A Simple Autonomous Reconfigurable
Cryptographic Node

Oswin Horvath, Carlos Macidn and Sylvain Stanchina

Abstract— Current communication systems usually
lack the flexibility to perform vast functional changes
without expensive (in time, money and complexity)
upgrades. The use of programmable logic in com-
munication equipment provides the mixed advantages
of software-like flexibility and high performance. A
less well studied capacity of Programmable Logic De-
vices (PLDs) is the possibility of building fully au-
tonomously reconfigurable systems that can adapt to
changing needs and conditions. In this paper, an ar-
chitecture for a simple autonomous reconfigurable node
is presented that takes advantage of these features.
To demonstrate its feasibility a prototype was imple-
mented and tested for the case of Security Gateways in
a VPN environment. Results show that a completely
autonomous reconfiguration is possible and compatible
with performance in the Gbps range.

Keywords— Reconfigurable
Gateway, AES

Computing, Security

I. INTRODUCTION

In recent years, the performance of Integrated Cir-
cuits (ICs) — especially in the form of microprocessors
— increased exponentially, while at the same time the
price/performance ratio of ICs has dropped exponen-
tially[1]. As a result, it became economically attrac-
tive to implement the central functionalities of net-
work nodes in specialized hardware to satisfy the high
bandwidth requirements posed by today’s communi-
cation networks. There is one serious drawback when
using static hardware, though: Lack of flexibility. To
overcome this drawback, reconfigurable logic can be
used, giving two main advantages:

Firstly, the requirements a system faces change over
time, and a system based on reconfigurable logic can
easily adapt itself accordingly. Consider as an example
the processing of audio and video streams: The devel-
opment of improved en- and decoders for such streams
is the topic of many research projects and since there
is a high need for better codecs in the market, the
number of different standards that must be supported
by a hardware solution increases quickly. Instead of
having to manufacture a new ASIC to replace the old
one in the multimedia processing systems whenever
a new standard arises, it is much more convenient to
update the existing system by loading a new config-
uration into a reconfigurable device that is used for
the processing. And not only the new functionality
can be added earlier to the system since the whole
time-consuming ASIC manufacturing process can be

Corresponding author: Carlos Macian. The authors are
affiliated to the Institute of Communication Networks and
Computer Engineering (IKR), University of Stuttgart, Pfaffen-
waldring 47, D-70569 Stuttgart. E-mail: {horvath, macian,
stanchina}@ikr.uni-stuttgart.de. Homepage: www.ikr.uni-
stuttgart.de/en/”{macian, stanchina}

omitted, but also the functional change itself takes
only seconds.

The other main advantage when using reconfig-
urable logic lies in the better usage of resources it
offers: Looking at the multimedia example, in most
cases only a limited number of codecs will be actually
in use at any given time. In an ASIC-based solution,
all codecs that must be supported have to be con-
stantly present in the system, regardless whether they
are actually used. Using a reconfigurable solution, a
much smaller IC can be applied, e. g. only able to hold
three different en-/decoder pairs simultaneously, thus
using less chip area and power, an aspect increasingly
important in today’s power-hungry devices. Perfor-
mance can benefit from using reconfigurable logic, too:
When e. g an IC that is able to hold three en-/decoder
at a given time has to process multimedia streams all
using the same codec, the IC can instantiate three en-
/decoder pairs supporting this codec, (ideally) tripling
its computation power.

To fully exploit the potential of systems using re-
configurable logic, these systems additionally have to
be able to autonomously reconfigure themselves, for
the following reasons:

Firstly, not only the system should adapt to chang-
ing requirements, but this adaptation has to be done
as quickly as possible in many applications — consider
e.g. the aforementioned multimedia scenario again.
However, if the system cannot react autonomously
to changing requirements, but instead has to inform
an external instance which then decides and initi-
ates the reconfiguration process, an additional delay
is added. In addition, the underlying communication
network must be capable of transporting the mes-
sages exchanged between configuring and configured
systems even when applying worst-case conditions: If
the network gets overloaded — or non-functional for
any other reason —, the configured system may be-
come inoperative when requirements change although
no error occurred within the reconfigurable system it-
self.

Secondly, autonomous reconfiguration allows easy
synchronization between different reconfiguration
events. Consider the case where many nodes of one
network have to be reconfigured at exactly the same
time — e. g. for the purpose of migrating from IPv4
to IPv6 where because of the huge number of nodes
in many IP-based networks, manually reconfiguring
all of them in short time is next to impossible. Au-
tonomous reconfiguration provides an alternative in
this scenario: Prior to the scheduled configuration
time, short messages are given to the autonomous re-

A Simple Autonomous Reconfigurable Cryptographic Node

configuring nodes telling them the exact time when to
reconfigure.

In the next section, a simple though flexible archi-
tecture for an autonomous reconfiguring node will be
introduced. In section III, a Security Gateway will be
presented as case study for this architecture and in sec-
tion IV a prototypical implementation of such a gate-
way will be described. Section V presents the main
tools used for implementing the prototype, which will
be further evaluated in section VI. Finally, a brief
overview over previous work and a short summary of
this paper will be given in sections VII and VIII, re-
spectively.

II. ARCHITECTURE

When designing the reconfigurable node architec-
ture proposed in this section, care was taken to en-
sure that the architecture can be easily ported to a
wide range of platforms and that the configuration
process can be initiated by both an external control-
ling node as well as the configured node itself. The re-
sult is shown in fig. 1. The node consists of Node Con-
trol Logic (NCL) connected to an OAM (Operation,
Administration, Maintenance) network via an OAM
Interface (OAMI), Application Specific Logic (ASL)
connected to a data network via one or more Net-
work Interfaces (NI) and a Configuration Controller
(CC) which can reconfigure both the NCL as well as
the ASL and is connected to the OAM network, too,
in order to be able to access the Configuration Data
Base(s) (CDB).

The NCL — typically implemented as a microcon-
troller system — handles all control related tasks such
as establishing new connections, reacting to external
requests coming from other networks or users (using
the OAM network to receive commands and send sta-
tus informations) as well as controlling and supervis-
ing the other units of the node, i.e. the ASL and the
CC as well as the various interfaces. The ASL con-
sists of the main data processing units of the node and
communicates with one or more data networks in or-
der to receive/send the data that should be/has been
processed. It can be composed of several independent
modules that perform a variety of tasks, e.g. media-
transcoding, protocol processing, encryption, etc. To
add the reconfiguration ability to the node, a CC is in-
tegrated into the system, which locally stores several
different configurations and can use any of them to
reconfigure the NCL, the ASL or both. The CC can
receive commands to do so from the OAM network
(externally triggered reconfiguration) as well as from
the NCL (internally triggered reconfiguration). New
configurations are loaded on the CC from an external
CDB via the OAM network.

III. CASE STUDY: SECURITY GATEWAYS

The concept of Virtual Private Networks (VPNs)
provides a way to connect two! or more distant lo-

for simplicity, this discussion will concentrate on the case
where only two local networks are connected to each other

Data Network

Fig. 1. Node Architecture

cal networks, merging them into a virtual common
one. Packets sent from a client in one local network
to a client in the other local network are transmitted
using a third — typically public and insecure — net-
work, e.g. the Internet. Packets from the LANs are
encapsulated in a packet using a format supported by
the intermediate network. To provide a secure trans-
mission, data is not transmitted unmodified but in-
stead encrypted when leaving the source network and
decrypted when arriving at the destination network.
This is the task of the sending and receiving Security
Gateways which in doing so build a so called “tun-
nel” through the intermediate network. The Secu-
rity Gateways also decide whether a packet has to
be sent to a remote network at all or to a client in
the same network. The whole process is transparent
to the clients, only the routers know the real network
structure. Fig.2 shows a VPN using Security Gate-
ways based on the described architecture — note that
since the en/-decrypter performs no controlling tasks
all of its functionality is part of the ASL.

Security Gateway 1 Security Gateway 2

[IASL (En-/Decrypter,

¥

w

Fig. 2. A Virtual Private Network

Such a Security Gateway is especially suited to serve
as a case study for the proposed architecture for the
following reasons: Since secure encryption algorithms
require a large number of calculations, implementing
more and more of the corresponding functionality in
hardware is highly desirable to increase performance
of the Security Gateway. On the other hand, the
encryption algorithm is likely to change over time.
There are three main reasons for this: Firstly, the
local network should be able to form a VPN with nu-

EUNICE 2003

Budapest, Hungary

merous distant networks each one possibly using a dif-
ferent encryption scheme. While there are attempts to
standardize the forming of VPNs across the Internet
(namely IPSec), a variety of cipher algorithms will still
be used, e. g. due to different demands regarding level
of security vs. throughput. Secondly, a cipher may
be vulnerable to a newly discovered cryptographic at-
tack, rendering it instantly useless without prior warn-
ing. In this case it is imperative that the algorithm
can be changed with minimum delays but also with
a downtime of the server as short as possible. Lastly,
it is advantageous to use encryption algorithms opti-
mized for specific applications. For example it is pos-
sible to build a generic block en-/decrypter supporting
all possible key and block sizes, but an en-/decrypter
supporting the one specific key/block size combina-
tion that is used in the VPN at a given time will be in
most cases more efficient considering speed as well as
chip area. As was shown in the introductory section,
reconfiguration offers an economical way of being able
to use numerous different algorithms.

In addition, being able to autonomously reconfig-
ure and thus being able to react quicker to changing
requirements is specifically beneficial for a Security
Gateway, since this way every time a new security as-
sociation is established, the corresponding cipher can
immediately be instantiated in a fully automatic way.

The encryption standard chosen for the implemen-
tation of this case study is the Advanced Encryption
Standard (AES, [2]). The main reason for this choice
was the high importance that AES will achieve in
the future, since it has recently been approved by the
NIST as the official successor of the Data Encryption
Standard (DES). DES was discontinued because of se-
curity issues primarily concerning its short maximal
key length of 56 Bit. The algorithm used in AES is
Rijndael[3], a symmetric iterative block cipher[4] sup-
porting block and key sizes of 128, 192 and 256 Bit,
though only a block size of 128 Bit is applied when
using AES. The basic principle of an iterative block
cipher is to repeatedly apply a series of mathemat-
ical operations (a single such series is called round
transformation or round) to the block that has to be
en-/decrypted?. All rounds consist of the same types
of operations executed in the same order, although
their actual parameters may be different each round
— e.g. the last operation in every Rijndael encryp-
tion round is a bitwise exclusive-or between the block
to be encrypted and a so called subkey (various differ-
ent subkeys are derived from the cipher key), but the
chosen subkey changes every round.

IV. PROTOTYPE REALIZATION

This section will describe the prototypical realiza-
tion of the Security Gateway, first introducing the Uni-
versal Hardware Platform (UHP) on which it was re-
alized [5], then giving an overview over the prototype,

2in most such ciphers — including Rijndael — there are slight

modifications to this scheme

and finally concentrating specifically on the configu-
ration mechanism.

A. Universal Hardware Platform

The UHP counsists of up to nine different (one base,
eight daughter®) boards, each one having one FPGA
from Altera’s Apex 20K series [6] and a set of Config-
uration EEPROMs of Altera’s EPC device series*([7],
see subsection IV-C) mounted on it. In addition, ev-
ery board features an independent clock as well as four
“Mezza’-slots and a serial port, all connected to the
board’s FPGA. On the Mezzas additional boards can
be mounted to expand the functionality of the main
board. The daughter boards connect to the base board
via two independent buses.

B. Structural and Functional Description

PC (OAM+CDB)

FPGA

UHP 2 (NCL+CC)

En-/Decrypter

Ethernet-IF

FPGA
UHP 2 (ASL)

Test PC (Data Net)

Fig. 3. Implementation

The complete implementation of the case study is
shown in fig.3. NCL and CC are integrated into one
microcontroller system running a single program, the
whole system being implemented on a single UHP 2.
An ordinary PC is used to emulate the OAM network
including a controlling external node and the CDB,
while another Test PC emulates the Data Network.
The en-/decrypter module is implemented on a sepa-
rate UHP 2.

The reason that NCL and CC are merged is to
enable them to share the OAMI and additional re-
sources such as memory and CPU — this option can
be used in most systems, since reconfiguration will oc-
cur relatively seldom and thus it is reasonable to use
the resources of the CC to enhance the performance
of the NCL when the functionality of the CC is not
needed. The Apex20K® on the NCL/CC board con-

3called “UHP 1” and “UHP 2”, respectively
4in the following they will be referred to as “EPCs”
5 Altera EP20K1000ECB652-1

A Simple Autonomous Reconfigurable Cryptographic Node

tains a Nios CPU, ROM and various interfaces. Small
boards mounted in the Mezza slots are used to carry
a Centronics and a JTAG port as well as 64 MB of
SDRAM. The UART- and a Centronics-interface form
the OAMIs of the system. The former is used for bidi-
rectional communication to receive messages and send
status informations, while the latter was added to pro-
vide a fast way of receiving large amounts of data, a
task the UART-interface is not suited for because of
its low bandwidth. On the other hand, the Centron-
ics interface cannot replace the UART-interface since
its implementation only supports unidirectional com-
munication. To enable the microcontroller system to
configure PLDs, a JTAG interface was added (see IV-
Q).
A bootloader is stored in the ROM to load the main
program via the Centronics port after a reset. The
reason this mechanism was chosen is that this way
the program running on the system can be easily ex-
changed because the ROM content does not have to
be updated for this purpose — since the ROM is part
of the FPGA, this would require the whole FPGA to
be reconfigured — and the ROM would consume most
of the FPGA’s available memory cells in this case.

The main program’s task is to load and manage con-
figurations, control the reconfiguration and communi-
cate with the OAM network. In this simple imple-
mentation, configuration-related commands are given
as ASCII characters via the UART-interface and con-
figurations are loaded via the Centronics-interface.

Note that the presented prototype actually does not
autonomously reconfigure itself, it only reacts to com-
mands given via the UART-interface. This approach
was taken because this work focuses on the reconfigu-
ration itself, not on the application-specific conditions
that may trigger the reconfiguration. However, mod-
ifying the system to support fully autonomous recon-
figuration is a trivial task, since from the standpoint of
the CC, there is no fundamental difference between ex-
ternally and internally triggered reconfiguration: The
only required change consists in modifying the main
program, so that it does not react to messages coming
from the UART-interface but instead observes some
internal variables or messages from the NCL to decide
when to reconfigure the ASL.

No modifications had to be done to the PC. It is
connected to the NCL/CC via a standard serial and
a standard parallel cable, data is sent to and received
from the serial port by using a terminal emulator run-
ning on the PC, while data is sent to the parallel port
with a simple file copy command.

The en-/decrypter module features the en-/decrypter
core as well as a Fast Ethernet-interface (utilizing an
Ethernet Transceiver® mounted on a board which is
plugged into one Mezza slot) and is contained in the
Apex20K”. En- and decrypter use a block and key size
of 128 Bit and thus require 10 rounds to process one

6AMD Am79C875 NetPHY-4LP Low Power Quad 10/100-
TX/FX
7 Altera EP20K400CB652C7

block of data[3]. They are realized using a structure
for the data path proposed in [8] (inner-loop pipelin-
ing with two stages). The structure of the encrypter
is shown in fig. 4, the decrypter is very similar and for

key/data in
128
key
SubKey 8
Generator/Memory 8
128 128 Subkey 0
subkeys 1,2,... 128
Adder
128
E Reg2
128

data out

Fig. 4. Encrypter Structure

this reason not presented. Keys can be changed during
operation without needing to reconfigure, the corre-
sponding subkeys are calculated in-system. Of the five
block cipher modes of operation proposed in [9], this
implementation only supports Electronic Code Book
Mode, i.e. every single block is en-/decrypted inde-
pendently of the others. However, this mode is vul-
nerable to codebook attacks, since a given block/key
combination always leads to the same output block.
The modes Cipher Block Chaining, Cipher Feedback
and Output Feedback avoid this disadvantage, in that
their output depends not only on the output block of
the current input block but also on those of the pre-
vious input blocks. However, this property renders
these modes unsuitable for a pipelined implementa-

EUNICE 2003

Budapest, Hungary

tion like the one used in this work. Instead, Counter
Mode, the fifth mode of operation, can be chosen in fu-
ture extensions as a way of improving security while at
the same time maintaining high performance: In this
mode, the Rijndael algorithm is not applied directly
onto the input blocks but instead onto an series of in-
ternally generated constantly changing counter values
and the results are then exclusive-ored to the input
blocks to produce the output blocks.

Though in principle it would be possible to process
two data blocks in only 20 cycles (10 rounds times 2
pipeline stages) when using the presented structure,
this implementation uses 21, since new blocks are not
fully concurrently shifted in while the old ones are
shifted out. Therefore, if f,,,, denotes the maximal
possible clock frequency, the maximal throughput rate
is[1]:

2
maz = 128 Bit X — X frax 1
r it X = x f. &)

C. Configuration Mechanism

A simple way of configuring Programmable Logic
Devices rests on utilizing the IEEE 1149.1 protocol
and bus[10]. Originally designed to allow the test-
ing of integrated circuits via a standardized serial test
bus (the “JTAG bus”), many PLDs from vendors like
e.g. Altera and Xilinx can additionally be configured
using the JTAG bus. To connect a device to the bus,
it has to be included in a serial chain (called “JTAG
chain”) of devices which starts and ends at the JTAG
controller ports (see fig.5). This way, an arbitrary
number of devices can be tested/configured by a sin-
gle controller.

o 0 o 0 o 00
ITAG PLD PLD PLD
Controller

Fig. 5. Sample JTAG Chain

In this prototype, the CC posseses an JTAG port for
configuring the ASL and uses JAM STAPL® programs
as configuration data format. JAM is an interpreted
language resembling BASIC and developed by Altera
as a way to specify signal patterns on the JTAG bus
— this becomes possible because besides usual instruc-
tions for e. g. manipulating variables in memory, there
are some special ones defined that cause the inter-
preter to directly access the JTAG port of the system
running the interpreter. JAM has become a JEDEC
standard (JESD-71) and JAM programs for the pur-
pose of configuring can be generated by many PLD
vendor tools.

Configurations are normally not used to directly
program the FPGA, instead they are loaded in ad-
vance via the JTAG bus onto the EPCs. After-
wards, the downloading of the new configuration to

8Standard Test And Programming Language

the FPGA can be triggered at any time by the CC.
This way, the time between reconfiguration request
and completion is shortened to a few milliseconds,
since using the EPCs to reconfigure the FPGA is or-
ders of magnitude faster than directly using JTAG,
though transmission of configuration data to the EPCs
via JTAG is still slow. For this reason, a caching mech-
anism should be used: The configurations most likely
needed in the future are loaded onto the EPCs prior
to any reconfiguration request, so that they can be
applied in very short time afterwards, while config-
urations less likely to be used stay in the CC’s large
memory where they can still be used for programming
the FPGA, however with a heavy time penalty. But
even in this case, the downtime of the Gateway still
consists of only a few milliseconds, since normal oper-
ation of the FPGA is sustained until the final stages
of the reconfiguration process.

V. TooLs

For the implementation of the NCL/CC, Altera’s
Excalibur-Nios-Kit was used [11]. This package con-
sists of numerous soft cores commonly needed to de-
sign a computer system, tools to integrate these and
custom components into one embedded system and a
software development kit based on the GNU devel-
opment tools which allowed the main program run-
ning on the NCL/CC to be written in C. To be able
to use JAM-Programs, Altera’s JAMPlayer® was inte-
grated in the main program. Soft cores used are CPU
“Nios”, bus “Avalon” and the UART-interface. Addi-
tional components were designed using HDL-Designer
Pro 2001.5b [12], namely the JTAG-, Centronics- and
Ethernet-Interfaces as well as the AES en- and de-
crypter. All logic was simulated using ModelSim V5.6
[13], synthesized using Leonardo Spectrum V2001 _1b
[14] as well as placed and routed by Altera’s Quar-
tus 2.0 [11] which was also used for timing simulations.

VI. EVALUATION
A. Validation

To ensure proper operation of the reconfigurable Se-
curity Gateway, following scenario was used (refer to
fig. 3 for the test setup): At first, the AES en- and de-
crypter configurations were transmitted via the Cen-
tronics port to the Security Gateway and stored in the
NCL/CC’s memory. Then, after the Gateway was sig-
naled to configure the ASL as an encrypter, the Test
PC sent a key K followed by a series of data blocks
D to the Gateway, and at the same time received and
stored the (encrypted) data blocks F that came back.
After that, the Gateway was signaled to configure its
ASL as a decrypter and the Test PC sent K again,
but this time followed by the previously stored Data
Blocks E. As one would expect, the blocks that were
now received were identical to the original series of
blocks D, showing that the reconfiguration process

9a free JAM interpreter [11]

A Simple Autonomous Reconfigurable Cryptographic Node

TABLE 1

RESOURCE USAGE

Entity Logic Elements RAM Bits Device

NCL/CC || 3661/38400 (9.5%) | 83968/327680 (25.6%) | Altera EP20K1000ECB652-1
Encrypter || 4997/16640 (30.0%) | 79872/212992 (37.5%) | Altera EP20K400CB652C7
Decrypter || 5725/16640 (34.4%) | 79872/212992 (37.5%) | Altera EP20K400CB652C7

worked and the decrypter performs the inverse opera-
tion of the encrypter.

Conformance of the en-/decrypter with the AES
was separately validated by sending series of keys and
blocks and comparing the received blocks with known
correct results.

B. Performance

As soon as the correct next configuration is loaded
into the EPCs, the FPGA can be configured in a few
milliseconds. Contrarily, the direct reconfiguration of
the FPGA via the JTAG bus can take — depend-
ing on the FPGA type and number of devices in the
JTAG chain — up to eight minutes. Thus, this second
reconfiguration method only makes sense as backup
solution and the EPCs should always be used as an
intermediate step.

A clock rate of 50MHz was used for the whole En-
and Decrypter-Module since the Ethernet Transceiver
mounted on the same UHP requires a clock with this
clock frequency. However, since the maximal clock
frequency is fiar = 102 M Hz for the encrypter and
fmaz = 86 M Hz for the decrypter, throughput rates
of more than 1.2 @ and 1.0 @ can be obtained
according to eq. 1. Since the implementation was pri-
marily designed for the purpose of testing the Con-
figuration Controller, only a short time was taken to
optimize the design. However, since the critical path
lies in the data path and can easily be shortened by
adding more pipeline stages, further throughput im-
provements are possible. The maximimum through-
put rates could not be verified, though, since the max-
imum throughput rate of the Fast Ethernet Interface
is too slow to allow transmitting enough data blocks
per time unit to and from the en-/decrypter.

The resource usage (used resources/total available
resources) of the NCL/CC and the en-/decrypter (in-
cluding the Ethernet interface) is denoted in table I.

VII. PrREVIOUS WORK

The Rijndael algorithm has already been imple-

mented using both ASICs[15] as well as FPGAg[8],
[16]. However, these realizations concentrated on per-
formance evaluation and optimization and didn’t con-
sider the issues connected to reconfiguration.
A thorough examination concentrating on the use of
FPGAs in reconfigurable systems can be found in [17].
However, its emphasis does not lie in autonomously
reconfiguring systems.

VIII. CONCLUSIONS

In this paper, a simple architecture for an au-
tonomous node was presented, introducing the con-
cept of an embedded Configuration Controller. Sys-
tems applying this proposal can quickly adapt them-
selves to changing conditions and thus are able to in-
crease both performance and resource usage. As a
case study, the practically important application of
an autonomous reconfiguring cryptographic node in a
Virtual Private Network was examined, implemented
and validated.

REFERENCES

[1] John L. Hennessy and David A. Patterson, Computer Ar-
chitecture - A Quantitative Approach, Morgan Kaufmann
Publishers, Los Altos, CA 94022, USA, third edition, 2002.

[2] National Institute of Standards and Technology (NIST),
“Advanced Encryption Standard (AES),” Federal Informa-
tion Processing Standards Publication (FIPS PUB) 197,
Nov. 2001.

[3] J. Daemen and V. Rijmen, “AES proposal: Rijndael,”
NIST AES Proposal, June 1998.

[4] Lars R. Knudsen, “Contemporary block ciphers,” in Lec-
tures on date security: modern cryptology in theory and
practise, vol. 1561 of Lecture Notes in Computer Science,
pp- 105-126. Springer-Verlag, Berlin Germany, 1998.

[5] “A Universal Hardware Plattform (UHP) for rapid proto-
typing of network nodes,” IKR, University of Stuttgart,
Internal Report, Sept. 2002.

[6] “Apex20K Programmable Logic Device
Family Data Sheet,” Feb.2002, Ver.4.3,
www.altera.com/literature/ds/apex.pdf.

[7] “Configuration Devices for SRAM-Based LUT
Devices Data Sheet,” Dec.2002, Ver.12.2,

www.altera.com/literature/ds/dsconf.pdf.

[8] Kris Gaj and Pawel Chodowiec, “Comparison of the hard-
ware performance of the AES candidates using reconfig-
urable hardware,” in The Third Advanced Encryption
Standard Candidate Conference, April 13—-14, 2000, New
York, NY, USA, Gaithersburg, MD, USA, 2000, pp. 40-56,
National Institute for Standards and Technology.

[9] National Institute of Standards and Technology (NIST),
“Recommendation for block cipher modes of operation,”
NIST Special Publication 800-38A, 2001.

[10] “IEEE standard test access port and boundary-scan archi-
tecture,” IEEE 1149.1.

[11] “Altera homepage,” www.altera.com/.

[12] “HDL Designer Pro Homepage,” www.mentor.com/
hdldesigner/.

[13] “Modelsim Homepage,” www.model.com/.

[14] “Leonardo Spectrum Homepage,” www.mentor.com/
leonardospectrum/.

[15] Patrick R. Schaumont, Henry Kuo, and Ingrid M. Ver-
bauwhede, “Unlocking the design secrets of a 2.29 Gb/s
Rijndael processor,” in Proceedings of the 39th conference
on Design automation. 2002, pp. 634-639, ACM Press.

[16] A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar, “An
FPGA implementation and performance evaluation of the
AES block cipher candidate algorithm finalists,” in The
Third Advanced Encryption Standard Candidate Confer-
ence, April 13-14, 2000, New York, NY, USA, Gaithers-
burg, MD, USA, 2000, pp. 13-27, National Institute for
Standards and Technology.

EUNICE 2003

Budapest, Hungary

(17]

18]

S. Hauck, “The roles of FPGAs in reprogrammable sys-
tems,” in Proceedings of the IEEE, April 1998, vol. 86, pp.
615-638.

Jinghuan Chen, Jaekyun Moon, and Kia Bazargan, “A
reconfigurable fpga-based readback signal generator for
hard-drive read channel simulator,” in Proceedings of the
39th conference on Design automation. 2002, pp. 349-354,
ACM Press.

