuhrmann, T. Harbaum, P. Kassianidis, M. Schöller, and M. Zit-
terbart. Results on the Practical Feasibility of Programmable Network
Services. In Proceedings of the 2nd International Workshop on Active
Network Technologies and Applications (ANTA 2003), Osaka, Japan,
May 2003.

BIBLIOGRAPHY 172

[FHSZ02] T. Fuhrmann, T. Harbaum, M. Schöller, and M. Zitterbart. AMnet 2.0:
An Improved Architecture for Programmable Networks. In IFIP-TC6
4th International Working Conference on Active Networks (IWAN),
Zurich, Switzerland, December 2002.

[FJ93] S. Floyd and V. Jacobson. Random Early Detection Gateways for Con-
gestion Avoidance. IEEE/ACM Transactions on Networking, August
1993.

[FJ95] S. Floyd and V. Jacobson. Link-sharing and Resource Management
Models for Packet Networks. IEEE/ACM Transactions on Networking,
3(4), August 1995.

[FKLS98] K.W. Fendick, V.P. Kumar, T.V. Lakshman, and D. Stiliadis. The
PacketStar 6400 IP Switch - An IP Switch for the Converged Network.
Bell Labs Technical Journal, October-December 1998.

[FLYV93] V. Fuller, T. Li, J. Yu, and K. Varadhan. RFC1519: Classless Inter-
Domain Routing (CIDR): an Address Assignment and Aggregation
Strategy. Internet Engineering Task Force (IETF), September 1993.

[FMS+98] D.C. Feldmeier, A.J. McAuley, J.M. Smith, D.S. Bakin, W.S. Marcus,
and T.M. Raleigh. Protocol Boosters. IEEE Journal on Selected Areas
on Communications, 16(3), April 1998.

[For94] W. Ford. Computer Communications Security. Prentice Hall, 1994.

[GEH+98] C. Gbaguidi, H. Einsiedler, P. Hurley, W. Almesberger, and J. P.
Hubaux. A Survey of Differentiated Services Architectures for the In-
ternet. Technical report, EPFL, May 1998.

[GIGK95] L. Georgiadis, I.Cidon, R. Guérin, and A. Khamisy. Optimal Buffer
Sharing. IEEE Journal on Selected Areas on Communications, Septem-
ber 1995.

[GPS+00] Alex Galis, Bernhard Plattner, Jonathan M. Smith, Spyros Denazis,
Eckhard Moeller, Hui Guo, Cornel Klein, Joan Serrat, Jan Laarhuis,
George T. Karetsos, and Chris Todd. A Flexible IP Active Networks
Architecture. In Proceedings of the 2nd International Working Confer-
ence on Active Networks, 2000.

[GS01] J. Gao and P. Steenkiste. An Access Control Architecture for Pro-
grammable Routers. In Proceedings of the Openarch, 2001.

[GSTF00] J. Gao, P. Steenkiste, E. Takahashi, and A. Fisher. A Programmable
Router Architecture Supporting Control Plane Extensibility. IEEE
Communications Magazine, March 2000.

BIBLIOGRAPHY 173

[Had99] I. Hadžić. Applying Reconfigurable Computing to Reconfigurable Net-
works. Ph. D. Thesis, University of Pennsylvania, 1999.

[Har02] T. Harbaum. Rekonfigurierbare Routerhardware für adaptive Dienst-
plattformen. Ph.D. Thesis, Universität Karlsruhe, 2002.

[Her00] S. Herzog. RFC2750: RSVP Extensions for Policy Control . Internet
Engineering Task Force (IETF), January 2000.

[Her01] D. Herity. Network Processor Programming. Embedded.com, 2001.

[HMP00] T. Harbaum, D. Meier, and M. Prinke. Hardware support for RSVP
capable routing. In Proceedings of the 3rd ATM Workshop, June 2000.

[HMS03] O. Horvath, C. Macián, and S. Stanchina. A Simple Autonomous
Reconfigurable Cryptographic Node. In Proceedings of the 9th Open
European EUNICE Summer School and IFIP Workshop on Next Gen-
eration Networks, Balatonfüred, Hungary, September 2003.

[HS97] I. Hadžić and J. M. Smith. P4: A platform for FPGA implementation
of protocol boosters. In Proceedings of the 7th International Workshop
on Field Programmable Logic and Applications (FPL97), September
1997.

[HSS+02] A. Hess, M. Schöller, G. Schäfer, A. Wolisz, and M. Zitterbart. A
dynamic and flexible access control and resource monitoring mechanism
for active nodes. In Proceedings of the 5th International Conference on
Open Architectures and Network Programming (OPENARCH) (Short
Paper Session), 2002.

[Int95] International Standardization Organization. ISO/IEC 8652: Ada Ref-
erence Manual, 1995.

[ITU93] ITU-T. Vocabulary of Terms for ISDN, March 1993.

[ITU94a] ITU-T. Recommendation E-800: Terms and definitions related to qual-
ity of service and network performance including dependability, August
1994.

[ITU94b] ITU-T. Recommendation X.200: Information Technology – Open Sys-
tems Interconnection – Basic Reference Model: The Basic Model, June
1994.

[ITU02] ITU-T. Traffic control and congestion control in IP based networks,
March 2002.

BIBLIOGRAPHY 174

[Juna] Juniper Networks. T-Series Routing Platforms Datasheet. Available
at www.junipernetworks.com.

[Junb] Juniper Networks. The Essential Core: Juniper Networks T640
Internet Routing Node with Matrix Technology. Available at
www.junipernetworks.com.

[Jun02] S. Junghans. A Universal Hardware Platform (UHP) for rapid proto-
typing of network nodes. Internal Presentation, Institute of Communi-
cation Networks and Computer Engineering, University of Stuttgart,
September 2002.

[Kar01] S. Karnouskos. Security implications of implementing active network
infrastructures using agent technology. Computer Networks, 36:87–100,
2001.

[KCY+03] I. Keslassy, S.T. Chuang, K. Yu, D. Miller, M. Horowitz, O. Solgaard,
and N. McKeown. Scaling Internet Routers Using Optics. In Proceed-
ings of the ACM SIGCOMM Conference, Karlsruhe, Germany, August
2003.

[KDK+02] F. Kuhns, J. DeHart, A. Kantawala, R. Keller, J. Lockwood,
P. Pappu, D. Richard, D. Taylor, J. Parwatikar, E. Spitznagel,
J. Turner, and K. Wong. Design and Evaluation of a High-Performance
Dynamically Extensible Router. In Proceedings of the DARPA Active
Networks Conference and Exposition, May 2002.

[Kec02] D.O. Keck. Erkennung von Wechselwirkungen zwischen Mehrwertdien-
sten durch Analyse ihrer Konfigurationen und Protokollabläufe. Ph.D.
Thesis, Universität Stuttgart, 2002.

[Kel00] F. P. Kelly. Stochastic Networks: Theory and Applications, chapter
Notes on effective bandwidths, pages 141–168. Oxford University Press,
September 2000.

[KKR97] H. Kröner, P.J. Kühn, and T. Renger. Management von ATM-Netzen.
Informationstechnik und Technische Informatik, 39(1), 1997.

[KLS98] V.P. Kumar, T.V. Lakshman, and D. Stiliadis. Beyond Best Effort:
Router Architectures for the Differentiated Services of Tomorrow’s In-
ternet. IEEE Communications Magazine, May 1998.

[KP01] S. Karlin and L. Peterson. VERA: An Extensible Router Architecture.
In Proceedings of the Openarch, 2001.

[KS98] S. Keshav and R. Sharma. Issues and Trends in Router Design. IEEE
Communications Magazine, May 1998.

BIBLIOGRAPHY 175

[LM97] S. Lin and N. McKeown. A simulation study of IP switching. In
Proceedings of the ACM SIGCOMM Conference, 1997.

[LMK+03] J.W. Lockwood, J. Moscola, M. Kulig, D. Reddick, and T. Brooks.
Internet Worm and Virus Protection in Dynamically Reconfigurable
Hardware. In Proceedings of the Military and Aerospace Programmable
Logic Device (MAPLD), September 2003.

[LNTT01] J.W. Lockwood, N. Naufel, J.S. Turner, and D.E. Taylor. Repro-
grammable Network Packet Processing on the Field Programmable
Port Extender (FPX). In Proceedings of the FPGA, February 2001.

[LSV99] B. Lampson, V. Srinivasan, and G. Varghese. IP Lookups Using Mul-
tiway and Multicolumn Search. IEEE/ACM Transactions on Network-
ing, 7(3), June 1999.

[LYR02] J. Li, M. Yarvis, and P. Reiher. Securing distributed adaptation. Com-
puter Networks, 38:347–371, 2002.

[MA98] N. McKeown and T.E. Anderson. A quantitative comparison of it-
erative scheduling algorithms for input-queued switches. Computer
Networks and ISDN Systems, 30, 1998.

[Man03] E. Mannie. Generalized Multi-Protocol Label Switching Architecture,
Internet Draft. IETF, May 2003. Work in Progress.

[McK95] N. McKeown. Scheduling Algorithms for Input-Queued Cell Switches.
PhD thesis, University of California at Berkeley, May 1995.

[McK04] N. McKeown. Network Processors and their Memory. Keynote Address
at the Third Workshop on Network Processors and Applications (NP-
3), February 2004.

[MF01] C. Macián and R. Finthammer. An Evaluation of the Key Design
Criteria to Achieve High Update Rates in Packet Classifiers. IEEE
Network, 15(6), November/December 2001.

[Mic] Micron Inc. Available at www.micron.com.

[Mic99] Micron Inc. Small-outline SDRAM module MT4LSDT464(L)H,
MT8LSDT864(L)H data sheet, 1999.

[MLP+01] S. Murphy, E. Lewis, R. Puga, R. Watson, and R. Yee. Strong Security
for Active Networks. In Proceedings of the IEEE Openarch Conference,
2001.

BIBLIOGRAPHY 176

[MRLC98] J.E. van der Merwe, S. Rooney, I. Leslie, and S. Crosby. The Tempest
– A Practical Framework for Network Programmability. IEEE Network
Magazine, May/June 1998.

[Nat01] National Institute of Standards and Technology (NIST). Advanced
Encryption Standard (AES). Federal Information Processing Standards
Publication (FIPS PUB), 197, November 2001.

[NBBB98] K. Nichols, S. Blake, F. Baker, and D. Black. RFC2474: Definition
of the Differentiated Services Field (DS Field) in the IPv4 and IPv6
Headers . Internet Engineering Task Force (IETF), December 1998.

[NJZ99] K. Nichols, V. Jacobson, and L. Zhang. RFC2638: A Two-bit Differ-
entiated Services Architecture for the Internet. Internet Engineering
Task Force (IETF), 1999.

[NL98] George C. Necula and Peter Lee. Safe, Untrusted Agents Using Proof-
Carrying Code. In Giovanni Vigna, editor, Mobile Agent Security,
Lecture Notes in Computer Science No. 1419, pages 61–91. Springer-
Verlag: Heidelberg, Germany, 1998.

[OCP01] OCP International Partnership. Open Core Protocol Specification,
Release 1.0, 2001.

[Par98] C. Partridge. Designing and Building Gigabit and Terabit Internet
Routers. Tutorial, ACM SIGCOMM Conference, Vancouver, Canada,
September 1998.

[PC03] M. Peyravian and J. Calvignac. Fundamental architectural considera-
tions for network processors. Computer Networks, 41, 2003.

[PCB+98] C. Partridge, P.P. Carvey, E. Burgess, I. Castineyra, T. Clarke,
L. Graham, M. Hathaway, P. Herman, A. King, S. Kohalmi, T. Ma,
J. Mcallen, T. Mendez, W.C. Milliken, R. Pettyjohn, J. Rokosz,
J. Seeger, M. Sollins, S. Storch, B. Tober, G.D. Troxel, D. Waitzman,
and S. Winterble. A 50 Gb/s IP Router. IEEE/ACM Transactions on
Networking, 6(3), June 1998.

[PG93] Abhay K. Parekh and Robert G. Gallager. A generalized processor
sharing approach to flow control in integrated services networks: the
single-node case. IEEE/ACM Transactions on Networking, 1(3):344–
357, 1993.

[PG94] Abhay K. Parekh and Robert G. Gallager. A generalized processor
sharing approach to flow control in integrated services networks: the
multiple node case. IEEE/ACM Transactions on Networking, 2(2),
April 1994.

BIBLIOGRAPHY 177

[Pos81] J. Postel. RFC791: Internet Protocol. Internet Engineering Task Force
(IETF), September 1981.

[PS99] Ping Pan and Henning Schulzrinne. Yessir: a simple reservation mech-
anism for the internet. SIGCOMM Comput. Commun. Rev., 29(2):89–
101, 1999.

[Pso99] K. Psounis. Active Networks: Applications, Security, Safety, and Ar-
chitectures. IEEE Communications Surveys, First Quarter, 1999.

[RLG98] Q. Razouqi, T. Lee, and S. Ghosh. A guaranteed-no-cells-dropped
buffer management scheme with selective blocking for cell-switching
networks. Computer Communications, 21:930–946, 1998.

[RVC01] E. Rosen, A. Viswanathan, and R. Callon. RFC3031: Multiprotocol
Label Switching Architecture. Internet Engineering Task Force (IETF),
January 2001.

[SB95] S. Shenker and L. Breslau. Two Issues in Reservation Establishment.
In Proceedings of the ACM SIGCOMM Conference, Cambridge, MA,
August 1995.

[Sed97] R. Sedgewick. Algorithms in C, Parts 1-4: Fundamentals, Data Struc-
tures, Sorting, Searching. Addison-Wesley, 3rd edition, 1997.

[Sik01] A. Sikora. Der PLD-Report. Elektronik, 5, 2001.

[Sil01] Silicore Corp. Specification for the WISHBONE System-on-Chip (SoC)
Interconnection Architecture for Portable IP Cores, Revision B.2, 2001.

[SLSC98] B. Suter, T. Lakshman, D. Stiliadis, and A. Choudhury. Efficient ac-
tive queue management for internet routers. In Proceedings of Interop
Engineers Conferece, Las Vegas, NV, May 1998.

[Sta98a] W. Stallings. SNMP and SNMPv2: The Infrastructure for Network
Management. IEEE Communications Magazine, March 1998.

[Sta98b] W. Stallings. SNMPv3: A Security Enhancement for SNMP. IEEE
Communications Surveys, 1(1), 1998.

[SV99] C. Shapiro and H. R. Varian. Information Rules: A Strategic Guide to
the Network Economy. Harvard Business School Press, 1999.

[Tan00] A.S. Tanenbaum. Computer Networks. Prentice-Hall International,
Inc., 3rd edition, 2000.

[Tel] Deutsche Telekom. http://www.telekom.de/t-pay.

BIBLIOGRAPHY 178

[TMW97] K. Thompson, G.J. Miller, and R. Wilder. Wide-area traffic patterns
and characteristics. IEEE Network, 11(6):10–23, 1997.

[TP99] H. H. Tzeng and T. Przygienda. On Fast Address-Lookup Algorithms.
IEEE Journal on Selected Areas on Communications, 17(6), June 1999.

[TSS+97] D.L. Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J. Wetherall, and
G.J. Minden. A Survey of Active Network Research. IEEE Communi-
cations Magazine, January 1997.

[TTL01] D.E. Taylor, J.S. Turner, and J.W. Lockwood. Dynamic Hardware Plu-
gins (DHP): Exploiting Reconfigurable Hardware for High-Performance
Programmable Routers. In Proceedings of the IEEE Openarch, 2001.

[TY97] J. Turner and N. Yamanaka. Architectural Choices in Large Scale ATM
Switches. Technical Report WUCS 97-21, Washington University in St.
Louis, May 1997.

[VCY03] M. Venkatachalam, P. Chandra, and R. Yavatkar. A highly flexible,
distributed multiprocessor architecture for network processing. Com-
puter Networks, 41, 2003.

[Wan98] M. Wannemacher. Das FPGA-Kochbuch. International Thomson Pub-
lishing, 1st edition, 1998.

[Whi97] P. P. White. RSVP and Integrated Services in the Internet: A Tutorial.
IEEE Communications Magazine, May 1997.

[WLG98] D. Wetherall, U. Legedza, and J. Guttag. Introducing New Internet
Services: Why and How. IEEE Network Magazine, May/June 1998.

[WPF03] T. Wolf, P. Pappu, and M.A. Franklin. Predictive scheduling of network
processors. Computer Networks, 41, 2003.

[Wro97] J. Wroclawski. RFC2210: The Use of RSVP with IETF Integrated
Services . Internet Engineering Task Force (IETF), September 1997.

[WSS+01] A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn,
S. Herzog, A. Huynh, M. Carlson, J. Perry, and S. Waldbusser.
RFC3198: Terminology for Policy-Based Management. Internet En-
gineeering Task Force (IETF), November 2001.

[WVTP97] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scalable High
Speed IP Routing Lookups. In Proceedings of the ACM SIGCOMM
Conference, 1997.

BIBLIOGRAPHY 179

[WZ98] R. Wittman and M. Zitterbart. AMNet: Active Multicasting Net-
work. In Proceedings of the International Conference on Communica-
tions (ICC’98), 1998.

[Xil] Xilinx Corp. Virtex-II Pro X Platform FPGAs Complete Data Sheet.
Available at http://www.xilinx.com.

[XN99] X. Xiao and L.M. Ni. Internet QoS: A Big Picture. IEEE Network,
13(2):8–18, 1999.

[Zha95] H. Zhang. Service Disciplines for Guaranteed Performance Service in
Packet-Switching Networks. Proceedings of the IEEE, 83(10), October
1995.

	Contents
	List of Acronyms
	List of Figures
	1 Introduction
	1.1 The Multiservice Internet
	1.2 A Glimpse of the Future, a Glimpse of the Past
	1.3 The Octopus Network Model
	1.4 Summary of Contributions
	1.5 Outline of the Thesis

	2 The Role of Routers in IP Networks
	2.1 Router Tasks
	2.2 Router Architectures
	2.2.1 Basic Router Architecture
	2.2.2 The Packet Classifier
	2.2.3 The Meter & Marker
	2.2.4 The Switching Fabric
	2.2.5 The Traffic Pattern Conditioner
	2.2.6 The Routing Unit
	2.2.7 The Management Unit

	2.3 Evolution of Router Architectures
	2.3.1 First Generation
	2.3.2 Second Generation
	2.3.3 Third Generation

	2.4 Router Types
	2.4.1 Core Routers
	2.4.2 Edge Routers
	2.4.3 Access Routers

	2.5 Router Technologies
	2.5.1 ASIC
	2.5.2 General Purpose Processors
	2.5.3 Network Processors & FPGA

	3 Related Work
	3.1 Active & Programmable Networks
	3.2 Security Implications of Mobile Code in Hardware Systems
	3.3 QoS in IP Networks
	3.3.1 Integrated Services
	3.3.2 Differentiated Services
	3.3.3 MPLS

	4 The Octopus Network Model
	4.1 Objectives of the Octopus Network Model
	4.2 First Scenario: Security Gateways
	4.3 Second Scenario: Network-supported Digital Rights Protection
	4.4 Octopus Network Model Architecture
	4.4.1 ONM Overview
	4.4.2 Service Introduction Process
	4.4.3 Main Architectural Properties
	4.4.4 The Burden of Service Management
	4.4.5 Network Admission Node
	4.4.5.1 Service Admission
	4.4.5.2 Service Adaptation
	4.4.5.3 Service Dissemination

	5 Octopus Open Gateway Architecture
	5.1 OOG Overview
	5.2 Integrated Active Router Architectures: 2.5G vs 3G
	5.3 3G Line Card Architecture
	5.3.1 3G Line Card Functional Description
	5.3.2 AHP Ring
	5.3.3 AHPM Functional Description
	5.3.3.1 Ring Attachment Subsystem
	5.3.3.2 Service Chain Management Subsystem
	5.3.3.3 Services and EHM
	5.3.3.4 Ring Master

	5.3.4 Interface to the CPU and Configuration Procedure

	5.4 Service Introduction & Interaction Manager Functionality
	5.5 Intra-service Communication
	5.6 Security & Resource Management in the OOG

	6 The Embedded Hardware Manager
	6.1 Why Resource Management in Hardware for an OOG
	6.2 EHM Design Criteria
	6.3 Embedded Hardware Manager Architecture
	6.4 EHM Main Elements
	6.4.1 The Interface Between the Services and the EHM: OCP
	6.4.2 Service Managers
	6.4.2.1 SDRAM Resource Usage Manager
	6.4.2.2 I/O Resource Usage Manager

	6.4.3 Resource Controllers
	6.4.3.1 Memory Controller Architecture
	6.4.3.2 I/O Controller Architecture

	6.4.4 Summary of Architectural Properties

	7 EHM Evaluation
	7.1 Evaluation Criteria, Methods and Goals
	7.2 Platform Description
	7.3 Case Studies
	7.3.1 Encryption
	7.3.2 Accounting

	7.4 Evaluation of the Test Results
	7.4.1 QoS Evaluation
	7.4.1.1 Bandwidth Allocation
	7.4.1.2 Bandwidth Utilization
	7.4.1.3 Delay
	7.4.1.4 Fairness

	7.4.2 Resource Consumption and Scalability
	7.4.3 Performance Evaluation
	7.4.4 Security Evaluation
	7.4.5 Summary of Results

	8 Conclusions and Outlook
	A Review of Some Relevant Active Network Proposals
	A.1 FHiPPs and AMNet
	A.2 Joint Work at WashU and the ETHZ
	A.3 University of Pennsylvania: Switchware
	A.4 Carnegie Mellon University: Darwin

	Bibliography

