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Abstract: In the fourth generation wireless networks, it is 
believed that wireless LANs (WLANs) will interwork with cel-
lular systems to provide fast speed data services. The integra-
tion of WLANs and cellular systems calls for a careful design 
of handover decisions. In WLANs, the received signal 
strength (RSS) is used for handover decision, thus a thorough 
understanding of the characteristics of the RSS of beacons is 
important in the WLAN handover design. In this paper, mea-
surements of the RSS of WLAN beacons in an indoor environ-
ment are presented, and based on theoretical analysis, 
Gamma random variables (RVs) are used to model the RSS 
variation from the average power, which fits the measurement 
data well. Correlation is observed in the variation, and new 
algorithms have been designed to generate correlated 
Gamma RVs. 
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I. INTRODUCTION

In recent years, WLANs have been deployed worldwide 
successfully, and it is very likely that WLANs will be used to 
interwork with cellular systems to provide fast speed data ser-
vices in the fourth generation (4G) wireless networks, where 
handovers between WLAN cells and between WLAN cells 
and cellular cells are possible. Such a 4G network architec-
ture is currently being developed by the IST project Mobility 
and Differentiated Services in a Future IP Network (Moby 
Dick) [1]. The integration of WLAN and cellular systems 
calls for a careful design of handover decisions [2]. In 
WLANs, the RSS of beacons are used for handover decision 
[3], thus a profound understanding of the characteristics of 
the RSS of beacons is important in designing good handover 
algorithms. 

Mobile Radio propagation has two manifestations: large-
scale fading and small-scale fading. Large-scale fading repre-
sents the average signal power attenuation or path loss over a 
large distance due to the spatial separation between the trans-
mitter and the receiver, which can be described by the path 
loss models of Hata and Okumura [6]. Large-scale fading is 
also affected by terrain contours, which is called shadowing, 

and usually has a lognormal distribution. Small-scale fading 
refers to the dramatic changes in the signal amplitude and 
phase that can be experienced as a movement over a very 
small distance, which is usually modeled as a Rayleigh and 
Rician fading process [6].

In cellular systems, the fast fading effect is usually 
neglected in handover designs, because it can be averaged out 
over a certain distance [7]. Measurements show strong varia-
tions in the RSS of beacons due to the fast fading. But averag-
ing out the fast fading effect in the WLAN handover process 
is difficult, because only a limited number of beacons can be 
measured during the handover decision process. The reason is 
that beacons are only sent at fixed intervals, say, a typical 
value is about 100ms, but the handover in WLAN environ-
ment requires a fast decision due to the limited coverage area 
and the corner effect. Thus, a thorough understanding of the 
fast fading characteristics in the RSS of WLAN beacons is 
crucial in the handover design. Measurements have been con-
ducted for the propagation in WLANs in [4] [5], where path 
loss models were proposed, but the fast fading effect is not 
considered in both of the papers. 

This paper aims to model the variation of the RSS of bea-
cons of the 802.11b WLAN in indoor corridors, where hando-
vers are likely to happen. In Section II, measurements of the 
RSS of beacons are presented. In Section III, modeling based 
theoretical analysis is given, which is corroborated by the 
measured data. In Section IV, new algorithms are suggested 
to generate correlated Gamma RVs.

II. MEASUREMENTS

Measurements were carried out in corridors in an office 
building. The WLAN access point is Lucent Orinoco 802.11b 
access point sending beacons at an interval of 102.4ms, which 
is located near the ceiling at the crossing of two corridors. A 
laptop equipped with a SMC 2632W WLAN card is used to 
measure the RSS, of which the WLAN driver program has 
been modified to record the RSS of beacons in real time. A 
number of measurements have been carried out, and a repre-
sentative example is illustrated in Fig. 1, referring to a move-
ment first to the access point and then away from it. The 



moving speed is at 1m/s, corresponding to receiving about 10 
beacons per meter. The measurement data are split into a ris-
ing part (Part 1) and a falling part (Part 2), and the best fit log-
normal curves are used to depict the corresponding distance-
dependent average power due to path loss. The fast rising in 
the curve before 20m is due to the movement from a none 
line-of-sight (NLOS) corridor to a LOS corridor, where the 
corner effect leads to the fast rising of the RSS.

Fig. 1. Measured RSS of beacons best fitted with average power Fig. 2. Histograms of the variation of RSS about the average power
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In order to study the characteristics of the RSS variance 
about the average power, histograms of the difference of the 
RSS are presented in Fig. 2. As can be seen from the figures, 
the probability density is neither Normal nor Lognormal dis-
tribution. 

III. MODELING

It is well known that for a multipath-fading channel with-
out LOS components, the received envelope is Rayleigh dis-
tributed; for a multipath-fading channel with LOS 
components, the received envelope is Rician distributed. The 
Rice factor K in the Rician distribution is used to characterize 
the ratio of the LOS components and the NLOS components. 
When the Rice factor K is zero, the Rician distribution 
becomes Rayleigh distribution [8]. Rician distribution is diffi-
cult to analyze because it has a Bessel function. Instead, the 
Nakagami distribution can be used, while it can closely 
approximate the Rician distribution, and the Rayleigh distri-
bution is only a special case of Nakagami distribution. By 
using transformation method, the squared-envelope, or the 
power of Nakagami distributed RVs has a Gamma distribu-
tion [8], as follows

p x( ) m
Ω
----

m xm 1–

Γ m( )
------------- mx

Ω
--------– 

 exp 
 = (1)

where m is a function of Rice factor K, denoted by (2), Ω  
is the average received power, and Γ m( )  is a Gamma func-
tion. 

m K 1+( )2

2K 1+
--------------------= (2)

Compared with the density function of a standard Gamma 
distribution with parameters α  and β , we can find from (1)
that α  is equal to m, and β  is equal to Ω  devided by m, and 
the mean value of the Gamma RVs is Ω . The Gamma distri-
bution has some properties that are useful for our study: α  is 
called shape parameter, which determines the shape of the 
probability density function, and β  is called scale parameter,
which only compresses or expands the distribution. 

Suppose m is constant during a movement, then the RSS at 
a certain place has a Gamma distribution with parameter α , 
which is constant during the movement, and mean value Ω , 
which depends on the mean path loss. Suppose the decimal 
value of the received power at that point is X, which has a 
Gamma distribution, and the mean power at that point is a 
constant p, clearly p is proportional to Ω . The variation v
from the mean power in dBm and decimal value respectively 
is

vdBm 10 Xlog 10 plog–=

vdecimal 10
10 Xlog 10 plog–

10
------------------------------------------ X

p
----==

(3)

(4)

So the variation v at that point also has a Gamma distribu-
tion with the same shape parameter α , but with a different 
mean value Ω /p, which is independent of the position. 

We can use the Gamma distribution to model the received 
power and the difference with the average power. But the 
measured values are usually in dBm. The distribution of log 
X, when X has a standard Gamma distribution, is not being 
reported. But log X can be approximated by a Normal distri-

 



bution when α  is sufficiently large [9]. Due to the complexity 
of the logarithm of Gamma RVs, Gamma RVs are used 
directly to study the RSS of WLAN beacons.

To verify the analytical results mentioned above, the histo-
grams of the decimal difference is plotted for the two parts of 
data as shown in Fig. 3, and they are best fitted using Gamma 
probability distribution functions. Both parts show Rician 
fading due to LOS signals in the corridors, conforming with 
the assumption quite well. 
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Fig. 3. Histogram of received decimal power variation Fig. 4. Autocorrelation coefficient of received power variation
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In addition, autocorrelation can be 
observed in the decimal variation, the autocorrelation coeffi-
cient is plotted in Fig. 4.

IV. GENERATING CORRELATED GAMMA RVS

From the previous study, correlated Gamma RVs are 
needed in the modeling of the RSS of WLAN beacons. Inde-
pendent Gamma RVs can be generated using a method pro-
posed by Cheng [11], but generating correlated Gamma RVs 
poses some challenges. Gudmundson has proposed Exponen-
tially correlated Gaussian RVs for modeling the shadowing 
process in an suburban environment [10], where Exponen-
tially correlated Gaussian RVs can be easily generated by fil-
tering Gaussian RVs through a first-degree filter. But filtering 
Gamma RVs through a first-degree filter fails to produce 
Gamma distributed RVs. In [12], an algorithm has been 
derived to generate correlated Gamma RVs in the modeling of 
VBR video traffic in ATM, but the algorithm is complicated 
and is only an approximation. Here, new methods are 
designed to generate correlated Gamma RVs, which are very 
simple and accurate. 

The Gamma distribution has a reproductive property: If 
X1 and X2  are independent RVs each having a Gamma distri-
bution, with possible different values of α' , α'' of α , but with 
common values of β , then X1 X2+  also has a Gamma distri-
bution, with the same value of β , and with α α ' α''+=  [9]. 

Using this property, linearly correlated and exponentially cor-
related Gamma RVs can be directly generated by adding 
independent Gamma RVs.

A. Generating Linearly Correlated Gamma RVs

The linear correlation coefficient function is described as 

r m( )
n m–

n
------------- m n<

0 m n≥





= (5)

where, n is called correlation length, and the autocorrela-
tion will be zero if the distance m is greater than n. To gener-
ate Gamma RVs X 1( ) , X 2( ) , X 3( ) ,... with the distribution 
Gamma (α β, ), and with the autocorrelation function of (5), 
the following steps are taken:

1. Generate a series of n independent RVs with the distribu-
tion Gamma ( α n⁄( ) β, ), denoted as X1 , X2 , X3 ,..., Xn , and 
adding them together will get the first RV X 1( ) .

2. Replace X1  in the series with a new RV X with the same 
distribution as X1 , and adding it to the rest of RVs in the 
series, and get the second RV X 2( ) .

3. Repeat step 2, that is, every time replace one of the old 
values by a new value of the same distribution and adding the 
series of n RVs to get a new RV.

We can find that each RV is the sum of n independent 
Gamma RVs, according to the reproductive property, the sum 
is a Gamma RV with the parameter (α β, ). Adjacent RVs up 
to distance n have common components, so they are corre-
lated. The proof of the autocorrelation function  (5) is given in 
the appendix.

As an example, 10000 Gamma RVs with correlation 
lengths of 10 and 5, respectively, are generated and the histo-
grams are shown in Fig. 5.

Adding the two sets of RVs with different correlation 
lengths will also give Gamma RVs. By adding individual RVs 



from set 1 and set 2 toge

Fig. 5. Histograms of linearly correlated Gamma RVs Fig. 6. Histogram of the sum of two sets of correlated Gamma RVs
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ther, we can get 10000 Gamma RVs 
with distribution Gamma (3, 2). The histogra
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Fig. 7. Gamma RVs of sum of two sets of correlated Gamma RVs Fig. 8. Autocorrelation of linearly correlated Gamma RVs

m is shown in 
Fig. 6, these RVs are plotted in Fig. 7, and their autocorrela-
tions are shown in Fig. 8. In principle, if two linearly corre-
lated Gamma RVs X1 and X2  are considered with the 
correlation length n1 , n2  (n1 <n2 ), and the parameters 

n1α1 β,( ) , n2α2 β,( )  respectively, X1 + X2 is also a Gamma 
distributed RV with parameters n1α1 n2α2+ β,( ) , and the 
autocorrelation coefficient function as follows

r m( )

1
m α1 α2+( )
n1α1 n2α2+
------------------------------– m n1≤

1
n1α1 mα2+

n1α1 n2α2+
------------------------------– n1 m n2≤<

0 m n2>









= (6)

The proof is similar as the proof of (5), and it can be easily 
extended to the sum of more linearly correlated Gamma RVs. 

B. Generation Exponentially Correlated Gamma RVs

The exponential correlation coefficient function is 
described as

r m( ) am= 0 a 1< < (7)
To generate Gamma RVs X 1( ) , X 2( ) , X 3( ) ,... distrib-

uted with Gamma (α β, ) with the autocorrelation function of 
(7), the following steps are taken:

1. Find two smallest positive integers m and n that satisfy

a n m–
n

-------------= (8)

2. Generate a series of n independent RVs with distribution 
Gamma ( α n⁄( ) β, ), which are denoted as X1 , X2 , X3 ,..., 
Xn , adding them together will get the first RV X 1( ) .

3. Replace m RVs in the series randomly with m new RVs 
x  with the same distribution, and adding them to the rest of 
RVs in the series together will generate the second RV X 2( ) .

4. Repeat steps 3 to generate new RVs.
The autocorrelation of the generated RVs has a Gamma 

distribution with parameters (α β, ) and the correlation coeffi-



cient function as specified in (7). This can be proved using the 
similar method as the proof of (5). For example, to generate 
exponentially correlated Gamma RVs with the correlation 
parameter a equal to 0.8, the values of m and n hold 1 and 5 
respectively. In Fig. 9, the autocorrelation of the generated 
RVs is plotted, which is the same as the function of (7). The 
generated correlated Gamma RVs are plotted in Fig. 10. 

A
ut

oc
or

re
la

tio
n 

co
ef

fic
ie

nt

0 10 20 30
0

0.2

0.4

0.6

0.8

1

Fig. 9. Autocorrelation of exponentially correlated Gamma RVs Fig. 10. Exponential correlated Gamma RVs
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C. Combination of Linearly Correlated Gamma RVs 
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For some correlated Gamma RVs that are difficult to gener-
ate using the two methods mentioned above, the combination 
of linearly correlated Gamma RVs can be used to approxi-
mate the required functions. Two approximation methods are 
derived: the linear fit method and the numerical method. The 
linear fit method is to approximate a correlation function with 
the sum of several linear functions. Fig. 8 can be such an 
example. 

Here an example is presented illustrating the use of the 
numerical method to approximate RVs distributed with 
Gamma (2, 1), and with the correlation function

r m( ) m–( )exp= (9)

The first step is to calculate the value of each r(m), we can 
get r(1) = 0.3679, r(2) = 0.1353 and r(3) = 0.0498. Because 
r(3) is very small, the approximation can be done only for r(1) 
and r(2) without losing much accuracy. 

Here, three sets of Gamma RVs X1 , X2  and X3  are used, 
each having a distribution of Gamma (α1 1, ), Gamma 
(2α2 1, ), and Gamma(3α3 1, ), and the correlation length of 
1, 2 and 3 respectively. The following equations can be 
derived:

1
α1 α2 α3+ +

α
-------------------------------– r 1( ) 0.3679= =

1
α1 2 α2 α3+( )+

α
---------------------------------------– r 2( ) 0.1353= =

α1 α2 α3+ + α 2= =










(10)

Solving the equations in (10), yields α1 0.799= , 
α2 0.1946= , and α2 0.2706= . The sum of the three sets 
of RVs from X1 , X2  and X3  will give the required RVs. The 
autocorrelation of the 3 sets of RVs and the sum is shown in 
Fig. 11.

V. CONLUSION

In this paper, the measurement of RSS of WLAN beacons 
in an indoor environment is given. By mathematical analysis, 
the variation of the RSS from the average power has a 
Gamma distribution, which fits the measurement well. Corre-
lation is observed in the variation of RSS. New algorithms 
using the reproductive property of Gamma distribution have 
been designed to generate linearly and exponentially corre-
lated Gamma RVs. The combination of linearly correlated 
Gamma can be used to approximate other correlation func-
tions.



VI. APPENDIX

Here the proof of the correlation coefficient function in (5)
is outlined as follows

r m( )
n m–

n
------------- m n<

0 m n≥





= (11)

Proof: for RVs x, the autocorrelation is 

R m( ) E X n( )X n m+( ){ }= (12)
and autocorrelation coefficient is

r m( ) R m( )
R 0( )
-------------= (13)

Suppose m<n, and using the method to generate linearly 
correlated Gamma RVs, we have 

X n( ) X1 X2 … Xn+ + += (14)

where X1 , X2 , X3 ,..., Xn are independent Gamma RVs, it 
follows

X n m+( ) X n( ) Xi

i 1=

m

∑– X
i 1=

m

∑+= (15)

Where is X is a new Gamma RV with the same distribution 
as X1 , X2 , X3 ,..., Xn , hence (12) and (15) yields

R m( ) E X n( ) X n( ) Xi

i 1=

m

∑– X
i 1=

m

∑+
 
 
 

= (16)

X(n) and X are uncorrelated and X(n) and Xi  are corre-
lated with the following relation:

E X n( )Xi{ } E X n( )X n( ){ }
n

------------------------------------= (17)

Because all X are independent and identically distributed, 
from (16) and (17), it follows

E X n( )X n m+( ){ } E X n( )X n( ){ } 1 m
n
----– 

 = (18)

Finally, by combining (13) and (18), we obtain

r m( ) n m–
n

-------------= (19)
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