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Abstract

Cellular mobile communication networks have to serve continuously increasing demands in
throughput. These demands force to use the limited spectrum more efficiently. One way to
achieve this is the application of sophisticated signal processing techniques, e. g. multi-carrier
modulation and transmission via multiple antennas (multiple-input multiple-output, MIMO).
These techniques generate significant processing effort at the base stations of the network and at
the mobile devices. This thesis deals with the processing effort arising in the base stations.

The processing effort is influenced by the radio channel and the transmitted data traffic. It thus
varies widely. Dimensioning the processing resources for theoretical peak load is inefficient,
because the difference between typical load and peak load is large. However, when processing
resources cannot be guaranteed to be sufficient in all situations, the system has to be able to cope
with resource shortages. It has to adapt the complexity of the computations, so that the available
processing resources are utilized but not overloaded. This ability is here termed elasticity.

This thesis presents a mechanism that allows a base station to elastically utilize the available
processing resources. Thereto, first the relationship of network performance and compute resource
requirements is formulated as optimization problem. Based on this problem, studies are conducted
to identify the components suitable to realize elasticity. Subsequently, a mechanism is designed
using the findings from these studies. This mechanism achieves the objective to make the physical
layer computations of a base station elastic. Finally, evaluations in two scenarios show the
effectiveness of the proposed mechanism.

In principle, the concepts discussed in this thesis apply to different mobile communication
standards. However, the presented mechanism is designed to integrate well with the components
of a Long Term Evolution (LTE) system. LTE scenarios are also used for the evaluations. To
provide background for the further discussions, chapter 2 gives an overview over the relevant
aspects of the LTE standard. It introduces the LTE standard itself and the system’s architecture.
Subsequently, the relevant components of the physical layer are explained. These include multi-
carrier modulation, coding, and MIMO. Configuring these mechanisms allows to trade the
performance of a communication link to reduce computational complexity. This resembles an
approach to realize elasticity.

Besides adapting the physical layer configuration, the LTE standard also allows to allocate radio
resources dynamically. Radio resources are either allocated to different mobile terminals or left
unused. This directly influences the network performance as well as the accruing compute effort.
Chapter 3 first discusses various objectives for resource allocation. It then gives an overview over
optimization problems and heuristics from literature, which can be applied to solve this task.
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When using the same radio spectrum, adjacent cells may interfere with each other’s transmissions.
By lowering radio resource utilization, interference as well as processing effort can be reduced.
As third part of the background information, chapter 4 provides an overview over aspects of multi
cell operation. This covers interference, concepts for coordination of cells, and their formulation
as optimization problems.

Chapters 5 and 6 cover the main contribution of this thesis. Chapter 5 starts by stating the
motivation of the thesis, the research questions, and the contributions. Subsequently, an overview
over related work in the topics signal processing, real-time scheduling, and compute resource
management is provided. Also, this chapter defines the system model. This is used as foundation
for the optimizations and simulations. Besides other aspects, it models interference, physical
layer configuration, processing effort, and network performance.

Subsequently, an optimization problem is formulated. This allows the interrelations of relevant
effects to be studied without prematurely restricting to heuristical approaches. This optimization
problem describes the effect of MIMO mode selection, resource allocation, and interference on
the processing requirements and on the network performance. Studying the solutions to this
problem validates that it is possible to efficiently cope with limited processing resources. Using a
set of related problems, it is also assessed whether a simple method is sufficient to realize the
elasticity efficiently. Here, switching between MIMO modes shows to be the most promising
approach. The findings from these studies serve as design guidelines for the mechanism described
in the following step.

The proposed system consists of a MIMO mode selection heuristic, a mechanism predicting
the manageable processing complexity, and a fallback mechanism. The MIMO mode selection
balances processing complexity and network performance. This heuristic is executed independently
for each mobile terminal. It can thus be distributed over multiple processing units. The operating
point of this heuristic is set by predicting the manageable complexity. This prediction is based on
the previous time, thus assuming a temporal correlation of the load. The fallback mechanism
ensures stable operation in case the prediction is inaccurate. This helps to cope with fluctuations
in the load, but also with external disturbances. The proposed system is designed carefully to
allow the integration into LTE base stations.

The performance of the proposed system is evaluated thoroughly in chapter 6. Thereto, two
scenarios are applied. First, the performance of the proposed system is compared to that of an
optimization problem and that of a baseline heuristic in a simplified scenario. These studies show
that the proposed approach achieves nearly optimal performance. The second scenario resembles
a larger network with dynamic data traffic. Here, compared to the baseline heuristic, the proposed
system maintains high network performance even with limited compute resources. Thus, the
simple prediction mechanism applied here is sufficient to cope with dynamic load.

Summarizing, the evaluations validate that the proposed approach provides elasticity with high
efficiency. This means that the system allows to serve a mobile network with limited compute
resources. Beyond that, the network performance is not significantly impacted when compute
resources become scarce, given that a minimum amount is available.

Concluding, the proposed system can be implemented to elastically utilize the available processing
resources. Instead of strictly requiring sufficient processing capacity to complete all physical layer



Abstract iii

operations in time, it automatically adapts the complexity of these operations to the available
capacity. In doing so, it achieves high efficiency, so that the impact on the network performance
is minimized. Thereby, the system allows to dimension compute resources not for a theoretical
peak load, but such that they are utilized to capacity. In addition, it lifts the requirement of
exact planning and reservation of compute capacity. This facilitates deploying components from
standard information technology (IT) systems. Overall, the proposed system allows network
providers to dimension compute resources economically and thereby increase the cost-efficiency
of their network.
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Kurzfassung

Ein Verfahren zur elastischen Nutzung von Rechenressourcen in Mobilfunk-Basisstationen

Zelluläre Mobilfunknetze müssen einen ständig wachsenden Datendurchsatz bewältigen. Diese
Anforderung zwingt dazu, das limitierte Spektrum effizient zu nutzen. Dies kann durch Anwendung
ausgefeilter Techniken der Signalverarbeitung, z. B. Mehrträger-Modulation und Übertragung über
mehrere Antennen (multiple-input multiple-output, MIMO), erreicht werden. Diese Techniken
erzeugen signifikanten Rechenaufwand in den Basisstationen des Netzes und in den mobilen
Geräten. Diese Arbeit befasst sich mit dem Rechenaufwand, der in den Basisstationen anfällt.

Der Rechenaufwand wird vom Funkkanal und vom übertragenen Datenverkehr beeinflusst
und schwankt daher stark. Eine Dimensionierung der Rechenressourcen für die theoretische
Spitzenlast ist ineffizient, denn der Unterschied zwischen typischer Auslastung und Spitzenlast ist
groß. Wenn jedoch die Rechenressourcen so dimensioniert sind, dass sie nicht in allen Situationen
ausreichen, muss das System mit Ressourcenengpässen umgehen können. Es muss die Komplexität
der Berechnungen anpassen, so dass die verfügbaren Rechenressourcen ausgelastet, aber nicht
überlastet werden. Diese Fähigkeit wird hier als Elastizität bezeichnet.

Diese Arbeit präsentiert ein System, welches einer Basisstation ermöglicht, die vorhandenen
Rechenressourcen elastisch auszunutzen. Dazu wird zunächst der Zusammenhang zwischen
Netzwerk-Leistung und benötigten Rechenressourcen als Optimierungsproblem formuliert.
Studien dieses Problems dienen dazu, diejenigen Komponenten zu identifizieren, die sich für die
Realisierung der Elastizität eignen. Auf Basis der Ergebnisse wird dann eine Heuristik entworfen.
Diese erreicht das Ziel, die Signalverarbeitung einer Mobilfunk-Basisstation elastisch zu machen.
Abschließend wird in zwei Szenarien die Effektivität des vorgeschlagenen Systems bewertet.

Die in dieser Arbeit diskutierten Konzepte sind prinzipiell für verschiedene Standards zur
Mobilfunk-Kommunikation anwendbar. Die vorgestellte Heuristik ist jedoch so entworfen, dass
sie sich gut in die Komponenten eines Long Term Evolution (LTE) Systems integrieren lässt.
Außerdem werden LTE Szenarien für die Bewertungen verwendet. Um Hintergrundinformationen
für die weiteren Diskussionen zu liefern, gibt Kapitel 2 einen Überblick über die relevanten
Aspekte des LTE Standards. Das Kapitel führt zunächst in den LTE Standard selbst und
die Architektur des LTE Systems ein. Anschließend werden die relevanten Komponenten
der physikalischen Schicht erklärt. Dies umfasst unter anderem die Mehrträger-Modulation,
Kodierung und MIMO. Die Konfiguration dieser Mechanismen erlaubt es, zwischen der Leistung
einer Kommunikationsverbindung und dem anfallenden Rechenaufwand abzuwägen. Dies ist
eine Möglichkeit, Elastizität zu realisieren.
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Neben der Anpassung der Konfiguration der physikalischen Schicht erlaubt es der LTE Standard
auch, Kanal-Ressourcen dynamisch zuzuteilen. Diese Ressourcen werden entweder verschiedenen
Endgeräten zugeteilt oder ungenutzt gelassen. Dies beeinflusst direkt die Leistung des Netzes und
den anfallenden Rechenaufwand. Kapitel 3 diskutiert zunächst unterschiedliche Zielsetzungen der
Ressourcenzuteilung. Es gibt dann einen Überblick über Optimierungsprobleme und Heuristiken
aus der Literatur, die angewendet werden können, um diese Aufgabe zu lösen.

Wenn benachbarte Zellen dasselbe Spektrum nutzen, können sie ihre Übertragungen gegenseitig
durch Interferenz stören. Werden weniger Kanal-Ressourcen zugeteilt, reduziert das sowohl die
Interferenz als auch den Rechenaufwand. Als dritter Teil der Hintergrundinformationen gibt
daher Kapitel 4 einen Überblick über die Aspekte des Betriebs mehrerer Zellen. Die behandelten
Themen umfassen Interferenz, Konzepte zur Koordination von Zellen und deren Formulierung
als Optimierungsproblem.

Kapitel 5 und 6 stellen den Hauptbeitrag dieser Arbeit dar. Kapitel 5 beginnt damit, die Motivation
der Arbeit zu erläutern und die Forschungsfragen und die Beiträge zu benennen. Im Anschluss wird
diese Arbeit in den Kontext der vorhergehenden Forschung in den Bereichen Signalverarbeitung,
Echtzeit-Scheduling und Verwaltung von Rechenressourcen eingeordnet. Daraufhin wird das
Systemmodell definiert. Dieses wird im weiteren Verlauf als Basis für die Optimierungsprobleme
und Simulationsstudien verwendet. Es modelliert unter anderem Interferenz, Konfiguration der
physikalischen Schicht, Rechenaufwand und Netzwerk-Leistung.

Im Anschluss wird ein Optimierungsproblem formuliert, um den Zusammenhang relevanter
Effekte ohne vorzeitige Beschränkung auf heuristische Ansätze zu untersuchen. Dieses Opti-
mierungsproblem beschreibt den Einfluss von Interferenz, Zuteilung der Kanal-Ressourcen und
Auswahl des MIMO Modus auf den anfallenden Rechenaufwand und die Leistung des Netzes.
Die Auswertung der Lösungen dieses Problems bestätigt, dass es möglich ist, auf effiziente Art
mit limitierten Rechenressourcen umzugehen. Mit verwandten Problemen wird dann untersucht,
ob ein einfaches Vorgehen für die effiziente Realisierung von Elastizität ausreichend ist. Hier
zeigt sich der Wechsel zwischen MIMO Modi als vielversprechendster Ansatz. Die Erkenntnisse
aus diesen Studien dienen als Design-Vorgaben für die im Folgenden beschriebene Heuristik.

Das vorgeschlagene System besteht aus einer Heuristik zur Auswahl des MIMO Modus, einem
Mechanismus zur Vorhersage der zu bewältigenden Rechen-Komplexität und einem Rückfall-
Mechanismus. Die Auswahl des MIMO Modus definiert den Kompromiss zwischen Rechen-
Komplexität und Netzwerk-Leistung. Diese Heuristik wird für jedes Endgerät unabhängig
ausgeführt, so dass eine Parallelisierung in mehreren Recheneinheiten möglich ist. Der Betriebs-
punkt dieser Heuristik wird durch die Vorhersage der zu bewältigenden Rechen-Komplexität
eingestellt. Diese Vorhersage basiert auf der vergangenen Zeit, setzt also eine zeitliche Korrelation
der Last voraus. Der Rückfall-Mechanismus garantiert ein stabiles Verhalten des Systems auch
dann, wenn die Vorhersage ungenau ist. Dadurch kann das System sowohl mit Schwankungen in
der Last als auch mit Störungen von außen umgehen. Das System wurde so entworfen, dass es in
LTE Basisstationen integriert werden kann.

Die Leistung des vorgeschlagenen Systems wird in Kapitel 6 ausführlich bewertet. Dazu
werden zwei Szenarien verwendet. Zuerst wird in einem einfachen Szenario die Leistung
des vorgeschlagenen Systems mit der eines Optimierungsproblems und einer Basis-Heuristik
verglichen. Diese Studien zeigen, dass das vorgeschlagene System nahezu optimale Leistung
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erreicht. Das zweite Szenario modelliert ein größeres Netzwerk mit dynamischem Datenverkehr.
Im Vergleich zur Basis-Heuristik zeigt das vorgeschlagene System hier, dass hohe Leistung
auch mit eingeschränkten Rechenressourcen aufrechterhalten werden kann. Der hier verwendete
einfache Vorhersage-Mechanismus ist also ausreichend, um mit dynamischer Last umzugehen.

Zusammenfassend weisen die Studien nach, dass das vorgeschlagene System die Elastizität
des Mobilfunksystems mit hoher Effizienz realisiert. Das System ermöglicht, ein Mobilfunk-
Netz grundsätzlich auch mit eingeschränkten Rechenressourcen zu betreiben. Darüber hinaus
wird, wenn die Rechenressourcen verknappt werden, die Leistung des Netzes nicht signifikant
beeinträchtigt, solange dabei ein Minimalwert nicht unterschritten wird.

Das vorgeschlagene System kann implementiert werden, um die verfügbaren Rechenressourcen
elastisch auszulasten. Anstatt vorauszusetzen, dass genügend Rechenkapazität verfügbar ist, um
immer alle Berechnungen der physikalischen Schicht rechtzeitig abzuschließen, passt es automa-
tisch die Komplexität dieser Berechnungen an die verfügbare Rechenkapazität an. Dabei erreicht
es eine hohe Effizienz, so dass die Beeinträchtigung der Netzwerk-Leistung minimiert wird.
Rechenressourcen müssen dadurch nicht für die theoretische Spitzenlast dimensioniert werden.
Sie können stattdessen so ausgelegt werden, dass sie optimal ausgelastet werden. Zusätzlich hebt
das System die Anforderung auf, Rechenleistung exakt zu planen und zu Rechenressourcen zu re-
servieren. Dies erleichtert den Einsatz von Komponenten aus klassischen Information Technology
(IT) Systemen. Insgesamt erlaubt das vorgeschlagene System Betreibern von Mobilfunknetzen,
Rechenleistung ökonomisch zu dimensionieren und damit die Kosteneffizienz des Netzes zu
steigern.
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1 Introduction

Over the past decades, commercial wireless networks have developed in multiple aspects. The
most prominent of these is the efficient utilization of the radio spectrum. The term spectral
efficiency denotes the delivered throughput divided by the system bandwidth. Since the start of
digital data transmission in cellular wireless systems, it has been increased by more than an order
of magnitude. However, for economically efficient operation of such networks, investment and
operational costs cannot be neglected.

Efficient utilization of compute hardware contributes to cost-efficient network operation. Multiple
mechanisms, algorithms, and realization approaches allow to trade-off between computational
complexity and network capacity. This thesis proposes to dynamically adjust these trade-offs
to always make best use of the available compute resources. It presents a mechanism which
achieves this by adapting parameters of the transmission.

1.1 Cellular Wireless Communication

In a cellular wireless network, a large service area is split into multiple cells. In each cell, multiple
optionally mobile users are served by a single stationary base station (BS). This BS manages the
resources of the cell, which are shared by the assigned users. Cells operate independently of
each other. Their spatial separation allows re-using the radio spectrum. Prominent examples
for cellular networks are Global System for Mobile Communications (GSM), Universal Mobile
Telecommunications System (UMTS), and Long Term Evolution (LTE) for commercial services
to consumers, and Terrestrial Trunked Radio (TETRA) for governmental use.

The currently newest, widely deployed commercial cellular network is LTE with its successors
LTE-Advanced (LTE-A) and LTE-Advanced Pro (LTE-A Pro). These are standards developed
by the Third Generation Partnership Project (3GPP). In LTE, the BSs are termed evolved
nodeB (eNodeB). They are typically located close to the cell tower, where the corresponding
antennas are mounted. An eNodeB contains analog components, e. g. filters and power amplifiers,
and also handles all digital processing for the wireless communication. This includes the protocol
stack up to the Internet Protocol (IP) layer.

LTE employs orthogonal frequency division multiple access (OFDMA) to serve multiple users in
parallel on different radio frequencies. The system adapts to the characteristics of the individual
radio channels to get the most out of available radio spectrum. This comprises the application
of different modulation schemes and multiple-input multiple-output (MIMO) modes, which use
multiple antennas at the BSs and users’ terminals to increase the network’s throughput.

1
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C-RAN stands for centralized radio access network (RAN) or cloud RAN. It is an alternative
approach for the implementation of the eNodeBs. Here, each eNodeB is split into the remote radio
head (RRH) and the baseband unit (BBU). A RRH contains analog-to-digital converters (ADCs),
ditigal-to-analog converters (DACs), and all analog components for transmission and reception
of signals. The BBU performs digital signal processing and higher layer operations. Multiple
BBUs are co-located in a central office. RRHs and BBUs exchange data over high speed links.
In demarcation to C-RAN, the classical implementation consisting of distributed self-contained
eNodeBs is termed distributed RAN (D-RAN).

The C-RAN architecture reduces maintenance cost and allows for easier cooperation between
multiple cells. Co-located BBUs can share the resources of a common hardware pool. Optionally,
virtualization techniques can be used to make the association of compute tasks to hardware
flexible. The objective is to balance load, to quickly recover from broken hardware, and to be
able to take hardware offline for maintenance.

1.2 Compute Requirements of Wireless Communication Systems

Today’s communication systems invest considerable computational effort for signal processing,
encoding/decoding of information, protocol processing, and resource management. This is
carried out by a combination of hardware and software. Both are traditionally designed and
assembled for a single communication protocol.

In such a design, the split between hardware and software is debatable.1 On one hand, hardware
designed for a single task is typically more efficient than generic hardware, i. e. it performs
the task more quickly and with lower power consumption. On the other hand, engineering of
software implementations is often considered to be easier than that of the respective hardware
implementations. In addition, software development cycles are shorter, and software can be
updated in already deployed products to remedy problems and add new features. For the
implementation of network infrastructure, there is currently a trend to avoid specialized hardware.

Each user terminal has a varying demand for communication. The BS allocates bandwidth to
satisfy these demands. In doing so, it adapts parameters of the transmissions to the respective
radio channels. The changing utilization of bandwidth and the varying parameters influence the
compute effort. Thus, the compute effort accruing for the operation of an eNodeB fluctuates.

The compute effort of a single cell is limited by the most complex communication parameters
and the available spectrum resources. If multiple BBUs share a pool of compute resources, their
compute effort is multiplexed. Thereby, the compute load of such a pool behaves more smoothly
than that of a single BBU. The spatial distribution of the cells belonging to the pool results in
averaging also over the spatial inhomogeneity of the network load.

1Although a software-based installation is often assumed to be present in C-RAN setups, this question can in
principle be seen as orthogonal to the selection of a C-RAN or a D-RAN architecture.
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1.3 Elastic Utilization of Compute Resources

For many signal processing systems, the computational complexity can be planned in advance.
The resources are then dimensioned to cope with the peak load. This guarantees that the resources
are always sufficient. Consequently, the running system does not need to actively manage resource
utilization. However, if the compute load of the system is variable, this results in an inefficient
utilization of the resources. Besides, if the availability of the compute resources is impacted by
unforeseen events, the system cannot operate as desired.

In information technology (IT) systems without real-time (RT) requirements, increasing the load
or reducing the processing resources result in delayed responses of the system. This is not allowed
in a RT system like the eNodeB in an LTE network. Thus, to cope with resource limitations,
RT systems have to be designed to actively adapt to the availability of compute resources. This
capability is here termed elasticity.

Adapting to scarce compute capabilities implicates reduced system performance. However, this
is required to maintain system operation if resources are not sufficient otherwise. If implemented
well, the price to save some compute effort is small. For example, a system can switch to a mode
of operation with slightly impacted performance, but much lower computational complexity.

Deploying an elastic signal processing system in the BBUs of a C-RAN brings multiple benefits.
First, it allows to dimension the compute hardware to meet the typical resource requirements
instead of the peak requirements. For systems which support complex, but rarely used transmission
modes, this can save a significant fraction of compute hardware. Second, it enables the operator
to save energy by taking down hardware resources during low load periods. When the load
increases, the elasticity of the system bridges the time it takes to bring resources up again. Third,
an elastic system can cope with planned or unplanned outage of resources. In case resources are
offline, either caused by hardware failures or for maintenance, the system performance degrades
gracefully. The network operator can therefore avoid installing spare resources.

Summarizing, using elastic implementations makes the operation of a pool of BBUs more
similar to the operation of IT software. Instead of deploying specialized RT capable operating
systems and virtualization software, standard implementations can be used. Instead of generously
over-dimensioning resources to avoid shortages, virtualization and elasticity can work together to
allow high resource utilization and thereby efficient network operation.

1.4 Research Questions and Contributions

The main objective of this thesis is to enable a group of pooled LTE BBUs to elastically utilize
their shared compute resources. This is split into three major questions and tasks.

Multiple components of an LTE system allow to trade system performance for compute effort
reduction. Thus, the first question is to identify those components where this can be performed
efficiently. Thereby, the focus here lies on the signal processing for downlink (DL) operation.
To avoid premature restriction to simplifying heuristics, different approaches to reduce the
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processing effort are formulated as optimization problems. The solutions to these problems are
then compared to identify the most promising approach.

The second question is how an LTE system can be modified to dynamically adapt to the availability
of compute resources. The thesis proposes a heuristical approach which makes efficient use
of the available resources, does not introduce significant complexity by itself, and is easily
integrated into existing system architectures. The design of this system is based on findings from
the previously solved optimization problems.

The third task is to show the efficiency of the proposed system. In this thesis, the evaluation is
performed by simulation of the proposed system in a modeled LTE system. The performance
achieved under different limitations of compute resources is compared to the performance
achieved in an unlimited system. In addition, the proposed system is compared to different
optimization problems to assess the impact of the simplifications taken during system design.

Summarizing, this thesis proposes a mechanism to make the compute resource utilization of a
C-RAN system elastic. At the cost of small reduction of the network performance, the system
can adapt the computational complexity to the available compute capacity. Its high efficiency is
substantiated in sound simulation studies.

1.5 Outline of the Thesis

This thesis is structured as follows. The proposed mechanism for elastic utilization of compute
resources is developed and evaluated using the example of an LTE mobile communication system.
Therefore, chapter 2 introduces LTE and describes the most relevant aspects required for this
thesis. It first gives an overview over the LTE architecture and explains the concept of C-RAN.
Subsequently, it describes the standardized mechanisms to achieve efficient operation of the
radio channel. Finally, the framework for resource management is described, which serves as a
foundation for the following chapter.

This thesis evaluates the influence of link layer mechanisms, resource allocation (RA), and
interference on the required processing effort. While the link layer mechanisms are already
covered by chapter 2, the remaining aspects are targeted by the following two chapters.

Chapter 3 focuses on the allocation of radio resources. This is not covered by the LTE
standardization, but allows vendors to differentiate from competitors. The chapter first discusses
objectives and performance metrics from the perspectives of a single user and of the network
provider. RA can be interpreted as optimization problem or tackled with a heuristic. Thus, the
chapter provides an overview over the relevant literature for both approaches.

The efficient operation in multi-cell environments is targeted in chapter 4. Here, the main focus
is on the handling of interference, especially doing so by coordinating multiple neighboring
transmitters. This has previously been approached by defining and solving optimization problems.
Thus, a structured comparison of approaches from literature is provided by mapping their
definitions to a unified resource model. Finally, the chapter also gives an overview over advanced
mechanisms, where a single user is simultaneously served from multiple sites.
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Chapter 5 represents the central chapter of this thesis. It begins with an in-depth motivation and
a detailed discussion of the research questions and contributions. Subsequently, it provides a
classification of related work from three different subject areas. It then defines a common system
model used for all evaluations in this thesis. To gain insight into the system and understand the
interrelationships of relevant variables, different variants of an optimization problem are defined
and evaluated. The proposed mechanism for elastic utilization of compute resources is then
designed based on the findings of these evaluations. The chapter concludes with a discussion of
the properties of this mechanism.

The main requirement for the proposed mechanism is to maintain high network performance
in situations where only limited compute resources are available. This is evaluated in detail
in chapter 6. First, the performance of the proposed heuristic is compared to that achieved by
solving differently constrained optimization problems. As the optimization requires a simplified
system model, this first evaluation is complemented by a second one with a more dynamic model.
There, the performance of the proposed system is evaluated by simulation in conjunction with a
realistic data traffic model.

Finally, chapter 7 summarizes the thesis and draws conclusions.
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2 LTE Network Architecture and
Mechanisms

This thesis investigates the elastic utilization of compute resources for mobile communication,
using LTE as exemplary application. Although the presented mechanism is in principle applicable
to other communication standards, it is designed to be used in an LTE eNodeB. Thus, some
design decisions depend on conditions given by the LTE standardization.

This chapter serves as an overview of the LTE network. First, section 2.1 gives a general
introduction to LTE. Subsequently, the LTE network architecture is presented in section 2.2. The
focus of this thesis is on the processing performed in the BS that is related to communication
with the associated mobile terminals. Therefore, the protocol stack used between these entities
and the realization options for BSs are emphasized in that section.

The processing effort investigated in this thesis is caused by signal processing operations. Thus,
section 2.3 provides an overview over the mechanisms that are used in LTE to achieve a high and
reliable throughput on each single radio link.

While the signal processing itself can be optimized separately for each link, the BS is also
responsible for the allocation of channel bandwidth to competing users. Thereto, the LTE standard
comprises an elaborate framework for management of channel resources. This framework is
described in section 2.4. This section does, however, not include the mechanisms that decide
which resources are allocated to which user. These mechanisms are not covered by the LTE
standard. They are therefore described separately in chapter 3.

2.1 Introduction to LTE

LTE, abbreviation for Long Term Evolution, is a standard for cellular communication networks.
LTE networks are used commercially to deliver voice and data service to customers. Strictly, LTE
describes the radio access part of the network, while evolved packet core (EPC) (also System
Architecture Evolution, SAE) comprises the core network. Together, LTE and EPC are known as
evolved packet system (EPS). LTE has been developed by the 3GPP, a consortium of network
operators and vendors, as an evolution of previous mobile communication standards. Later
versions of the standard are called LTE-A (from Release 10) or LTE-A Pro (from Release 13).

7



8 Chapter 2. LTE Network Architecture and Mechanisms

2.1.1 Cellular Networks

In a cellular network, a large area is split up geographically into cells. Mobile terminals inside a
cell are served by the same BS over a wireless channel. In general, neighboring BSs operate
independently of each other. The cellular concept was first documented by Ring [Rin47]. A
backhaul network connects the BSs to the fixed network and also allows for communication among
BSs. One application for such communication is the handover procedure which is performed
when a terminal moves from one cell to another. Modern networks do also facilitate that a
single user is served jointly by adjacent BSs. In the context of LTE, this is termed coordinated
multi-point (CoMP).

The evolution of cellular networks took place in generations, each being a paradigm shift to
support new demands. In the first generations many competing standards existed. As these were
often applied on a national level, international roaming was difficult or often impossible. Later
generations focused on global mobility, leading to common standards and harmonized frequency
allocations. The following paragraphs give an overview of the evolution of cellular networks.

The first generation (1G) of commercial cellular networks started operation in 1979 with a service
offered by Nippon Telegraph and Telephone (NTT).1 These networks used analog modulation
and provided only circuit switched voice communication.

The second generation (2G) switched to digital communication, mainly to increase the capacity
for voice calls. Deployment of 2G networks started in 1992 with GSM. During the lifetime of
the 2G networks, the demand for data communication increased. Consequently, the standards
were extended to support higher data rates and packet switched communication.

The cellular networks of the third generation (3G) comply with common specifications by the
International Telecommunications Union (ITU), called IMT-2000.2 Besides other standards, this
generation encompasses UMTS (Universal Mobile Telecommunications System) by 3GPP and
cdma2000 by 3GPP2.3 These networks have been developed to provide multimedia and high
speed data services, but still support circuit switched voice services. Later extensions focused
on higher data rates and reduced latency for packet communication (e. g. High Speed Packet
Access (HSPA), cdma2000EV-DO). For an overview of IMT-2000 standards see [M.1457-12].

IMT-Advanced, the follow-up specification of IMT-2000, is generally considered as the definition
of the fourth generation (4G). Officially, LTE-A and WirelessMAN-Advanced (IEEE 802.16m-
2011 / 802.16.1-2012) have been approved to fulfill the requirements of this specification
[M.2012-0]. However, other systems such as previous versions of LTE are also promoted as 4G.
Main focus of the development was to support worldwide roaming and high data rates with a
cost-efficient network. 4G networks do not support circuit switched operation. To supply voice
services to the customers, the operators rely on legacy networks or apply voice over IP (VoIP).

The fifth generation of mobile networks (5G) is subject of current research and standardization.
The requirements for the following generation are expected to be even higher data rates, lower

1Other standards belonging to this generation are Nordic Mobile Telephone (NMT), C-Netz, and Advanced
Mobile Phone System (AMPS).

2IMT stands for International Mobile Telecommunications.
3Similar to 3GPP, 3GPP2 is a collaboration project developing standards for mobile communication.
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latency, and improved reliability. In addition, a high number of devices with diverse requirements
with respect to network performance, cost efficiency, and energy consumption should be supported.
An overview of requirements, approaches, and research activities is given by Andrews et al.
[And+14]. Standardization in 3GPP started with a workshop in September 2015 [Flo15]. The
fifth generation will also be specified by ITU under the term IMT-2020 [M.2083-0].

2.1.2 LTE Releases and Features

LTE is specified by the 3GPP in consecutive releases. This section gives an overview of the most
important aspects of the development. For each release, 3GPP provides a summary document on
their website [3GPPReleases]. An overview of the releases up to Release 12 is given by [Cox14].
Regularly refreshed overviews are also provided by 5G Americas (renamed in 2016, formerly
4G Americas) [4GAm13; 4GAm15; 4GAm15b; 5GAm17].

The first release of LTE is Release 8, which was frozen in December 2008 [3GPP 21.101 v8.4.0].
The first LTE network has been made available to customers by TeliaSonera in Stockholm
and Oslo on December 14, 2009 [Tel09]. Later releases have added features and increased
performance, but in general are backward-compatible.

In comparison to earlier standards, LTE simplified the network architecture. An LTE eNodeB
handles the data plane of the connected users autonomously. LTE uses multi carrier modulation.
This allows to use large bandwidths of up to 20 MHz without requiring complex equalizers in the
receivers. To increase data rates and reliability, LTE applies MIMO techniques with up to four
antennas on both sides of the radio transmission. Power consumption in the mobile terminals is
reduced by using simpler uplink (UL) transmissions and by application of different sleep states.

Release 9, frozen in December 2009, added location services and another mode for DL
MIMO operation. In addition, it extended specifications for Multimedia Broadcast Multicast
Service (MBMS) and home eNodeB, which were omitted from the previous release.

Release 10, the first termed LTE-A, was frozen in March 2011 and introduced a bunch of
extensions to let the system conform to IMT-Advanced requirements. It allows to aggregate
multiple carriers to increase the total system bandwidth. The maximum number of antennas is
doubled, so that BSs and terminals can be equipped with up to eight antennas. Restrictions for
UL transmissions, initially introduced to limit the complexity of mobile terminals, are partially
loosened: Release 10 allows simultaneous UL transmission on non-contiguous frequencies and
with multiple antennas. Cell edge performance is improved by introduction of relays. To support
heterogeneous cell layouts, new mechanisms to coordinate and reduce interference are introduced.

In Release 11, various CoMP modes allow a terminal to be served by multiple base stations
simultaneously. Introduction of new control resources and other extensions make the system
more flexible and better suitable for many devices with low data rates, e. g. as used for machine-
to-machine communication. Mobile terminals can now give hints when they expect no data
transmission and can be sent to a sleep state.

Release 12 enhances MIMO modes and the associated measurement and reporting mechanisms.
The changes target more efficient operation of small cells. This includes dual connectivity, where



10 Chapter 2. LTE Network Architecture and Mechanisms

X2

RAN EPC

public
network

eNodeB

S1-U

S1-MME MME

P-GWS-GW

HSS

UE

UE
Uu

Uu

IP transport
network

S1

Figure 2.1: LTE network architecture

a mobile terminal can be connected to two cells at the same time. In addition, the release contains
extensions for the connectivity of low cost and low power nodes. Proximity services allow direct
communication between mobile devices. This can be coordinated by the network, but does also
work if the network is not available.

In Release 13, frozen in December 2015, the official name of the system was updated to
LTE-A Pro. Several modifications extend LTE for higher number of antennas for MIMO
operation. In addition, multiple extensions target machine-to-machine communication and
mission-crictical voice transmission for public safety operations. The system can now also
operate over unlicensed spectrum, i. e. spectrum typically used for WiFi (IEEE4 802.11).

Release 14 was frozen in June 2017. In this release, the work focused on further enhancing
technologies introduced in previous releases. The topics include the aggregation of carriers from
differend bands, more antennas for MIMO, and operation over unlicensed spectrum. Furthermore,
the communication between mobile devices now supports requirements of road vehicles. Public
safety features are extended to allow mission-critical video and data transmissions. In addition,
studies were conducted to prepare for the next generation of mobile networks.

Work on Release 15 started in the second half of 2017. This release will introduce a new radio
access technology to complement the existing LTE radio access. In addition, the flexibility of the
system will be increased by network slicing. This technique allows slices of the network to be
optimized for use cases with contradicting requirements. Release 15 resembles the transition to
the fifth generation of cellular networks.

2.2 LTE Architecture

LTE consists of the EPC and the RAN (also termed evolved UMTS terrestrial radio access
network, E-UTRAN). The RAN comprises the base stations (termed eNodeBs) and mobile
terminals (termed user equipment, UE). The EPC comprises the core network and all nodes
responsible for signaling and for connecting the mobile terminals to external networks. The
overall architecture is depicted in figure 2.1.

4IEEE stands for Institute of Electrical and Electronics Engineers.
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The following sections highlight different aspects of the LTE architecture. First, section 2.2.1 gives
an overview over the whole EPS, including the EPC and the RAN. Subsequently, section 2.2.2
focuses on the protocol stack of the radio interface. Section 2.2.3 describes different types of
cells. Finally, section 2.2.4 introduces the concepts of centralization and virtualization.

2.2.1 Architecture of the Evolved Packet System

To simplify the system, the EPS is based on an all-IP transport network. This includes the
connections between RAN and EPC and connections inside the EPC. Therefore, all connections
mentioned in the further text are virtual (i. e. logical relationships), not dedicated links.

Neighboring eNodeBs are interconnected via X2. This interface is used for handover operation.
In addition, eNodeBs exchange information to balance their load and to optimize interference
management. The S1 interface (also S1-U and S1-MME) connects eNodeBs with the EPC.

The EPC consists of nodes which handle the users’ data (data plane) and nodes managing
authentication, mobility and related tasks (control plane). The Packet Data Network Gateway
(P-GW, also PDN-GW) and the Serving Gateway (S-GW) form the data plane of the network.
The P-GW is the router that connects the EPC to an external network such as the Internet. The
S-GW is an intermediate router. It routes the traffic for a UE to that eNodeB where the respective
UE is connected to. The IP addresses assigned to the UEs cannot serve as locator in the network,
because the IP address is constant while the UE moves. Therefore, the EPS uses tunneling to
route the data packets.

The Mobility Management Entity (MME) handles most of the control plane communication (e. g.
authentication of the UEs, tracking of UEs in the network, managing tunnels for data traffic).
Multiple MMEs can be responsible for different areas. The Home Subscriber Server (HSS)
mainly consists of a database holding subscription-related information.

The EPC encapsulates data from or to a UE in one or multiple bearers. Data traffic is mapped to
bearers by packet filters in the UE and in the P-GW. A bearer comprises of tunnels in the EPC
and the radio bearer. A set of quality of service (QoS) requirements is associated to each bearer.

The LTE RAN is specified by [3GPP 36.300] and documents referenced therein. UEs and
eNodeBs are connected by the interface Uu, which is also termed air interface. A cell is defined
as a set of physical resources for data transmission. UEs recognize a cell via an identifier that the
network broadcasts over a geographical area. An eNodeB can serve multiple cells (e. g. sectors).

Release 12 introduces direct communication between UEs (Sidelink). This is mainly intended for
public safety services and not further covered by this thesis. LTE supports relaying to extend
coverage of the network and improve service quality. A relay node behaves like an eNodeB to
terminals connected to it. Each relay node is connected to an eNodeB via a modified version of
the Uu interface, called Un. Relaying is not discussed here.
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2.2.2 Protocol Stack of the Radio Interface

The eNodeB interconnects between UEs and Network (interfaces S1 and Uu). It also performs
RA and controls the parameters of the communication. The protocol stack for the user plane is
drawn in figure 2.2. As the focus here lies on the eNodeB, P-GW and other nodes are omitted.

The protocols are here described for DL operation. In general, operation in UL direction is
similar. The LTE PHY layer (layer one in the OSI model, where OSI stands for Open Systems
Interconnection) is responsible for forward error correction (FEC), modulation, multi antenna
operation, and mapping to physical resources. An overview of the specification of the PHY layer,
including references to the detailed specification, is provided by [3GPP 36.201].

The second OSI layer consists of three sublayers: Medium Access Control (MAC), Radio Link
Control (RLC), and Packet Data Convergence Protocol (PDCP). The MAC sublayer multiplexes
MAC service data units (SDUs), performs fast and efficient retransmission, allocates resources,
and selects parameters for the PHY layer. It is specified by [3GPP 36.321]. The RLC sublayer
performs segmentation and concatenation. In addition, it is responsible for reliable in-sequence
delivery of the data, which includes elimination of duplicates and a second layer of more reliable
retransmission. It is specified in [3GPP 36.322]. Finally, the PDCP sublayer performs header
compression and ciphering on the level of IP packets. It also handles retransmissions and
duplicate detection for handover. The PDCP sublayer is specified in [3GPP 36.323]. A detailed
description of the protocols is given by Dahlman, Parkvall, and Sköld [DPS14].

The control plane uses the same stack of the Uu interface up to and including PDCP. On top of that,
the Radio Resource Control (RRC) protocol operates between UE and eNodeB [3GPP 36.331].
It broadcasts system information, establishes and releases RRC connections, handles paging, and
controls handover. It also forwards control messages between UE and MME [3GPP 24.301].

The service access points between RLC, MAC, and PHY layer are defined as channels. Logical
channels interface between RLC and MAC. They describe the type of information transferred.
Transport channels interface between PHY and MAC. They specify how information is transferred
over the radio interface. Physical channels directly relate to time-bandwidth resources. Tables
2.1, 2.2, and 2.3 list logical, transport, and physical channels, respectively, and describe their
usage. The mapping of different channels to each other is depicted in figures 2.3 and 2.4.
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Most of the channels defined by LTE are dedicated to different types of control messages.
DL unicast traffic is carried by the Dedicated Traffic Channel (DTCH), the Downlink Shared
Channel (DL-SCH), and the Physical Downlink Shared Channel (PDSCH). For UL traffic,
Uplink Shared Channel (UL-SCH) and Physical Uplink Shared Channel (PUSCH) replace their
respective counterparts. These channels use the major part of the time-bandwidth resources and
cause the major compute effort. The further discussion therefore focuses on them.

2.2.3 Classes of Base Stations and Cell Layouts

The typical LTE base station is a macro cell. From a cell tower higher than the average rooftop
height, it serves a radius of 500 m to 1000 m. It can be used to provide coverage for a certain
area with minimum number of cells. Multiple sectors (typically three) are often used to increase
capacity. Sectors share the same tower, which is in this context also termed site, but are
differentiated by directional antennas. Sectors operate as independent cells, which means that
they have independent control channels.

An LTE network has to cope with inhomogeneous demand density. Hot spots are caused either
by high user density (e. g. in pedestrian areas, shopping malls, populated streets), or by groups of
users making more than average use of mobile services (e. g. while waiting at bus stop or train
station). To serve this inhomogeneous demand, a network operator can increase the density of
the macro sites or add more sectors. However, it is often more efficient to deploy smaller cells
in those areas (called micro cell or pico cell). They are in general equivalent to macro cells,
except that they transmit with lower power and that antennas are often mounted lower than the
average rooftop height. The combination of macro cells and smaller cells is called heterogeneous
network. A heterogeneous network has some special requirements regarding interference and
load balancing. Thus, LTE standardizes some mechanisms dedicated for these networks.

A home eNodeB or femto cell describes an even smaller cell. It is mounted by an end customer or
a third party (e. g. in office buildings or shopping malls), so the network operator cannot plan its
deployment. Its use can be restricted to selected UEs. A home eNodeB is connected to the EPC
via non-dedicated links with varying performance (e. g. digital subscriber line, DSL). Therefore,
the operation of home eNodeBs is limited w. r. t. some aspects (e. g. handover). Home eNodeBs
are not further regarded in this thesis, because they are not connected to a C-RAN.

2.2.4 Cloud Radio Access Network

C-RAN was proposed as alternative to the classical distributed deployment of self-contained
eNodeBs by IBM and China Mobile [Lin+10; CMRI11]. The abbreviation C-RAN can stand for
centralized RAN or cloud RAN. Cloud RAN can be seen as an extension of the centralized RAN.
Both concepts do not modify the interfaces specified by 3GPP.

The basic architecture of a centralized RAN is depicted in figure 2.5. The functions of an eNodeB
are split into two groups. The lower layers are handled by a unit termed RRH. It contains ADCs,
DACs, and power amplifiers and connects to the antennas. The processing of the higher layers
is performed by a BBU. That is responsible for all signal processing, encoding and decoding,
and higher layer protocols. Multiple BBUs are placed in a central office. RRHs and BBUs are
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Table 2.1: Logical channels defined in LTE

logical channel name description DL UL

Broadcast Control Channel BCCH broadcast of system control information x
Paging Control Channel PCCH paging information, notifications in case

system information changes
x

Common Control Channel CCCH control channel used for UEs
without RRC connection

x x

Dedicated Control Channel DCCH control channel used for UEs
with RRC connection

x x

Multicast Control Channel MCCH control channel for MBMS
related information

x

Dedicated Traffic Channel DTCH for data plane traffic, unicast x x
Multicast Traffic Channel MTCH for data plane traffic, multicast x x
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Table 2.2: Transport channels defined in LTE

transport channel name description DL UL

Broadcast Channel BCH fixed, predefined modulation and coding x
Downlink Shared
Channel

DL-SCH flexible RA, modulation, and coding;
also used for broadcasting

x

Paging Channel PCH for paging x
Multicast Channel MCH multicast x
Uplink Shared Channel UL-SCH flexible RA and encoding x
Random Access Channel RACH special encoding for limited information,

collisions possible
x

Table 2.3: Physical channels defined in LTE

physical channel name description DL UL

Physical Broadcast
Channel

PBCH used to broadcast information required
by UEs before they access the network

x

Physical Control Format
Indicator Channel

PCFICH carries information required to decode
the PDCCH

x

Physical Downlink
Control Channel

PDCCH carries information required to decode
the PDSCH and transmit on the
PUSCH (RA, PHY layer parameters)

x

Enhanced PDCCH EPDCCH allows for more flexible encoding than
PDCCH; introduced in Release 11

x

Relay PDCCH R-PDCCH PDCCH dedicated to relaying x
Physical Downlink
Shared Channel

PDSCH carries unicast data, including user data
and higher layer control information

x

Physical HARQ
Indicator Channel

PHICH used to give UEs feedback regarding the
decodability of UL transmissions

x

Physical Multicast
Channel

PMCH carries multicast data x

Physical Random
Access Channel

PRACH used for the random access procedure
by non-synchronized terminals

x

Physical Uplink
Control Channel

PUCCH used to transmit control information in
UL, including measurement reports,
requests for scheduler grants

x

Physical Uplink
Shared Channel

PUSCH carries all other data in UL direction x
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connected via high speed links. Due to the high requirements w. r. t. throughput and latency, the
most prominent approach is to realize these using the Common Public Radio Interface (CPRI)
on top of a direct optical link [Oli+16].

The exact functional split between RRH and BBU is not fixed. The EU project iJOIN evaluated
different options for this split [Wüb+14; Ros+14; Wüb+15]. Performing the split directly between
PHY layer and ADC/DAC allows to centralize all signal processing, but results in high bandwidth
requirements for the interconnection. Splitting higher in the protocol stack can allow to cope
with lower bandwidth for the interconnection. However, it requires that the RRHs are equipped
with signal processing capabilities. It is here assumed that the BBUs perform at least the MAC
layer and user-specific PHY layer operations (e. g. modulation, coding, and MIMO processing).

The centralization of the BBUs already provides multiple benefits. They can share infrastructure
such as housing, power supply, cooling facilities, and backhaul link. In a central office, the BBUs
are easier to access for maintenance. Furthermore, CoMP becomes easier to realize, because
high performance interconnection between BBUs can be realized easily. The obvious drawback
of this architecture is the requirement of optical links between RRHs and BBUs. It is therefore
most suitable for newly installed sites. However, it can also be reasonable to deploy C-RAN for
older sites, when those have slow backhaul links which have to be upgraded anyway.

Cloud RAN extends the concept of centralized RAN by adopting principles from IT clouds.
Thereto, the co-located BBUs are realized as virtual instances that run on a shared pool of
compute hardware. By sharing compute hardware, the accruing load is multiplexed. This leads,
first, to smoothing of short-term fluctuations, and, second, to balancing between differently
frequented areas. Both effects allow to operate compute resources at a higher utilization. It
is therefore expected that the shared pool requires less processing power than the sum of that
required by the equivalent self-contained BBUs [I+14a; WGP13].

C-RAN is often discussed in conjunction with a software implementation of the BBUs running
on general purpose hardware [I+14b; Wüb+14]. This is, in principle, equivalent to software
defined radio (SDR), although that term is used more often to describe prototyping platforms
[Skl+16]. Note that, although that is not in focus here, the combination of virtualization with
specialized hardware is also possible.

Traditional eNodeB implementations rely on application-specific integrated circuits (ASICs),
field-programmable gate arrays (FPGAs), and digital signal processors (DSPs) to perform the
numerically complex calculations. Switching those to general purpose processors (GPPs) can
bring multiple benefits. General purpose hardware can be bought as complete system. It thus
does not require any effort for hardware engineering. This saves cost and allows to develop
products more quickly. In addition, generic hardware is more flexible than specialized hardware.
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Modifications of the BBU software allow to change how the underlying hardware is used after that
is deployed. A comparison of DSPs and GPPs for BBU operation is performed by Checko et al.
[Che+14]. That publication also provides an overview over prototypical GPP implementations.

When BBUs are executed as software programs on general purpose hardware, it seems obvious
to also use common operating systems (OSs) and virtualization software. However, the LTE
air interface imposes RT requirements on its implementation. These are commonly seen as a
challenge for the application of IT techniques to C-RAN [I+14a; Ros+15a; Zho+16; PHT16].

A subject closely related to C-RAN is network function virtualization (NFV). It describes a
similar approach, but is mostly focused on the functions of fixed networks. Another related subject
is software defined networking (SDN). It does not stand for an all-software implementation of
network functions, but is rather concerned with the combination of high-throughput specialized
hardware with a flexible control function implemented in software.

Summarizing, C-RAN can be seen as the combination of centralization, software implementation,
and virtualization. C-RAN is seen as an important building block for future networks such as 5G
[Ros+15a; 5GPPP16]. An all-encompassing discussion of approaches, challenges, and benefits,
together with further references, is provided by Checko et al. [Che+14].

2.3 Efficient Operation of the Radio Channel

The amount of spectrum available for cellular communication is limited. Licenses to use spectrum
are expensive. Thus, the efficient utilization of the available spectrum is a major objective for
the design of commercial radio networks. In LTE, multiple mechanisms cooperate to facilitate
this. First, modulation and coding are used to make best use of a single radio channel. Second,
MIMO techniques extend this by simultaneously using multiple spatially separable channels.
Third, opportunistic RA exploits differences in the fluctuations of the radio channels to multiple
UEs. Even with these mechanisms, the available spectrum is still considered a scarce resource.
Thus, the resources have to be managed carefully to balance the interests of all participants.

This section targets the efficient operation of the radio channel. It focuses on the techniques
applicable to a single communication link. The following chapter 3 is concerned with objectives
and mechanisms for RA. Subsequently, chapter 4 covers mutual interference and coordination
between cells.

This section is structured as follows. Initially, section 2.3.1 gives an overview over the physical
effects impacting the radio channel. Subsequently, sections 2.3.2 and 2.3.3 target modulation and
error correction, respectively. Section 2.3.4 introduces techniques for multi-antenna operation.
Thereafter, section 2.3.5 gives a short introduction to opportunistic RA. As all these techniques
require information about the radio channel, section 2.3.6 covers the mechanisms to measure
and communicate its characteristics. Section 2.3.7 summarizes all techniques targeting a single
communication link and gives an overall picture of the necessary processing in an eNodeB.
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2.3.1 Characteristics of the Wireless Channel

The wireless channel encompasses physical effects between transmitter and receiver, which often
lead to non-perfect reception of the transmitted signal. The transmitted signal is affected by
attenuation, reflection, and diffraction. The channel effects are typically classified according to
the spatial correlation of the variations. This spatial correlation maps to a temporal correlation
when a UE moves. A detailed overview of the physical effects and typical models is given in
[Stü11]. Here, the channel effects are described for the DL direction. The description also applies
analogously for the UL direction.

First, the received signal power depends on the distance between BS and UE. The farther the UE
moves from the BS, the stronger is the attenuation and the lower is the received signal power.
This effect is called pathloss. Multiple models for the pathloss have been created based on
measurements. In general, it is described as formula with distance, carrier frequency, antenna
heights, and scenario (e.g. urban, suburban or rural) as input parameters.

The UE may have a line of sight (LoS) connection to the BS. In that case, the signal traveling
the direct path is the main component of the received signal. However, often the UE is in a non
line of sight (NLoS) condition. In that case, a communication may still be possible because the
signal from a BS is reflected and diffracted at obstacles (scatterers) in the surrounding. This leads
to the signal arriving at the UE’s antenna via multiple paths. When the UE moves, paths can
be obstructed and new paths can become usable. This leads to variations of the received signal
strength on a spatial scale of multiple meters. This effect is called shadow fading. Measurements
have shown that the received signal strength at a constant average distance from the BS can be
modeled as log-normal distribution.

The paths have different lengths and their signals undergo different physical effects. That leads
to a different received power, phase shift, and polarization at the receiver. The relation of the
phase shifts depends on frequency of the signal and position of the UE’s antenna. In NLoS
conditions the paths transfer similar power. Therefore, signals with different phase shifts may
add up constructively or destructively. In addition, the phase of the received sum signal varies. In
LTE, wavelengths are in the order of magnitude of a few centimeters. Hence, small movements
of the antennas or the scatterers change the relative phases of the signals. This effect is called
fast fading, as the power of the received signal varies within milliseconds. The term coherence
time describes the duration over which the fast fading is correlated, which depends on the speed
of sender and receiver.

As LTE uses a wide bandwidth of up to 20 MHz per carrier, the relative phases vary over the
bandwidth. This causes the attenuation and the phase of the received signal to be frequency-
dependent. The degree of variations over frequency is described by the coherence bandwidth. It
mainly depends on the delay spread, i. e. the relative delay of the signals received over different
paths. In case of a LoS scenario the power of the received signal is typically modeled as Rician
distributed, while in an NLoS scenario it is modeled as Rayleigh distributed.

Multiple antennas of the same UE experience different, but not independent fast fading. The
correlation of the fading processes depends on the distance of the antennas, their polarization,
and their directionality. At the same time, the pathloss and the slow fading of the signal received
at the antennas is similar. For more details on MIMO channels refer to section 2.3.4.1.
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The capacity of a channel is not defined by received power alone, but by the difference between
received power and the power of disturbing signals like noise and interference. Noise is a general
term describing unwanted signals which are overlaid with the desired signal at the receiver.
Typically, noise consists of thermal noise, atmospheric noise, noise generated in the receiver
circuits, and other sources of disturbances. The noise limits the system capacity in cases where
the power of the received signal is weak, e. g. in rural areas where cells are large, in coverage
holes, and inside buildings. The term signal to noise ratio (SNR) describes the relation of
received signal power to noise power.

In urban scenarios the interference from neighboring cells often has stronger impact on the
channel than the noise. Adjacent LTE cells typically use the same frequency. At the border
between two cells, the signals of both cells are received with the same average power. To receive
data, the signals of both cells have to be distinguished, e. g. using coding or by proper correlation
of signals received by multiple antennas. To include the effect from interference, SNR can be
enhanced to signal to interference and noise ratio (SINR). Here, the signal power is divided by
the sum of interference and noise powers.

The capacity of the radio channel depends on the available bandwidth and the transmit power.
According to Shannon [Sha49], for an additive white Gaussian noise (AWGN) channel it is
limited by

� = , log2

(
1 + (

#

)
. (2.1)

Here, � denotes the channel capacity in bit/s, , the bandwidth in Hz, ( the transmit power and
# the noise power.

The equation shows that it is easy to increase the channel capacity by using more bandwidth.
However, this is mainly a question of acquiring spectrum licenses, and not a technical problem. To
measure the efficiency with which a system uses a given amount of bandwidth, the metric spectral
efficiency (also bandwidth efficiency) is used. This denotes the channel capacity divided by the
bandwidth. The objective of modulation and encoding is to maximize the spectral efficiency and
thereby get close to Shannon’s theoretical bound.

2.3.2 Modulation and Demodulation

According to Stüber [Stü11], “modulation is the process whereby message information is
embedded into a radio frequency carrier.” Modulation can be analog, where an analog signal
(such as an audio signal) is modulated onto a carrier. In contrast, modern radio systems apply
digital modulation. There, one or multiple bits of information are mapped to a symbol (i. e. an
analog pulse) to be transmitted. At the receiver side, the symbols are detected and converted
back to bits. As the detection can be erroneous (e. g. in case noise disturbs the signal), the
transmission is typically protected by coding (see section 2.3.3).

The remainder of this section is structured as follows. First, section 2.3.2.1 introduces symbol
alphabets. Subsequently, section 2.3.2.2 describes multi carrier modulation and highlights its
advantages over single carrier modulation. Finally, section 2.3.2.3 focuses on the standardization
of modulation in LTE.
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2.3.2.1 Symbol Alphabets

A modulation scheme is based on a symbol alphabet, which maps bit sequences to analog values.
Amplitude and phase of a transmitted signal can be used to encode information. These can be
translated to the real and imaginary parts of a complex number.

Quadrature amplitude modulation (QAM) describes a symbol alphabet where real and imaginary
part encode separate bits. Its symbols can be visualized as quadratic arrangement of equidistant
points in the complex plane. The simplest version of QAM encodes two bits of information into
four symbols. It can be termed 4-QAM, however the label quadrature phase shift keying (QPSK)
is more common. Its four symbols are differentiated by phase only. Higher order modulation
(e. g. 16-QAM with 16 different symbols) allows to transmit more bits per symbol. However, to
be able to decode symbols from higher order modulation scheme, a larger SNR is required than
to decode symbols from a simpler alphabet.

2.3.2.2 Single Carrier and Multi Carrier Modulation

The classical approach of modulation is that of a single carrier system. Multiple symbols are
transmitted subsequently on the same carrier. The realizable symbol rate is proportional to the
available bandwidth. So, to make use of a large bandwidth, the symbol rate has to be high.
However, the channel causes multiple delayed versions of each symbol to arrive at the receiver.
In case the duration of the symbols is not significantly longer than the delay spread of the channel,
subsequent symbols interfere with each other. This effect is called inter symbol interference (ISI).
It is possible to recover the transmitted signal using equalization at the receiver. However, if
performed in the time domain, this is computationally complex for large bandwidths.

One popular approach to mitigate this is to apply multi carrier modulation (known as discrete mul-
titone transmission, DMT or orthogonal frequency division multiplexing, OFDM) [Stü11].This
approach uses digital signal processing to divide the large bandwidth into multiple orthogonal
subcarriers. Each subcarrier has a low bandwidth. Therefore, symbols are transmitted using a
lower symbol rate. The longer symbol duration reduces the influence of ISI. For OFDM, the
inverse discrete Fourier transform (DFT) is calculated to transfer per-subcarrier symbols from
frequency domain to time domain.5 The result is one OFDM symbol comprising all subcarriers.

A cyclic prefix (CP) is prepended to each OFDM symbol. This means that the last fraction of the
OFDM symbol is copied and prepended to the beginning. If the length of the CP is longer than
the delay spread of the channel, the receiver can select samples where OFDM symbol overlaps
only with itself. Thereby ISI is eliminated.

Different subcarriers can carry information intended for or originating from different users. The
multiple-access scheme based on OFDM is called OFDMA.

To demodulate a received OFDM symbol, the receiver performs the DFT to transform the received
data to the frequency domain. However, the fast fading of the channel distorts amplitude and
phase of the signal. This distortion can be different for each subcarrier. To be able to revert
these channel effects, the current state of the channel has to be known at the receiver. Therefore,

5Typically, the fast fourier transform (FFT) is applied, which is an efficient algorithm to calculate the DFT.
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known symbols (called pilots or reference symbols, RSs) are transmitted interleaved with the
data symbols. These allow the receiver to measure the channel distortions. The fact that the
channel is correlated over time and frequency can be used to interpolate the channel effects for
the remaining symbols [CTL12]. Reverting the channel effects (equalization) is then performed
in the frequency domain. This has lower complexity than performing it in time domain.6

One drawback of OFDM is the high peak-to-average power ratio (PAPR). The superposition of
independent subcarriers leads to a higher variance of the output signal than experienced in a
single carrier system. This imposes special requirements for the power amplifier. To provide
sufficient headroom for the rare peaks, in average the amplifier has to be operated at a fraction of
its maximum power. This leads to inefficiency regarding cost and power consumption. Both
factors are especially relevant in the mobile terminals.

An alternative to plain OFDM is DFT-spread OFDM. There, the transmitter creates a sequence
of symbols in time domain as if it would perform single carrier modulation. A DFT then maps
that sequence to the frequency domain. The output of the DFT is assigned to subcarriers and
further processed like in OFDM. The same process is reverted at the receiver side. A DFT is
used to transfer the received signal into frequency domain. Equalization performed there, and
finally data from the relevant subcarriers is transformed back to time domain and demodulated.

The DFT-spread OFDM combines benefits of single carrier and OFDM modulation. In case
the used subcarriers are adjacent, the combination of DFT and inverse DFT at the transmitter
results in a frequency shift of the signal. This allows to transmit signals of multiple users in
parallel on different subcarriers. The corresponding multiplexing scheme is called single carrier
frequency division multiple access (SC-FDMA). The receiver can simply differentiate signals
from different users. Also, it can perform the equalization in the frequency domain. Myung
[Myu07] gives a detailed introduction to DFT-spread OFDM and SC-FDMA.

2.3.2.3 Standardization in LTE

The modulation used in LTE is specified in [3GPP 36.211]. In DL, LTE uses OFDM with a
subcarrier spacing of 15 kHz. In UL, DFT-spread OFDM is applied. The standards also define an
alternative subcarrier spacing of 7.5 kHz. However, that is not used for unicast data transmission
and therefore not regarded in the further discussions.

The definitions of durations are based on the time unit )B = 1/(15000 · 2048)s ≈ 32.6 ns. The
duration of an OFDM symbol without CP is 2048 · )B ≈ 66.7 µs. LTE allows to configure one of
two different CP durations. The normal CP has a duration of 144 ·)B ≈ 4.7 µs (or 5.2 µs for some
OFDM symbols). The extended CP has a duration of 16.7 µs. It allows the system to tolerate a
higher delay spread. However, this comes at the expense of reduced data rates, as less OFDM
symbols can be transmitted per time interval. This thesis assumes that the normal CP is used.

On the subcarriers provided by OFDM, or on the single carrier for DFT-spread OFDM, the
actual modulation symbols are transmitted. The LTE data plane uses QPSK, 16-QAM, and
64-QAM to encode 2 bit, 4 bit, and 6 bit per symbol, respectively. Release 12 extended this by
256-QAM (8 bit per symbol) for DL operation. Modulation schemes used by different users are

6RSs are also used to decode a multi-antenna channel. This is discussed in section 2.3.4.4.
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independent. To make optimal use of instantaneous channel conditions, LTE continuously adapts
the used modulation scheme in DL-SCH and UL-SCH. This works together with coding and is
thus explained in section 2.3.3.1.

2.3.3 Error Correction

Random channel effects like fading and noise make communication unreliable. A system can
cope with this either proactively or reactively, or by a combination of both approaches. First,
FEC can be used at the transmitter to enhance the data with redundancy information. This can
compensate bit errors in a transmission. Second, incorrectly received data can be detected by
calculating a checksum both at transmitter and receiver. In case the checksums do not match, the
system can repeat the failed transmission.

LTE applies a combination of these approaches to achieve high reliability and throughput. On the
PHY layer, FEC coding makes transmissions robust. A cyclic redundancy check (CRC) is used to
verify correct decoding. In case decoding fails, data is retransmitted by one of two mechanisms.

The following section 2.3.3.1 describes the FEC coding mechanisms used in LTE. After that,
section 2.3.3.2 gives an overview over the applied retransmission protocols.

2.3.3.1 Forward Error Correction Coding

The main idea of FEC coding is that instead of the original data, a codeword is transmitted which
contains more information. The additional information provides redundancy, i. e. allows to
reconstruct the original data even if part of the codeword is distorted. The fraction of raw bits
divided by codeword bits is called code rate. Multiple coding techniques exist which differ with
respect to performance for different channel effects and decoding complexity. Stüber [Stü11]
provides an overview over such techniques.

The coding mechanisms applied in LTE are defined in [3GPP 36.212]. For user data transmitted
via the DL-SCH LTE uses a turbo code with a fixed code rate of 1⁄3. The encoder consists of
two parallel convolutional encoders and an interleaver. At the receiver, the data is decoded by
an iterative algorithm. A detailed description of turbo encoding and decoding is provided by
Chiueh, Tsai, and Lai [CTL12].

Data encoded with a low code rate is well protected against distortions, however the additional
redundancy reduces the available capacity for original data. On the contrary, data encoded
with a high code rate has low overhead, but cannot tolerate much distortion. Therefore, to
achieve highest possible efficiency under different channel conditions, the code rate has to match
the instantaneous channel quality. Instead of encoding with different encoders, LTE applies
puncturing (also termed rate matching). There, the transmitter does not transmit the whole
codeword but leaves out a part of the codeword.

In case a codeword is spread over sufficient large frequency range or time span, the involved
subcarriers experience independent fast fading. By commonly encoding data that is transmitted
via independently fading channel components, the system can exploit diversity. With sufficiently
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robust encoding the transmission can tolerate a low channel quality on some of the subcarriers.
For decoding, it is irrelevant which subcarriers experience severe attenuation and which do not.
To determine the required code rate only statistics of the channel have to be known at the receiver,
not the actual realization.

The most efficient modulation scheme and code rate required for a reliable transmission depend
on the channel quality. To achieve efficient transmission for different channel qualities, LTE
repeatedly adapts the modulation and coding scheme (MCS). This is known as adaptive
modulation and coding (AMC). It is a subset of the more general link adaptation (LA)
mechanism. The system tries to achieve a configured target decode probability. To estimate
the channel at the transmitter, the UEs report their current channel quality to their BS.7 Based
on the reports, the BS selects the MCSs for the transmissions. A control loop can be used to
determine a user-dependent offset based on the experienced decode probability. This allows the
BS to compensate for optimistic or pessimistic reports by the UEs.

2.3.3.2 Retransmission Mechanisms

Due to fast fading and random noise, the transmitter cannot exactly know the instantaneous
channel quality. Even if the data is encoded robustly, the channel can render decoding impossible.
Therefore, in wireless networks decode errors cannot be completely avoided.

To achieve a low error probability with FEC alone, large amounts of redundancy are required.
This severely impacts the efficiency of the transmission. Therefore, in LTE the proactive FEC
mechanism is complemented by the two reactive mechanisms automatic repeat request (ARQ)
and hybrid ARQ (HARQ). These allow to (partially) repeat a transmission in case of errors.
Thereby, a higher error probability for the FEC can be accepted. The main drawbacks of
retransmission protocols are additional delay and overhead.

On the PHY layer, HARQ is used as efficient mechanism to repair broken transmissions. The
sender transmits a FEC-encoded codeword together with a CRC checksum. The receiver decodes
the codeword and validates the checksum. It then notifies the sender about the decodability. In
case the receiver could not decode the codeword, HARQ provides additional information. To do
so, it transmits bits that were removed by puncturing and / or repeats already transmitted bits.

Multiple variants of repeatedly received bits can be combined by the receiver. As noise is
independent while the signal is not, this helps to increase the SNR. The reception of previously
unknown bits of the codeword in fact reduces the code rate. In case the codeword is still not
decodable with the additional information, HARQ can further extend the received information.

HARQ is implemented in LTE as a stop-and-wait protocol. Multiple HARQ processes operate
in an interleaved pattern to hide the latencies introduced by signaling. For each transmitted
codeword, the eNodeB can dictate whether it is to be combined with the previously received
codeword of the same process or whether the old data is to be discarded.

HARQ is efficient, because useful information received from the first transmission can be reused.
In LTE, the HARQ feedback signaling is designed for low latency, but also to cope with few

7For a detailed discussion of channel measurements see section 2.3.6.
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Figure 2.6: MIMO system with #Tx transmit antennas and #Rx receive antennas

channel resources. This can result in feedback errors, where the transmitter assumes that the
receiver decoded the data but that was not possible. It is therefore complemented with the more
reliable ARQ.

The ARQ protocol is part of the RLC functionality. RLC assigns sequence numbers to transmitted
blocks of data. The receiver uses these to reorder the received blocks and to detect and eliminate
duplicates. In addition, the receiver infrequently sends status reports. In contrast to HARQ
feedback, these are robustly coded, and can be received reliably. By not reporting separately on
every block of data, the overhead is reduced. However, this introduces additional latency.

RLC is operated in one of three different modes. In transparent mode RLC is not in operation.
This is used for broadcast transmissions of control messages. In unacknowledged mode RLC
performs reordering but does not retransmit data. This is used for services which prefer packet
loss to additional delay (e. g. VoIP). Finally, in acknowledged mode ARQ is enabled. It is applied
for services requiring low packet loss (e. g. those using Transmission Control Protocol, TCP).

A detailed overview of ARQ and HARQ is given by Dahlman, Parkvall, and Sköld [DPS14].

2.3.4 Multi-Antenna Transmission and Reception

Multiple antennas on the transmitter and the receiver add additional degrees of freedom to the
system. This technology is called MIMO. When comparing to a MIMO system, a system with a
single transmit and a single receive antenna is termed single-input single-output (SISO).

A well-structured survey of MIMO techniques is provided by Mietzner et al. [Mie+09]. They
explain that MIMO has multiple benefits: First, a smaller error rate can be achieved by utilizing
spatial diversity (diversity gain). Second, the SINR at the receiver can be improved by combining
antennas and actively steering their propagation pattern (antenna gain). Third, the capacity of
the channel can be increased by employing spatial multiplexing (multiplexing gain). In other
literature, the antenna gain is sometimes considered as two different aspects, namely suppression
of noise (array gain) and steering of the antenna patterns to avoid interference (beamforming
gain) [CTL12]. In real systems, often combinations of these benefits are achieved. All of them
improve the spectral efficiency of the system, either by transmitting more symbols or by allowing
higher capacity modulation and coding schemes.
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Although the field of MIMO is wide, this thesis focuses on those techniques used in LTE.
Section 2.3.4.1, introduces the notation for the MIMO channel and discusses how transmitter
and receiver gain knowledge of its realization. Following that, sections 2.3.4.2 and 2.3.4.3 give
an overview over MIMO techniques applied at the transmitter and at the receiver, respectively.
Finally, section 2.3.4.4 explains standardization aspects of MIMO in LTE.

2.3.4.1 MIMO Channel and Channel State Information

Assume a MIMO system with #Tx transmit and #Rx receive antennas as depicted in figure 2.6.
The MIMO channel can be represented as complex matrix with #Rx×#Tx elements. The channel
matrix H ∈ C#Rx×#Tx is defined as

H =


ℎ(1,1) . . . ℎ(1,#Tx)

...
. . .

...

ℎ(#Rx,1) . . . ℎ(#Rx,#Tx)

 , (2.2)

where each element ℎ(A,C) denotes the channel from transmit antenna C to receive antenna A.

Using this MIMO channel, the transmitter can transmit a signal vector x of size #Tx. The receiver
receives a signal vector y. This consists of the transmitted signal, distorted by the channel, and
noise at reach receive antenna. This can be formulated as

y = Hx + n. (2.3)

The elements of the channel matrix H experience different fast fading.8 Therefore channels
between the antennas are not identical. Ideally, they would fade uncorrelated, but limited
correlation is typically caused by the geometrical setup of the antenna arrays. The noise received
at different antennas is typically assumed to be uncorrelated.

The realization of the channel is in principle unknown to the sender and the receiver. Although
decoding without channel knowledge (non-coherent detection) is possible with some MIMO
schemes [Mie+09], in LTE decoding relies on channel knowledge (channel state information,
CSI) at the receiver. There exist MIMO mechanisms which operate without channel knowledge
at the transmitter, but also others that rely on it.

The receiver can acquire CSI by evaluating reference symbols. The transmitter can get CSI either
by signaling or by utilizing the reciprocity of the UL and DL channels. However, reciprocity
can only be assumed if both directions share the same frequency band.9 Measurement and
reporting of the channel state introduce overhead. In addition, if the channel changes quickly,
signaling latency can render CSI inaccurate or even obsolete. A detailed introduction to channel
measurement and reporting in LTE is provided in section 2.3.6.

8Note that in some scenarios also other channel effects like pathloss and shadow fading of the elements of the
channel matrix may differ. See e. g. MU-MIMO introduced in section 2.3.4.2.

9I. e. for TDD systems, see section 2.4.1.1.
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2.3.4.2 Transmitter Side MIMO Techniques

For transmit side MIMO operations, the following discussion differentiates between those
transmitting only a single data stream and those transmitting multiple data streams. Both
objectives can be achieved either with taking CSI into account, or without relying on CSI.

Beamforming means that CSI is used to optimally transmit a single signal via multiple transmit
antennas.10 For each antenna, the transmitter applies a different phase shift to the signal, such
that its variants sum up constructively at the receiver. Formally, beamforming can be described
as multiplying the scalar signal G with a complex vector w before transmission. With a single
receive antenna, the channel matrix H reduces to the vector h. This results in equation (2.3)
being modified to

H = hwG + =. (2.4)

Beamforming statistically improves the SINR in a mobile network, because the desired signals
benefit from phase alignment, while interfering signals experience random phase shifts. Alterna-
tively, instead of achieving perfect coherent combination at the receiver, the weighting vector can
be designed to cause destructive combination at another receiver. This is known as zero-forcing.

Diversity describes the fact that under ideal conditions, the elements of the channel matrix fade
independently. Without knowledge of the realization of the channel, it can be assumed that the
probability that all elements simultaneously experience unfavorable fading is low. This can be
used to increase the robustness of a transmission.

A multi-antenna transmitter without CSI can apply special encoding to make use of channel
diversity. One such encoding has been proposed by Alamouti [Ala98]. In LTE, a similar
technique is applied, which is termed space-frequency block coding (SFBC). Here, the first
antenna transmits two symbols on adjacent subcarriers. The second antenna simultaneously
transmits a different version of the same symbols. There, the symbols are swapped, complex
conjugated, and the first one is negated. An extension of this mechanism (frequency-switched
transmit diversity, FSTD) is applicable to four transmit antennas.

Given that the system has several transmit and several receive antennas, spatial multiplexing
transmits multiple data streams in parallel. With a linear detector and favorable channel conditions,
up to ; = min(#Tx, #Rx) layers or spatial streams can be transmitted and decoded by the receiver.
This means that on the same subcarrier at the same point in time, ; independent symbols are
transmitted in parallel. There are different possibilities to realize this.

In principle, a separate stream of data can be transmitted by each transmit antenna. The receiver
then needs to decorrelate the transmitted streams. However, this is only possible if #Tx ≤ #Rx
and the correlation of the channel matrix is sufficiently low. Thus, if #Tx > #Rx, some transmit
antennas remain unused. Also, a significant amount of energy may be transmitted into directions
other than the receivers’.

Alternatively, the transmitter can precode the signal before transmission. In general, the ; transmit
signals can be mixed arbitrarily on each of the #Tx transmit antennas. Referring to beamforming

10A single antenna is sufficient to receive a signal from a beamforming transmitter. However, as introduced above,
the receiver can make use of additional antennas to suppress noise and interference.
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as introduced above, this can also be interpreted as simultaneously transmitting multiple beams.
Formally, equation (2.3) is extended by a complex weighting matrix W of size #Tx × ;:

y = HWx + n. (2.5)

As with beamforming, the precoding matrix W has to be selected such that the components of
a single signal add up constructively at the receiver, i. e. their phases are aligned. In addition,
interference between data streams has to be avoided. This means that the data streams have to
appear orthogonal to the receiver. With ideal CSI, using the singular value decomposition (SVD)
to decompose the channel into independent spatial subchannels results in optimal performance
[CTL12]. However, ideal CSI can typically not be acquired, because fast fading changes too
quickly and signaling overhead would be significant.

Precoded spatial multiplexing can be performed either with frequently signaled, quantized CSI
(closed loop precoding), or by falling back to longer-term statistical CSI (open loop precoding).
Closed loop precoding tries to follow the variations of the channel to approximate the performance
that would be achieved by a SVD. In LTE, the receiver measures the channel and selects an entry
from a predefined codebook which maximizes the capacity. This is signaled to the transmitter,
together with the supported favored number of layers.

If the channel changes too quickly, open loop precoding can be used instead. Different precoding
matrices are used for each subcarrier. Transmitting a single codeword with different precoding
matrices achieves diversity. The probability that at least some of the applied precoding matrices
are suitable for the instantaneous channel matrix is high. A strong FEC coding allows to recover
the remaining symbols. For open loop precoding, the transmitter does not require information
about the realization of the channel matrix. However, the receiver is required to inform the
transmitter about how many layers to transmit.

MIMO can be extended to multiple users, which is called multi-user MIMO (MU-MIMO). For
example, a BS with multiple antennas can simultaneously transmit data to multiple UEs. In
principle, this can be seen as generalized case of precoded spatial multiplexing, where the channel
matrix consists of the combined channels of the served users. An overview over techniques for
MU-MIMO, including non-linear precoding, is given by Spencer et al. [Spe+04].

MU-MIMO can have multiple advantages. First, the BS may have significantly more antennas
than the UEs. As spatial multiplexing to a single receiver is limited by the lower number of
receive antennas, transmitting to multiple UEs in parallel allows to increase the number of spatial
streams and thereby use the BS antennas more efficiently. Second, even if multiple antennas are
available at UE side, their closed spacing often causes their received signals to be correlated. In
contrast, UEs at different positions experience less correlation of their channels. Third, the BS
can select a subset of UEs for parallel service. It thereby has some influence on the combined
channel matrix. This can be used to maximize the orthogonality of the channels. Drawbacks
of MU-MIMO are that each UE receives only part of the transmit power and that RA becomes
complex, because it includes the selection of subsets of the UEs to be served simultaneously.
MU-MIMO is not considered in this thesis.
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2.3.4.3 Receiver Side MIMO Techniques

A MIMO receiver sees the transmitted symbols multiplied with the product of precoding matrix
and channel matrix. The concatenation of precoding matrix and channel matrix can be interpreted
as effective channel Heff, which distorts the transmitted symbols. The receiver has to revert this
effect to decode the data.

First, assume that there is a single transmit antenna (#Tx = 1) and multiple receive antennas.
Equation (2.3) can then be reformulated as

y = hG + n. (2.6)

Here, the received signal vector y consists of differently distorted versions of the same transmitted
signal G and noise. The same is true for a beamforming transmitter. There, h is replaced by
heff = hw, with w as introduced in equation (2.4).

An arbitrary linear combination of the elements of the received signal vector can be formulated
as multiplication with a weighting vector g, i. e.

H = g (heffG + n) . (2.7)

The receiver can realize diversity by always decoding the signal of that antenna which received
the highest power. This means that only a single element of g is set to one, the others to zero.
This approach is known as antenna selection.

Better performance is realized by coherently combining the received signals. This improves
the SNR, because noise received on different antennas can be assumed to be uncorrelated. In
addition, it implicitly suppresses interference, because the sensitivity of the receive antenna array
is steered towards the transmitter of the desired signal. Other weightings can be used to explicitly
suppress strong interferers.

Antenna selection and coherent combining are here introduced for a single transmitted signal.
They can also be applied with a more complex multi-antenna transmitter, given that there are
sufficient degrees of freedom left, i. e. the receiver does not necessarily need all available antennas
to decode the transmitted signal.

Multiple receivers have also been developed for spatial multiplexing. The simplest one are the
linear receivers called zero-forcing (ZF) and minimum mean squared error (MMSE). Here, the
receiver multiplies the received symbols with a matrix, i. e.

y = G (Heffx + n) . (2.8)

The ZF receiver inverts the channel and precoding. The matrix G is defined as

GZF = H†eff =

(
HH

effHeff

) −1
HH

eff, (2.9)
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where ()† denotes the pseudo-inverse, ()H the Hermitian transpose, and ()−1 the inverse of a
matrix. The ZF receiver ideally decorrelates the data streams. However, it suffers from noise and
interference amplification.

The MMSE receiver also takes into account noise and interference. It thereby achieves better
performance. For MMSE, the matrix G is defined as

GMMSE =

(
HH

effHeff +
I
d

) −1
HH

eff, (2.10)

where d is the SNR and I the identity matrix of appropriate size.

Even higher performance can be achieved with non-linear receivers, e. g. successive interference
cancellation (SIC) or maximum likelyhood (ML). A SIC receiver iteratively decodes streams
and subtracts their interference from the received sum signal. The ML receiver theoretically
achieves the optimal performance by evaluating all possible combinations of transmitted symbols.
However, it is computationally complex. Therefore, approximations like sphere decoding are
sometimes implemented instead. A detailed explanation of these and additional receivers is
provided by Chiueh, Tsai, and Lai [CTL12].

2.3.4.4 Standardization and Implementation in LTE

MIMO operation for DL transmissions in LTE is standardized in [3GPP 36.211] since Release 8.
MIMO for UL transmissions is introduced by Release 10. The remainder of this section focuses
on DL. The standard allows to use different MIMO techniques. The BS can select the one
suitable for the respective channel and other conditions.

For quickly moving UEs, the coherence time of the channel is short. It is therefore difficult to
acquire useful CSI. Consequently, the BS uses a transmit side diversity encoding or open loop
precoding. In contrast, for slow UEs channel measurement is possible. Highest performance
is then realized with beamforming or closed loop precoding. Often, in low SINR scenarios, as
typical for UEs close to the cell border, it is most efficient to transmit a single data stream with
high reliability, i. e. use transmit side diversity encoding or beamforming. For situations with
high SINR, capacity can be increased by spatial multiplexing.

Independent of whether CSI is required at the transmitter, the receiver has to estimate the channel
effects. Therefore, LTE uses reference symbols, as introduced in section 2.3.2.2. Two approaches
exist in LTE to derive the effective MIMO channel.

Release 8 defines Cell-Specific Reference Signals (CRSs). These are transmitted over the whole
bandwidth. They are independent of allocations of the channel to UEs, and thereby not affected
by precoding. Each antenna transmits a predefined pseudo-random sequence of symbols. The
same subcarrier is not simultaneously used by the other antennas. Thereby, the UEs can measure
the channels of up to four antennas. To derive the effective channel, the applied precoding matrix
has to be signaled to the receiving UE. A codebook with precoding matrices is defined to reduce
signaling overhead.
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In addition to CRSs, Demodulation Reference Signals (DM-RSs) are introduced by LTE Release 9.
They are multiplexed with the data symbols before precoding. They are therefore affected by
the precoding and the channel. The receiving UE can use DM-RSs to estimate the effect of the
effective channel without understanding the processing performed at the transmitter. As the BS
is not required to signal the applied precoding, it is not restricted to the codebooks defined in the
standard, but can instead use arbitrary precoding matrices.

The actual number and configuration of antennas at the base station is not relevant to the UEs.
Instead, the UEs only have to be able to understand how data is precoded. In case of DM-RSs this
is possible without further restrictions. In case of CRSs, the transmission of reference symbols
and the data (precoded by a precoding matrix from the codebook) has to be consistent. Therefore,
LTE defines MIMO modes in terms of antenna ports, not antennas. A single antenna port can
consist of multiple antennas, e. g. vertical array of separate antenna elements. The mapping from
antenna ports to antennas can be seen as a second precoding.

This concept can also be used to hide antennas from legacy terminals. For example, an LTE-A
BS with eight antennas can combine those to four antenna ports with two antennas each. It can
use those four antenna ports to serve Release 8 UEs. Simultaneously, it can use another eight
antenna ports, which now directly map to the antennas, to serve Release 10 UEs.

Antenna ports are identified by numbers. CRSs are transmitted on ports 0, 0 to 1, or 0 to 3,
depending on how many antennas the BS wants to advertise to legacy terminals. The mapping
from these ports to physical antennas is always constant. In contrast, ports 5 and 7 to 14 are
intended to be used with DM-RSs. Their mapping to physical antennas can differ, e. g. it is
adapted to the different channels of different UEs. Other ports are used for special reference
symbols or multicast operation.

For efficient signaling LTE defines transmission modes (TMs) to be used for data transmissions on
the PDSCH [3GPP 36.213]. A separate TM is semi-statically configured for each UE. While some
information regarding the MIMO scheme is fixed by the TM, other configuration can be selected
independently for each allocated set of resources. This allows to adapt to the instantaneous
channel conditions. This adaptation, together with AMC introduced in section 2.3.3, constitutes
the LA mechanism.

The TMs defined up to LTE Release 12 are listed in table 2.4. TMs 1 to 7 are contained in the
Release 8 specification. TMs added in later releases are not supported by legacy UEs.

Each TM restricts the usable multi-antenna schemes. In addition, the TMs differ in terms of
reference symbols used for decoding.11 The number of transmitted layers and the actual precoding
matrix (if applicable) is free to be configured separately for each allocated set of resources. All
modes except TM 1 allow to fall back to SFBC. This allows reliable communication in case no
up-to-date channel measurements are available. It also allows the system to recover when the
situation of the UE changed so that the configured TM is no longer suitable.12

11Channel measurements are also defined differently, see section 2.3.6.
12An example for such recovery is when a slowly moving UE was configured in TM 4, but suddenly starts to move

quickly so that accurate CSI cannot be acquired any more. In that case, the eNodeB can use SFBC transmission to
transmit outstanding data and to change the TM to something more suitable, e. g. TM 3.
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Table 2.4: Transmission modes defined in LTE [3GPP 36.213; DPS14]

TM description
max. num.

layers
ref. syms.
for demod.

ant.
ports

LTE
Rel.

1 single antenna 1 CRSs 0 8
2 transmit diversity (SFBC) 1 CRSs 0-3 8
3 open-loop codebook based precoding 4 CRSs 0-3 8
4 closed-loop codebook based precoding 4 CRSs 0-3 8
5 closed-loop codebook based precoding for

MU-MIMO
1 CRSs 0-3 8

6 closed-loop codebook based single layer
precoding (beamforming)

1 CRSs 0-3 8

7 non-codebook-based precoding 1 DM-RSs 5 8
8 non-codebook-based precoding 2 DM-RSs 7-8 9
9 non-codebook-based precoding 8 DM-RSs 7-14 10
10 non-codebook-based precoding for CoMP 8 DM-RSs 7-14 11

MU-MIMO can be used to transmit data to two UEs in TM 5 since Release 8. This relies on
CRSs and codebooks as defined for spatial multiplexing. Here, a separate TM is required because
the UEs have to be aware of the power reduction: While each UE receives only a single layer, the
transmit power is split between the two layers for the two UEs. This restriction is lifted with the
introduction of DM-RSs. As the receiver is not required to understand the processing performed
by the transmitter, multiple UEs can be served simultaneously without notification.

MIMO operation is part of the LTE PHY layer. It can be seen as sublayer above OFDM processing
and below FEC coding and modulation. In case of spatial multiplexing, typically two codewords
are modulated and spread to the layers.13 Two codewords allow to use different modulation and
coding to adapt to the possibly different capacity of the layers. Separate codewords also allow
the receiver to employ SIC, i. e. decode one codeword, subtract its interference, and then decode
the other codeword. In contrast, spreading a codeword to multiple layers makes use of diversity.
The sizes of the codewords are chosen such that the same number of modulated symbols are
transmitted on each layer. It can occur that one codeword can be received correctly while the
other one is not decodable. Thus, separate HARQ processes are used for the codewords, and
codewords can be retransmitted independently.

Figure 2.7 shows a schematic of the DL MIMO processing chain in a BS. It assumes a BS with
eight antennas. The operations for TMs that rely on CRSs are shown on the right, those for
TMs using DM-RSs on the left. Each arrow represents the flow of data for a codeword or layer.
Optional codewords and layers are represented by dashed arrows.

The processing begins with modulated symbols for one or two codewords per UE. These
codewords are mapped to layers (step A ), i. e. each codeword is either allocated to a layer as

13A single codeword is used for single-layer transmissions. A single codeword spread to multiple layers can only
be used for retransmissions.
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Figure 2.7: DL transmit processing chain for MIMO operation

a whole, or its symbols are spread to multiple layers. The result are multiple layers with the
same number of modulated symbols each. For the following steps, depending on the used TM,
codebook based precoding or non-codebook based precoding is used.

For codebook based precoding, the symbols of the layers are now directly multiplied with the
precoding matrix W taken from the standardized codebooks (step B ). The number of antenna
ports transmitting CRSs is configured statically. The result of the codebook based precoding is
always one symbol per CRS antenna port. After precoding, the precoded symbols are interleaved
with CRSs (step C ). The combination of precoded data symbols and CRSs is now mapped
to antennas (step D ). This can involve a second step of precoding, however in this case the
precoding matrix has to be constant.

For non-codebook based precoding, the original symbols mapped to layers are first interleaved
with DM-RSs (step E ). Then, data symbols and reference symbols are jointly precoded (step F ).
The output of this precoding is one symbol per antenna.14

Finally, symbols for different UEs are multiplexed according to the desired RA (step G ). The
output of the multiplexing is then forwarded to the OFDM processing, i. e. the next step will be
calculation of the inverse DFT.

14Although not depicted in figure 2.7, CRSs are also transmitted on resources which are used to serve UEs
with DM-RSs. All CRSs and all user data precoded with a matrix from a codebook are mapped to antennas by
multiplication with the same constant matrix.
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2.3.5 Opportunistic Resource Allocation

Opportunistic RA also contributes to an efficient utilization of the radio channel. The mechanisms
discussed in the previous sections focus on efficient utilization of the radio channel by a single
UE. In contrast, opportunistic RA targets the utilization of spectrum on cell level.

OFDM divides the available spectrum into a two-dimensional grid of subcarriers (frequency)
and symbols (time). The fast fading of the radio channels of multiple UEs is uncorrelated. Thus,
the capacity of the radio channels to multiple UEs differs. Furthermore, the capacity of the radio
channel to one UE is different on each resource. Assume initially that these capacities are known.
The BS can then assign each resource to that UE which maximizes the capacity for that specific
resource. This maximizes the sum throughput of the cell. However, this approach can incur
disadvantages for those UEs which have a low channel quality in general. Other approaches exist
which make use of the variations but avoid discrimination.

Exact knowledge of the channel capacities cannot be acquired in reality, because they change
over time. The channel parameters are measured, and the measurement serves as a prediction of
the future channel quality. The accuracy of this prediction mainly depends on the velocity of the
UE. Long coherence times of the channels of slowly moving UEs facilitate efficient utilization of
the fluctuations. For faster UEs opportunistic scheduling cannot provide significant benefits.

Frequency diverse RA is a prominent approach to serve those UEs for which the channel quality
is not known accurately. That means that resources which have a separation in frequency of
more than the coherence bandwidth are assigned to each of these UEs. These resources are then
combined by robust FEC coding. Thereby, the risk is reduced that all assigned resources are
impacted by unexpected fading. Frequency diverse RA and opportunistic RA can be combined,
so that each UE is served with the adequate mechanism.

Summarizing, opportunistic RA serves to make efficient use of the radio channels. The RA
mechanism has to balance the requirements of the cell and of all served UEs. RA also has a
significant influence on the compute requirements of an LTE eNodeB. The further discussion
of RA is split into two parts. Section 2.4 describes the framework provided by LTE to allocate
resources. Chapter 3 covers objectives and heuristics for RA, which are not standardized.

2.3.6 Measurement and Reporting of Channel State Information

In LTE the modulation scheme, the code rate, and the MIMO mode used for UL and DL
transmissions are selected by the eNodeB. In addition, the eNodeB performs RA for both
directions. Therefore, it has to be provided with CSI for both channels.

Section 2.3.6.1 gives an overview over the requirements for CSI acquisition. When a UE transmits
data, the UL channel can be measured by the eNodeB itself. This is described in section 2.3.6.2.
The DL channel can be measured by the UEs, and the measured information can be reported to
the respective eNodeB.15 Methods for measurement and reporting of the channel parameters are
described in sections 2.3.6.3 and 2.3.6.4, respectively.

15For TDD operation, it is also possible to measure the UL channel only and use the reciprocity of the channel to
transfer the results to the DL channel. For introduction of TDD refer to section 2.4.1.1.
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2.3.6.1 Requirements

CSI is required for different components of the LTE system. AMC maximizes the capacity and
limits the error rates under all channel conditions (see sections 2.3.2 and 2.3.3). It requires
the eNodeB to estimate the average channel quality of each allocated set of resources. For
MIMO operations, different channel information is required depending on the configured TM
(see section 2.3.4). For spatial multiplexing, the eNodeB has to know the number of supported
spatial layers of the channel. In addition, for closed loop precoding the precoding matrix resulting
in maximum capacity has to be signaled. As this information depends on the fast fading and
thereby varies over the bandwidth of a cell, it is beneficial to have this information for multiple
parts of the cell bandwidth. RA algorithms can use detailed channel information to allocate those
resources to UEs where the respective channel has highest quality. Finally, in multi-cell scenarios
information about channels to neighboring cells can be useful to coordinate transmissions and
thereby avoid interference (see section 4.2).

Ideal CSI is a common assumption for analytical and simulative evaluations, however it cannot
be acquired in real systems. Instead, quantization errors and feedback delay are unavoidable
sources of error. In addition, to reduce overhead for measurement and signaling, real systems
limit the resolution in time and frequency domain.

Characteristics of the environment and the speed of movement of the UE determine the coherence
time16 of the channel. That defines how quickly the CSI becomes obsolete. Thereby it influences
the optimal choice of measurement intervals. The optimal resolution in frequency domain
depends on the coherence bandwidth of the channel.

In case the channel cannot be tracked with sufficient accuracy, the eNodeB can also work with
approximate or even without CSI. A robust MCS maintains reliability with inaccurate CSI.
Robust MIMO modes like SFBC work without channel information. Similar fallback approaches
also exist for RA and interference avoidance. While these approaches are capable of achieving
reliable transmission of data, this comes at the cost of reduced spectral efficiency. An overview
over literature on networks operating with imperfect CSI is provided by Love et al. [Lov+08].

2.3.6.2 Measurement of the Uplink Channel

To measure the UL channel, the UEs transmit signals that are known by the BS. This can be
either DM-RSs, which are embedded in data transmissions, or dedicated reference symbols for
measurement. Using DM-RSs for UL channel measurement does not incur additional overhead.
However, these transmissions do typically not cover the whole bandwidth. Therefore, LTE also
allows the eNodeB to configure UEs to transmit Sounding Reference Signals (SRSs). Their
bandwidth can be configured independently of data transmissions. They are transmitted either
periodically in intervals of 2 ms to 160 ms or are triggered on demand by the eNodeB.

SRSs of multiple UEs can be multiplexed in the frequency domain. In addition, orthogonal
sequences of reference symbols can be used to differentiate multiple UEs transmitting SRSs on
the same subcarriers. The placement of the reference symbols in the time-frequency resource

16For a definition of coherence time and coherence bandwith, please refer to section 2.3.1.
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grid is discussed in section 2.4.2.2. The measurement and evaluation performed by the eNodeBs
is not covered by the LTE standards.

2.3.6.3 Measurement of the Downlink Channel

The measurement of the DL channel is based on CRSs or CSI Reference Signals (CSI-RSs). The
placement of both types of reference signals in the time-frequency resource grid is discussed in
section 2.4.2.1.

CRSs are transmitted on one to four antenna ports. A high density, i. e. small distances
between reference symbols in time and frequency, is required because they are also used for
MIMO decoding and demodulation. UEs can predict channel conditions and interference based
on measurements of these CRSs. To reduce impact of noise and other sporadic effects, the
measurement is averaged over time. As interference can be different in consecutive subframes
(see ABSs introduced in section 4.2.4), Release 10 allows to distinguish different groups of
subframes. However, CRSs come with significant overhead. Therefore, the concept is not
extended to more than four antennas.

In Release 10, the newly introduced TM 9 can use either CRSs or CSI-RSs for channel
measurements. CSI-RSs can be configured for one, two, four, or eight antenna ports. To reduce
overhead, CSI-RSs are not transmitted every subframe, but with a periodicity of 5 ms to 80 ms.
The exact position of the reference symbols can be configured flexibly.

To measure CSI-RSs, the eNodeB can configure each assigned UE differently. Each can have
one set of CSI-RSs where reference symbols are received. In addition, it can ignore multiple sets
of CSI-RSs. The UE then neither uses these symbols for measurement nor tries to decode data.
Thus, the eNodeB can use the ignored CSI-RSs to transmit reference signals to other UEs. The
symbols can also be left empty to measure the channel without interference in an adjacent cell.

TM 10, which is introduced in Release 11, always uses CSI-RSs. There, multiple independent CSI
processes can be configured for each UE. Separate reports for different CSI-RSs configurations
allow the eNodeB to estimate the channel under different transmission hypotheses. Also, signal
strength and interference are measured on different resources. Information about quasi-colocation
can be used to notify the UEs about which antenna ports are located at the same site and which
are not (see section 4.3). This is required when measurements form multiple antenna ports are
combined to estimate large-scale properties (e. g. pathloss and shadow fading).

2.3.6.4 Reporting of Channel Measurements

Reporting of channel measurements in LTE is standardized in [3GPP 36.213]. The parameters
reported by a UE depend on the configured TM.

The channel quality is encoded as channel quality indicator (CQI). This is an index into a
standardized table of modulation and coding schemes, which is reprinted in table 2.5. The
UE signals to the eNodeB that combination which is expected to deliver the highest possible
throughput, but can still be decoded with less than 10 % error probability.
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Table 2.5: List of CQIs standardized by 3GPP [3GPP 36.213 v12.5.0, table 7.2.3-1])

CQI index modulation code rate bits per symbol

0 out of range
1 QPSK 0.076 0.15
2 QPSK 0.117 0.23
3 QPSK 0.188 0.38
4 QPSK 0.301 0.60
5 QPSK 0.438 0.88
6 QPSK 0.588 1.18
7 16-QAM 0.369 1.48
8 16-QAM 0.479 1.91
9 16-QAM 0.602 2.41
10 64-QAM 0.455 2.73
11 64-QAM 0.554 3.32
12 64-QAM 0.650 3.90
13 64-QAM 0.754 4.52
14 64-QAM 0.853 5.12
15 64-QAM 0.926 5.55

The optimal number of spatial layers for MIMO is termed rank indication (RI). For closed
loop precoding, the UE selects an entry from the codebook which results in maximum channel
capacity. The respective index, called precoding matrix indicator (PMI), is signaled to the
eNodeB. Different codebooks are defined for two, four, and eight antennas. The reporting is also
based on codebooks for TMs that use non-codebook based precoding.

If spatial multiplexing is used, two CQI values can be reported for the two codewords. CQI and
PMI can be frequency selective, while the RI is always valid for the whole bandwidth. To reduce
overhead, frequency selective reporting has a coarse granularity, which is defined as subbands.17
Each UE reports parameters optimal for the channel conditions from its point of view. However,
those can be overridden by the eNodeB.

Reporting can be either periodic or aperiodic. For periodic reporting, the eNodeB configures a
reporting interval up to every 2 ms. The reports are typically transmitted on PUCCH, where the
capacity for each UE is low. Therefore they are optimized for small overhead. The reports can
either be wideband, i. e. valid for the whole cell bandwidth, or frequency selective. In case of
frequency selective reports, the UE cycles through parts of the bandwidth. In each report, data
for one of the parts is transmitted.

Aperiodic reports are requested by the eNodeB on demand, in combination with a grant to
transmit the result on PUSCH. As they are not transmitted unnecessarily, and PUSCH has higher
capacity than PUCCH, more detailed information can be signaled. All aperiodic reports include
a wideband CQI. In addition, frequency selective parameters are reported. Either the UE selects
preferred subbands and reports parameters for those, or the subbands are selected by the eNodeB.

17Each subband comprises of two to eight PRBs, as introduced in section 2.4.1.2.
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Figure 2.8: DL processing chain, exemplary configuration for three UEs and eight transmit antennas
(partially following [DPS14])

In case the UE is configured with multiple CSI processes, the eNodeB can selectively request
reports for a subset of the processes.

2.3.7 Summary and Overall Picture

Figure 2.8 summarizes the physical layer processing an eNodeB performs to transmit data to
UEs. The first steps operate independently for each UE.

Higher layers supply the data in one or two transport blocks (depending on the applied MIMO
mode). These are first protected by a CRC (step A ). This allows the receiver to detect
decode errors. Data and checksums are then encoded by a turbo code with fixed rate (step B ).
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Subsequently, a subset of the encoded bits is selected to match the desired code rate (step C ). The
remaining information is stored to provide incremental redundancy for HARQ retransmissions.
The encoded bits are then modulated (step D ) and forwarded to the MIMO processing block
(step E ). That maps the modulation symbols to spatial layers, optionally adds DM-RSs, and
applies precoding.18 This completes the UE-specific processing.

Subsequently, the data transmitted to different UEs is multiplexed (step F ). Thereto, the precoded
symbols are inserted into a common data structure which encompasses the whole subframe. This
data structure also integrates other physical channels (e. g. PDCCH and PBCH) and signals (e. g.
CRSs and CSI-RSs) into the radio frame.

The following processing steps operate on the combined subframe. The signal for each transmit
antenna is processed independently. First, the FFT is used to calculate the inverse DFT for each
OFDM symbol (step G ). Then, the CP is prepended to each OFDM symbol and the symbols
are concatenated to a continuous signal (step H ). The resulting signal is then filtered digitally
(step I ). For example, digital pre-distortion (DPD) anticipates and compensates non-linear
effects of the power amplifier. Finally, the signals are converted to the analog domain, where
they are further filtered, amplified, and forwarded to the antennas.

The receiving side of the eNodeB is not shown in the figure. In principle, that performs the same
tasks in reverse. The most prominent difference is that DFT-spread OFDM requires a second
DFT operation per UE. In addition, MIMO processing and demodulation have to estimate the
UL radio channel from the embedded reference signals.

To make efficient use of the radio channels, LTE performs LA. Thereto, the eNodeB uses MIMO
modes which are best suitable for the current channel conditions. In addition, it applies AMC,
i. e. it selects modulation schemes and code rates to balance capacity and robustness. These
are mechanisms which operate independently for each UE. The eNodeB furthermore applies
opportunistic scheduling to allocate only those parts of the radio spectrum to each UE which
can be used efficiently. All these mechanisms rely on CSI, which has to be acquired from
measurements performed by the UEs.

Certain timing-constraints apply to the shown processing chain. First, the sizes of the transport
blocks depend on the amount of radio spectrum allocated to each UE. Thus, the processing can
only begin after the RA has completed its allocations. Second, the output of the processing chain
has to be delivered to the DAC in time, so that the specification of the radio interface is met.
Further restrictions on the timing are imposed by the design of the HARQ protocol. These imply
that, to make best use of the available HARQ processes, after receiving an UL subframe the
eNodeB has to perform RA and the DL processing in about 3 ms [DPS16, section 8.3.1].

After RA is completed, the user specific processing can be parallelized easily, because there
are no interdependencies between different UEs. Furthermore, when a subframe has been
assembled, the further processing can be performed independently for each transmit antenna. In
addition to these options for parallelization, the described timing constraints suggest a pipelined
implementation. For example, the cell specific processing for subframe =, the user specific
processing for subframe = + 1, and the RA for subframe = + 2 could be processed simultaneously.

18These operations are depicted in more detail in figure 2.7. Note that, in contrast to that figure, CRSs are here
shown to be integrated during frame assembly, because they are not associated with a single UE. Also, the mapping
from antenna ports to antennas is not shown here.
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2.4 Framework for the Management of Radio Resources

LTE systems can use a large bandwidth to achieve high throughput. The applied modulation
scheme OFDM brings high flexibility, as the system bandwidth is split into many orthogonal
subcarriers. These can be used for data transmission. In addition, reference signals have to be
transmitted to support highly efficient modulation and coding and complex MIMO schemes. A
sophisticated resource management is required to achieve efficient utilization of the resources.

In this thesis, the discussion of the management and allocation of radio resources is split into
two parts. This section introduces the framework for the allocation of channel resources that is
standardized in LTE. The actual algorithms that decide which resources are allocated to which
UE are not covered by the LTE standardization. These algorithms are introduced in chapter 3.

The introduction of the framework for resource management is structured into three subjects.
First, section 2.4.1 defines how the channel resources are divided into orthogonal units. Second,
section 2.4.2 describes how the different channels and signals used by LTE are mapped to these
units. Third, section 2.4.3 targets the signaling mechanisms used to inform UEs about their
allocated resources. Finally, section 2.4.4 provides a summary and discusses implications of this
framework on resource allocation.

2.4.1 Structuring of Channel Resources

This section describes the general structure of the radio resources available to the LTE air interface.
Section 2.4.1.1 covers the coarse-grained structures of carriers for UL and DL transmission.
Subsequently, section 2.4.1.2 introduces the resource grid which resembles the fine-grained
subdivision of a single carrier.

2.4.1.1 Duplexing Schemes and Carriers

LTE supports different frequency bands. The list of bands, which is specified in [3GPP 36.104],
is continuously extended to keep up with global frequency allocations. Each band has a duplexing
scheme assigned, which is introduced in the following paragraphs.

The most efficient duplex scheme is full duplex, where each of two communication partners
transmits and receives at the same time on the same resources. However, when information
is transmitted via a wireless channel, there is a significant imbalance between the transmitted
power and the power of the received signal. In full duplex operation, this would cause strong
self-interference. Therefore, wireless systems do typically not employ full duplex.19 Instead,
transmission and reception of signals are separated in time and / or frequency.

For maximum flexibility LTE supports two duplex schemes: In frequency division duplex (FDD),
UL and DL transmissions are performed on two separate carriers. Both carriers are not directly
adjacent, but separated by a guard bandwidth. This allows a receiver to filter out the band on

19Full duplex is in principle possible if self-interference can be canceled. However, this is still a research topic
and not implemented in real systems [Zha+16]
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which the local transmitter operates and thereby suppress self-interference. For FDD, two carriers
have to be allocated, which is sometimes termed paired spectrum. In time division duplex (TDD),
a single carrier is alternately used for UL and DL transmissions. Guard times between the two
sections are required to switch from transmit to receive mode and vice-versa. These guard times
also have to account for propagation delays. In Germany and Europe FDD systems predominate
the marked [BNetzA16], while TDD is more common in Asia. This thesis focuses on FDD.

LTE supports different carrier bandwidths, so that it can be deployed flexibly. According to
[3GPP 36.104], the bandwidth of a carrier can be 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz or
20 MHz. The subcarriers have a constant bandwidth of 15 kHz, but the number of subcarriers
depends on the carrier bandwidth. The transmitted signals do not cover the full bandwidth, but
the numbers already include small guard bands, which are left free.

To support wider bandwidths while being compatible to previous releases, a single BS can host
multiple cells, each offering service on a different carrier. However, in Releases 8 and 9, a UE can
be connected only to a single cell at a time. Therefore, the peak data rate per UE is limited by the
bandwidth of a single carrier. To mitigate this drawback, carrier aggregation (CA) is introduced
by Release 10 [3GPP 36.300]. This allows a UE to be simultaneously connected to and served
by multiple cells. Aggregated carriers have independent PHY layers. The combination of the
carriers is performed by the MAC layer, so that it is invisible to higher layers [DPS16].

2.4.1.2 Definition of a Resource Grid

In [3GPP 36.211], LTE defines a two-dimensional grid of resources. In time domain, the largest
unit is a radio frame with a duration of 307200 · )B = 10 ms.20 The structure of radio frames
is different for TDD and FDD systems, and is here presented only for the latter. A radio frame
consists of ten subframes with a duration of 1 ms each. The subframe is the scheduling interval,
which is also known as transmission time interval (TTI). Each subframe comprises two slots of
duration 15360 ·)B = 0.5 ms. A slot comprises either seven or six OFDM symbols, depending on
the length of the CP. This structure is depicted in figure 2.9. It is valid for UL and DL operation.

In frequency domain, the resource grid consists of subcarriers. The number of subcarriers
depends on the carrier bandwidth. For example, a system with 20 MHz uses a DFT with 2048

20With )B ≈ 32.6 ns as introduced in section 2.3.2.3.
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Figure 2.10: Resource grid for one subframe and 1.5 MHz carrier bandwidth

points. However, only 1200 subcarriers are used to transmit data, while the others are left free as
guard band or to avoid effects with the central carrier.

The resulting two-dimensional resource grid consists of resource elements (REs). Each RE
is a subcarrier in a single OFDM symbol, and carries a modulation symbol as introduced in
section 2.3.2.1. To simplify the mapping of resource elements to transmitted data, LTE also
defines physical resource blocks (PRBs). A PRB consists of the REs of twelve consecutive
subcarriers and seven consecutive OFDM symbols, thus 84 REs. The resource grid for one
subframe in a system with the minimum bandwidth of 1.5 MHz is depicted in figure 2.10.
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Figure 2.11: Placement of synchronization signals and PBCH

2.4.2 Mapping of Physical Channels and Signals to Resources

As introduced in section 2.2.1, LTE uses physical channels to describe the usage of resource
elements. Physical channels either have a transport channel assigned, i. e. carry information
from higher layers, or carry PHY layer control information. In addition, physical signals are
transmitted. The mapping of channels and signals to REs is discussed in the following two
sections for DL and UL, respectively.

2.4.2.1 Downlink

In DL direction, an eNodeB transmits multiple physical channels as listed in section 2.2.1. In
addition, it transmits synchronization signals and reference signals. Synchronization signals
are used by UEs to detect a cell and synchronize on the DL carrier. Reference signals serve to
estimate the DL channels and to decode transmissions on the physical channels.

The Primary Synchronization Signal (PSS) and the Secondary Synchronization Signal (SSS)
allow a UE to learn the frame timing of the cell, the used duplex mode, and the cell’s physical-layer
cell id. For FDD, they are transmitted in subframes 0 and 5 of each frame. There, PSS and SSS
occupy the central 72 subcarriers in the sixth and seventh OFDM symbols, respectively. Basic
information required by UEs to connect to a cell is broadcasted on the PBCH. This occupies the
central 72 subcarriers in the first four OFDM symbols of the second slot in subframe 0 of each
frame. The location of the REs for PSS, SSS, and PBCH is marked in figure 2.11. These REs
are not used for other transmissions.

The location of reference signals is defined per subframe. It is shown for two consecutive PRBs
of a subframe in figure 2.12.

CRSs are transmitted on one, two, or four antenna ports. To avoid interference between antenna
ports, a RE used to transmit a reference symbol on one of the antenna ports is left free on the
other antenna ports. Each cell transmits one of 504 different sequences of reference symbols,
corresponding to its physical-layer cell id. Also based on the physical-layer cell id, a shift in



2.4 Framework for the Management of Radio Resources 43

CRS antenna port 0
CRS antenna port 1
CRS antenna port 2
CRS antenna port 3
DM-RS set A
DM-RS set B

t

F

CSI-RS
control region
data region

Figure 2.12: Allocation of REs to physical channels and signals in DL

frequency of up to five REs is applied to the positions of the CRSs. The power of the reference
symbols can be boosted compared to the power of the other symbols. These approaches allow
reliable estimation of the channel even in the case of strong interference. In total, four, eight,
or twelve REs are occupied by CRSs when one, two, or four antenna ports are configured,
respectively.21 These are always transmitted, even if DM-RSs are used for demodulation and
CSI-RSs for channel estimation.

DM-RSs can be used instead of CRSs for demodulation (see also section 2.3.4.4). Two different
structures of DM-RSs were standardized for one antenna port in Release 8 (TM 7) and for one and
two antenna ports in Release 9 (TM 8). The latter was later extended for up to eight layer spatial
multiplexing (TM 9 and TM 10) and is presented here. Two disjoint sets of REs can be used for
DM-RSs (here denoted as A and B; see also figure 2.12). These and orthogonal sequences of
reference symbols are used to separate the antenna ports. The transmitted sequences of reference
symbols depend on the cell ID or, since Release 11, on a per-UE configuration. DM-RSs are only
transmitted on those PRBs allocated to a UE that use TM which relies on DM-RSs. Therefore,
they do not impact transmissions to other UEs. A similar structure of reference symbols is also
used for demodulation of EPDCCH.

CSI-RSs can be used to measure the DL channel as described in section 2.3.6.3. The REs which
can be used for CSI-RSs are colored purple in figure 2.12. The periodicity and position of the
CSI-RSs can be configured.

The remainder of the subframe is divided into a control and a data region. The control region
carries the PCFICH, the PDCCH, and the PHICH. The data region carries all other physical
channels. Despite being a control channel, the EPDCCH is transmitted in the data region. To
dynamically reduce overhead, the control region has variable size and covers one to three OFDM
symbols.22 Its size is signaled via the PCFICH in the first OFDM symbol of each subframe.

The PDSCH is used to serve multiple UEs simultaneously. The allocation of these resources to
UEs is flexible. It can be adapted to the channel conditions and the higher layer requirements.
The objectives and strategies for this allocation are discussed in chapter 3.

21The density of CRSs on antenna ports 0 and 1 is higher than on ports 2 and 3. This results in a more robust
channel estimation on these ports.

22Or two to four for small bandwidths.
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2.4.2.2 Uplink

In UL direction, UEs transmit physical channels as defined in section 2.2.1. In addition, two
types of reference signals are transmitted. DM-RSs aid the decoding of PUCCH and PUSCH.
SRSs are transmitted to allow the eNodeB to measure the UL channel (see section 2.3.6.2).

A low PAPR is important to avoid overly complex power amplifiers in the UEs (see also
section 2.3.2.2). Therefore, the modulation of each channel and signal is designed to minimize
PAPR. In addition, frequency multiplexing of channels and signals of a single UE is avoided.
Instead, transmissions are multiplexed in the time domain. Before Release 10, a UE never
transmits on PUCCH and on PUSCH simultaneously. Also, the RA mechanism ensures allocation
of adjacent subcarriers in PUSCH. This restriction is partially relaxed in Release 10 for UEs
whose power amplifiers have sufficient headroom.

In the PUSCH, DM-RSs are transmitted on all subcarriers in the fourth OFDM symbol of each
slot. The sequence of reference symbols depends on the physical-layer cell ID or on terminal
specific configuration. It has been designed to achieve orthogonality between spatial streams
transmitted by the same UE and between multiple UEs in the same cell transmitting on the
same PRBs in a MU-MIMO system. In addition, UEs of neighboring cells should also use
pseudo-orthogonal sequences.

The PUCCH uses a different method to transmit reference symbols for demodulation, which is
also based on orthogonal sequences. To avoid segmentation of available bandwidth, PUCCH
resources are allocated from the lowest and highest PRBs of a carrier. To increase robustness,
frequency hopping is always applied for PUCCH.

SRSs are transmitted with configurable bandwidth on every second subcarrier in the last OFDM
symbol of a subframe. UEs are configured to do not transmit on the respective OFDM symbol
whenever that is used for SRSs by the same or another UE.

2.4.3 Signaling of Allocated Resources

Every subframe, an eNodeB performs RA for PDSCH and PUSCH. The resource grants for UL
and DL are then communicated to the UEs via the PDCCH. These PHY layer control messages
also contain information about modulation scheme, code rate, HARQ, MIMO, and power control.
The specification of the allocated resources in the signaling message imposes certain restrictions
on the RA. Also, the capacity of the control channel is limited, which can prohibit signaling of
combinations of sets of allocated resources. These topics are discussed in the following sections.

2.4.3.1 Specification of Allocated Resources

Resources of PDSCH and PUSCH are allocated with a granularity of pairs of PRBs. Each PRB
pair is transmitted in consecutive slots of the same subframe. To support frequency selective
and frequency diverse allocation of resources, LTE introduces virtual resource blocks (VRBs) as
an abstraction for resource specification [3GPP 36.211]. The eNodeB allocates pairs of VRBs,
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which are then mapped to pairs of PRBs by different mapping functions. The type of mapping
used is signaled to the UE as part of the RA grant.

To allow for frequency selective scheduling, VRBs can be mapped directly to PRBs, so that
adjacent VRBs are mapped to adjacent PRBs (localized mapping). For DL LTE also supports
distributed mapping for a frequency-diverse RA. There, adjacent VRBs are mapped to distant
PRBs. In addition, the mapping is different in both slots of a subframe. A similar concept is
implemented by frequency hopping in UL.

After allocating resources for DL transmissions, the eNodeB has to encode the allocation to
communicate it to the UEs. For the design of this encoding, diverse objectives were taken into
account. The encoding has to be efficient, while providing flexibility for frequency selective
scheduling when required. At the same time, it has to support allocations consisting of a single
up to all VRBs. Therefore, three different RA types are defined in [3GPP 36.213].

For type 0, VRBs are divided into resource block groups (RBGs), such that each RBG consists
of consecutive VRBs. The group size depends on system bandwidth.23 The eNodeB can then
allocate arbitrary groups to a UEs by specifying a bitmask. Type 0 is only used with localized
VRB mapping. Type 1 uses the same definition of RBGs as type 0. Here, the RBGs are
aggregated to sets, where the number of sets equals the RBG size. An interleaving pattern
allocates the RBGs to the sets. The eNodeB specifies one of the sets and a bitmask to select one
or multiple VRBs out of that set.24 As type 0, type 1 is only used with localized VRB mapping.
In contrast to the previous RA types, type 2 is used for the allocation of a continuous range of
VRBs with low overhead. This is the only RA type also supporting distributed VRB mapping.

The three RA types target different objectives. Types 0 and 1 are optimized for frequency
selective scheduling. While type 0 allows to allocate arbitrary VRBs, the granularity is restricted
to full RBGs. Type 1 allows the scheduler to allocate single VRBs, but restrictions apply for the
combination of VRBs. Type 2 imposes less overhead, but further restricts the combination of
VRBs. It is preferred for frequency diverse scheduling. Thus, the RA types are applicable for
different classes of UEs.

A similar approach is used to encode UL allocations. It is simpler than the scheme for DL,
because the UL allocations have to be continuous to achieve a low PAPR. Two RA types are
defined for UL. Type 0 is equal to type 2 as specified for DL. Instead of distributed VRB
mapping, it allows to enable frequency hopping. Type 1 is introduced in Release 10. It is based
on the definition of RBGs as introduced for DL. It allows to signal two blocks of consecutive
RBGs. Here, frequency hopping not supported.

2.4.3.2 Transmission of Resource Allocation Messages

After being encoded with one of the types described above, RA messages have to be transmitted
to the UEs via PDCCH or EPDCCH. The capacity of these control channels is limited. The
following paragraphs consider the capacity of the PDCCH.

23The size of the RBGs is one, two, three, and four for systems with up to 10, 26, 63, and 110 PRBs, respectively.
24To reduce size of the allocation bitmask, that covers only a part of a set. A single bit encodes which part.
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As introduced in section 2.4.2.1, the size of the control region of a subframe is adapted dynamically.
It is shared by PCFICH, PHICH, and PDCCH. The size of the control region is communicated
via the PCFICH, which encodes these two bits into 16 REs. The PHICH carries HARQ feedback
for UL transmissions. The number of REs required for PHICH is semi-statically configurable, as
it has to be adapted to the number of UL RAs. The remaining capacity of the control region is
available for PDCCH.

The PDCCH carries scheduling assignments for UL and DL allocations and power control
commands, together termed downlink control information (DCI). While allocations for DL
are valid for the same subframe, allocations for UL are transmitted four subframes in advance.
Multiple DCIs are transmitted in the same subframe. A single DCI can be intended for multiple
UEs. This is used for power control or transmission of system information. Also, a single UE
can receive multiple DCIs in the same subframe.

In addition to the allocated resources, other information has to be signaled to the UE. This
information depends on the TM. To use the available channel capacity as efficient as possible,
3GPP defines multiple formats to encode the DCI [3GPP 36.212]. The formats have different
sizes. In addition, LA adapts the transmit power and the FEC encoding to the radio channel
conditions. Together, this results in a variable number of occupied REs per DCI.

The allocation of REs to DCIs is based on control channel elements (CCEs). A CCE is a group
of 36 REs with a fixed location. Depending on its size and coding, a DCI occupies one to eight
CCEs. The number and identity of CCEs intended for a UE are not known to that UE. Instead,
each UE has to blindly try to decode multiple possible configurations. To simplify the decoding
attempts, a combination of common and terminal-specific search spaces are defined. All UEs in a
cell try to decode CCEs in the common search space. In addition, each UE tries to decode CCEs
in its terminal-specific search space. The terminal-specific search spaces are defined by terminal
identity and subframe number. For efficient utilization of the resources, the terminal-specific
search spaced do overlap.

To supplement the PDCCH, the EPDCCH is introduced in LTE Release 11. It is transmitted
in the data region of a subframe on PRBs selected by the eNodeB. This allows for frequency
selective scheduling and interference coordination (see section 4.2). The EPDCCH is decoded
using DM-RSs, so that advanced MIMO mechanisms can also be used for the control channel.
The eNodeB can dynamically decide to transmit EPDCCH or use the same PRBs for the PDSCH.

Possible locations of the EPDCCH are configured semi-statically and separately for each UE.
Each UE monitors one to two EPDCCH sets. Each set consists of two, four, or eight PRB pairs
located at arbitrary positions in the frequency domain. EPDCCH sets can be configured to
be localized or distributed, resulting in adjacent or distributed REs allocated to a single DCI,
respectively. Otherwise, the allocation of REs to DCIs works similar as for PDCCH. To decode
the EPDCCH, UEs also use overlapping search spaces.

Even with efficient encoding, transmission of RA DCIs imposes a significant overhead for small
data messages. Therefore, in addition to dynamic RA, LTE allows for semi-persistent RAs.
Without further signaling, the RA then repeats with an interval configured by higher layers.
Semi-persistent scheduling has been designed to efficiently handle VoIP calls, but can also be
used for other communication.
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In case of a single carrier system, RAs signaled on PDCCH and EPDCCH implicitly relate to
the PDSCH on the same DL carrier or the PUSCH on the cell’s UL carrier. Systems that apply
CA can operate in the same manner. The required association of UL to DL carriers is configured
statically. In addition, LTE allows for cross-carrier scheduling. This is configured per UE and
per carrier by higher layer configuration. For each UL and DL carrier, the system configures an
associated signaling carrier, whose PDCCH transmits the RAs. Control information then has to
be augmented with a carrier indicator.

2.4.4 Summary and Discussion of Impacts on Resource Allocation

In principle, PDSCH resources can be freely assigned to UEs for DL transmissions. For UL
direction, resources have to be continuous, but some flexibility is left. The RA mechanism can
use this to optimize system efficiency in both directions. However, it has to consider various
restrictions, which stem from the mapping of channels and signals, limited specification options,
and restricted control channel capacity for signaling.

In DL, synchronization signals reduce the capacity of some PRBs. Similarly, CSI-RSs reduce the
capacity for those UEs which know about them. In contrast, these reference signals increase the
error rate for legacy UEs. In UL direction, the capacity of the PRBs is only impacted by SRSs.

To avoid overhead for the signaling of RA messages, efficient encoding options have been defined.
However, for the DL direction these also impose constraints on RA. Depending on the chosen
RA type, either the granularity of RA is confined, or the possible combinations of resources
are limited. In addition, the RA types used for different UEs have to be carefully combined to
allow orthogonal allocation of all resources. For UL direction, most restrictions come from the
continuous allocation of resources.

The capacity of the control channels, which have to be used to inform UEs about RAs, is limited.
The resources required per DCI depend on various parameters. They are influenced by the
configured TMs and the applied RA type. As search spaces of different UEs overlap, allocations
of CCEs can conflict and render signaling to a UE impossible. The size of the PDCCH can be
configured in a limited range. However, a larger PDCCH comes at the cost of reduced capacity
of the data region. A similar trade-off also applies to the EPDCCH. While semi-persistent
scheduling reduces the load on the control channels, it imposes a restriction on RA in the
following subframes.

UL and DL RA mechanisms compete for control channel resources and have to meet the described
restrictions. Some decisions, like selection of the RA type or configuration of the size of the
control region, can be taken every subframe. Others, like TM, EPDCCH sets, and semi-persistent
scheduling, need to be configured in advance. Monitoring and optimization of the configurations
therefore has to be performed on a larger time interval. All these constraints complicate RA.
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3 Management of Radio Resources

Scheduling in general describes the allocation of resources to jobs, typically by determining
the order in which the jobs access the resources. In the context of networking, determining an
order in which packets are sent over a link is termed packet scheduling. The capacity of mobile
channels varies over time and frequency. To cope with this, the system provides flexible options
to allocate time and bandwidth resources to different users. This allows for opportunistic RA to
maximize system performance. Note that in the topic of mobile networks the terms scheduling
and resource allocation are used synonymously. This thesis favors the term resource allocation,
because that emphasizes that the mechanisms are not only related to a timely order of data
transmissions.

LTE does not specify RA mechanisms, but defines a framework where the eNodeB vendors
can plug in their own mechanisms. Section 3.1 gives an overview over this framework and
other constraints for RA originating from the LTE specification. RA provides many degrees
of freedom, which can be used to maximize different network performance metrics and other
criteria. Different objectives for RA are described in section 3.2.

RA can be seen as optimization problem. Multiple formulations are presented in section 3.3. The
optimization problems are often too complex to be solved in each BSs. However, they are used to
gain insights into characteristics of the problem or to serve as benchmark for system evaluation.
Heuristics are then implemented in real systems, which strive to achieve high performance with
manageable computational complexity. Such heuristics are reviewed in section 3.4. The chapter
is concluded by a discussion in section 3.5.

3.1 Integration of Resource Allocation into the LTE System

RA in LTE is embedded into a larger bandwidth management system. The main functional units
of this are depicted in figure 3.1. The admission control (AC) decides whether a new bearer can
be accepted. This helps to prohibit overload and impairment of service quality for the new and
the previously existing bearers. A rate shaping unit limits the rate of one or multiple flows of
data. It thereby ensures that flows comply with the subscription of a user. In case a flow exceeds
its rate limit, the rate shaping unit may also queue and drop packets.

Before being transmitted over the wireless link, packets are queued in the eNodeB. In case the
wireless link is permanently congested, packets are dropped from that queue. This is required
to cope with finite buffer capacity. It also avoids to transmit packets which are delayed for too

49
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Figure 3.1: Overview over bandwidth management and RA mechanisms

long and are therefore not useful to the receiver any more. Transport protocols get notified of the
congestion either by packet drops or by explicit congestion notification (ECN).1 In the eNodeB,
time and bandwidth resources (also termed air interface resources) are allocated to bearers. This
is performed in collaboration with LA mechanisms.

Each of the functions of the bandwidth management system influences the service quality of the
network. We do here focus on the allocation of time and bandwidth resources.

RA algorithms for UL and DL operate independently in the eNodeB at the 1 ms TTI. They
allocate resources in the PDSCH and PUSCH, respectively. Typical input data for RA are queue
states (length, age of packets), channel information, the requested service quality per bearer, and
measurements of previous service quality (e. g. bit rate, packet loss ratio) [Cap+13].

As main output, time and bandwidth resources are allocated to bearers (or UEs for UL direction).
In addition, the transmit power can also be interpreted as an allocated resource. Depending on
the modulation scheme and the TM, it can be configured dynamically per TTI or semi-statically.
Related to these allocations is also the determination of LA parameters (including modulation,
coding, and MIMO configuration). If supported by the system, the selection of MU-MIMO
sets can also be seen part of the RA. MU-MIMO is not investigated in this thesis. In addition
to radio related resources, in this thesis also compute resources required for the processing of
the transmissions are allocated. However, allocation of such resources is not discussed in this
chapter, but reviewed in section 5.2.

The LTE standards impose different constraints on the RA. Protocols such as HARQ specify
timing constraints, which have to be followed. Also, there are other aspects such as control
signaling and synchronization, which require transmission of messages in limited time. The
flexibility of specification and signaling of allocated resources is limited as described in
section 2.4.3. Finally, there are physical limits such as power constraints.

3.2 Objectives

The main objective for RA is to maximize the service quality of all users. As the users compete
for the shared resources, the RA has to balance their demands. In the following section, models
and metrics for the service quality from a single user perspective are introduced. Based on
that, section 3.2.2 discusses how competing demands of different users can be combined to an
objective from network perspective.

1ECN is introduced into LTE by Release 9 [3GPP 36.300 v9.1.0].
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3.2.1 Objectives from a Single User Perspective

The objectives of a single user can be differentiated into those related to the performance of the
network service and other objectives. Other objectives, such as power consumption at the UE,
are not discussed here.2 The main objective for RA from the users’ perspective is the quality of
the service provided by the network (QoS). RA is not the only, but one of the major influencing
factors of QoS.

A consistent terminology for QoS is introduced by Gozdecki, Jajszczyk, and Stankiewicz
[GJS03]. They differentiate between three notions of QoS. The intrinsic QoS is the objectively
measurable performance of the network. This is called network performance by ITU and
European Telecommunications Standards Institute (ETSI), and QoS by Internet Engineering
Task Force (IETF). The perceived QoS represents the subjective service quality as perceived by
the user, which partially depends on the intrinsic QoS. The assessed QoS resembles the decisions
of a user to use a service. The latter also depend on pricing and customer service. This thesis is
concerned with the intrinsic performance of the network.

Before QoS can be discussed, a model for the service offered by the network has to be defined.
The simplest model for a data transmission in a network is that of fluid flows. Multiple continuous
streams of data with finite rate are served simultaneously and share the resources of the network
[Ada97]. Resources can be assigned to the flows with arbitrary granularity. The rate of a flow is
either limited by the source or by the resources available in the network.

A more commonly used and more realistic model is that of a packet-based service. A packet is a
block of data with finite length. It is transmitted from sender to destination in non-zero time.
The packet can be queued or dropped by the network. A source inserts packets into the network
with a constant or variable rate, typically without taking into account the load of the network.

A third model for the service offered by a network is that of objects on application layer
[Pro+12; Pro15; Kas16]. Transmission of objects models the transmission of hypertext markup
language (HTML) pages, images, e-mails, etc. with the help of application and transport
protocols. Objects have finite size. While multiple objects can share the network resources
following a fluid model or by being segmented into packets, they are re-aggregated at the receiver
and delivered as one piece to the destination. Like the fluid flow model, this model reflects the
elasticity of many Internet applications, i. e. their ability to adapt to limited network performance
by increasing response times.

Based on the service model, QoS metrics can be defined. Gozdecki, Jajszczyk, and Stankiewicz
[GJS03] introduce four QoS metrics (called parameters there): bit rate, delay, jitter (variance
of delay), and packet loss ratio. The definitions of delay, jitter, and packet loss ratio are based
on packets. The bit rate corresponds to the fluid flow model. However, this metric can also be
derived from packet performance by averaging over certain time.

Some of the metrics are conflicting and can be traded for others without effort. For example,
without modification of the RA, packet delay and jitter can be improved by dropping delayed
packets. This illustrates that these metrics have to be evaluated jointly.

2Further non-performance related objectives are listed by Cao and Li [CL01] and Capozzi et al. [Cap+13].
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Following the service model of objects on application layer, QoS can also be evaluated on higher
layers [Pro+12; Pro15; Kas16]. Proebster [Pro15] and Kaschub [Kas16] define utility as a
function of the time it takes to transmit one or a group of application layer objects, the size of the
object(s), and a priority. When the application layer object is not transmitted within a certain
time, a timeout occurs and the request is aborted. The time the network takes to transmit an
object is a metric for the intrinsic service quality on application layer. The utility and the timeout
model the expectations and behavior of the users, and thereby map the intrinsic service quality to
the perceived service quality.

In contrast to metrics on packet level, object transmission times are better able to capture the
performance as perceived by the user. Especially, this metric also captures interactions of the
network with higher layer protocols. The widely used TCP, e. g., is highly sensitive to link-related
packet drops.3 This interaction can be captured by application layer metrics. A drawback of
metrics on application layer is that they are not fully controlled by the network. As the transport
protocol is implemented by the end systems, their configuration influences the metrics.

A user may use the network multiple times by transmitting multiple data flows, packets, or
application layer objects. The intrinsic service quality can be evaluated independently per network
usage, or aggregated metrics can be derived. For a packet based network model, the data rate is
an aggregated metric which is calculated by averaging the transmitted data volume over time.
Also, the jitter is an aggregated metric based on the variance of packet delays. Other typical
means of aggregation are averaging and deriving of extreme values. An example is the delay
bound, which describes a delay value that is never exceeded.

3GPP states performance requirements for LTE in [3GPP 36.913]. These encompass the
theoretical peak data rate, the control plane latency (time to setup a connection), and the user
plane latency (delay of the first packet). These metrics focus on static system parameters and
signaling procedures, but not on RA.

In addition, 3GPP specifies a QoS framework [3GPP 23.401; 3GPP 23.203], which is based on
bearers as introduced in section 2.2.1. Each bearer is assigned a QoS class identifier (QCI), a
scalar indicating certain QoS requirements. The standardized QCIs and associated performance
criteria are listed in table 3.1. The QCI assigns one of two resource types to each bearer: Either
guaranteed bitrate (GBR) or Non-GBR.

GBR bearers have the parameters GBR and maximum bitrate (MBR). These can be interpreted
as follows. For bearers not exceeding the GBR, no congestion may occur and the system has
to meet the maximum delay and packet loss ratios associated with the respective QCI. In case
the data rate of such a bearer exceeds the MBR, it can be subject to rate shaping. While for
Releases 8 and 9, GBR and MBR were set to equal values, since Release 10 the MBR can be
larger than the GBR.

For Non-GBR bearers, an average MBR can be specified which limits the sum data rate of
multiple bearers. In case that rate is exceeded, the rate is shaped, which involves delaying and
dropping of packets. Otherwise, packets are transmitted as possible. The system should not
exceed the packet delay and the packet loss ratio that are given in table 3.1. However, packet loss
in the table only relates to losses on the radio link, not encompassing congestion related drops.

3In contrast, congestion related packet drops are required to control the transmit rate.
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Table 3.1: Characteristics for service quality on the radio interface standardized by 3GPP (adapted from
[3GPP 23.203 v10.10.0, table 6.7.1]). In the priority column, small numbers indicate high priority.

QCI Type Prio. Radio Link Packet
Delay [ms]

Radio Link
Packet Drop
Probability

Services (exemplary)

1 GBR 2 80 10−2 Conversational Voice
2 GBR 4 130 10−3 Conversational Video

(Live Streaming)
3 GBR 3 30 10−3 Real-Time Gaming
4 GBR 5 280 10−6 Non-Conversational Video

(Buffered Streaming)
5 Non-GBR 1 80 10−6 Signaling, e. g. for VoIP
6 Non-GBR 6 280 10−6 TCP-based, Video

(Buffered Streaming)
7 Non-GBR 7 80 10−3 Voice, Video (Live

Streaming),
Interactive Gaming

8 Non-GBR 8 280 10−6 TCP-based, Video
(Buffered Streaming)

9 Non-GBR 9 280 10−6 TCP-based, Video
(Buffered Streaming)

This allows the system to serve a bearer with an arbitrary low data rate. Consequently, following
these definitions is not sufficient to deliver a good service to the users.

The QCI also assigns a priority to the bearers. This is not necessarily higher for bearers with the
GBR resource type. The priority defines the order in which requirements of bearers competing
for insufficient resources shall be violated.

Setting up bearers for specific services has to be supported by the network operator and by the
UE. GBR bearers are used for voice and video calls that are offered as a service by the network
operator. Most of the Internet traffic, including voice and video not served by the network
operator, is handled in a default bearer, e. g. with QCI 8.

The LTE QoS framework defines some metrics and gives guidelines. However, this framework
is not sufficient to specify the service quality that should be achieved by a RA mechanism.
Especially for Internet traffic transmitted via TCP, additional metrics have to be considered.

3.2.2 Objectives from Network Perspective

The main objective of a mobile network operator should be to satisfy as many customers as
possible with an economically efficient system. Intuitively, satisfying customers can be achieved
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by transmitting as much of the user’s requested data as quickly as possible. This translates to the
maximization of the sum or average throughput. An equivalent metric is the spectral efficiency,
which normalizes the throughput by dividing it by the system bandwidth [SAR09]. As often the
revenue of an operator depends on the data volume transmitted by its customers, maximizing the
total throughput is also attractive from an economical perspective.

In addition, the distribution of QoS between the users is also an important aspect. This is termed
the fairness of the system. It can be defined as the allocation of scarce resources to competing
users, so that every user experiences an acceptable service quality. In mobile networks, fairness
and sum throughput are typically contradicting goals. This is caused by differences in channel
quality. Allocating resources to users with low channel quality impairs the total throughput.

Achieving fairness can also be interpreted as maximization of the perceived QoS of all customers.
The mapping from an intrinsic metric to perceived QoS is typically not linear. For example,
lowering intrinsic QoS finally results in services (applications) becoming unusable and the
customers being annoyed. At the same time, certain high-performance intrinsic QoS might be
sufficient for a service, e. g. when more promptly reaction of an application cannot be noticed by
the user.4 As result from the non-linearity of the mapping, maximizing the sum of an intrinsic
QoS metric is not equivalent to maximizing the perceived QoS. Instead, a more balanced intrinsic
QoS typically leads to a higher perceived QoS.

Fairness can be defined either qualitatively, i. e. by stating criteria which have to be met for a
system to be fair, or quantitatively, i. e. by defining a metric to measure the degree of fairness.
Fairness can be evaluated on different time scales [AAR12]. Short-term fairness requires the
system to be equally fair at all time, while long-term fairness allows temporary deviations as long
as they are balanced out later. Fairness can be defined on different QoS metrics, e. g. a system
can transmit fair data rates or guarantee a maximum packet delay for all users. A system can also
be fair in the sense that the same amount of resources (e. g. bandwidth, power) are allocated
to each user. In principle, the fairness scheme is independent of the parameters it is applied to
[JCH84]. Here, fairness schemes are presented which are applied to the data rates of the users.

The most intuitive qualitative fairness criterion is that a system is fair when all users receive the
same data rate. Mathematically, this results in maximization of the minimum rate of all users.5
It is therefore called max-min fair. In some systems, not all users share the same bottleneck or
RA granularity is not arbitrary. In those cases, the QoS of some users can be higher than the
minimum, although the minimum cannot be further increased. Demers, Keshav, and Shenker
[DKS89] also specify the QoS of those users. Their definition is based on a hypothetical system.
In that, the user with minimum QoS and the resources occupied by this user have been removed.
They state that a max-min fair RA also has to maximize the minimum QoS for this hypothetical
system. In addition, this property has to hold recursively, i. e. when removing the user with the
next-lowest QoS and its resources, the remaining system still has to be max-min fair.

Another qualitative definition of fairness is that of Proportional Fair (PF). It has been introduced
by Kelly [Kel97] for fixed networks, but is also widely applied for wireless networks. A RA is
proportionally fair if there is no other possible RA for which the sum of proportional changes of
the data rates is positive. For the definition of the sum of the proportional changes, assume that

4Compare to the S-shaped utility function used by Proebster [Pro15] and Kaschub [Kas16].
5Given that the users compete for the same resources, this results in the same rate assigned to each user.
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Figure 3.2: Exemplary CDF of UE rates with CDF-based fairness criterion and percentile

x is a vector of user rates with elements G8, and x′ is another vector of rates. Then, the sum of
proportional changes from x to x′ can be calculated as

� (x, x′) =
∑
8

G′
8
− G8
G8

. (3.1)

A RA which is proportionally fair maximizes the sum of the logarithms of the users’ rates.

Fairness can also be achieved by guaranteeing a fixed minimum rate to each user. The rate has to
be chosen carefully, so that it is sufficient to provide useful service to the customers, but also not
too high to not cost too many resources. Meeting a guaranteed rate can become impossible when
the network is highly loaded or a user has a low channel quality.

As fairness describes the distribution of QoS between users of a system, it can also be evaluated
by looking at the empirical cumulative distribution function (CDF) of a QoS metric. For each
value G, an empirical CDF denotes the fraction of samples that were encountered with a measured
value smaller than G. To be better able to describe fairness visible from a CDF, two CDF-based
fairness definitions are commonly used for wireless networks.

The first, which is described by 3GPP2, Next Generation Mobile Networks (NGMN), and IEEE
[NGM08; Sen+06; 3GPP2 04], is a qualitative criterion based on the normalized throughput. The
normalized throughput is defined as the throughput of a user divided by the average throughput
per user. A RA is considered to be fair if the CDF of the normalized throughput lies right of the
line through the points (0.1 ; 0.1), (0.2 ; 0.2), and (0.5 ; 0.5). An exemplary empirical CDF of
the UE rates in an LTE system is plotted in figure 3.2. The shown allocation is fair according to
this criterion, because the CDF lies completely right of the red line.

The second CDF-based fairness metric is the widely used 5th percentile of the users’ rates. It is
marked by a green + in figure 3.2. When evaluated together with the average rate, it measures the
performance discrimination experienced by a typical cell edge user. Users with even lower rate
are ignored by this metric. This can be interpreted as being in outage, i. e. not being served by
the network due to bad channel conditions.
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Another popular metric for fairness is the fairness index introduced by Jain, Chiu, and Hawe
[JCH84]. As above, assume that x is a vector of user rates with elements G8 and length =. The
fairness index � (x) is then defined as

� (x) = (
∑

8 G8) 2

=
∑

8 G
2
8

(3.2)

For a RA which results in the same rates for all users, � (x) = 1. For more unequal rate
distributions the formula yields values between one and zero.

Providing fair and useful service to users with low channel quality or under high system load
can be impossible or have a strong impact on the performance experienced by other users of
the system. For some services, users may favor errors at session initialization over poor service
quality during the session (e. g. voice calls, videos). AC can prevent the system from overload.
RA and AC policies have to operate jointly to efficiently use the resources of a mobile network.

In addition to the objectives of sum rate and fairness, other aspects may be important for a RA
mechanism. A comprehensive list of desired properties is given by Fattah and Leung [FL02]. In
addition to QoS related aspects, implementation complexity and scalability of the RA algorithm
are important requirements [CL01; FL02; SJT09; Cap+13].

3.2.3 Discussion

In an LTE network, users with optionally different objectives compete for resources. Contradicting
objectives from network perspective also exist. The configuration of trade-offs, e. g. between
fairness and system throughput, depends on policies of the network operator. Therefore, also in
literature there is no single commonly accepted objective. Instead different publications present
approaches that target different objectives. Also, many proposed algorithms provide parameters
which allow the configuration of such trade-offs.

3.3 Resource Allocation as Optimization Problem

The allocation of resources to competing requests can be formulated as optimization problem
[HL08]. In publications, this often serves to formulate the system model and the objective, before
introducing realizable algorithms [And07]. Other authors, e. g. Lin, Shroff, and Srikant [LSS06],
derive scheduling strategies and heuristics from analytical solutions of optimization problems.

3.3.1 Fixed Networks

Optimizing the order in which packets are served by a network is equivalent to the optimization
of job scheduling, a prominent topic in operations research. A classification of problems and
optimization approaches is given by Graham et al. [Gra+79]. Also in the context of fixed networks,
but based on a fluid flow model, Kelly [Kel97] optimizes the routing of flows and the allocation
of rates to flows that share multiple bottlenecks in a network. Basing on the introduction of utility
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by Shenker [She95], Kelly defines U(G) to be the utility resulting from rate G. This function can
be different for each user of the network.

Assume that J is a set of resources in a network (e. g. links) and 2 9 is the capacity of resource 9 .
A route A consists of the combination of one or multiple resources, i. e. A ⊂ J and A ≠ ∅. The
set of all possible routes is denoted as R, and the subset of routes which share resource 9 as R 9 ,
with R 9 ⊂ R. Multiple routes can serve the traffic that originates from the same source and is
destined to the same sink. A pair of source and sink is denoted as B, and the set of all such pairs
as S . The routes belonging to the same pair B are grouped as set RB, with RB ⊂ R. Each route
belongs to exactly one pair, thus RB ∩RC = ∅ ∀(B, C) ∈ S , B ≠ C.

The optimization problem adapts the allocation of rates to routes, and thereby to pairs of source
and sink. The variable HA , with HA ≥ 0, A ∈ R, denotes the rate carried by route A . The problem
is then defined as follows (from [Kel97], notation adapted):

max
HA

∑
B∈S

UB
©«
∑
A∈RB

HA
ª®¬ (3.3a)

s. t.
∑
A∈R 9

HA ≤ 2 9 ∀ 9 ∈ J (3.3b)

Here, the constraint (3.3b) guarantees that the routes sharing a resource do not exceed the capacity
of that resource. The argument of the utility function in the objective (3.3a) is the rate allocated
to a pair of source and sink B, which is here formulated as sum over the rates of all routes serving
this pair.

The utility function can be defined so that the optimal RA has a desired fairness. Defining
U(G) = G maximizes the sum throughput without considering fairness. Kelly also introduces a
parametrized family of utility functions:

U(G, U) := −(− log G)U, 0 < G < 1, U ≥ 1 (3.4)

For U = 1, equation (3.4) equals the logarithmic utility function, which results in a PF optimum.
For larger U, equation (3.4) gives higher priority to flows with low rates, and for U → ∞, the
optimum approaches max-min fair.

3.3.2 Wireless Networks

The approaches developed for fixed networks can also be used for channel-unaware RA in mobile
networks. However, the performance can be improved by taking the instantaneous channel quality
into account.

Having this in mind, optimization problems have been defined for RA in mobile networks.
Depending on the underlying network technology, resources in time, bandwidth, and / or power
are allocated. Typically either fixed time slots or otherwise predefined resources are allocated,
which is modeled by flag variables. In case the transmit power is adapted, the conversion of
received power to data rate or capacity is part of the problem formulation. The objective can
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be either to maximize rates or utilities (rate adaptive RA) under limited transmit power, or to
minimize transmit power while transmitting minimum rates (margin adaptive RA) [SAE05;
SAR09]. This thesis focuses on the rate adaptive formulation.

A generic definition of the rate adaptive optimization problem, which is introduced in similar
form by Shen, Andrews, and Evans [SAE05] and Sadr, Anpalagan, and Raahemifar [SAR09], is
the following: Assume a system with a set of users U and a set of orthogonal subchannels N .
The total bandwidth is �, the transmit power %total and the noise power spectral density #0. The
channel gain for user D on subchannel = is denoted by ℎD,=. The variable ?D,=, with ?D,= ≥ 0,
denotes the power allocated to user D on subchannel =. The flag variable 2D,=, with 2D,= ∈ {0, 1},
indicates whether subchannel = is allocated to user D. Using Shannon’s formulation of channel
capacity [Sha49], the rate of user D can then be calculated as

AD =
�

|N |
∑
=∈N

2D,= log2

(
1 +

?D,=ℎ
2
D,=

#0
�
|N |

)
. (3.5)

Based on that, the optimization problem is defined as follows:

max
?D,=,2D,=

∑
D∈U

UD (AD) (3.6a)

s. t.
∑
D∈U

∑
=∈N

?D,= ≤ %total (3.6b)∑
D∈U

2D,= = 1 ∀= ∈ N (3.6c)

Here, equation (3.6b) limits the total transmit power, and equation (3.6c) ensures that each
subcarrier is used by a single user. Fairness can either be incorporated in the utility functions, or
be formulated as additional constraints. Besides enforcing a fixed minimum rate per user, fairness
can also be formulated as relations of user rates. In [SAE05; SAR09], the authors introduce
predefined rate proportions WD for each user D ∈ U , and add an additional constraint:

AD1 : AD2 : AD3 : . . . = WD1 : WD2 : WD3 : . . . (3.7)

Extensions of this problem, including the allocation of groups of subcarriers, limited modulation
order, and channel estimation errors, have, e. g., been studied by Huang et al. [Hua+09]. Fixing
the power allocation allows to simplify the optimization problem, as performed by Margolies
et al. [Mar+16]. Assume that in problem (3.6), ?D,= =

%total
|N | . The feasible rate for user D on

resource = can then be pre-calculated and is here denoted as AD,=. This results in the following
problem formulation (from [Mar+16], notation adapted).

max
2D,=

∑
D∈U

UD

(∑
=∈N

2D,=AD,=

)
(3.8a)

s. t.
∑
D∈U

2D,= = 1 ∀= ∈ N (3.8b)
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Although simplified, this problem becomes NP-hard when binary RA is enforced (i. e. 2D,= ∈
{0, 1}) [Mar+16].

The previous problem formulations do not have a sense of time, i. e. they optimize RA for
a single point in time only and derive rates from that. Different approaches can be used to
incorporate time in the optimization. For a finite time horizon, resources can be enumerated and
an all-encompassing problem can be formulated. In the special case of fixed power allocation,
resources can be interpreted as bandwidth or time resources without influence on the problem
formulation (see problem (3.8) and Margolies et al. [Mar+16]). Gradient-based approaches, in
contrast, assume that infinite number of scheduling decisions are taken sequentially. When each
step optimizes the projection of the users’ rates onto the gradient of the sum utility, the system
asymptotically approaches the optimum [Sto05].

When evolving time is part of the problem formulation, dynamics of user traffic become relevant.
In contrast to the previous references, which adopted a full-buffer traffic model, optimization
approaches can also be used for finite traffic. Jiang, Ge, and Li [JGL05] study the optimization of
a queuing system with user-dependent channel quality. The authors derive RA strategies and
weights from analytical solutions of the optimization problem. Proebster, Kaschub, and Valentin
[PKV11] formulate an optimization problem to schedule the transfer of finite-size objects to users
with time-varying channels. They also maximize sum utility, however their utility is defined as a
function of the time the system takes to transfer an object. The completion times of transmissions
are incorporated into the problem via finish time flags, which make the problem hard to solve.

3.4 Heuristics Used for Resource Allocation

Although RA can be formulated as optimization problem, solving such problems is typically
not suitable for implementation in RT systems. Instead, heuristics are developed which allow
computation of RA with reduced effort. Analytical evaluations and simulation studies are then
used to assess performance and other properties of these heuristics. LTE implements RA centrally
in the eNodeB. Therefore, distributed algorithms, like Carrier Sense Multiple Access / Collision
Avoidance (CSMA/CA) used in Wireless Local Area Network (WLAN), are not discussed here.

3.4.1 Fixed Networks

Scheduling disciplines for fixed networks are a prominent research topic. An extensive overview
over such disciplines, including classification, performance analysis, and discussion of imple-
mentation issues, is provided by Zhang [Zha95]. In principle, these approaches can also be used
for wireless networks. However, the associated performance evaluations assume time-invariant
and error-free transmission media, and are therefore not transferable to wireless networks.

Cao and Li [CL01] and Fattah and Leung [FL02] review approaches to adapt fixed network
scheduling disciplines to wireless networks. They assume a two-state channel model, which
either allows transmission (good state) or drops most or all packets (bad state). The general idea
is to postpone users experiencing the bad channel state. Instead, the resources are assigned to
other users, so that the system maintains high efficiency. Whenever a user’s channel changes to
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the good state, he is compensated for the previous discrimination. Thereby, the approaches try to
approximate the performance achieved in wired networks.

3.4.2 Maximizing Cell Metrics in Wireless Networks

RA heuristics have been designed for wireless networks in general and for LTE specifically.
Capozzi et al. [Cap+13] give an overview over RA heuristics for LTE, also covering some
scheduling disciplines for fixed networks.6 According to the authors, most heuristics are based
on the maximization of a per-PRB metric. This means that resource (or PRB) = is allocated to
user D★= by evaluating

D★= = arg max
D

<D,=. (3.9)

Here, <D,= is an abstract metric for user D and resource =. Some heuristics extend this by an
outer loop, which pre-selects users each TTI or on a coarser time frame. An alternative approach
to the per-PRB selection is to sort users by an abstract priority, and then assign the preferred
resources to them in this order. The further discussion focuses on heuristics based on a per-PRB
metric following the notation of Capozzi et al. [Cap+13].

The simplest channel aware RA scheme is known as Max C/I or Maximum Throughput scheduler.
The term Max C/I means maximizing the carrier-to-interference ratio. Thus, this heuristic assigns
each PRB to the UE with the best channel conditions. Following the previous definitions, the
per-PRB metric is defined by

<Max C/I
D,= = AD,= (C). (3.10)

Without considering implementation restrictions (such as same modulation and coding for all
PRBs allocated a UE), this maximizes the cell throughput. However, all resources are allocated
to a single or a few users with the best channel conditions, while the other users get no resources
assigned. The Max C/I scheme is therefore regarded as unfair.

A fairer RA heuristic for LTE networks is known as PF. Although in general the implementations
used in commercial products are not publicly known, according to Margolies et al. [Mar+16],
PF is the most prominent scheduler for LTE networks. It was patented by Chaponniere et al.
[Cha+02]. The first documentation and evaluation in academic publications appeared in [JPP00].
The per-PRB metric is defined by

<PF
D,= =

AD,= (C)
'̄D (C − 1)

, (3.11)

where '̄D (C − 1) is the allocated rate filtered by a low-pass filter. It is calculated by

'̄D (C) =
(
1 − 1

C2

)
'̄D (C − 1) +

(
1
C2

)
Aact
D (C). (3.12)

The value Aact
D (C) is the rate actually allocated to user D at time slot C. The parameter C2 resembles

the time constant of the low-pass filter. Stolyar [Sto05] proved that RA according to this algorithm
asymptotically approaches the PF optimum defined by Kelly [Kel97].

6Other overviews over heuristics for opportunistic scheduling in OFDMA systems have been published by So-In,
Jain, and Tamimi [SJT09] and Asadi and Mancuso [AM13].
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Note that the original PF algorithm is defined for time division multiple access (TDMA) systems,
i. e. without the index =. Thus, the filtered allocated rate is originally updated after each allocation.
There are different options to transfer this to an OFDMA system such as LTE. '̄D (C) can either
be updated once per TTI as shown above, or repeatedly after each PRB has been allocated.

Additional parameters can be introduced to generalize the PF allocation heuristic. Wengerter,
Ohlhorst, and Elbwart [WOE05] define the allocation metric as

<GPF
D,= =

[
AD,= (C)

] 0[
'̄D (C − 1)

] 1 . (3.13)

Setting 0 = 1 = 1 results in the original PF metric <PF
D,=. Setting 1 = 0 results in the Max C/I

metric <Max C/I
D,= . Configuring 0 = 0 ignores the current channel situation. This scheme is known

as Blind Equal Throughput (BET) and results in the same throughput transmitted to each user
[Kel+08]. Further variants of the PF scheduler can be found in [Mar+16] and references therein.

3.4.3 Maximizing Individual QoS Metrics in Wireless Networks

The previously discussed RA heuristics opportunistically exploit the channel variations. However,
they make no effort to deliver certain minimum performance to individual users. In LTE, some
services require guaranteed rate or bounded packet delay (see section 3.2.1). QoS-agnostic RA
heuristics are not suitable to satisfy such services [Cap+13]. Special algorithms have therefore
been designed, over which this section gives an overview. The following paragraphs review
heuristics which are based on a per-PRB metric as those discussed before. After that, approaches
based on prioritization are presented.

Andrews et al. [And+01] propose a channel and QoS aware RA heuristic, which they term
Modified Largest Weighted Delay First (M-LWDF). Although originally designed for a TDMA
system, it can easily be adapted to the OFDMA nature of LTE. Following the previous notation,
each PRB is assigned to the UE which maximizes the metric

<M-LWDF
:,= = U:�

HOL
:

A:,= (C)
Ā: (C)

. (3.14)

Here, �HOL
:

represents delay of the head of line (HOL) packet, i. e. the oldest packet in the queue.
The variable Ā: (C) resembles the short-term average of the possible data rate.7 The factor U: is a
weight calculated by

U: = −
log X:
g:

, (3.15)

where g: is the delay threshold of UE : . The value of X: describes the acceptable probability
that a packed exceeds the delay threshold and is dropped. A similar approach, based on a token
counter, can be used to guarantee a minimum data rate instead of a maximum packet delay

7Note that, in contrast to the PF metric, the term A:,= (C)
Ā: (C) used here is independent of the previous allocations.

Some authors, such as Capozzi et al. [Cap+13], use the PF metric instead. However, that does not reflect the original
introduction by Andrews et al. [And+01].
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[And+01]. According to Andrews et al. [And+01], M-LWDF can deliver all packets within the
delay threshold if that is possible with any RA.

Another RA heuristic, giving increased priority to users with critical packet delays, is EXP/PF
proposed by Rhee, Holtzman, and Kim [RHK03]. This heuristic divides users into RT and
non-RT users. Two different metrics are calculated based on this differentiation:

<EXP/PF
:,= =


exp

(
0:�

HOL
:
(C)−j(C)

1+
√
j(C)

)
A:,= (C)
Ā: (C) if : is a RT user

F(C)
" (C)

A:,= (C)
Ā: (C) otherwise

(3.16)

Here, 0: = 2
g:

, 2 is a parameter, and j(C) is calculated by

j(C) = 1
#RT

∑
: is RT

0:�
HOL
: (C). (3.17)

#RT represents the number of RT users. The fraction A:,= (C)
Ā: (C) , which is used in the metric calculation

for both types of users, resembles the current channel quality relative to the average channel
quality.8 For non-RT users, this is weighted with the factor F(C)

" (C) This determines the relative
weight of all non-RT users compared to the RT users. " (C) is the average number of packets
queued per RT user. A control loop adapts F(C), so that j(C) ≈ 2:

F(C) =
{
F(C − 1) − n if j(C) > 2

F(C − 1) + n
^

otherwise
(3.18)

The parameters n and ^ (with ^ � 1) control the convergence behavior. The authors also specify
an alternative control loop, which adapts the weighting such that max: is RT �HOL

:
≈ max: is RT g: .

This RA heuristic allows RT and non-RT users to share the channel equally as long as the delay
requirements are met. In case the delay becomes critical for a single user, the metric for that user
is strongly increased.

Sadiq, Madan, and Sampath [SMS09] propose a similar approach, which they call EXP rule.
They define the per-PRB metric as

<EXPrule
:,= = 1: exp

©«
0:@:

2 +
(

1
#

∑
9 0 9@ 9

) [ ª®®¬ · A:,=, (3.19)

where 18, 08, 2, and [ are constant parameters. The value @: represents the queue length of user
: . The authors state that the queue length can also be replaced with the delay of the HOL packet
�HOL

:
. They propose to handle non-RT traffic in a similar way, but use a token counter instead of

the real queues for those users. In their publication, Sadiq, Madan, and Sampath [SMS09] also
propose another, logarithm-based heuristic. In addition, they evaluate the asymptotic behavior
for increasing queue lengths.

8Rhee, Holtzman, and Kim [RHK03] as well as Capozzi et al. [Cap+13] state that this is equivalent to the PF
metric, although the value is independent of previous allocations.



3.5 Discussion 63

The previous references proposed the maximization of a per-PRB metric over all users, which is
optionally calculated by a different formula for users with special QoS requirements. However,
when many users are connected to a system, this can be computationally complex. The effort of
calculating many per-PRB weights seems to be unnecessarily expensive especially in the case
where, finally, all resources are assigned to few users with high priority.

To reduce this complexity, multiple two-step approaches have been proposed in literature
[Mon+08; Zak+11]. The main idea is to have an outer scheduler, which pre-filters users once per
TTI or on a coarser interval. Only users with high priority, either due to QoS requirements or
channel conditions, are then considered in an inner scheduler. As the outer scheduler does not
operate per PRB, the effort is reduced significantly.

One of these approaches is presented by Monghal et al. [Mon+08]. Their outer scheduler
differentiates between users which received less than a target data rate and other users. The
former have higher priority than the latter. Inside the sets, users are sorted by different metrics.
Users below the target data rate are sorted by the BET metric, other users by a wideband
version of the PF metric. The outer scheduler then selects a fixed number of users according
to this prioritization. The inner scheduler assigns PRBs to these users. The authors evaluate
different assignment strategies. These are based on PF or related per-PRB metrics. An additional
weighting factor directs the inner scheduler to assign more PRBs to users which received less
than the target data rate.

Zaki et al. [Zak+11] present a similar approach. They also group users into those with are to
receive a guaranteed data rate and other users. However, their inner scheduler does not operate
per PRB, but instead iterates over the list of pre-filtered users sorted by priority. To each user it
assigns, from the set of free PRBs, that one with the best channel conditions. Users of the low
priority group only get PRBs assigned after all users from the high priority group are satisfied.
By this strict prioritization, it is easier to meet guaranteed rates.

3.5 Discussion

In the RA for wireless networks, partially contradicting objectives have to be balanced. Studies
formulating RA as optimization problem apply different objectives. High-performance and reli-
able RA is important for vendors to differentiate from competitors. In addition, the computational
complexity is also relevant, especially as systems have to scale to support hundreds and thousands
of users. The RA heuristics become more complex by the introduction of carrier aggregation and
more diverse capabilities of UEs.

RA has an influence on various components of a cellular radio system. Also, vice-versa, changing
other system components may also change the optimal RA. Therefore, evaluations of cellular
radio systems should always consider this mutual influence. Extending existing RA mechanisms
by new aspects and components further increases their complexity. It can therefore be assumed
that such extensions will only be adopted into products if the expected benefits are significant.
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4 Efficient Operation in Multi-Cell
Environments

In a cellular network, independent BSs serve disjoint sets of UEs. However, multiple BSs and
UEs have to work together to provide services to the customers. The most prominent example
for this is the handover procedure. When a user moves from the coverage area of one cell
to that of another cell, the network hands over active sessions to provide continuous service
without interruption. However, collaboration is also beneficial on the PHY layer. Inter-cell
interference seriously impacts network performance. This effect can be mitigated by cooperation
of neighboring BSs or special operations in the UEs. Furthermore, simultaneously serving a
UE from multiple sites can improve reliability and efficiency. Mechanisms on PHY and MAC
layer are complemented by methods for autonomous configuration and optimization.1 Besides
others, these mechanisms coordinate configuration of parameters for handover and interference
mitigation. This thesis focuses on inter-cell interference and mechanisms for collaboration on the
PHY layer.

Inter-cell interference occurs when the same resources are used by neighboring cells. It has a
large impact on the SINR and thereby on channel capacity. Especially for users located close to
the cell border, it is the major limiting factor for network performance. Depending on the desired
fairness in the network, interference may also reduce the performance for other users. This is
caused by the RA mechanism, which might allocate additional resources to cell border users to
compensate for high interference. In contrast to intra-cell interference, which can be avoided by
OFDM, in LTE inter-cell interference is not avoided by the design of the modulation scheme.

According to Cadambe and Jafar [CJ08], there are three ways to handle interference: It can be
treated as noise, decoded, or orthogonalized. All three can be implemented at the receiver. In
contrast, the transmitter can only orthogonalize its transmissions, or assist the receiver in one of
the other ways.2

In LTE, resource usage in UL and DL is controlled by the eNodeB. Therefore, coping with
interference at the transmitter often involves cooperation of BSs. This can be interpreted
as weakening the cellular concept. Cooperation can either be statically configured or be
automatically performed by the involved cells on different time scales. Besides reducing the
impact of interference, cooperating eNodeBs can also jointly serve UEs. This approach is

1In LTE, this is often termed self-organizing networks (SON).
2This classification does not cover approaches such as dirty paper coding [Cos83; CS03]. Dirty paper coding

requires up-front knowledge of the interfering signals at the receiver. It is not further discussed in this thesis.
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known as CoMP.3 UEs do not explicitly cooperate in LTE, as that would require out-of-band
communication between them.

The following sections are structured as follows. Section 4.1 discusses mechanisms operating at
the receiver side to cope with interference. Subsequently, section 4.2 introduces approaches to
reduce interference by cooperation of transmitters. Finally, section 4.3 gives an overview over
CoMP mechanisms, where cells cooperate tightly to achieve even higher network performance.

4.1 Coping with Interference at the Receiver

The simplest approach to cope with interference at the receiver is to treat it as noise. If the
received interference power is weak compared to the received signal power, the impact on the
performance is low. Yet, if the interference power is stronger, other approaches are more efficient.

Alternative approaches according to the classification by Cadambe and Jafar [CJ08] are the
decoding of interference and the orthogonalization of desired signal and interference. These are
both termed interference cancellation. Andrews [And05] gives an overview over that topic.

In contrast to treating interference as noise, decoding it makes use of the fact that it contains
structure. The straight-forward approach is to jointly decode the desired and the interfering
signals [Ver84; Ver86]. As this is computationally complex, approximations have been proposed,
e. g., by Lupas and Verdu [LV89]. One of these approximations is to decode an interfering signal
first and subtract it from the received waveform [PH94]. This is the same concept as the one
introduced as SIC for MIMO operation in section 2.3.4.3. It is beneficial if the interfering signal
is stronger than the desired signal.

Other approaches are based on orthogonalization. A receiver can, e. g., cancel out interfering
signals in time domain based on their channel impulse response. Alternatively, the spatial
domain (i. e. multiple receiver antennas) can be used to differentiate between the transmitter
of the desired signal and interferers. In principle, a multi-antenna device receiving desired and
interfering signals can be considered as spatial multiplexing system. Thus, approaches presented
in section 2.3.4.3 can also be applied here.

Interference cancellation is efficient especially in the case where a single or a few strong interferers
cause major impact. It can be performed locally and requires no coordination. It has therefore no
impact on the standardization of the LTE air interface. However, its applicability in DL direction
is limited by the high complexity, which increases device cost and power consumption of UEs.

In addition to purely local interference cancellation, LTE UEs can get assistance by their eNodeB.
An eNodeB can provide information about reference signals transmitted by neighbor cells.4 To
ease the spatial filtering, an approach termed interference alignment strives for orthogonality of
the desired and the interfering signals [MMK08; CJ08; APH13].

3In the extreme case, no independent cells would be visible to the UEs, or each UE would see its own cell. Such
extreme cooperation is not covered by this thesis.

4This is introduced by Release 11 [3GPP 36.300 v11.4.0]. Assistance for interference cancellation is also covered
by Release 12 under the term network assisted interference cancellation and suppression (NAICS).
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4.2 Reducing the Impact of Interference by Coordinating Transmitters

Transmitters can combat interference by orthogonalizing their resource usage. In LTE this
influences the RA for UL and DL transmissions, and therefore requires coordination of the
involved eNodeBs. The main concept for orthogonalization is spatial reuse, which is introduced
in section 4.2.1. The required coordination is discussed in section 4.2.2. The allocation of
orthogonal resources to UEs in multiple cells can also be formulated as optimization problem,
which is treated in section 4.2.3. Finally, section 4.2.4 gives an overview over standardization
aspects for interference management in LTE.

4.2.1 Spatial Reuse of Resources

Spatial reuse describes the concept that closely spaced cells use orthogonal resources, while
distant cells are allowed to reuse the same resources. In LTE, the two-dimensional resource grid
(time and frequency, see section 2.4.1.2) can be used to orthogonalize transmissions. These
resources are partitioned and neighboring cells use different partitions. As signals attenuate with
distance, distant cells do not impact each other. The number of resource partitions determines
the distance of cells using the same resources. This number is called reuse factor. In principle,
both time and frequency domain can be used to orthogonalize resource usage. Traditionally, the
frequency domain is used because that does not require synchronization of the BSs.

Classical networks like GSM employ hard reuse in the frequency domain. The available
bandwidth is partitioned statically. Partitions are assigned to cells such that closely positioned
cells use different resources. However, non-colliding assignments of reuse partitions to BSs
is only possible for some regular layouts or high reuse factors. Also, it is often not possible
that all BSs which use the same part of the spectrum have a uniform distance. This results in
non-uniform interference. Although hard reuse reduces interference, it is inefficient, because
each cell can use only a fraction of the available bandwidth. Therefore, one objective for the
design of LTE was to be able to operate close to reuse factor 1, i. e. use all resources in all cells.

Multiple approaches were proposed to weaken the concept of hard reuse. A system can use lower
reuse factors, which means that closer cells use same frequency band. However, that can lead to
uneven distribution of interference, as some neighboring cells have to use the same resources.
Instead of only using the allocated partition, a transmitter can also use the full bandwidth, but
transmit with reduced power on all but the allocated partition. This concept is called soft reuse.
The reduced transmit power causes limited interference, but allows to serve UEs with low channel
attenuation. Another approach is to divide the available bandwidth into fractions, and then apply
different reuse factors to the fractions. This approach is termed fractional reuse. UEs which
suffer from interference can be served in a fraction with a high reuse factor. Other UEs are not
impacted by the limited bandwidth.

In addition to orthogonalization on the spatial resolution of cells, it is also possible to steer the
occurrence of interference with finer spatial granularity. In DL direction, multi-antenna arrays
at the eNodeB can be used to steer beams away from UEs served by neighboring cells. In UL
direction, the allocation of resources to UEs can be coordinated, such that UEs transmitting
simultaneously can be distinguished by MIMO receivers of the respective eNodeBs. A related
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approach is interference alignment, which was introduced by section 4.1. In contrast to approaches
operating on the time-frequency grid, approaches based on MIMO techniques require more
detailed channel knowledge.

The global efficiency of spatial reuse depends on the relations between neighboring cells. When
an interfering BS reduces transmit power on a resource, it suffers from reduced capacity. At the
same time, UEs in multiple neighboring cells benefit. To make the reduction in transmit power
efficient, these benefits have to compensate the reduced capacity at the interfering cell. Therefore,
interference reduction can be especially efficient in heterogeneous cell layouts. There, a macro
cell causes interference in many small cells. When the macro cell reduces its transmit power on a
resource, all these small cells can use the respective resource more efficiently.

4.2.2 Coordination of Resource Usage

In case the resource usage is orthogonalized to reduce interference, the coordination of neighboring
cells is beneficial. This is termed interference coordination (IfCo) or inter-cell interference
coordination (ICIC). The schemes for coordination can be classified according to various aspects.
The following paragraphs give an overview over these aspects.

The most prominent classification of IfCo approaches considers the time scale of the coordination.
The simplest coordination is a static configuration. However, the optimal configuration of reuse
factor, partitioning, power levels, etc. depends on the locations of the UEs and their data traffic.
This varies over time and can only be estimated in advance. Therefore, a static configuration
is sub-optimal in most of the time. In contrast to hard reuse, soft and fractional reuse allow an
eNodeB to transmit on fractions of bandwidth with different characteristics. These schemes
do therefore leave some degrees of freedom for the local RA mechanism. UEs can be moved
between the fractions to adapt to changed requirements.

Dynamic approaches have the potential to adapt to instantaneous load situations. They can
be further classified with respect to the time frame of adaptation. Slow adaptation eases the
exchange of coordination messages. Faster adaptation allows to better adapt to instantaneous
load and channel situations. Dynamic schemes require communication between eNodeBs.

IfCo schemes can also be classified regarding the amount and type of communication taking
place. In the simplest systems, no communication takes place. While this still allows to achieve
probabilistic gains from reduced interference,5 it is typically not seen as IfCo scheme. Schemes
based on implicit communication can be realized based on feedback from UEs, e. g. by using
channel measurements or HARQ feedback to avoid resources with high interference [Kas+10].
Explicit communication allows to gain accurate information without much delay. However,
communication introduces additional complexity into the system.

Another aspect suitable for classification is to consider what is influenced by neighboring cells.
One group of approaches adapts only locally visible parameters (e. g. LA, allocation of resources
to different UEs). Remotely visible decisions (e. g. transmit power, free resources) are taken
solely based on local information. Thereby, these approaches do not reduce interference itself,
but mitigate its negative impact on the network performance. However, they do not require

5For example, applying beamforming results in lower average interference for all users of a system.
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joint decision making and do not balance conflicting objectives. They can thus be regarded as
simple and robust.6 Other approaches coordinate parameters that have influence on neighbors
(e. g. transmit power, resource utilization). There, the potential for optimization is higher, but
conflicting goals require a mechanism for joint decision making. As benefits and restrictions
from IfCo can be unevenly distributed between cells, fairness can become relevant.

In case eNodeBs use explicit communication to coordinate parameters visible to each other, a
mechanism for joint decision making is required. The simplest realization is a global coordinator.
This receives information from all eNodeBs, derives the optimal IfCo parametrization, and
communicates that to all participants. A global coordinator is difficult to implement in real
systems. Therefore, a larger area can be split up into regions, and each region can be coordinated
by a separate coordinator. This is sometimes termed decentralized coordination. Finally,
distributed decision making is implemented by communication protocols between the eNodeBs,
without support from additional devices [Nec09].

There are many examples in literature regarding heuristics for dynamic coordination. A well-
structured overview over such approaches is provided by Necker [Nec09]. A framework and
algorithms for the special case of heterogeneous networks are presented by Deb et al. [Deb+14].

4.2.3 Interference Coordination as Optimization Problem

Interference coordination with explicit communication and a central coordinator can be considered
as optimization problem. This is an extension of the optimization problems introduced in
section 3.3. Interference has to be added to the term that defines the rate achieved by a UE.
Obviously, the problem has to include variables which influence interference. The discussion here
focuses on power level IfCo, i. e. the variables that influence the interference define the transmit
power of network nodes. However, also other variables can be used to influence interference, e. g.
MIMO precoding matrices [Nec09].

A related problem is that where RA is not optimized, but each receiver is served by a different
transmitter [SSM07; HBH06]. Also related is the extension to a problem including a variable
association of UEs to cells [Deb+14; Mad+10].

Table 4.1 lists publications which formulate power level IfCo as optimization problem. They
can be classified by how they model power allocation and the allocation of channel resources to
participants of the network. They also differ by whether they assume constant or varying channel
attenuation, and by their objective function.

The following paragraphs introduce an optimization problem which generalizes all the problems
presented in these publications. The discussion focuses on the DL direction of a cellular network.
It is assumed that there is a set of BSs B and a set of UEs U . Each UE D can be served by a single
BS 1★D only, but receives interference from all other BSs. The following hierarchical resource
model is defined for the coordination of power levels and RA.

Transmit powers of the BSs are configured on the granularity of power allocation resources.
Each BS uses a certain power level on a whole power allocation resource. If the power level

6One prominent example for this group is coordinated LA. Here, the selection of the MCS takes information
about resource utilization at neighboring cells into account.
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Figure 4.1: Hierarchical resource model for power level IfCo

is set to zero, it does not use the resource for transmitting. If it transmits, it can serve one or
multiple receivers. Power allocation resources are orthogonal, i. e. they are separated by time,
frequency, and / or code. They serve the coordination of resource usage and are therefore valid
for all participants of the network.

Allocation of resources to receivers is modeled by scheduling resources. A scheduling resource
defines a partition of a power allocation resource that is assigned to a single UE. In contrast
to power allocation, RA is assumed to be invisible to other participants of the network. Thus,
each BS independently splits each power allocation resource into multiple scheduling resources.
Scheduling resources belonging to a single BS are orthogonal. It is assumed that a scheduling
resource does not span multiple power allocation resources. Instead, a BS may serve the same
UE on multiple scheduling resources.

In general, numbers and sizes of each type of resource are variable. However, a flexible number
of resources with flexible characteristic is difficult to model. Therefore, all referenced sources
use fixed numbers of resources and optimize their sizes and / or other properties (e. g. power
levels, allocation to receivers).

The two resource types are here described as sets. The set of power allocation resources is denoted
as Rp. For each power allocation resource =p ∈ Rp and each UE D, there is one scheduling
resource =s

D,=p .7 The scheduling resources of a single BS are grouped as Rs
1,=p .

Figure 4.1 depicts an exemplary configuration of this resource model. There, two equally sized
power allocation resources are defined. Therefore, each BS can use two different transmit powers.
Two BSs 11 and 12 serve three and two UEs, respectively. They split the power allocation
resources differently, i. e. their scheduling resources have different sizes.

The sizes of the resources (e. g. in units of time or frequency) are denoted as B=p and B=s ,
respectively. The sizes of the scheduling resources have to sum up to the size of the respective
power allocation resource.

B=p =
∑

=s∈Rs
1,=p

B=s ∀=p ∈ Rp, 1 ∈ B (4.1)

The channel attenuation is modeled by a factor for each combination of BS 1 and UE D. This
value may differ per power allocation resource =p and is denoted as ℎ1,D,=p . The transmit power is

7An alternative formulation is also applied in literature. Scheduling resources are defined independently of UEs,
e. g. with fixed size and count. A matrix of flag variables is then used to assign the scheduling resources to UEs.
This is covered by the formulation here. See also equation (4.9).
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configured separately per BS 1 and power allocation resource =p. It is here denoted as ?1,=p . For
each resource and BS, it must not exceed the power limit ?max:

?1,=p ≤ ?max ∀=p ∈ Rp, 1 ∈ B (4.2)

Each UE can attain a different spectral efficiency on each power allocation resource. This depends
on the channel gains and on the power allocations of the BSs. The derived data rate is the product
of the spectral efficiency and the size of the allocated scheduling resource. It is calculated as

AD,=p = AD,=s
D,=p = B=s

D,=p cap
(

?1★D ,=pℎ1★D ,D,=p∑
1∈B,1≠1★D ?1,=pℎ1,D,=p + #0

)
. (4.3)

The capacity function maps SINR to spectral efficiency. Most publications apply Shannon’s
[Sha49] channel capacity here (i. e., cap(W) = log2(1 + W)), but others leave the mapping
undefined. The total data rate AD achieved by a receiver D can be calculated by summing over all
allocated scheduling resources:

AD =
∑

=p∈Rp

AD,=p (4.4)

In general, the system performance can be optimized by maximizing the utility U(•) , which is a
user-specific function of the rate. Together with additional constraints, the utility function can
serve to achieve a fair allocation of resources. Note that, in contrast to the fairness introduced in
section 3.2.2, this defines fairness as a global objective. For example, if one BS serves many
UEs, neighboring BSs may reduce interference to achieve balanced rates for all UEs served by
all BSs. This results in the following optimization problem:

max
?1,=p ,B=p ,B=s

∑
D∈U

UD (AD) (4.5)

s. t. resource sizes, eq. (4.1)

power limits, eq. (4.2)

optionally fairness constraints

In literature, typically special cases of this generic problem are defined. A common simplification
is to assume the same channel attenuation for all resources (denoted as same in column channel
model of table 4.1). This can be reasoned, e. g., as coordinating only with the long term average
channel state information.

The generic model allows to transmit with arbitrary power levels on different power allocation
resources with variable sizes. This high degree of flexibility is not found in the models in
literature. Some references restrict their models to a single power allocation resource [DVR03;
HBH06; Ges+07]. Others restrict the sizes of the power allocation resources, either by fixing
them [LL03; RY10; Mad+10], or by allowing only integer sizes [KHK04; Ass08; Deb+14].

A typical simplification is also to allow only predefined levels of transmit power, especially
zero or full power (on-off power in table 4.1). Gesbert et al. [Ges+07] (see also [Gje+06])
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have shown that this does not necessarily degrade the performance of the IfCo. This restriction
makes it possible to enumerate the different levels of interference, and precalculate the users’
rates. However, when there are many BSs in the system, the number of combinations can
become prohibitive. Therefore, some of the referenced publications propose to restrict the set of
considered interferers [DVR03; LL03; RY10; Mad+10; Deb+14].

Another prominent approach to further simplify the problem is to allow only some predefined
patterns of active and inactive transmitters. These patterns can be defined by reuse factors as
introduced in section 4.2.1. The assignment of reuse partitions to BSs can be treated as a separate
optimization problem, which is not covered by the literature referenced here.

Another approach to simplify the problem is to select only a single UE per power allocation
resource, and thereby omit the definition of scheduling resources. Typically, a matrix of flag
variables for the allocation of power allocation resources to UEs is defined. For the generic
model introduced here, this constraint can be formulated as

B=s ∈ {B=p , 0} ∀=s ∈ Rs
1,=p , =

p ∈ Rp, 1 ∈ B. (4.9)

This is even further restricted by Huang, Berry, and Honig [HBH06]. They do not model a
cellular network, but a group of interfering transmitter-receiver pairs. Therefore, each transmitter
serves a single receiver only, and there is no RA.

A related special case is when there are no fairness constraints, and the objective is to maximize
the system throughput (see Gesbert et al. [Ges+07]). In that case, even if channel conditions
between multiple resources differ, the optimal configuration for one resource is not influenced
by other resources. Therefore, each power allocation resource can be optimized separately.
Consequently, only one is included in the authors’ problem formulation (|Rp | = 1). Similarly, a
power allocation resource does not need to be split to be allocated to multiple receivers, but for
each BS the UE with the best channel conditions is selected.

Although that is not directly visible from the problem formulations, time is modeled differently
by the referenced literature. This influences how fairness can be achieved. When the long-term
average RA is optimized, fairness has to be achieved during one execution of the optimization
[Ass08; Mad+10; Deb+14]. However, some authors assume that the optimization is repeated
for each time step [DVR03; RY10]. In that case, an outer control loop can, e. g., adjust weights
which influence the optimization, and thereby achieve the desired fairness in the long run.

4.2.4 Standardization in LTE

LTE does not standardize an IfCo mechanism itself. However it includes some components
which eNodeB vendors can use as foundation for their own implementations of IfCo. Some of
these components target the air interface only, and assume that eNodeBs use vendor-specific
mechanisms for coordination. Others cover signaling between eNodeBs, so that cooperating
eNodeBs do not need to rely on non-standardized extensions. An overview over the standardized
IfCo components in LTE given by [3GPP 36.300]. The following paragraphs summarize the main
aspects targeted in different releases of LTE. Subsequently, mechanisms to provide flexibility to
change the transmit power, mechanisms to measure interference channels, and signaling messages
to be exchanged between eNodeBs are discussed.
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4.2.4.1 Concepts in Different LTE Releases

In LTE Release 8, focus of standardization of IfCo components was to facilitate frequency domain
IfCo. This imposes minimal requirements on the cooperation of the eNodeBs, as synchronization
in time domain (i. e. alignment of the subframes) is not required.

Release 10 supports heterogeneous cell layouts, where multiple small cells are placed in the
serving area of a macro cell. Here, special conditions render frequency domain IfCo unsuitable.
First, there is a large difference in transmit power between macro cells and smaller cells. For UEs
in the border area between two differently sized cells, there is a conflict regarding the optimal cell
association: For DL transmissions, the received power should be maximized. In contrast, UL
transmissions require low pathloss, because the transmit power of the UEs is limited. Second,
system operators tend associate many UEs with small cells, to achieve balanced load although
the sizes of the serving areas are different. Both results in strong interference. At the same time,
IfCo in heterogeneous setups is often more efficient, because when a macro cell reduces transmit
power multiple small cells benefit (see section 4.2.1). Thus, the Release 10 standardization
enhanced the interference mitigation techniques and added time domain IfCo [Lop+11].

4.2.4.2 Flexibility Regarding Transmit Power

In the frequency domain, the transmit power can be coordinated either by statically configuring
different carriers, or by reducing transmit power on some PRBs. The selective reduction of the
transmit power can also be applied in the time domain. Multiple carriers provide no flexibility
for coordination, as their configuration cannot be changed during operation of a cell. Therefore,
the following discussion focuses on reducing the transmit power on a part of the resources of a
single carrier.

To reduce the DL transmit power, reference signals, control channels, and data channels have to
be regarded separately. The LTE standards prescribe constant transmit power for CRSs, so no
IfCo is possible for those [3GPP 36.213]. For control and data channels, this depends on the
used modulation scheme. For QPSK symbols, power can be adapted arbitrarily, as the receiver
evaluates the phase of the received symbols, only. In contrast, for higher order modulation the
receiver also interprets the amplitude by comparing it to the amplitude of the reference signals.
When TMs relying on DM-RSs are used, the power of the reference signals can be adapted
accordingly. However, when the receiver relies on CRSs, the difference in transmit powers of
data and reference symbols has to be communicated explicitly. For most TMs, this is performed
by higher layer configuration.8 Thus, a different transmit power can be configured per UE, but
that cannot be changed quickly. Compared to DL, more flexibility is provided for UL, because
transmit power can be controlled separately for each UE. That comprises power for data and
reference symbols.

For the PUSCH and the PDSCH, the RA mechanism can avoid resources with high interference.
Special care has to be taken with control channels, which do not allow their location to be
adapted flexibly. Therefore, resources where neighboring cells transmit with high power cannot

8A single exception is TM 5, which is intended for MU-MIMO operation and allows to specify an optional power
offset for each RA.
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be avoided. This is the main reason for the focus on time domain IfCo in LTE Release 10. There,
almost blank subframes (ABSs) were introduced. These are subframes where control and data
channels are transmitted either with reduced power or not at all. Thus, minimal interference is
caused to neighboring cells. In DL, control channels also receive interference caused by full
power CRSs from neighboring cells. This effect can be avoided by time-shifting the alignment
of subframes in neighboring cells, such that control channels in one cell are not transmitted
simultaneously with CRSs in another cell. Alternatively, interference cancellation can be used at
the receiver to mitigate the impact of the reference signals.9

4.2.4.3 Measurement of Interference Channels

In Release 8, normal mechanisms for CSI acquisition (see section 2.3.6) are also used to
measure interference. As IfCo is assumed to be performed in the frequency domain, subband
measurements can be used to decide whether it is efficient to serve a UE in that part of the
bandwidth where interference is reduced. In Release 10, CSI measurements were extended to
support time domain IfCo. Two subframe sets can be specified by the eNodeB. Measurements
and reporting are performed separately. Release 11 brings additional flexibility by introducing
CSI processes. There, separate resources can be configured to measure received signal power
and interference. Neighboring cells can transmit CSI-RSs on those resources or leave them free,
so that UEs can measure the case of no interference.

4.2.4.4 Communication Among eNodeBs

Communication between neighboring eNodeBs uses the X2 interface. Messages exchanged over
this interface are defined in [3GPP 36.423]. In addition, vendor-specific extensions can be used
to implement IfCo.

Signaling for IfCo among eNodeBs is part of LTE since Release 8. There, it targets power
level IfCo in the frequency domain. Three types of X2 signaling for IfCo are standardized
[3GPP 36.423]. For DL, with relative narrowband transmit power (RNTP) messages eNodeBs
inform their neighbors about the intended transmit power. This is signaled as a bit map, where
each bit indicates high or low transmit power on a PRB, relative to an also communicated
threshold. For UL, two signals are exchanged. The overload indication (OI) encodes the average
received interference in three levels per PRB. The high interference indication (HII) notifies
of high interference sensitivity. Neighboring cells are thereby requested to avoid allocation of
selected resources to cell border UEs.

Since Release 10, standardization includes mechanisms to support time domain IfCo. There,
eNodeBs exchange patterns of normal subframes and ABSs [3GPP 36.423 v10.1.0]. To allow
stable configuration of CSI measurement, a subset of the ABSs is defined as measurement
subframes. While a subset of ABSs may change to adapt to load variations, those denoted as
measurement subframes are intended to be more permanent. To support joint adaptation of the
ABS patterns, feedback messages allow to communicate ABSs utilization and efficiency.

9See introduction of interference cancellation in section 4.1.
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In Releases 12 and 13, extended signaling for time and frequency domain IfCo was standardized
under the term Inter-eNodeB CoMP10 [3GPP 36.300 v12.8.0]. Neighboring eNodeBs exchange
hypotheses and associated benefits. Here, a hypothesis comprises two-dimensional patterns
of power-reduced PRBs for one or multiple cells. The exchanged messages can be used by a
distributed decision making process to coordinate RAs.

4.3 Coordinated Multipoint Transmission and Reception

The approaches discussed in section 4.2 focus on the reduction of interference between neighboring
cells. There, each cell is equivalent to a sector of a site and serves a distinct set of UEs. However,
also a tighter cooperation is possible, where single UEs are served simultaneously from multiple
sites. In the LTE context, this termed CoMP. Note that approaches to reduce interference, which
are based on cooperation of neighboring cells, can also be classified as CoMP. However, these
are omitted here because they were covered by section 4.2.

4.3.1 CoMP Cell Configurations

In CoMP, a sector at a site is not necessarily equivalent to a cell. Therefore, in accordance with
the 3GPP documents [3GPP 36.819 v11.2.0], the following discussion uses the term point to
describe an array of antennas mounted at the same site and with the same directional characteristic.
For the special case of DL transmissions, a point is also termed transmission point (TP). A point
can correspond to a sector of a macro site, which is mounted above rooftop and transmitting with
high power. However, a point can also be transmitting with much lower power and be mounted
below rooftop or indoors.

In a traditional (non-CoMP) setup, a UE receives control channels and data from the same
TP, which corresponds to its serving cell. That point also receives data in UL direction. This
interrelation between the TP used for control channels and the TP used for data channels is
removed in a CoMP setup. The control channels corresponding to a cell can be transmitted
from one or multiple TPs. At the same time, a TP can transmit or receive data belonging to
UEs associated with different cells. In a simple CoMP setup, the control channels and most
of the data channels of a cell are transmitted by a single TP. Service for some UEs in the cell
border area is supported by a neighboring TP, which also serves its own cell. In a more advanced
setup, a single cell employs multiple TPs to serve a large area. MU-MIMO and dedicated control
channels (EPDCCH) are used to maximize network performance.

4.3.2 CoMP Approaches for Data Transmission and Reception

Lee et al. [Lee+12], and similarly also the 3GPP [3GPP 36.819 v11.2.0], classify CoMP into
three types of approaches. The first is coordinated scheduling (also coordinated beamforming).
This was already covered by section 4.2. The remaining two approaches are transmission

10In 3GPP terminology, there is no clear distinction between IfCo and CoMP. See also section 4.3.
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point selection and joint transmission and reception. These two are discussed in the following
paragraphs.

In dynamic point selection, a UE is served by a single point at a time, however that can change
from subframe to subframe without handover. This applies for DL as well as for UL transmissions.
Dynamic point selection exploits channel variations experienced by UEs in cell border areas. To
decide which point to use, the quality of both channels has to be estimated. For advanced MIMO
schemes, additional information is required for both channels.

A tighter cooperation of the points is assumed for joint reception and joint transmission. Joint
reception means that for decoding data transmitted in UL direction, the signal received at
multiple points is combined. This is transparent to the transmitting UE. Analogously, for joint
transmission multiple TPs transmit simultaneously on the same resources to a single UE. This
can be performed either coherently or non-coherently. Coherent operation aims at constructive
superposition of the received signals at the UE. This results in good performance, however
requires detailed channel information and exact synchronization of the TPs to align the phases of
the signals. In contrast, non-coherent operation is easier to realize. It can still utilize power and
diversity gains.

Note that CoMP and IfCo approaches do not exclude each other, but can be combined to
improve efficiency. For example, two points can simultaneously serve a single UE by using joint
transmission, while a third point mutes the respective PRBs to avoid to cause interference.

The performance of CoMP setups has been studied for multiple years. Overviews are given by
Lee et al. [Lee+12], Maattanen et al. [Maa+12], and Marsch and Fettweis [MF11]. In addition,
the CoMP study item in 3GPP Release 11 provides definitions and performance evaluations
[3GPP 36.819 v11.2.0].

4.3.3 Standardization in LTE

CoMP is introduced in LTE Release 11 with a focus on the air interface. It is assumed that
cooperating points are handled by the same eNodeB (e. g. sectors of the same site), or that
vendor-specific extensions are applied. Although Releases 12 and 13 introduce signaling for
CoMP on the X2 interface, that targets interference reduction, only. This was covered by
section 4.2.4.

UL CoMP is mostly transparent to the involved UEs. The required CSI can be acquired by
measuring the same SRSs at multiple points. This can be used, together with a prediction of the
received interference, to derive the LA parameters. In case multiple UEs transmit simultaneously
to multiple points, the eNodeBs can configure different UE-specific sequences of DM-RSs to
better separate the received signals.

For DL CoMP, UEs are configured to use TM 10. That allows to define multiple CSI processes.
Each process can measure CSI-RSs transmitted by different antenna ports. These ports can
be located at different sites. This allows to derive all required MIMO parameters, e. g. the
optimal precoding matrix for a beam transmitted jointly from two TPs. As TM 10 relies on
DM-RSs for MIMO decoding and demodulation, the applied CoMP scheme does not need to be
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communicated to the UE explicitly. To realize CoMP gains also for DL control channels, the
EPDCCH can be used, which also employs on a form of DM-RSs.

4.4 Summary and Discussion

This chapter gave an overview over different approaches to make efficient use of the radio
channel in a multi-cell scenario. Receiver side actions are used more heavily in UL direction,
because they cause significant computational effort. Their application is mostly transparent to
the network. The capabilities of the receiver can, however, be utilized by the transmitter. The
BS can possibly optimize IfCo by allowing not none, but a single strong interferer. Similarly,
interference alignment is based on the fact that receivers can cancel interference.

Orthogonalization of interfering signals is a reliable approach to improve cell-edge performance.
To avoid disadvantages for cell center users, fractional reuse is typically applied. Traditional
deployments are based on static or semi-static configuration of reuse patterns. Dynamic
coordination in distributed deployments of eNodeBs requires communication via the X2 interface.
This often implicates a significant delay. Therefore, fast coordination, e. g. as part of RA in
1 ms interval, is difficult to realize. This is, however, different in C-RAN deployments. There,
RA for multiple cells is performed in the same cluster of BBUs, which allows for low-latency
communication. In addition, in case the centralized BBUs are built by the same vendor,
coordination does not need to rely on standardized interfaces.

Similar to IfCo, CoMP can improve the throughput for cell edge users. It requires tight cooperation
of the involved BSs. This is, again, difficult to realize in distributed deployments.

IfCo and CoMP have different effects on the compute effort in a BBU pool. First, for both there
is a certain effort for the coordination of power levels, RA, and MIMO parameters. However,
the effort for encoding and decoding can be assumed to be higher with CoMP, because more
antennas are involved and optionally non-linear algorithms are executed (e. g. dirty-paper coding,
SIC). In contrast, with IfCo encoding and decoding have a similar effort as without IfCo. Only
increased data rates for cell edge users can result in higher effort. In the special case where IfCo
disables the transmission on some resources (on-off power), the compute effort for encoding and
decoding is reduced.



5 Elastic Utilization of Compute
Resources

Chapter 2 introduced LTE and the standardized transmission technology. Subsequently, chapters
3 and 4 provided an overview over approaches for RA and efficient operation in multi-cell
environments, respectively. Based on these, this chapter presents the proposed mechanism to
elastically adapt the compute resource utilization of a mobile communication system.

First, section 5.1 motivates the chosen approach, derives research questions, and highlights the
contributions of this thesis. Subsequently, this work is categorized in the context of related work
from different research areas in section 5.2. The system model for the following evaluations is
then specified in section 5.3.

The design of the proposed system is based on a sound analysis of the interrelations between RA,
IfCo, LA, computational effort, and network performance. These interrelations are studied by
solving different variants of an optimization problem. This problem is defined in section 5.4, and
its solutions are discussed in section 5.5. The proposed system is then derived from the findings
in section 5.6. While a general discussion of the properties of the proposed system is included
therein, an in-depth performance analysis is documented in the subsequent chapter 6.

A preliminary version of the optimization problem defined in section 5.4 and its evaluation
(similar to section 5.5) has been published in [Wer15].

5.1 Problem Statement

Based on the background in technology and research presented in the previous chapters, this
section defines the actual problem statement of this thesis. It is split into two parts. First,
section 5.1.1 motivates that a mechanism for elastic utilization of compute resources is required
to design efficient C-RAN systems. Subsequently, section 5.1.2 details the research questions
and contributions that were introduced in section 1.4.

5.1.1 Motivation

For a long time, the compute effort caused in wireless communication devices did not concern.
Instead, the efficient utilization of the available spectrum was the predominant objective for the
design of wireless networks [Vri+02; 3GPP 36.913]. However, this thinking begins to change.
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Installation and operation of cellular networks also contributes to the total costs of network
operators. While efficient spectrum utilization is still an important goal, new aspects came up in
the last years. These comprise energy efficiency [Pic+08; Cor+10; HBB11; EARTH], flexible
programmability [SN06; I+14b; Zhu+11], and efficient operation in C-RANs [I+14a; CMRI11;
Wüb+14]. These new aspects are related to the estimation and limitation of the compute effort
caused in the RAN. The following paragraphs focus on the flexible implementation on GPPs and
on the operation as virtual functions hosted by a cloud of hardware resources.

When baseband processing uses ASICs, a significant share of the total cost is fixed (e. g.
engineering, production of photolithography masks), and installing more compute power comes
at a relatively low additional cost [KMN02]. Also, ASICs typically have a good relation of
compute power per consumed energy, so that additional compute power does not significantly
increase total energy consumption. To some extent, this still applies to more flexible hardware
such as FPGAs and DSPs. However, it is not true for freely programmable GPPs. While there the
fixed costs are lower, compute capacity can be enlarged only by buying larger or more compute
chips. This significantly contributes to total cost and power consumption [SN06]. Therefore, the
proper dimensioning of compute capacity is crucial for GPP implementations.

For the comparison of ASIC and GPP implementations, Li et al. [Li+11] differentiate two
aspects of complexity. ASICs and other specialized hardware can efficiently handle computation
complexity. This means that they are good at delivering numerical performance. In contrast,
GPPs are superior in coping with structural complexity. Implementing multiple and structurally
complex algorithms in software causes less effort than realizing the same in hardware. In
addition, flexible software implementations cause no or only minimal drawbacks at runtime,
while flexible hardware implementations require more chip area and thereby contribute to the unit
costs. This benefit of GPPs is utilized in this thesis. The proposed system comes with additional
structural complexity, but allows an eNodeB implementation to cope with reduced computational
capabilities.

The required compute power for baseband processing in an eNodeB depends on multiple varying
parameters and is therefore difficult to predict [WGP13]. The installed compute capacity either
needs to be dimensioned for peak load, or a potential shortage of compute capacity has to be
accepted. Dimensioning for peak load can be inefficient and overly expensive [Ros+15a]. This is
in particular true for large pools of baseband units, where the peak load is much higher than the
typical load [Bha+12; WGP13; RTV15]. Elastic utilization of compute resources allows to cope
with resource shortages [Ros+15a]. Therefore, compute resources can be dimensioned tighter,
which saves hardware and energy.

One of the main desires which cause the trend to C-RANs is to operate a RAN with high efficiency
and flexibility. This is equivalent to the cloud idea in IT installations [CMRI11]. There, virtual
machines (VMs) replace hardware servers as structuring elements of the IT architecture.1 A large
number of VMs is aggregated on a cluster of hardware units. The hardware can be operated with
a high utilization, because the aggregation results in a more constant load. In addition, the load
can be balanced between hardware units by live migration of VMs. This allocation flexibility
also allows to clear hardware units, which can be used for maintenance or to switch them off to

1The term VM is here used as synonym for virtualization on different layers, encompassing system and container
based virtualization [Sol+07].
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save energy. In case of hardware failures, the same flexibility supports to quickly restore services
on unaffected hardware units.

In IT clouds, load and performance are monitored and actions (e. g. moving VMs, booting
additional hardware) are taken reactively. This is possible because IT applications are typically
elastic, i. e. they can tolerate moderate overload. In case of a shortage of compute capacity,
requests take longer to complete, but the service is not disrupted immediately. To apply the same
concept to RAN operation, the latter has to support elastic utilization of compute resources.

For the implementation of an eNodeB, strict timing requirements apply [I+14a; PHT16; Ros+15a].
To support these on GPP platforms, special actions have to be taken. For example, Tan et al.
[Tan+11] assign dedicated processor cores to signal processing tasks. While typical IT operating
systems and virtualization platforms are not designed to give RT guarantees, there are some
specialized products and approaches which do so [Gua+16; GCL14]. However, these cannot
manage overload. In case of overload, it is not possible to prolong the response times of the
system. Instead, the RAN software has to explicitly manage overload to guarantee in time
transmission of standardized signals. Doing so efficiently is the major objective of this thesis.

The LTE standard requires an eNodeB to transmit reference and synchronization signals at fixed
intervals. In addition, it requires to react on messages within a certain time (e. g. send a HARQ
acknowledgment). Further, for high performance network operation, various other tasks such as
RA and encoding of user data have to be performed. To conform with the standard also in case of
overload, an eNodeB is required to transmit all mandatory signals and messages. However, that
alone is not sufficient to maintain high system performance. Instead, most of the non-mandatory
data transmissions should be continued, so that the system makes the most of the available
compute resources.

This can be illustrated by the following examples. A simple overload management can be realized
by stopping all non-required interactions. An eNodeB can fall back to transmit only reference
and synchronization signals and stop allocating new resources to UEs. In addition, processing
of ongoing transmissions can be aborted, because all participants of an LTE network can cope
with temporal outage. Such handling of overload implicates a significant impact on network
performance. A more elaborate overload handling mechanism can, e. g., allocate only a part of
the time-frequency resources to new transmissions. In addition, it can tune LA parameters so
that baseband processing becomes computationally more efficient.

The efficiency of the overload handling determines the optimal dimensioning of the hardware
resources. If the system cannot cope efficiently with overload, such situations have to be avoided,
and a significant safety margin has to be applied. When the system operates efficiently in overload
situations, this safety margin can be reduced. If moderate overload causes no significant impact
on system performance, a C-RAN can be operated in permanent overload. The system can
thereby achieve optimal utilization of the compute hardware.

5.1.2 Research Question and Contributions

The main research question of this thesis is how to achieve an efficient and elastic utilization
of compute resources. When overload can be handled efficiently, good system performance is
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maintained under limited compute resources. Section 1.4 introduced three objectives. First, the
potential efficiency of an LTE network coping with compute resource overload is to be assessed.
Second, a simple overload handling mechanism is to be designed, which achieves good efficiency
and is suitable for implementation in a real LTE system. Third, the efficiency of the designed
mechanism has to be shown.

The first objective for this thesis is to evaluate the potential efficiency of coping with compute
resource overload. Thereto, an optimization problem is formulated and solved, which covers the
most important variables and their influence on system performance and compute effort. Namely,
the problem encompasses IfCo, RA, and the configuration of LA parameters. To be solvable,
this optimization problem necessarily has to be abstract and simplify some effects. Nevertheless,
the evaluation of solutions to this optimization problem allows to estimate the compute capacity
required to deliver a certain system performance. This estimation is independent of potential
restrictions incurred by implementations of overload handling mechanisms. In addition, it allows
to gain insight into the influence of different variables and allows to infer guidelines for the design
of the overload handling mechanism.

The second objective is to design an overload handling mechanism, which mediates between
network performance and implementation complexity. In addition, one of the design goals is to
avoid overly radical changes to already existing building blocks of the C-RAN system. The design
of the proposed heuristic is well-founded on insights inferred from solutions to the optimization
problem. The heuristic is based on an efficiency metric which assesses the effect of LA decisions
on compute requirements and network performance.

Finally, the proposed overload handling mechanism is evaluated thoroughly. It is thereto compared
to a simple baseline heuristic and to the optimal solution from an adapted optimization problem
in a simplified scenario. In addition, it is evaluated in a more complex, dynamic scenario. While
an optimal solution cannot be used as a benchmark there, the second scenario serves to verify
that the heuristic can cope with dynamic effects occurring in a real system.

An all-encompassing evaluation of the components of a mobile communication system exceeds
the scope of this thesis. Thus, some restrictions have to be defined.

In general, similar effects influence compute effort in UL and DL processing. In both directions,
RA and LA parameters define the resulting processing effort. Also, for both directions, time-
frequency resources without transmission are beneficial for the interference situation. Therefore,
leaving resources free to simultaneously reduce interference and compute requirements is a
promising approach. The effort for UL processing is expected to be larger than that for DL
processing [I+14a; Des+12]. The efficiency of overload handling in UL direction has already
been studied by Rost, Talarico, and Valenti [RTV15].2 Therefore, the model and all evaluations
in this thesis focus on the compute effort required for signal processing in DL operation. It is,
however, assumed that the same general approach can also be applied to design an overload
handling mechanism for UL processing.

The evaluated DL processing blocks encompass FEC processing, modulation, and MIMO
operations. The effort for the inverse DFT, which is also part of signal processing for OFDM
transmissions, is not considered. This is reasoned by the fact that DFT calculation imposes a

2See also [Ros+15b] and the discussion of related work in section 5.2.3.
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constant effort. On one hand, it cannot be influenced by changing RA or LA parameters, and
therefore it is difficult to adapt it to limited compute capacity. On the other hand, this effort can
be easily predicted, so no safety margins are required for hardware dimensioning. It is assumed
that higher layers (i. e. processing of the PDCP) and control plane operations cause only small
effort compared to the main data traffic transmitted via the PDSCH.

This thesis evaluates the efficient handling of overload using the example of signal processing for
LTE DL processing. The same approach can also be applied to evolved 5G networks, given that
suitable compute effort models become available.

5.2 Classification of Related Work

This thesis proposes a mechanism to achieve elastic utilization of compute resources in a mobile
communication system. In doing so, it focuses on the compute load caused by signal processing.
The related work in the area of efficient and adaptive signal processing is presented in section 5.2.1.
The underlying compute system can be considered as a RT system. In that area of research,
adaptive complexity is a known method to cope with overload. The related approaches are
discussed in section 5.2.2. Achieving elasticity eases the management of the processing resources
and allows for a tighter dimensioning of these resources. An overview over approaches for the
management and dimensioning of compute resources in C-RAN systems is given by section 5.2.3.
Finally, the discussion of related work is summarized in section 5.2.4.

5.2.1 Efficient Signal Processing in Communication Systems

Efficient signal processing is a major objective for the design of wireless communication systems.
Overly complex signal processing requires powerful hardware, which increases system cost and
energy consumption. For example, one of the reasons to apply OFDM modulation in LTE is that
this eliminates the need for complex time domain equalization.

Efficient signal processing is a sub-aspect of the energy efficiency of cellular networks. The
energy efficiency has to be considered separately for BSs and UEs. On the BS side, especially
for macro BSs, the energy consumed by power amplifiers dominates the other components of the
system [Cor+10; HBB11]. However, signal processing contributes significantly to the power
consumption in the UEs. This is caused by the fact that a UE transmits only rarely and on a
fraction of the bandwidth, while it listens to the radio channel more often.3 Besides cellular
networks, energy efficiency is also a prominent topic in sensor networks [CGB04; CGB05;
Jay04]. The following discussion focuses on efficient signal processing.

The computational complexity in an LTE system can be reduced directly on the level of the
signal processing algorithms. However, it is also influenced by mechanisms and configuration on
higher layers. These approaches are detailed in the following two sections 5.2.1.1 and 5.2.1.2,
respectively. The selection of algorithms and the configuration of parameters is typically static.

3A UE has to decode the PDCCH to detect when it has to receive data. If that is the case, it also decodes the
respective parts of the PDSCH. In addition, it is required to measure the radio channel. UEs can switch to power
saving modes to reduce this effort.
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In contrast, this thesis targets the dynamic adaptation of the system to the available compute
resources. Section 5.2.1.3 covers related work which also considers dynamic reconfiguration.

5.2.1.1 Algorithms with Reduced or Configurable Complexity

The design as well as the implementation of signal processing algorithms allow to trade
communication performance off for reduced computational complexity. Li et al. [Li+11] provide
a structured overview over these approaches.

A prominent example for a set of algorithms performing the same task with different performance
and complexity are MIMO decoders (see also section 2.3.4.3). Simple linear decoders have
lowest complexity, but also limited performance. The ML decoder is known to be optimal but
involves a search over all combinations of possibly transmitted symbols, which prohibits its
application in many use cases. Advanced MIMO detectors such as sphere decoding can achieve
performance close to ML with significantly reduced computational complexity [Zim07; CTL12].

There are also signal processing algorithms where the complexity can be influenced by configu-
ration parameters. For example, Desset et al. [Des+11] present a configurable MIMO decoder.
There, a configurable search range allows to reduce complexity at the cost of lowered detection
performance. Similarly, the number of iterations performed by a turbo decoder influences
detection performance and computational complexity.

Besides the design of the algorithms, a similar trade-off can be made during implementation of
the algorithms. An algorithm can be implemented with fixed point or floating point arithmetic. In
addition, the accuracy of the representation of the numbers can be chosen. Fixed point arithmetic
with low accuracy is simpler to realize in hardware. However, it is more susceptible to numerical
errors and therefore reduces the performance of the communication system [Jan+11].

Approaches on signal processing level are not evaluated in this thesis. However, the general
trade-offs realized by configurable signal processing are similar to those studied in this thesis.
Thus, the approach of this thesis, which consists of selecting configurations by individual
computational efficiency is potentially also applicable for these trade-offs.

5.2.1.2 Mechanisms and Configuration on Higher Layers

An LTE system comprises of many mechanisms on different layers. Some of these can be adapted
or parametrized to allow to reduce signal processing effort.

When a UE has not transmitted or received data for some time, it enters the discontinuous
reception (DRX) mode. In this mode, it decodes the PDCCH only in predefined subframes.
Thus, DRX allows to switch off the receiver in the remaining subframes. The time after which
DRX mode is entered and the subframes where the UEs decode the PDCCH can be configured
by the BS. DRX can significantly reduce the signal processing effort at the UEs. However, it
introduces additional delay for the transmission of data in DL direction.

Another approach to reduce computational effort of a receiver is to limit the number of iterations
of the turbo decoder. When a MCS is selected for an allocated channel resource, this determines
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the amount of encoded data. The closer this is to the capacity of the resource, the more iterations
are required to successfully decode the data at the receiver. Thus, maximizing the total throughput
of a system results in complex decoding. Valenti, Talarico, and Rost [VTR14] propose to take
decoding complexity into account for the MCS selection. By selecting more robust MCSs, their
system reduces the required number of iterations.

The BS can select the MIMO modes used in UL and DL direction. This is performed
individually for each UE according to its velocity and the characteristics of the radio channel (see
section 2.3.4.4). However, MIMO modes also come with different measurement and signaling
overhead and with different computational complexity at the UE and at the BS. They can thus
be used to trade throughput off for reduced signaling overhead or for reduced complexity. For
example, Cardoso et al. [Car+13] propose to change the number of active transmit antennas at the
BS. They show that using simpler MIMO modes reduces power consumption when the network
load is low.

RA also has a significant influence on the signal processing effort. Signal processing only
occurs for those resources which are used for transmission and reception. The benefit of unused
resources is also considered by Cardoso et al. [Car+13]. When resources are allocated, the
associated processing effort often depends on the radio channel and thereby on the served UE.
This is similar to the proposal of Kim et al. [Kim+09], where a resource is allocated based on a
metric which includes the energy efficiency of the transmission. Summarizing, leaving resources
free or serving UEs with low processing requirements can serve to reduce the total computational
effort. However, this impacts the network throughput and fairness.

In this thesis, the influence of two higher level mechanisms on the computational complexity is
evaluated. These are the selection of MIMO modes and the RA. In addition, the effect of reduced
interference is studied, which can be seen as additional benefit of not allocating resources.

5.2.1.3 Dynamically Trading Network Performance Off for Reduced Complexity

The previous sections described different components that can be adjusted to reduce computational
complexity. Such adjustment is typically performed during the design of the system. It is,
however, also possible to change the configuration at runtime to adapt to varying requirements or
conditions. Approaches which do this are discussed in the following paragraphs.

Desset et al. [Des+11] propose to scale the accuracy of their configurable MIMO detector to not
exceed the allowed complexity. The same MIMO detector is evaluated jointly with a flexible
turbo decoder by Desset and Torrea Duran [DT12]. They study the power consumption of a UE
in different scenarios. The authors show that, while the influence of the flexible turbo decoder
is limited, the adaptive MIMO decoder allows to save energy by efficiently utilizing the radio
channel. However, they do not describe a mechanism which dynamically adapts the decoder.

Kim et al. [Kim+09] propose an approach for energy-efficient resource allocation and MIMO
mode selection for UL transmissions. They assume that multiple UEs dynamically start new
transmissions in a cell. For each UE, their algorithm strives to realize the required rate with the
lowest energy consumption. When the load in the cell is low, simpler transmission schemes can
be used to save energy.
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Dynamically choosing how to balance between computational complexity and network throughput
is also the objective of a publication by Li et al. [Li+11]. Their system is based on signal
processing blocks which allow to scale signal processing quality and computational complexity.
During operation of the system, a controller adapts the configuration of these blocks to achieve a
certain desired quality. Their publication contains three case studies, where this general scheme
is applied for different components of a signal processing system.

The discussed publications propose different approaches how to dynamically trade off network
throughput for computational complexity or power consumption. They do all focus on a single
communication link with predefined requirements. In contrast, this thesis simultaneously decides
this trade-off for multiple competing links. This can be considered as RA problem, similar to
those discussed in chapter 3 for allocation of channel resources [Ros+15a]. Further approaches
in this direction are discussed in section 5.2.3.

5.2.2 Real-Time Scheduling

The communication protocols impose strict timing requirements on the computation for cellular
communication systems. Each BS has to transmit its radio frames at fixed intervals. The
specifications of the radio interface do not allow to delay their transmission, e. g. to cope with
computational load peaks. The implementation of a BS can therefore be considered as RT system.
The following section 5.2.2.1 introduces RT systems. Subsequently, section 5.2.2.2 discusses
approaches to cope with overload in such systems.

5.2.2.1 Introduction to Real-Time Systems

According to Sha et al. [Sha+04], “a RT system is one with explicit deterministic or probabilistic
timing requirements.” It handles multiple jobs competing for one or multiple shared resources,
e. g. a processor. Each job is characterized by the point in time when it enters the system (its
release time), the point in time when it has to be completed (its deadline), and a duration of
resource utilization (its execution time) [But+10]. The point in time when a job is completed is
known as finish time. A sequence of related jobs is termed task, process, or thread.

In a mobile communication system, the signal processing for each UE in each subframe can be
considered as separate job. The execution time of each job is variable, because it depends on the
number of allocated PRBs and other parameters. Collating multiple jobs to tasks is not useful
here, because jobs do not have any common characteristics.

It is assumed that all jobs associated with the same subframe have the same release time and
the same deadline. Further, it is assumed that this deadline occurs before the release time of
the subsequent subframe. Thus, at no time jobs of consecutive subframes are simultaneously
schedulable. This means that processing resources cannot be shifted between subframes, and
each subframe can be analyzed individually.

Buttazzo et al. [But+10] classify the timing requirements of tasks as hard, firm, soft, and non-RT.
A hard task requires that each job is completed within its deadline. A firm task allows that
a limited fraction of the jobs miss their deadline. The performance of a soft task degrades



5.2 Classification of Related Work 87

gracefully when the completion is delayed. Finally, non-RT tasks state no constraints on their
finish times. A single system can, in principle, serve tasks with different requirements. However,
that is not further considered here.

The signal processing of a mobile communication system can be interpreted as having hard or
firm requirements. The classical approach is to assume hard timing requirements, i. e. designing
the system such that all signal processing can be completed in time. However, in this thesis, the
system is assumed to have firm timing requirements. This means that it is accepted that the signal
processing for some UEs is not completed within the deadline. The completion time of a job is
only relevant to determine whether the respective deadline is met. This imposes a significant
simplification compared to typical RT scheduling problems, because it is not relevant in which
order the jobs are processed.

5.2.2.2 Coping with Overload

Hard RT systems guarantee to meet all deadlines. Such a guarantee can be provided by a static
feasibility analysis (also termed schedulability analysis). Thereto, worst-case conditions (e. g.
regarding release and execution times) are assumed for all tasks. An overview over different tests,
which can then be applied to the set of tasks, is given by Sha et al. [Sha+04]. Even for simple
algorithms, complex computer systems with hierarchical memory architectures result in variable
execution times. Consequently, it is difficult to determine the worst case execution time of a job.
Thus, guaranteeing hard RT requirements often results in inefficient utilization of the compute
resources [But+10].

In contrast to hard RT systems, firm and soft RT systems can cope with overload by skipping
or delaying tasks, respectively. The performance of such systems can be defined by assigning
a utility to each job, which is a function of its finish time [But+10]. For firm tasks, this has a
constant value when the job is completed before the deadline, and drops to zero afterwards. For
soft tasks, the utility decreases monotonically when the completion is delayed. The performance
of the system is then the sum of the utilities of all jobs.

Firm and soft RT systems can cope with jobs for which the worst case requirements cannot be
stated in advance. To maximize system performance, an algorithm dynamically decides the
acceptance and the schedule of jobs during system operation. In case the arriving jobs can all be
served within their deadline, the algorithm defines the order of their serving. Otherwise, the
system has to cope with an overload situation. As the order of completion is not relevant here,
the following paragraphs focus on the handling of overload.

Sha et al. [Sha+04] as well as Buttazzo et al. [But+10] state three approaches to reduce load in an
overload situation: Skipping jobs, increasing their interarrival times (IATs), and reducing their
execution times. Skipping is applicable to firm jobs and implies a degradation of the total utility.
The remaining two approaches rely on an adaptive job model.

The main approach of the system proposed in this thesis is to reduce the execution times of jobs.
Whenever that is not sufficient to prevent overload, the system skips jobs as additional measure.
The utility function, which is used as objective function in this thesis, is a function of transmitted
data rates. It is not related to the utility as a function of job finish time in RT systems.
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The adaptation of job execution times is typically modeled as follows [Shi+89; Liu+91; Liu+94;
Sha+04; But+10]. Each job is divided into a mandatory and an optional sub-job with individual
execution times and the same deadline. All mandatory sub-jobs have to meet their deadlines.
An optional sub-job becomes executable only after the respective mandatory sub-job has been
completed. The optional sub-job can be skipped, executed partially, or executed completely. The
performance of the system is measured in terms of a total error. The error of a job depends on
the fraction of the optional sub-task that is completed in time. This approach is known as the
imprecise computation model.

The imprecise computation model allows to interrupt the optional sub-job at any time. It is thus
applicable whenever an algorithm successively improves the precision of the result. For the
signal processing in mobile communication systems, the parameters affecting the execution time
of a job are decided before the execution starts. Thus, this model is not applicable here.

An alternative model for adaptive execution times is the one introduced as multiple methods
by Garvey, Humphrey, and Lesser [GHL93]. There, multiple methods or algorithms can be
used for the same job, each making a different trade-off between solution quality and time. The
authors focus on a sequence of dependent jobs that has to be completed in order. They propose a
scheduling algorithm which is based on pruning dominated methods.

The multiple methods model is applicable for the signal processing of a mobile communication
system as evaluated in this thesis. When a job comprises the encoding of data for a single UE,
different methods can be, e. g., using different MIMO modes. These result in different execution
times and data capacities. The jobs used to encode data for different UEs are independent, which
simplifies their scheduling. In contrast to the publication by Garvey, Humphrey, and Lesser
[GHL93], this thesis also considers the fairness of the resource allocation. Further, the objective
is here to design a distributed system, while Garvey, Humphrey, and Lesser [GHL93] propose a
centralized approach similar to the optimization problem defined in section 5.6.2.

The distributed system proposed in this thesis is based on a prediction mechanism for the
efficiency threshold. This can be interpreted as a simple control loop which modifies the load of
the system. This is similar to a method known as feedback scheduling, which has been proposed
by Stankovic et al. [Sta+99].4 There, a RT scheduler is enhanced by a control loop. The authors
provide an example, where the control loop switches between multiple methods and adapts an
admission control mechanism to achieve a deadline miss ratio close to zero.

While their objective is the same as that used in this thesis, their system model differs. They
model the set of queued jobs as a liquid tank, where new jobs are added and completed jobs are
removed continuously. This differs significantly from the model used here, where new jobs are
computed at each subframe and no jobs can persist in the system. While their system has an
internal state (the queued jobs), the system proposed here is intrinsically stateless.5 The only
state used here is the artificially added threshold variable, which is adapted at every subframe.
In addition to these differences, Stankovic et al. [Sta+99] do not detail how to select the jobs
which are switched to computationally simpler methods. Performing this selection efficiently in
a distributed manner is a central component of this thesis.

4See also references therein as well as in [Årz+00] and [But+10, chapter 8].
5More accurately, a new set of jobs is created for each subframe. The sets of consecutive subframes do not

intersect. However, the data traffic and the radio channel impose a correlation on the execution times of the jobs of
consecutive subframes.
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5.2.3 Dimensioning and Management of Compute Resources in C-RANs

When a C-RAN is implemented on GPPs, the signal processing has to be handled by a RT
computer system. Therefore, both areas of research have to be combined when considering the
dimensioning and management of compute resources in C-RANs.

In a classical mobile communication system, various trade-offs between network performance and
computational complexity are decided when the system is designed. The computational resources
are then dimensioned for peak load [Wüb+14]. This approach is well suited for systems where
the variation of the computational load is low, e. g. because the system only uses two antennas.
In addition, this approach is favorable for systems based on ASIC or FPGA implementations
[KWM11]. There, computational power can be realized efficiently. On the contrary, structural
complexity, e. g. due to support of adaptive mechanisms, can become a burden.

C-RAN systems can better adapt to variable computational requirements. Virtualization facilitates
a flexible allocation of functions to hardware. Thereby the computational load of multiple
hardware units can be balanced. In addition, with software implementation on GPPs, structural
complexity is easier to handle. This allows, e. g., to implement multiple variants of algorithms
and switch between these to balance between network performance and computational complexity.
Thus, as described in section 5.2.1.3, the average computational load can be reduced by adapting
the performance of the network to the requirements of the respective link.

The beneficial effects of a C-RAN system on the computational load are shown by Werthmann,
Grob-Lipski, and Proebster [WGP13]. The publication shows how multiplexing of the computa-
tional load of multiple BSs in a single large BBU pool reduces the variance of the computational
load. By serving a large area, such a BBU pool also balances the spatial inhomogeneity of the
load. This allows to save processing hardware compared to a dimensioning for peak load. These
evaluations are based on percentiles of the measured load. However, the publication does not
cover a method to cope with compute resource overload.

Similarly, Wang et al. [Wan+16] propose a dynamic allocation of processing functions to hardware.
Their objective is to power down unused hardware and thereby save energy. However, they do
also not consider the case that the available hardware does not satisfy the current load.

Pompili, Hajisami, and Tran [PHT16] propose an approach to predict and monitor the required
processing resources. Their system makes use of repeating patterns of user activity, e. g. by
recording diurnal load. Based on that, it predicts the required processing resources. It can,
however, not cope with overload situations. Instead, the authors state that so much hardware has
to be provisioned that the processing of each frame is completed before deadline. This is difficult
to realize in practice, because a tight upper bound for the future load cannot be given easily.
Guaranteeing that the resources are always sufficient thus results in inefficient over-provisioning.

The concept of computational outage has been introduced by Valenti, Talarico, and Rost [VTR14]
(see also [RTV15]). This describes the probability that the available compute resources are not
sufficient to handle the instantaneous load. It thereby accepts that some blocks of scheduled
radio resources or transmitted data have to be discarded due to shortage of compute capacity. To
minimize the influence of this on the system, the authors propose to order the processing such
that those UEs with high channel quality, which also cause high effort, are skipped first.



90 Chapter 5. Elastic Utilization of Compute Resources

Another simple approach to handle overload is proposed by Werthmann et al. [Wer+15]. There, a
central instance simultaneously reduces the number of PRBs allocated to each UE until the total
load can be handled by the available resources.

While these approaches allow a system to cope with overload, it is more efficient to apply one
of the adaptive mechanisms discussed in section 5.2.1. Such a system is described by Rost
et al. [Ros+15b]. They propose two heuristics to select the MCSs used for UL transmissions.
As explained in section 5.2.1.2, their system switches to more robust modes to reduce the
computational complexity of the turbo decoder. It can thereby satisfy a constraint on the
computational load. The proposed heuristics operate after time-frequency resources are allocated
to UEs. Both are centralized, i. e. the transmissions of all UEs in the system are handled by a
joint procedure. They do not consider fairness of the compute resource allocation, but strive to
maximize the sum rate of the system.

The major objective of this thesis is to maximize the efficiency of a mobile communication
system in cases of computational overload. Thereto, the configuration of the system is constantly
adapted. This is similar to the proposal of Rost et al. [Ros+15b]. However, in contrast to that
publication, this thesis aspires a fair allocation of compute resources and presents a simple
distributed heuristic. While Rost et al. [Ros+15b] study the effort for decoding received data,
here the effort for signal processing necessary to transmit data is evaluated.

Rost et al. [Ros+15a] state that the allocation of radio and compute resources should be managed
jointly. This thesis follows that advice in the formulation of the optimization problem in
section 5.4. However, the related evaluations in section 5.5 show that adapting MIMO modes
alone achieves comparable performance. Therefore, the joint allocation of both types of resources
is not performed by the proposed system.

5.2.4 Summary

The previous sections gave an overview over the related work from three different subjects.
Section 5.2.1 discussed approaches for efficient and adaptive signal processing in mobile
communication systems. There exist various proposals to reduce signal processing complexity,
e. g. by using approximating algorithms, simplified implementation, or avoiding complex
operations by modifying higher level mechanisms. However, all these impact the network
performance. These trade-offs between complexity and performance are typically chosen at
design time of the system. In contrast, they are here performed during system operation. The
existing approaches for such dynamic selection were discussed in section 5.2.1.3. Unlike this
thesis, however, they do not focus on a total compute resource limitation of a system, but on
single links with predefined network performance requirements.

Section 5.2.2 treated the mobile communication system as a RT system. Such systems can have
different timing requirements. The timing requirements of the mobile communication system are
here assumed to be firm. That allows some tasks to miss their deadline. The order in which the
jobs are served is not relevant here, because all jobs of a subframe have the same arrival time and
deadline. However, known mechanisms for coping with overload can be applied. In the system
proposed in this thesis, the processing of some jobs is skipped. In addition, an adaptive job
model is used, where the execution times of the jobs can be reduced. Here, the multiple methods
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model applies, which allows to select one of multiple predefined methods (or implementations)
to complete a job. In contrast to this thesis, the solution for this model proposed in literature
describes a central solving algorithm and does not consider fairness.

Finally, section 5.2.3 targeted the management and dimensioning of compute resources in
C-RANs. In classical mobile communication systems, compute resources are dimensioned
statically to match the requirements in all situations. Different publications have shown the
inefficiency of this approach. Some of the alternative approaches accept that compute resources
are not sufficient in all situations. In such cases, some transmissions are skipped. However, only
a single publication suggests to use the adaptivity of the system to make most efficient use of the
available compute resources. While that publication targets UL operation, this thesis focuses on
DL processing. There, an ad-hoc design of two centralized heuristics is presented. In contrast, a
more fundamental approach is followed in this thesis.

Summarizing, all three subjects provide a basis for this thesis. However, dynamically adapting the
trade-off between computational complexity and network performance in a distributed system, at
the same time striving for fairness and maximizing performance, has not been performed before.

5.3 System Model

The system model applied here for optimization and simulation largely conforms to the 3GPP
simulation guidelines in [3GPP 36.814]. An urban macro network is modeled, which is described
as Case 1 in that document. The scenario is simplified in some aspects to allow solving the
optimization problems. The most relevant model parameters are listed in table 5.1. The following
sections provide an in-detail description of the model components.

First, section 5.3.1 describes how geometry is modelled. Subsequently, section 5.3.2 defines two
different cell layouts and introduces the modeling of BSs. The placements and antennas of UEs
are defined in section 5.3.3. Sections 5.3.4 and 5.3.5 deal with the model for the radio channel
and the applied abstractions for PHY layer mechanisms, respectively. The two data traffic models
used are defined by section 5.3.6. The model for the processing effort is derived from literature
in section 5.3.7. Finally, section 5.3.8 describes the applied simplifications regarding RA.

5.3.1 Geometry Model

The geometry model serves as base for storing and calculation of spatial positions, distances,
and angles. All geometric operations are based on a three-dimensional Cartesian coordinate
system. However, the use of the third dimension is limited. BSs and UEs are positioned with
fixed heights in relation to ground. Here, ground is a flat surface which is equivalent to the x-y
plane. This means that there are neither geographic nor architectural sources for elevation.

A simulation model can only encompass a scenario of limited size and complexity. In the
straight-forward approach, BSs and UEs are placed in a bounded area. However, in that case
border effects occur, because units close to the border of the area see, e. g., no interference
originating from outside the area. To avoid these distortions, a wrap-around scenario is used
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Table 5.1: System model parameters on the basis of 3GPP Case 1 [3GPP 36.814]

Property Configuration

Geometry model 3D coordinate system, wrap-around
Cell layout 7 or 19 tri-sectorized sites, inter-site distance 3is = 500 m
BS / UE height 32 m / 1.5 m
Carrier configuration FDD, 10 MHz bandwidth per carrier, center frequency 2 GHz
Resource granularity #PRB = 50 PRBs per subframe
BS TX power 46 dBm
Penetration loss 20 dB
Path-loss 128.1 + 37.6 · log10 3, in dB; 3: distance in km [3GPP 36.814]
Shadow fading log-normal with 8 dB standard deviation
MIMO channel model Spatial Channel Model [3GPP 25.996], UE velocity 3 km/h
BS antenna elements 3D radiation pattern with 15° tilt [3GPP 36.814]
UE antenna elements omnidirectional
BS antenna array layout 8 elements in 4 cross-polarized pairs with 0.5_ distance
UE antenna array layout 4 elements in 2 cross-polarized pairs with 0.5_ distance
UE antenna noise figure � = 9 dB
MIMO receiver zero-forcing

here. Wrap-around here means that the scenario is cloned and shifted in a repeating pattern.
A hexagon shape of the scenario with six shifted clones is used. Everything which leaves the
scenario enters a shifted clone. This is equivalent to re-entering the original scenario on the
opposite edge. The same is applied to radio propagation.

The wrap-around principle is depicted in an example in figure 5.1. There, a UE moves out of the
scenario area (orange) on the north-east side. It enters a shifted clone of the scenario (dashed
orange), and thereby the scenario itself again at the south edge.

Two configurations of the scenario are defined, which correspond to two BS layouts with seven
and 19 sites. For a detailed definition of the wrap-around geometry see appendix A.

5.3.2 Cell Layout and Base Station Model

In accordance with [3GPP 25.814] and [3GPP 36.814], BS sites are placed as follows. The first
site is placed at the origin of the coordinate system, i. e. at (0 ; 0). Further six sites are placed
around that in the first tier, such that the distance between sites is 3is and one site is placed at
(0 ; 3is). For the larger scenario, twelve sites are placed in the second tier, such that one is placed
at (0 ; 23is). For the smaller scenario, the second tier is omitted.

At each site, three sectors are served as independent cells. The set of all cells is denoted as B.
The sector antennas are mounted in a height of 32 m and their main lobes point to 30°, 150°, and
270°. Together with the wrap-around scenario defined in the previous section, this results in a
regularly repeating pattern. Therefore, simulation results for all cells are equivalent except for
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Figure 5.1: Example for wrap-around principle

statistical variations. Positions of sites and orientations of sectors are depicted in figures A.1
and A.2 (see page 184).

For the calculation of attenuation, the three dimensional antenna pattern defined in [3GPP 36.814]
is applied. The tilt of the antenna is configured to 15°,6 which is also specified there for calibration
purposes. Note that smaller tilt angles increase interference, and render IfCo more advantageous.

For modeling of MIMO effects, the configuration of the antenna array of each sector has to be
specified. This is not defined in the simulation scenario description in [3GPP 36.814]. However
[3GPP 36.814, table A.3-1] gives multiple exemplary configurations, which are originally
intended for IMT-Advanced evaluations. From those, configuration E is applied here. This
defines eight antennas in four groups. The antennas are placed on a horizontal mount which is
orthogonal to the main lobe direction. The distance between the groups is 0.5_, with _ ≈ 0.15 m
for 2 GHz carrier frequency. The two antennas of each group are polarized with 45° and −45°,
respectively.7 This layout is depicted in figure 5.2.

To make use of this antenna setup, LTE TM 9 is used (see section 2.3.4.4). Here, BSs use
precoding matrices from the codebook specified by the LTE standard, because that is also used
for CSI reporting.

To reduce compute effort, the concept of virtual antennas is introduced, which allows BSs to
use less antennas for transmission. The BS can combine multiple physical antennas to a single
virtual antenna by transmitting the same signal on them. Thereby, simpler precoding matrices
can be used, which reduces the processing effort.8 At the same time, the full transmit power of
the system can be used, as all physical antennas are used for transmission. The modeled MIMO
channel suffers from correlations, but the correlation between the two polarization planes is
lower than that between arbitrary antennas. Therefore, it is most efficient to keep the polarization
planes separated even when using four or two virtual transmit antennas. To transmit on four
virtual antennas, each of these pairs transmits the same signals: (�1, �2), (�3, �4), (�5, �6), (�7,
�8). Two virtual antennas are formed by the quadruplets (�1, �2, �3, �4) and (�5, �6, �7, �8).

Each cell transmits a total power of %total = 46 dBm, which is distributed equally to the antennas.

6This means 15° downwards relative to the horizontal orientation.
7According to Dahlman, Parkvall, and Sköld [DPS16], the LTE precoding codebook for eight antennas is made

for “closely spaced cross-correlated” antennas.
8The benefit of this flexibility is highlighted by figure 5.14 in section 5.5.3.
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Figure 5.2: Layout of the BS antennas

5.3.3 User Model

The set of all UEs in the system is denoted as U . The number of UEs in the scenario is either
fixed or variable, which depends on the applied traffic model (see section 5.3.6). The UEs are
placed randomly. No UEs are placed in circles of size 35 m around the BS sites. Except that
restriction, coordinates are distributed uniformly over the whole area of the scenario, with a fixed
height above ground of 1.5 m. Especially, there is no fixed number of UEs placed in the service
area of each BS.

During evaluation, UEs do not move. However, depending on the traffic model, UEs may be
created and removed dynamically. For modeling of the multipath propagation in the channel
model, a velocity of 3 km/h with random direction is assumed.9

The UE antennas are omnidirectional and have a noise figure of � = 9 dB. For MIMO effects,
it is assumed that each UE has four antennas in two cross-polarized groups with 0.5_ distance
between the groups. The orientation of the antenna array is selected randomly.

5.3.4 Channel Model

The channel model describes the propagation of radio waves between transmitters (BSs) and
receivers (UEs). The same model is applied for all transmitters and receivers, i. e. the propagation
of interference is modeled in the same way as the propagation of the desired signals.

The radio channel is modeled as combination of two groups of effects, the macro-scale attenuation
effects and the small-scale fading effects. Here, the macro-scale attenuation effects are a scalar
which depends on the relative positions of BS and UE. As UEs don’t move during simulation,
this value is constant for each pair of BS and UE. In contrast, the small-scale fading differs per
antenna in a MIMO antenna array, and also per subcarrier. The small-scale fading is modeled
as a time- and frequency-dependent complex matrix with zero mean and unit power. The two
effects are combined by multiplication:

HD,1 (C, 5 ) =
√
WD,1 ĤD,1 (C, 5 ) (5.1)

Here, HD,1 (C, 5 ) is the time-varying radio channel between BS 1 ∈ B and UE D ∈ U as function
of time C and frequency 5 . It is defined as the product of the constant macro-scale attenuation√
WD,1 and the time-varying, frequency selective small-scale fading ĤD,1 (C, 5 ) ∈ C#Rx×#Tx . Here,

9This approach, i. e. fixed locations, but velocity assumed for fast fading effects, is proposed for simulations with
the Spatial Channel Model [3GPP 25.996, section 5.1].
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WD,1 ∈ R+ is the attenuation of the signal power. It consist of pathloss, penetration loss, shadow
fading, and antenna patterns, i. e.

WD,1 = WPL
D,1 WPWSF

D,1 WAnt
D,1 . (5.2)

The pathloss WPL
D,1

is calculated as

10 log10

(
WPL
D,1

)
= −1

(
128.1 + 37.6 log10

(
3D,1

1000

) )
, (5.3)

where 3D,1 is the distance between D and 1 in meters [3GPP 36.814; 3GPP 25.814]. In addition, a
constant penetration loss of 20 dB is assumed for each channel realization, i. e. WP = 0.01.

The shadow fading WSF
D,1

is modeled as log-normally distributed random variable with unit mean
and a standard deviation of 8 dB. Two UEs at the same position experience the same shadow
fading. This correlation decreases exponentially with distance. At a distance between the UEs
of 50 m the coefficient of correlation has fallen to 0.5. From two sectors of the same site, a UE
experiences the same shadow fading. The fading from sectors of different sites is correlated with
a coefficient of correlation of 0.5.

The last component of the attenuation effects is the attenuation caused by the radiation patterns
of the transmit antennas,10 denoted as WAnt

D,1
. The model calculates the relative angle between the

main lobe of the BS antenna and the direction in which the UE is seen from the BS. The gain of
the antenna is then determined by the formulas given in [3GPP 36.814, table A.2.1.1-2].

The multipath propagation, the resulting fast fading, and its correlation between multiple antennas
is modeled by the Spatial Channel Model (SCM) defined in [3GPP 25.996], here operated in
the urban macro configuration. The calculated channels are normalized such that they have
zero mean and unit power, because all effects except fast fading are already modeled by WD,1 as
described before. For simplicity, we take only one sample of the multipath propagation model
per PRB pair. The used implementation of the SCM is based on that of Salo et al. [Sal+05].

5.3.5 Model for Interference and Physical Layer Processing

Assume that each UE D is served by a single BS 1★D ∈ B. This is defined to be the one from which
the UE receives the strongest signal, i. e. 1★D = arg max1∈B WD,1. The UE can receive interference
from all other BSs, which are here denoted as ID = B \ 1★D .

Based on this and on the introduction of MIMO in section 2.3.4, the vector of received symbols
at UE D in a precoding MIMO system can be formulated as

yD = HD,1★D
W1★D

x1★D +
∑
8∈ID

HD,8W8x8 + n. (5.4)

10As described above, only the BSs use directional antennas, while UE antennas are modeled as omnidirectional.
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Here, W1 denotes the precoding matrix used by BS 1 and x1 the symbols transmitted by the
same BS. Note that this applies for all subcarriers and OFDM symbols, however that has been
omitted from the notation for simplicity.

We do here assume that perfect CSI is available at both transmitter and receiver. The ZF
approach is used to reconstruct the transmitted signals. This multiplies the received symbols
with the pseudo-inverse of the effective channel G =

(
HD,1★D

W1★D

) †. The resulting estimate of the
transmitted symbols is

x̃1★D = GyD

= G

(
HD,1★D

W1★D
x1★D +

∑
8∈ID

HD,8W8x8 + n

)
= GHD,1★D

W1★D
x1★D +

∑
8∈ID

GHD,8W8x8 +Gn (5.5)

It can be assumed that the effective channel is invertible, because otherwise the transmitted signal
cannot be reconstructed accurately and the transmitter should use a different precoding or number
of spatial layers. Therefore, GHD,1★D

W1★D
= I, i. e. the effect of the channel can be reverted and

the transmitted spatial layers can be separated. Equation (5.5) simplifies to

x̃1★D = x1★D +
∑
8∈ID

GHD,8W8x8 +Gn. (5.6)

The objective of the PHY layer model is to determine the data capacity and decode probability
for each set of allocated resources. Given the size of the allocated resources, the data capacity
can directly be calculated from the selection of modulation scheme and code rate. The decode
probability then also depends on the received signal quality, which is influenced by channel
realization, received interference, and MIMO configuration.

Detailed modeling of the PHY layer procedures is computationally complex and therefore
typically not performed in system level simulations. Nevertheless, realistic modeling of the
spectral efficiency of different MIMO modes with the same channel is required here. Therefore,
an abstraction proposed by Colom Ikuno [Col13] is applied, which is summarized in the remainder
of this section.

The model uses the post-equalization SINR as a measure for the signal quality. For the spatial
layer =, it is defined to be the quotient of the received signal power and the sum of interference
and noise powers, i. e.

W̃= =
|G1★D ,= |

2∑
8∈ID

∑
<=1,...,#8

28,=,< |G8,< |2 +
∑

<=1,...,#Rx 6=,< |=|2
. (5.7)

Here, G1,= is the =th element of the vector x1. #8 is the number of spatial layers on which
interferer 8 transmits. The variable 28,=,< stands for the amplification of the interference caused by
spatial layer < of interferer 8 and received on spatial layer =. It is the element C8 [=, <] of matrix
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C8 = GHD,8W8. Similarly, 6=,< represents the amplification of the noise received on antenna <

effecting layer =, and is equivalent to the element G[=, <].

To reduce computational effort during simulation, the implementation of this model is split into
two components. In the offline component a trace of the small-scale fading channel model is
calculated, processed further, and stored on disk. Here, locations of UEs, scheduling decisions,
and interference are not yet known. The preprocessed data is read by the online component.
Based on scheduling decisions and macro-scale attenuation effects known at simulation runtime,
this calculates signal quality and derives capacity and decode probability. The model is designed
such as most of the computational effort occurs in the offline component. This allows for efficient
simulations, because a set of trace files generated by the offline component can be reused for
many simulations.

The MIMO configuration selected to serve a UE is not known to the offline component. This
configuration defines the number of virtual transmit antennas, the number of spatial streams, and
the precoding matrix. One possible approach to solve this would be storing channel qualities
for all possible combinations on disk. However, this is overly expensive. The model therefore
assumes that the precoding matrix which delivers highest possible performance is independent of
the signal attenuation.

The offline component considers each number of virtual transmit antennas and spatial streams.
For each of these, it evaluates all entries from the respective precoding codebook. It selects
that precoding matrix W1★D

which delivers highest spectral efficiency for an expected SINR of
10 dB.11 This results in different precoding matrices being used per PRB pair.

The model is further simplified here by assuming that interference does not depend on the MIMO
configuration actually used by an interferer. Instead, interference is calculated using random
MIMO configurations, i. e. random precoding matrices W8. Thus, interference in the simulation
is only influenced by the transmit power used by the interferers. This is acceptable here, because
we are not interested in joint optimization MIMO modes for interference reduction.

With these simplifications, for each number of virtual transmit antennas and spatial layers, the
precoding matrices W1★D

and W8 are known to the offline component. It can thus calculate the
parameters 2̃8,= =

∑
<=1,...,#8

28,=,< and 6̃= =
∑

<=1,...,#Rx 6=,< in equation (5.7). Note that these
are calculated and stored for each number of virtual transmit antennas, each number of spatial
layers, and each PRB pair.

When the online component is executed, the number of virtual transmit antennas and the number
of spatial layers has been selected. The online component reads the respective values from the
trace file and calculates W̃= as defined in equation (5.7), considering the transmit powers of the
serving and the interfering BSs. Separate values are calculated for each spatial layer and each
PRB pair. Interference caused by CRSs from neighboring cells is not considered. Instead, a cell
is assumed to cause interference only if data is transmitted on the respective PRBs pair.

Subsequently, values belonging to the same codeword are combined to an effective SINR. Thereto
they are mapped to mutual information (known as mutual information effective SINR metric,
MIESM), averaged, and mapped back [Bru+05]. As the mutual information depends on the

11For a discussion of the error introduced by this simplification refer to Colom Ikuno [Col13, appendix A].
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Figure 5.3: BLER curves used to model channel capacity (each curve corresponds to a combination of
modulation and code rate as listed in table 2.5 on page 36; data from [RST16; Meh+11])

modulation scheme, three different effective SINR values are calculated for the three modulation
schemes standardized in LTE.

The resulting effective SINR is taken as input for AWGN block error rate (BLER) curves. These
are taken from the Vienna LTE-A Downlink Link Level Simulator [RST16; Meh+11]. For each
modulation scheme and code rate in the CQI table (see table 2.5), a separate curve maps the
effective SINR to a BLER. The BLER curves are plotted in figure 5.3. The optimal combination
of modulation scheme and code rate can be selected by iterating over all combinations and
selecting the one which maximizes the capacity. To avoid a high BLER, only those MCSs are
considered which result in a decode probability above 80 %.

When calculating the capacity, overhead for CRSs transmitted on four antenna ports and for a
control region with a fixed size of three OFDM symbols is taken into account. According to the
description in section 2.4.2.1, there are also other sources for overhead, e. g. CSI-RSs, DM-RSs,
and synchronization signals. These are not modeled here.

The decode probability of each codeword is taken from the same BLER tables. A Bernoulli
experiment decides whether a codeword could be decoded by the receiver. A simplified model
for ARQ and HARQ is applied, which just retransmits a non-decodable codeword after 8 ms.
The number of retransmissions is not limited. Control channels and ARQ feedback are assumed
to be ideal, i. e. there are no additional sources of error.

5.3.6 Data Traffic Models

Two different data traffic models are applied in this thesis. First, a full-buffer model is used for
optimization and for comparative evaluation by simulation. Second, a dynamic traffic model is
used for simulation only, to verify that the proposed system can cope with varying load.
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Table 5.2: Parametrization of the traffic model [NGM08]

Object type f ` Gmin
B /B Gmax

B /MiB

FTP 0.35 14.45 1 5
HTTP main 1.37 8.37 100 2
HTTP embedded 2.36 6.17 50 2

In the full-buffer model, a fixed number of UEs is placed in the scenario. Each tries to download
an infinite amount of data. The model resembles a high load situation, i. e. there are no resources
in the system left free because they are not requested by any UE.12 While it does not resemble
the dynamic behavior of Internet traffic, it can be assumed valid when evaluating a snapshot
in time. The full-buffer model is used for optimization studies, because it allows to formulate
simpler problems.

Compared to a realistic traffic model, the combination of the uniform distribution of UEs and the
full-buffer model leads to a distortion of the distribution of load over the serving area of a cell.
This is caused by the BS serving the UEs with different rates. In a realistic model, sizes of data
requests are limited. Therefore, a higher rate leads to an earlier satisfaction of a request. At the
same time, UEs served with a lower rate stay longer in the system. This results in a non-uniform
distribution of active UEs over the serving area, with a higher density in those regions where the
average serving rate is lower. This effect is not captured by the full-buffer model.

The dynamic traffic model describes the arrival of objects on application layer at the BS for
transmission in DL direction. It consists of an arrival process and an object size distribution. In
addition, it defines the interaction of the traffic model with the UE placement.

The IAT of objects is modeled to be negative exponentially distributed. This resembles a large
number of passive users which cause new requests randomly and independently of each other.
The mean IAT is a parameter and is used to configure the average load of the network.

The sizes of the objects are modeled in accordance with the models for hypertext transfer
protocol (HTTP) and file transfer protocol (FTP) traffic described by NGMN [NGM08]. The
remaining application classes from that model are omitted, because it is assumed that HTTP and
FTP introduce most of the dynamic, while other application classes like video and voice cause
rather constant load. The ratio of HTTP and FTP traffic is the same as proposed by NGMN, i. e.
2⁄3 of the requests are HTTP requests and 1⁄3 are FTP requests.

While a FTP download consists of a single object, a HTTP transfer consists of a main website
object and a number of embedded objects. These are here combined to a single object by
summing up their sizes, so that modeling of the behavior of the web browsers of the UEs can be
avoided. This resembles, e. g., the Server Push feature of HTTP/2.

12This assumes that there is no BS which serves no UE. Given that the total number of UEs in the system is high,
such a situation occurs with very low probability. It was not observed during the studies for this thesis.



100 Chapter 5. Elastic Utilization of Compute Resources

0.1 1 10 100 1000 10000
object size [KiB]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Figure 5.4: Object sizes of the traffic model

The object sizes are modeled as log-normally distributed, i. e. the probability density function
(PDF) of the object size GB in bytes is

5 (GB) =
1

√
2cfGB

4
−(ln GB−`)2

2f2 for GB > 0. (5.8)

The parametrization is specified in table 5.2. The object size distributions are truncated, so
that the resulting object sizes lie in the range of Gmin

B to Gmax
B . The truncation is performed by

re-sampling, i. e. when the size is outside the range, a new random number is drawn.

The number of embedded objects per web page, denoted as G=, is determined by a modified
Pareto distribution with the PDF

5 (G=) =


U:U

(G=+:)U+1
for 0 ≤ G= < < − :(

:
<

) U
for G= = < − :

(5.9)

with the parametrization U = 1.1, : = 2, and < = 55. Here, the second case (for G= = < − :)
corresponds to the total probability integrated over the cut off tail. The actual number of
embedded objects is an integer value, therefore the resulting random number is rounded.13

The resulting HTTP pages have an average size of 56 KiB, which includes main and embedded
objects. The average size of the FTP objects is 1.91 MiB. The overall average object size is
688 KiB. Figure 5.4 shows the CDF of the object sizes. The contributions of the HTTP and the
FTP model are visible clearly.

Whenever the traffic model creates a new object, a new UE is placed at random coordinates
as described in section 5.3.3. The serving BS is determined by evaluating the channel model.
Then, a simple AC mechanism is executed:14 Whenever the serving BS already has #max

UE = 100

13Note that the specification of equation (5.9) in the original document [NGM08] is incomplete and partially
broken. Other sources of the same or a closely related model ([Sri+08] and [3GPP2 09], respectively) have similar
problems. The formula was here corrected to follow the PDF of a shifted Pareto distribution.

14See section 3.2.2 for a reasoning for AC.
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UEs currently transmitting a data object, the newly arriving request is dropped. The remaining
data objects are transmitted from the serving BS to the receiving UE. Thereby, it is assumed
that arbitrary segmentation of the data objects is possible without any overhead. The object is
successfully transmitted when all segments have arrived at the UE. Subsequently, the UE is
removed from the simulation scenario.

5.3.7 Processing Effort Model

A model for the compute effort for signal processing is required, which captures the effect of
RA and LA. We are here not interested in the raw number of calculations (e. g. number of
floating point operations, FLOPs), but in the total time required by a C-RAN BBU to perform a
certain calculation. This includes time for task switching, memory accesses, pipelining latencies,
and other overhead. A bottom-up model, where the number of calculations for certain signal
processing algorithms is counted, is therefore not adequate. Instead, a top-down model, which is
based on measurements of a complete system, is used.

There are some publications where the computational effort of a software implementation of a
BBU was measured [I+14a; Wei+12; Kai+12; Bha+12]. However, there is no information about
how that effort scales with RA, modulation, coding, and MIMO configuration.15 Therefore, in
this thesis a model is used which is based on a publication by Desset et al. [Des+12]. Their
model is originally intended for calculating the power consumption of a dedicated BBU, but
provides numbers for computational effort as intermediate step.

The model calculates the effort in giga operations per second (GOPS). However, that does not
encompass raw numerical calculations, only. Instead, the model states that hardware capable
of performing operations with a certain rate (GOPS) is required for a task. It thus captures the
overhead mentioned above.

Additional insight on this is provided by another publication of some of the same authors
[DDL13]. That compares a bottom-up model for calculation of the FFT with the corresponding
numbers from the top-down model. The results differ significantly, and the authors provide a list
of sources for the differences. They conclude that the top-down model includes different sources
of overhead. In this thesis, the focus is on the compute hardware required to operate a BBU. As
that also has to cope with overhead, the top-down model is assumed to be suitable here.

The model defines the computational effort for the system components DPD, filtering, CPRI,
OFDM, frequency-domain processing, and FEC. For each of the components, the effort is
described as a function of the parameters bandwidth, number of antennas, modulation scheme,
code rate, and time and frequency domain utilization of the system. This is realized by defining
reference values for the parameters and scaling exponents.

Some of the components have a constant effort independent of RA or other dynamic decisions
(see also section 5.1.2). These components are omitted from the derived model in this thesis,

15Bhaumik et al. [Bha+12] provide some insight on how the execution time of signal processing jobs scales
with modulation, coding, and number of allocated resources. They state that load is a linear function of MCS and
allocated PRBs, which is equivalent to the model used here. However, they did not investigate the influence of
MIMO configuration.
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leaving the components frequency-domain processing and FEC. Frequency-domain processing
comprises modulation and MIMO operations. In the original model, it is split into a linear and a
non-linear component. This results in the following formula for the processing effort caused by
the whole system:

%total =
∑
2∈C

%2,ref
∏
G∈X

(
Gact

Gref

) B2,G
, (5.10)

where C are the components and X the scaling parameters.

The reference effort %2,ref of component 2, the reference values for the parameters Gref, and the
scaling exponents B2,G for all combinations of components 2 and parameters G are given in the
publication. Inserting them into equation (5.10) results in
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)
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Here, 1 stands for the system bandwidth, 0 for the number of transmit antennas, < for the
modulation bits per symbol, 2 for the code rate, and 3t and 3f for utilization in time and frequency
domain, respectively. In equation (5.12), the three terms in the bracket represent the linear part
of frequency domain processing, the non-linear part, and the FEC encoding, respectively.

Two modifications are applied to this model to make it better suitable for the evaluations performed
here. First, the original model does not differentiate between the number of transmit antennas
and the number of spatial streams. Instead, it is assumed that both are always equal. However,
this is not the case in reality. Especially when the BSs are equipped with more antennas than the
UEs, assuming a high number of spatial streams is not valid. Therefore, a separate parameter ; is
introduced which describes the number of spatial streams.

That parameter is introduced into equation (5.12) as follows. FEC encoding depends on the actual
amount of transmitted data. Consequently, the parameter 0 is replaced by ; in the respective
term. The non-linear frequency domain processing is assumed to comprise MIMO precoding
operations. These consist mainly of matrix multiplications, which map the symbols from the
spatial layers to the antennas. The complexity scales linearly with each dimension of the involved
matrices. The same applies for the number of memory accesses and related overhead. Therefore,
in the respective term of the model, 02 is replaced with the product 0;. The described introduction
of the additional parameter matches a later extension of the original model for large-scale antenna
systems by the same authors [DDL14].

The second modification targets the granularity of the model. The original model is intended
to describe the continuously generated effort of a system with a certain average load. However,
we are here interested in the effort for each allocated resource. Consequently, the model is
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here scaled down to describe the effort that occurs when encoding a single PRB. Thereto, the
parameters for system bandwidth and utilization are defined accordingly. The system bandwidth
is here fixed to 1 = 10 MHz. By configuring 3t =

1 ms
1 s = 0.001, the utilization in time domain

scales the resulting output from operations per second to operations per subframe. Similarly,
3f =

1
50 accounts for the fact that a subframe here consists of #PRB = 50 PRBs.

Applying both modifications to equation (5.12) results in the following model:

%PRB,giga =
1
2

0.001
1
50

(
300 + 100; + 20

<

6
2;

)
= 10−4

(
30 + 0; + 1

3
<2;

)
(5.13)

Here, %PRB,giga describes the compute effort to encode a single PRB in giga operations, i. e.
%PRB,giga = 1 corresponds to one billion operations. Scaling this to single operations results in

%PRB = 105
(
30 + 0; + 1

3
<2;

)
. (5.14)

Based on equation (5.14), the total effort to transmit a subframe in a single cell is calculated by
summing over the PRBs allocated to the associated UEs. Analogously, the effort for a set of
pooled BBUs is derived by summing over all served cells.

The absolute numbers of operations are not relevant here, because only relative evaluations are
performed in the following chapters. To avoid giving irrelevant information, all compute efforts
are normalized. The normalization is performed such that 100 % correspond to the theoretical
peak effort %peak

= , where = represents the total number of modeled PRBs, i. e. = = |B |#PRB.
The value of %peak

= is calculated by evaluating equation (5.14) for the maximum values of each
parameter. Precisely, when setting 0 = 8, ; = 4, < = 6, and 2 = 0.926,16 this results in
%

peak
= = = · 6 340 800.

The model used here is based on a single source in literature. For a rudimentary verification,
appendix B provides a comparison of the model with measurement data from literature. Even if
the numbers in the model are of questionable reliability, the nature of the modeled dependencies
is reasonable. The absolute numbers resulting from this model are not of interest here. In
case a more accurate model can be created which captures specific characteristics of a certain
implementation, the methods applied in this thesis could be repeated for that scenario.

5.3.8 Resource Allocation Model

Section 2.4.3.1 described various aspects regarding the specification of allocated resources.
Summarizing, in an LTE system it is not possible to allocate arbitrary PRBs. Instead, the
eNodeB has to select one of multiple patterns to allocate VRBs, which are then mapped to
PRBs by a predefined mapping function. For simplicity, this has not been modeled here. In

16Maximum code rate taken from table 2.5.
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the model, localized mapping of VRBs to PRBs is used, so that a pair of VRBs is mapped
to two consecutive PRBs on the same subcarriers. It is assumed that there are no restrictions
regarding the combinations of allocated VRBs. As further simplification, in some configurations
the optimization problem allows to allocate arbitrary fractions of VRBs to different UEs.

Following the introduction in section 2.4.3.2 and the discussion in section 2.4.4, the capacity
of the control channels required to communicate RAs to UEs is limited. The actual signaling
capacity in terms of number of DCIs depends on the patterns of allocated resources, the channel
qualities, and the occurrence of overlapping search spaces. This capacity is shared between RAs
for UL and DL transmissions and other control messages. The signaling restrictions are not
modeled here. Instead, RA is not restricted by control channel capacity.

5.4 Optimization Problem

The optimization problem formulated in this section serves multiple purposes. First, it can be
used to evaluate the maximum compute resource utilization in a high load scenario. Second,
it serves to assess the potential to cope with limited compute resources without restricting to a
certain implementation. It allows to determine the highest possible network performance under
restricted compute capacity. Third, the problem can be used to identify the relevant variables
which have to be adapted for high performance. Thereby, we can derive insights about efficient
solution strategies for heuristics. Finally, a modified version of the optimization problem is used
as a benchmark for the evaluation of the heuristic.

We are interested in the impact of limited compute capacity on network performance. According
to the processing effort model introduced in section 5.3.7, the compute effort for the encoding
of a transmission depends on the RA and on LA parameters. The relation of compute effort
and network performance for LA parameters could be evaluated locally per cell. In contrast, a
restriction of the RA, which results in time-frequency resources not being used for transmission,
reduces interference in neighboring cells. This effect can only be studied in a multi-cell scenario.

The remainder of this section is structured as follows. First, section 5.4.1 classifies the approach
chosen here w. r. t. the optimization problems introduced in sections 3.3 and 4.2.3. Section 5.4.2
describes how LA is modeled in the optimization problem and which simplifications have been
applied. The basic problem is then specified in section 5.4.3. Subsequently, the problem is
extended by different fairness formulations in section 5.4.4. Section 5.4.5 introduces variants of
the basic problem which are used to analyze the influence of different adapted variables on the
system efficiency. A summary is provided in section 5.4.6.

5.4.1 Approach and Classification

The optimization problem that is formulated and solved here represents a joint optimization
of on-off power level IfCo, RA, and LA. The available compute capacity is formulated as an
additional constraint.

The RA component of this problem resembles a rate adaptive RA problem as presented in
section 3.3. Here, the power allocation is not adapted to the channel, but each BS transmits on
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each resource with either full power or not at all. Different objectives, corresponding to different
fairness schemes from section 3.2.2, are evaluated.

The problem also performs IfCo, similar as those outlined in section 4.2.3. Here, we model a
fixed number of power allocation resources with variable continuous size. Each of these resources
has a different (fixed) combination of on-off power levels, so that all possible combinations
are covered. The same channel realization is assumed for all resources. Continuously sized
scheduling resources are allocated to UEs from arbitrary power allocation resources. To simplify
the problem, we consider only the strongest interferers for interference calculation. This allows
to precalculate the rates for all combinations of relevant interferers. Adaptation of MIMO
configurations of neighboring BSs is not part of the problem. Therefore, for interference
calculation, random MIMO modes are assumed to be used by the interferers, independent of the
optimized LA parameters.

5.4.2 Modeling of Link Adaptation Parameters

The LA influences the parameters 0, ;, <, and 2 of the processing effort model in equation (5.14).
When LA is performed so that spectral efficiency is maximized, there is a jointly optimal
configuration of these parameters. Configuring higher values for any of the parameters decreases
the spectral efficiency and increases the compute effort, which is therefore not reasonable. In
contrast, decreasing any of the values reduces both spectral efficiency and compute effort. It
depends on the relation of both reductions whether it is efficient to perform such a configuration.

The parameters 0 and ; resemble the MIMO mode of a transmission, and < and 2 the respective
MCS. The MIMO mode parameters are contained in all terms of the processing effort equa-
tion (5.14), and appear even as a product on one of the terms. Therefore, reducing both results in
a more-than-linear reduction of processing effort. At the same time, it is expected that the spectral
efficiency does not scale linearly with the number of antennas and spatial streams, but is limited
by the channel capacity. Therefore, adapting the MIMO mode is regarded a promising candidate
for efficiently reducing processing effort. In contrast, the MCS parameters are contained only in
one term of the processing effort equation (5.14). However, modulation and code rate have a
linear influence on spectral efficiency. Therefore, the relation of reduction in spectral efficiency
vs. reduction in compute effort is less favorable.

This is also illustrated by two examples in figure 5.5. The plots show two exemplary channel
realizations, where the average wideband SINR is −0.1 dB and 17.4 dB, respectively. The spectral
efficiency is plotted on the x-axis, the compute effort on the y-axis. Each point marked with ×
represents the combination of a MIMO mode and one or two MCSs.17 For each given channel
realization, this combination results in a certain spectral efficiency and compute effort, which
determine the location of the respective point in the plot. Points standing for the same MIMO
mode are drawn in the same color and are connected by a line. The actual MIMO modes,
modulations, and code rates are of no relevance for the following discussion. Thus, they are not
indicated. Points where the BLER for one of the codewords is below 80 % are not shown.

17For those MIMO modes which use two codewords, each point represents the combination of a MIMO mode
and two MCSs.
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Figure 5.5: Compute effort over spectral efficiency for two randomly drawn channel realizations

The slope of the curves is low. This means that, when changing modulation and coding, a small
reduction of processing effort comes along with a large degradation of spectral efficiency. To
evaluate the effect of changing MIMO modes, the rightmost points of the curves have to be
compared. In contrast to changes in MCS, changes in MIMO mode result in stronger reductions
of processing effort. At the same time, a high spectral efficiency can be maintained.

To simplify the optimization problem, parameters < and 2 are not modeled as variables of the
optimization problem. Instead, only MIMO modes are optimized. For each MIMO mode, that
MCS is applied which maximizes spectral efficiency. With that, spectral efficiency and compute
effort can be derived. We allow simultaneous allocation of resources with different MIMO modes
and therefore different MCSs, which is not possible with standardized LTE.

5.4.3 Mathematical Specification of the Basic Problem

The optimization problem encompasses the allocation of resources to UEs, its effect on the
interference, and the selection of MIMO modes. The available compute resources, denoted as
?max, are a constraint for the optimization. Fairness and throughput are the base for the objective
and, optionally, additional constraints. The problem shall be formulated by linear equations, so
that it can be solved efficiently by standard solvers.18

5.4.3.1 Resource Model and Basic Problem Formulation

Each UE can be served with different MIMO modes. A MIMO mode is a feasible combination
of a number of virtual transmit antennas 0 and a number of spatial layers ;. Virtual antennas
are limited by the number of physical antennas which are installed per BS, i. e. 0 ≤ #Tx. The
spatial layers are restricted by the number of receive antennas at the UE and the number of virtual

18Note that the later definitions also include a problem with binary variables, problem (5.41). However, that
problem is simplified in other ways and can therefore also be solved efficiently.
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transmit antennas, i. e. ; ≤ #Rx and ; ≤ 0. We assume the same number of transmit antennas
#Tx for all BSs and the same number of receive antennas #Rx for all UEs. In principle, each
UE can be served with any MIMO mode, although, depending on the channel, some modes will
yield low throughput for some UEs. Therefore, there is a single set of MIMO modes usable by
all nodes in the network, which is denoted as M.

The resource model introduced in section 4.2.3 is extended by a third layer of resources. On all
three layers of the resource model, the number of resources is fixed, and the sizes of the resources
are variable.

As introduced before, we use on-off power levels for IfCo, only. To avoid unnecessary restriction
of the usable reuse patterns, we allow all combinations of transmitting and non-transmitting
BSs. Each combination is represented by a power allocation resource =p ∈ Rp. These resources
are defined to be orthogonal, e. g. by separation in frequency domain. Assume that on a
power allocation resource =p, Bactive

=p ⊂ B are the transmitting BSs. Then, all possible sets of
transmitting BSs, which are associated with the different power states, form the power set of B,
i. e. {Bactive

=p : =p ∈ Rp} = P(B). This also determines the number of power allocation resources
to be |Rp | = |P(B) | = 2|B | .

A scheduling resource =s ∈ Rs is defined for each combination of UE D and power allocation
resource =p, given that the UE’s serving BS 1★D is transmitting on the respective power allocation
resource. This can be formulated as Rs = {=s

D,=p : D ∈ U , =p ∈ Rp, 1★D ∈ Bactive
=p }.

The assignment of UEs to BSs is modeled by grouping these scheduling resources per BS and
power allocation resource:

Rs
1,=p =

{
=s
D,=̃p ∈ Rs : 1★D = 1, =̃p = =p

}
∀1 ∈ B, =p ∈ Rp (5.15)

Thus, the set Rs
1,=p contains the scheduling resources that are part of the same power allocation

resource =p and are dedicated to UEs which are served by BS 1.

Scheduling resources inside such a group are assumed to be orthogonal. In addition, power
allocation resources are orthogonal by definition. This ensures that in a single BS no resource is
used twice. However, the same power allocation resource can be assigned to UEs served by a
different BS. This other allocation can split the power allocation resource differently, i. e. use
differently sized scheduling resources.

Each scheduling resource, which represents the allocation to one UE by its serving BS in one
of the power allocation resources, is split into multiple MIMO resources. A MIMO resource
=m ∈ Rm is defined for each usable combination of power allocation resource, UE, and MIMO
mode: Rm = {=m

D,=p,< : D ∈ U , =p ∈ Rp, 1★D ∈ Bactive
=p , < ∈M}. MIMO resources are grouped

by scheduling resource:

Rm
=s
D,=p

=

{
=m
D̃,=̃p,<

∈ Rm : D̃ = D, =̃p = =p
}
∀=s

D,=p ∈ Rs (5.16)

This means that the set Rm
=s
D,=p

contains the MIMO resources belonging to scheduling resource
=s
D,=p , i. e., those which are dedicated to UE D and part of the power allocation resource =p.
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Figure 5.6: Resource model used for the optimization problem

An exemplary split of the resources is shown in figure 5.6. The figure depicts two power
allocation resources =p

1 and =
p
2 with equal sizes. Two BSs 11 and 12 are active on both power

allocation resources and serve three and two UEs, respectively.19 The UEs get different amounts
of resources allocated, which is shown by the different sizes of the scheduling resources.

For each UE, the assigned scheduling resource is split into four MIMO resources. Here, each
color represents a different MIMO mode. The power allocation resources are orthogonal for the
whole system. For each BS, the respective scheduling resources are orthogonal, as well as the
MIMO resources. The orthogonality can be realized, e. g., by time or frequency multiplexing.
Different BSs can transmit on the same resources, given that they are active on the respective
power allocation resource.

For each MIMO resource =m, the channel characteristics of the respective UE are known. The
received interference can be derived from the power allocation resource. Together with the
MIMO mode, the MCS resulting in maximal spectral efficiency can be selected. This allows to
calculate the spectral efficiency and compute effort.

We use A=m and ?=m to denote the rate and effort per unit allocation, where a unit is defined to be
a single PRB. Here, A=m is calculated according to the description in section 5.3.5. The value of
?=m is derived from equation (5.14). The size of a MIMO resource =m is denoted as B=m . The
rate AD of UE D is then calculated as

AD =
∑

=p∈Rp

∑
=m∈Rm

D,=p

B=mA=m . (5.17)

Based on these definitions, the following optimization problem can be formulated:

19Assume that there are other BSs and power allocation resources, so that on each power allocation resource a
different subset of BSs is transmits.



5.4 Optimization Problem 109

max
B=p ,=p∈Rp

B=s ,=s∈Rs

B=m ,=m∈Rm

∑
D∈U

U(AD) (5.18a)

s. t.
∑

=p∈Rp

B=p ≤ Bmax (5.18b)∑
=s∈Rs

1,=p

B=s ≤ B=p ∀1 ∈ B, =p ∈ Rp (5.18c)

∑
=m∈Rm

=s

B=m ≤ B=s ∀=s ∈ Rs (5.18d)∑
=m∈Rm

B=m ?=m ≤ %
peak
|B |Bmax

?max (5.18e)

Here, the objective (5.18a) is to maximize the sum of the UEs’ utilities. The utility can in
principle be different for each UE. However, this is not used here. Different utility functions will
be defined in the following paragraphs to model different fairness schemes.

The first three constraints limit the sizes of the resources on the three levels of the resource model
and thereby ensure orthogonality of resources inside each level. Equation (5.18b) ensures that not
more than Bmax resources are allocated. Equation (5.18c) models the fact that in each BS, each
power allocation resource is split into non-overlapping scheduling resources. Equation (5.18d)
formulates the same for the relation of scheduling and MIMO resources. Finally, the total
compute effort is restricted by equation (5.18e). Here, %peak

|B |Bmax
denotes the peak effort for this

system as defined in section 5.3.7 and ?max is a parameter in the range 0 to 1.

5.4.3.2 Simplification of Interference Relations

The optimization problem in problem (5.18) is a linear problem with #var continuous variables,
where

#var = |Rp | + |Rs | + |Rm |

= |Rp | + 1
2
|Rp | |U | + 1

2
|Rp | |U | |M|

= |Rp |
(
1 + 1

2
|U | + 1

2
|U | |M|

)
.

(5.19)

First, assume the following typical model configuration. The larger scenario introduced in
section 5.3.2 has |B | = 57 cells. When in average ten UEs are configured per cell, their total
number is |U | = 570. In addition, |M| = 11 MIMO modes are assumed. These correspond
to all possible numbers of spatial streams which can be transmitted with eight, four, two, and
one virtual antennas. With these parameters, the problem has approximately #var ≈ 4.9 · 1020

variables. This can be simplified by choosing a smaller scenario, e. g. with |B | = 21 and
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|U | = 210. However, there the number of variables is #var ≈ 2.6 · 109, which is still difficult to
solve.20

Therefore, the interference relations are simplified as follows. For each UE D, all BSs except the
serving BS 1★D can cause interference, i. e., they are the interferers ID of D with ID = B \ {1★D }.
For the rate calculations of each UE, only the power states of the #I strongest interferers are
considered. These interferers are termed the relevant interferers I rel

D ⊂ ID of UE D. All other
interferers are assumed to be transmitting on all power allocation resources. The relevant
interferers of all UEs served by a BS 1 are combined to I rel

1
=

⋃
D∈U1

I rel
D , where U1 are the UEs

served by BS 1, i. e. U1 = {D ∈ U : 1★D = 1}.

For all UEs of a BS, the power allocation to other BSs which are not in the set of relevant
interferers does not need to be considered. Therefore, when considering the local resource
allocation for this BS, the respective power allocation resources can be grouped, such that inside
each group all power states of the relevant interferers are equal. The set of all groups of power
allocation resources as seen by BS 1 is here denoted as Rg

1
. This is defined as

Rg
1
=

{
=g ⊂ Rp : 1 ∈ Bactive

=p ∀ =p ∈ =g, Bactive
=

p
1
∪ I rel

1 = Bactive
=

p
2
∪ I rel

1 ∀ =
p
1, =

p
2 ∈ =

g
}

∀1 ∈ B (5.20)

From this, it follows that the union over all power allocation groups Rg
1

equals the set of those
power allocation resources where the BS 1 is transmitting, i. e.

⋃
=g∈Rg

1
= {=p ∈ Rp : 1 ∈ Bactive

=p }.
We define the size of a power allocation group =g to be B=g .

Scheduling resources can now be redefined such that there is one scheduling resource for each UE
and power allocation group of the respective serving BS, i. e. Rs = {=s

D,=g : D ∈ U , =g ∈ Rg
1★D
}.

Scheduling resources are grouped by BS and power allocation group:

Rs
1,=g =

{
=s
D,=̃g ∈ Rs : 1★D = 1, =̃g = =g

}
∀1 ∈ B, =g ∈ Rg

1
(5.21)

Similarly, MIMO resources are redefined such that there is one MIMO resource per power
allocation group, UE, and MIMO mode: Rm = {=m

D,=g,< : D ∈ U , =g ∈ Rg
1★D
, < ∈M}. Again,

MIMO resources are grouped by scheduling resource:

Rm
=s
D,=g

=

{
=m
D̃,=̃g,<

: D̃ = D, =̃g = =g
}
∀=s ∈ Rs (5.22)

With these definitions, the optimization problem (5.18) can be reformulated as

20Note that some of the variables in the model depend on each other. E. g., the size of the power allocation
resources can be calculated by summing over the respective sets of scheduling resources. This allows for a limited
simplification of the problem, however the complexity still scales with the product of |Rp | , |U | , and |M| . Such
simplifications are not considered here.
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max
B=p ,=p∈Rp

B=g ,=g∈Rg
1
,1∈B

B=s ,=s∈Rs

B=m ,=m∈Rm

∑
D∈U

U(AD) (5.23a)

s. t.
∑

=p∈Rp

B=p ≤ Bmax (5.23b)∑
=p∈=g

B=p ≥ B=g ∀1 ∈ B, =g ∈ Rg
1

(5.23c)∑
=s∈Rs

1,=g

B=s ≤ B=g ∀1 ∈ B, =g ∈ Rg
1

(5.23d)

∑
=m∈Rm

=s

B=m ≤ B=s ∀=s ∈ Rs (5.23e)∑
=m∈Rm

B=m ?=m ≤ %
peak
|B |Bmax

?max (5.23f )

Instead of equation (5.18c), the power allocation groups do here decouple the sizes of the
scheduling resources from the sizes of the power allocation resources. Equation (5.23c) limits
the size of each power allocation group to the sum of the sizes of the contained power allocation
resources. Then, equation (5.23d) aligns the scheduling resources in each BS to the power
allocation groups of that BS.

The number of power allocation groups is not a parameter but depends on the interference
relations between BSs and UEs. The UEs associated to a BS see similar interferers. With
increasing number of UEs, the relevant interferers overlap, and I rel

1
contains the neighbors of

BS 1. The number of power allocation groups per BS in general depends on the geographical
dependencies of the BSs, but does not scale with the number of UEs. In evaluations with #I = 3,
the average number of relevant interferers per BS was Eb

[ ��I rel
1

�� ] ≈ 6.9. Here, Eb [•] denotes the
arithmetic mean evaluated over all 1 ∈ B. In the same evaluation, the resulting average number
of power allocation groups per BS was Eb

[ ��Rg
1

�� ] ≈ 189.

Introducing power allocation groups reduces the numbers of scheduling and MIMO resources.
The number of variables of the simplified optimization problem (5.23) can be estimated as

#
simp
var = |Rp | +

∑
1∈B

��Rg
1

�� + |Rs | + |Rm |

≈ |Rp | + Eb
[ ��Rg

1

�� ] |B | + Eb
[ ��Rg

1

�� ] |U | + Eb
[ ��Rg

1

�� ] |U | |M|
= |Rp | + Eb

[ ��Rg
1

�� ] ( |B | + |U | + |U | |M| )
(5.24)

With the same small scenario parameters as above (|B | = 21, |U | = 210, and |M| = 11), this
results in #

simp
var ≈ 2.6 · 106. Compared to the non-simplified model, the simplification has

reduced the number of variables by factor 1000. This simplification showed to be sufficient to
solve the problem using standard software and with reasonable memory and compute capabilities.
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5.4.4 Formulation of Fairness Requirements

Different fairness schemes were introduced in section 3.2.2. The desired fairness has a strong
influence on IfCo and RA, which both affect the compute effort. Therefore, in the following
sections multiple of those fairness schemes are incorporated into the optimization problem (5.23).
Most can be realized by defining the utility function U(•) and / or by formulating additional
constraints. The fairness criterion based on normalized throughput and the CDF of the users’
rates is omitted here, because no efficient formulation for the optimization problem was found.

5.4.4.1 No Fairness

The simplest version of the optimization problem is that which does not consider fairness. Instead,
it maximizes the total system throughput. This can be realized by defining the utility function to
equal the rate itself:

U(A) := A (5.25)

The system configuration without fairness is here denoted as None.

5.4.4.2 Proportional Fairness

The PF scheme can be realized by defining the utility function to be the logarithm of the rate.
Without losing generality, we do here normalize the rate, and thus define the utility as

U(A) := log
( A

Amax

)
, (5.26)

where Amax is the maximum rate that can be realized by a single UE. Note that the normalization
causes the resulting utility values to be negative. Similar to the normalization, the base of the
logarithm is of no relevance for the outcome of the optimization, but only for the absolute values
of the resulting utility. The natural logarithm is used in the implementation.

As stated previously, it is here desired to formulate a linear optimization problem. Therefore, the
logarithm is approximated by a piecewise linear function. The normalization in equation (5.26)
limits the input values to the interval [0, 1]. Low values are not relevant for optimization, because
limA→0 U(A) = −∞. Therefore, such values do not need to be represented accurately.

Assume the relevant interval of input values is given by [4Dmin , 1], which results in outputs from
the interval [Dmin, 0]. We want an equally accurate approximation over this interval. Therefore,
the following approximation is based on equidistant steps on the utility axis. The interval
[Dmin, 0] is divided into #pieces subintervals, each covering [Dmin + 8Dpiece, Dmin + (8 + 1)Dpiece)
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Figure 5.7: Example for the piecewise linear approximation with #pieces = 5 and Dmin = −5

on the utility axis. Here, index 8, with 8 ∈ {0, . . . , #pieces − 1}, identifies the subinterval, and
Dpiece, with Dpiece =

−Dmin
#pieces

, the size of each subinterval. Based on these definitions, the piecewise
linear function is defined as

logapx(G) :=



Dmin + X0(G) for log(G) < Dmin

Dmin + 8Dpiece + X8 (G) for Dmin + 8Dpiece ≤ log(G) < Dmin + (8 + 1)Dpiece

and 8 ∈ {0, . . . , #pieces − 1}

undefined for log(G) ≥ 0.

(5.27)

The function X8 (G) represents the offset inside piece 8 and is defined as

X8 (G) := Dpiece
G − 4Dmin+8Dpiece

4Dmin+(8+1)Dpiece − 4Dmin+8Dpiece

= G
Dpiece

4Dmin+(8+1)Dpiece − 4Dmin+8Dpiece
−

Dpiece4
Dmin+8Dpiece

4Dmin+(8+1)Dpiece − 4Dmin+8Dpiece
.

(5.28)

Note that, for values below Dmin, the slope of the lowest piece is continued. This overestimates
the utility for A < Amax4Dmin . Compared to the exact utility function, optimization with the
approximated function could tend to favor this range. To avoid inaccuracies caused by a
misconfiguration of Dmin, the optimal rates are checked after each optimization run. Results are
not used in case the less accurate range of the utility function is used.

Figure 5.7 depicts an example for the approximation with logapx(G). In this example, the linear
pieces are defined by the two parameters #pieces = 5 and Dmin = −5. Here, the value G = 0.25
lies in the range between 8 = 3 and 8 = 4. It is therefore approximated as logapx(0.25) =
Dmin + 3Dpiece + X3(0.25) = −5 + 3 + 0.49 = −1.51.

The function logapx(G) is concave. Therefore, in the maximization in problem (5.23) it can be
represented as a set of inequalities. Assume that a set of additional variables A log

D with D ∈ U is
defined. Then, the optimization problem is
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max
B=p ,=p∈Rp

B=g ,=g∈Rg
1
,1∈B

B=s ,=s∈Rs

B=m ,=m∈Rm

A
log
D ,D∈U

∑
D∈U

A
log
D (5.29a)

s. t. A
log
D ≤ Dmin + 8Dpiece + X8

( AD

Amax

)
∀D∈U , 8∈{0, . . . , #pieces − 1} (5.29b)

and equations (5.23b), (5.23c), (5.23d), (5.23e), and (5.23f).

5.4.4.3 Guaranteed Minimum Rates

A simpler formulation of fairness can be achieved when a minimum rate is guaranteed for each
UE. This scheme is here denoted as MinR. Assume that the minimum rate is represented by the
parameter Amin. The utility is defined to maximize the sum throughput as in equation (5.25). The
optimization problem is than that defined in problem (5.23), with the additional constraint

AD ≥ Amin ∀D ∈ U . (5.30)

5.4.4.4 Max-Min Fairness

The objective of the MaxMin fairness scheme is to equally maximize the rate of the UE with the
lowest rate. This can be formulated by defining a single variable Amin, which represents the rate
of the UE with the lowest rate. This variable also resembles the objective function. The resulting
problem is

max
B=p ,=p∈Rp

B=g ,=g∈Rg
1
,1∈B

B=s ,=s∈Rs

B=m ,=m∈Rm

Amin

Amin (5.31a)

s. t. AD ≥ Amin ∀D ∈ U (5.31b)

and equations (5.23b), (5.23c),

(5.23d), (5.23e), and (5.23f).

As discussed in section 3.2.2, there can be UEs that can receive a higher rate than the optimal
Amin. The formulation in problem (5.31) does not specify how to treat these UEs. Consequently,
the resulting allocations could depend on internals of the optimizer. The formulation is changed,
so that this problem is avoided.

In section 3.2.2, an extended definition was presented. This could be applied recursively by fixing
the rates which cannot be increased further and then re-solving the problem for the remaining
UEs. However, this cannot be formulated in a single linear program, and recursively solving the
problem would result in high computational effort.
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One viable approach is to enforce equality of all rates. However, that would result in low resource
usage, because a single UE with unfavorable channel conditions prohibits allocation of free
resources to other UEs. To avoid that, the sum throughput of the remaining UEs is maximized
here. This is added to the utility function with a low scaling factor n � 1, so that the problem
can be solved in one step:

max
B=p ,=p∈Rp

B=g ,=g∈Rg
1
,1∈B

B=s ,=s∈Rs

B=m ,=m∈Rm

Amin

Amin + n 1
|U |

∑
D∈U

AD (5.32)

s. t. equations (5.31b), (5.23b), (5.23c),

(5.23d), (5.23e), and (5.23f)

Note that this results in an inaccuracy in the maximized minimum rate, as lower Amin can be
traded for an increase in sum throughput. This effect has to be limited by choosing a sufficiently
small value for the parameter n .

5.4.5 Restriction of Variables Adapted to Available Compute Resources

The optimization problem presented in section 5.4.3 jointly adapts on-off power level IfCo, RA,
and LA to the available compute capacity. While this all-encompassing approach serves well for a
first estimation of the possible efficiency of a compute effort reduction, it is difficult to implement
in real systems. There, IfCo, RA, and LA are separate modules. Each of these modules already
has a certain complexity. Therefore, we are interested in an approach that preferably consists of a
simple modification of only one of these modules.

In this section, the optimization problem specified in section 5.4.3 is modified. Each modification
resembles the adaptation of one of the above mentioned modules to the available compute
capacity, while the remaining modules are ignorant of compute resources. The basis for the
modifications is the assumption that IfCo, RA, and LA are performed in this order, and each of
the steps bases its decisions on the outcome of the previous steps. It is further assumed that the
final encoding of the data, which itself raises the compute effort, is executed as fourth step.

When a step is adapted to reduce compute effort, the decisions of the subsequent steps, which
also have influence on the compute effort, have to be predicted. While this is an additional
challenge for the implementation, the following modified optimization problems assume perfect
prediction. This serves as an optimistic estimation for the performance of the adaptations. For the
first three steps, sophisticated algorithms can be designed which compensate reduced compute
capacity. In contrast, the last step can only downsize existing sets of allocated resources or skip
their encoding.

5.4.5.1 Adapting Interference Coordination

When an IfCo algorithm is adapted to take compute capacity into account, it has to predict the
compute effort related decisions of RA and LA. This is difficult to formulate as optimization
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problem, because the optimal resource allocation can be seen as an embedded problem with
different constraints. This embedded problem would have to be re-solved for each possible
configuration of the IfCo. Therefore, the performance of adapting IfCo is here approximated
optimistically by assuming that IfCo as well as RA take compute capacity into account. Thus,
only the LA does not consider compute capacity. Under these conditions, LA is a local problem,
where it is always optimal to maximize spectral efficiency.

This results in only a single modification to the optimization problem (5.23) and the derived
fairness-specific problems. There, MIMO resources model the freedom to choose different
MIMO modes for the same link characteristics. This is here restricted, such that only the MIMO
resource which maximizes spectral efficiency can be used.

Let <★
D,=g denote the MIMO mode which results in the highest spectral efficiency for UE D on a

resource in power allocation group =g:

<★
D,=g = arg max

<∈M
A=m

D,=g ,<
∀D ∈ U , =g ∈ Rg

1★D
(5.35)

Then, constraint (5.23e) in the original problem can be replaced by a fixed assignment, resulting
in the following problem:

max
B=p ,=p∈Rp

B=g ,=g∈Rg
1
,1∈B

B=s ,=s∈Rs

∑
D∈U

U(AD) (5.36a)

s. t. B=m
D,=g ,<

=

{
B=s

D,=g for < = <★
D,=g

0 otherwise
∀D ∈ U , =g ∈ Rg

1★D
, < ∈M (5.36b)

and equations (5.23b), (5.23c), (5.23d), and (5.23f)

Note that this allows further simplification of the problem, as it is not necessary to differentiate
between scheduling resources and MIMO resources any more. This simplification is not further
discussed here. The same modification can be applied to all derived fairness-specific problems.

5.4.5.2 Adapting Resource Allocation

To model the adaptation of RA alone, IfCo and LA are assumed to be optimized without
considering the available compute capacity. For LA, this results in local maximization of spectral
efficiency, as discussed before. However, for IfCo a separate optimization has to be performed.
This IfCo problem is, in contrast to RA discussed in section 5.4.5.1, not an embedded problem.
Instead, it can be solved beforehand, because it is not influenced by the RA.

Assume that the problem (5.23) or the derived fairness-specific problem has been solved for
?max = ∞, or, equivalently, without constraint (5.23f). Let B̂=p denote the size of power allocation
resource =p in the solution of that problem. Define <★

D,=g as in equation (5.35). Then, fix the sizes
of the power allocation resources to those values. Note that this also allows to fix the sizes of
the power allocation groups. In addition, constrain LA to always chose the mode for maximum
spectral efficiency. The resulting problem is:
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max
B=s ,=s∈Rs

B=m ,=m∈Rm

∑
D∈U

U(AD) (5.37a)

s. t. B=p = B̂=p ∀=p ∈ Rp (5.37b)

and equations (5.36b), (5.23c), (5.23d), and (5.23f)

Here, constraint (5.23d) allows to allocate less than the available resource size to each UE.
However, as the sizes of the power allocation resources are fixed, this does not improve the
interference conditions seen by the other UEs in the network. This models the fact that free
resources, when not being coordinated with neighboring cells, cannot be used efficiently. The
effect of statistically reduced interference is not considered here. The same modification can be
applied to all derived fairness-specific problems.

5.4.5.3 Adapting Link Adaptation

Adapting only LA parameters (i. e., the MIMO mode) to the available compute capacity can be
performed similarly. The optimal fairness-specific IfCo and RA have to be derived by solving a
separate problem beforehand. These are then fixed, so that the sizes of the MIMO resources are
the only variables left for the optimization.

There are two different approaches to adapt LA. First, a problem is formulated which comprises
individual adaptation of parameters for each UE. Assume that the problem (5.23) (or the derived
fairness-specific problem) has been solved for ?max = ∞. Let B̂=s denote the size of scheduling
resource =s in the solution of that problem. Then, fix the sizes of the scheduling resources to those
values. Note that this also renders the sizes of power allocation resources and power allocation
groups irrelevant. The resulting problem is:

max
B=m ,=m∈Rm

∑
D∈U

U(AD) (5.38a)

s. t. B=s = B̂=s ∀=s ∈ Rs (5.38b)

and equations (5.23e) and (5.23f)

Again, the same modification can be applied to all derived fairness-specific problems.

The second approach is to only restrict the number of virtual transmit antennas used by each
cell, while the actual MIMO modes used are selected without considering the available compute
resources. This simplifies the problem by defining only a single decision variable per cell.

Let A denote the set of supported configurations of transmit antennas. For each configuration
0 ∈ A, M0 ⊂M represents the associated subset of allowed MIMO modes.21 For each UE D,

21Here, a configuration of transmit antennas corresponds to a number of virtual antennas, e. g. A = {1, 2, 4, 8}.
The set of supported modes for a number of transmit antennas comprises those modes which do not rely on a
larger number of transmit antennas. Thus, deliberately reducing the number of transmit antennas is allowed. This
configuration is used such that the resulting model yields results comparable to the other problems, which also allow
a deliberate reduction of transmit antennas.
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power allocation resource =g, and configuration 0, let <★
D,=g,0 denote that MIMO mode which

delivers the highest throughput, i. e.

<★
D,=g,0 = arg max

<∈M0

A=m
D,=g ,<

∀D ∈ U , =g ∈ Rg
1★D
, 0 ∈ A. (5.39)

Based on that, introduce a flag H<,D,=g,0 which is one only if the mode < delivers the highest
throughput for the combination of the remaining indices, i. e.

H<,D,=g,0 =

{
1 for < = <★

D,=g,0

0 otherwise
∀D ∈ U , =g ∈ Rg

1★D
, < ∈M, 0 ∈ A. (5.40)

Further, define a set of binary variables G1,0 with 1 ∈ B and 0 ∈ A. Each variable G1,0 is equal to
one if BS 1 uses configuration 0 and zero otherwise. As before, assume that the problem (5.23)
has been solved for ?max = ∞, and let B̂=s denote the size of scheduling resource =s in the solution
of that problem. With these definitions, the problem to cope with limited compute resources by
selecting the number of transmit antennas per cell is:

max
G1,0 ,1∈B,0∈A

∑
D∈U

U(AD) (5.41a)

s. t. B=m
D,=g ,<

= B̂=s
D,=g

∑
0∈A

G0,1★D H<,D,=g,0 ∀D ∈ U , =g ∈ Rg
1★D
, < ∈M (5.41b)∑

0∈A
G1,0 = 1 ∀1 ∈ B (5.41c)

G1,0 ∈ {0, 1} ∀1 ∈ B, 0 ∈ A (5.41d)

and equation (5.23f)

Here, equation (5.41b) enforces the size of a MIMO resource to be equal to the size of the
respective scheduling resource if and only if the associated MIMO mode is the one delivering
maximal throughput for the currently active number of virtual transmit antennas. The two
remaining constraints ensure that each BS uses only a single configuration for its transmit antennas.
As before, the same modification can be applied to all derived fairness-specific problems.

5.4.5.4 Downsizing Existing Sets of Allocated Resources

Downsizing of existing RA, without modifying any other parameters, can be seen as last resort
to cope with limited compute capacity. As before, optimal IfCo, RA, and LA parameters are
derived from a separate optimization problem solved for unrestricted compute capacity.22 These
do then constraint the main problem, so allocated resources can only be decreased.

Assume that the problem (5.23) (or the derived fairness-specific problem) has been solved for
?max = ∞, and let B̂=m denote the size of MIMO resource =m in the solution of that problem.

22Note that this results in LA to be configured to maximize spectral efficiency. The same could have been achieved
by applying constraint (5.36b).
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Then, limit the sizes of the MIMO resources to not exceed those values. The resulting problem
is:

max
B=m ,=m∈Rm

∑
D∈U

U(AD) (5.42a)

s. t. B=m ≤ B̂=m ∀=m ∈ Rm (5.42b)

and equation (5.23f)

This can also be applied to all derived fairness-specific problems.

5.4.6 Summary

The previous sections defined the optimization problem that is used for the basic analysis in this
thesis. The problem comprises a joint optimization of on-off power level IfCo, RA, and LA. For
simplicity and because that has the most significant influence on the result, LA is here modeled
as MIMO mode selection, only. The set of MIMO modes contains all viable combinations
of numbers of transmit antennas and numbers of spatial streams. The main constrains of the
problem are the available time-frequency resources and compute capacity.

The problem is formulated by a combination of linear equations, which allows for efficient solving
even with large numbers of constraints. It is realized as a resource model with three layers. On
the highest layer, power allocation resources represent every possible combination of transmitting
and non-transmitting BSs. On the second layer, at each BS each power allocation resource is
split into one scheduling resource per UE. On the third layer, each scheduling resource is split
into MIMO resources, one for each MIMO mode. In this model, the sizes of all resources are
variable. They are linked to the sizes of the resources on the remaining layers by constraints.

To reduce the complexity of the model, interference is considered only for a limited set of
strongest interferers for each UE. This lowers the number of scheduling and MIMO resources.

The model allocates each MIMO resource to one of the power allocation resources. Thus, the
channel capacity and compute effort for each MIMO resource can be precalculated. The achieved
rate of a UE is calculated by summing over the capacities of the respective MIMO resources,
weighting each with the resource’s size. The same is applied for the compute effort.

Based on the formulation of the basic problem, section 5.4.4 defined variants for the four fairness
schemes None, PF, MinR, and MaxMin. Orthogonal to those, section 5.4.5 introduced variants
that limit the flexibility of the optimizer. Instead of representing all-encompassing optimization
of IfCo, RA, and LA, these are later used to model the separate adaptation of each of these
modules.

5.5 Inference from Solutions of the Optimization Problem

The previous section 5.4 defined multiple variants of an optimization problem. In this section,
these optimization problems are solved and their solutions are evaluated. The findings from
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these evaluations then serve as the foundation for the design of the proposed system, which is
presented in section 5.6.

This section is structured as follows. First, section 5.5.1 summarizes the applied evaluation
methodology. The four subsequent sections present different studies. In section 5.5.2, the
fairness schemes defined in section 5.4.4 are compared by solving the problem without limiting
the processing effort. This serves to discuss the interdependencies of the components of the
optimization problem. Section 5.5.3 shows how an optimal system copes with limited processing
resources. The problem variants defined in section 5.4.5 are then applied in section 5.5.4 to
evaluate which variables have to be adapted to approach the optimal performance. The last study
in section 5.5.5 investigates whether an individual adaptation of LA parameters is required for
optimal efficiency or a configuration on cell level is sufficient. Finally, section 5.5.6 summarizes
the findings from all studies and derives guidelines for the design of the proposed system.

5.5.1 Evaluation Methodology

The evaluations presented in this chapter are based on the system model introduced in section 5.3.
To simplify the optimization model, the small system model with seven sites and 21 sector cells
is used here. The optimization is performed with a fixed number of UEs and full-buffer traffic.
Here, the actual number of UEs is a parameter. The first evaluations, which give some insight
into the fairness schemes, have been performed for 105, 210, and 420 UEs, which corresponds to
5, 10, and 20 UEs per cell in average. Later evaluations then concentrate on 210 UEs.

Different fairness schemes, which were introduced in section 3.2.2, have been evaluated. However,
most of the evaluations are performed for the PF problem only, because that is considered to be a
good balance between fairness and system throughput. For most of the following evaluations, the
available compute resources are a parameter and constraint for the optimization problem.

The optimization model also requires parametrization. Here, the approximation of the logarithm
for the PF model has been configured with #pieces = 3000 and Dmin = −15. The scaling factor
for the MaxMin system has been set to n = 1 × 10−3. This is assumed to be a good balance.
Larger values tend to distort the primary objective, which is to achieve Max-Min Fairness. For
smaller values, the optimizer considers the sum throughput component to be irrelevant for the
solution. For the MinR system, two values for the minimum rate have been evaluated, namely
Amin = 300 kbit/s and Amin = 1 Mbit/s.

The evaluations are conducted in #drops = 20 independent drops per parametrization. A Java
program based on the IKR SimLib [IKRSimLib] and IKR RadioLib loads a trace file with
small-scale channel effects generated in MATLAB. It places the UEs randomly, calculates the
large-scale effects of the channels, and determines the serving BSs. The best MCS is derived for
each combination of MIMO mode and power states of the relevant interferers. The optimization
model is configured with the resulting associations of UEs to serving BSs, data rates, and
processing efforts. Then a standard solver (IBM ILOG CPLEX Optimizer version 12.6.3) is
run to solve the problem. For continuous problems, the optimal solution is calculated in all
cases. For integer problems, the solver is configured to stop solving when the gap between the
best found integer solution and the bound (i. e. the solution of the relaxed problem) falls below
0.5 %. Relevant metrics are extracted from the optimal solution, which are later aggregated for
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Figure 5.8: Total system rate achieved with unrestricted processing effort

evaluation. The placement of UEs and the realizations of the channels are equal for different
parametrizations.

The evaluations use the following metrics. The rates achieved by the UEs and derived values of
those serve as main metric. First, the average UE rate is used as metric for the general network
performance. In general, comparing this is sufficient, because fairness is guaranteed by the
formulation of the optimization problems. However, the empirical CDF and the 5th percentile
of all UEs’ rates are used to get insight into the respective optimal fairness. In addition to the
network performance, the occupied processing capacity is also evaluated for those setups where
it is not constrained. The objective function of the optimization problem is used at some places
to compare different variants of the optimization problem.

For the average UE rate, confidence intervals are calculated with the following procedure. The
rates itself are assumed to be not normally distributed. Therefore, first, the average over the rates
of all UEs in a drop is calculated. Following the central limit theorem, the resulting drop-averages
are approximately normally distributed [Law07, chapter 4.6]. Student’s t-distribution is then
used to derive the 95 % confidence interval from the drop-averages [Stu08; Law07]. Note that
these confidence intervals are approximate due to the limited number of UEs contributing to a
drop-average.

5.5.2 System Behavior with Unrestricted Processing Effort

The first study is used to get insight into the relations of RA, IfCo, and MIMO mode selection.
Especially, it is evaluated how this is influenced by the fairness scheme. In addition, the study is
also used to derive the unrestricted compute resource utilization. For this study, the compute
resources have not been restricted, i. e. ?max = ∞. The optimizer solved the problems specified
for different fairness schemes in section 5.4.4 for different numbers of UEs.

Figure 5.8 depicts the sum of the rate of all UEs in the system. Each group of bars represents one
fairness scheme, while each color stands for a different number of UEs. Here, the system rate has
been chosen as metric to make the number independent of the number of UEs.

As expected, the system rate is highest for the less fair configurations. The highest rate is achieved
with the None scheme, while the MaxMin scheme leads to the lowest rate. Also, with more UEs,
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the system can make use of the increased diversity of the channel realizations and deliver higher
throughput. Only for the MaxMin scheme, the rate does not increase with more UEs. For the
MinR schemes, the effort the system has to invest to guarantee the minimum rate increases with
the rate and with the number of UEs. This leads to a reduced system rate for the configuration
with MinR1 Mbit/s and 420 UEs.

Detailed insight into the distribution of the UE rates is provided by figure 5.9 for the configuration
with 210 UEs. That figure shows an empirical CDF as introduced on page 55. The range of
possible UE rates is plotted on the x-axis, the respective fractions of UEs encountered with a
smaller rate on the y-axis. To be better able to differentiate small rates while also showing high
rates, the x-axis is scaled logarithmically.

The optimal RA for the None scheme assigns zero or very low rates to about 90 % of the UEs.
The remaining UEs get all available resources and thereby achieve high rates in the range of
61 Mbit/s to 117 Mbit/s. A similar split into two groups of UEs can be seen for the two MinR
schemes. There, most of the UEs receive the guaranteed minimum rate, while few remaining
UEs maximize their individual throughput with the remaining resources. The throughput of the
second group depends on the guaranteed rate, i. e. the higher the guaranteed rate, the lower the
higher rates.

The MaxMin scheme shows that the maximum possible guaranteed rate in this configuration is
about 2.3 Mbit/s. The CDF of this scheme is not a vertical line, because not all UEs’ rates depend
on each other. While the rate of some UEs cannot be increased further and defines the minimum,
the rate of the remaining UEs is maximized by the objective function in problem (5.4.4.4). In
addition, the shown CDF is the superposition of all optimized drops, which all have different
minimum rates. The smoothest rate distribution is achieved with the PF scheme. There, rates
are distributed approximately log-normally, with the 5th and 95th percentiles at 1.8 Mbit/s and
9.4 Mbit/s, respectively.

Without compute resource restriction the MIMO modes are always selected to maximize spectral
efficiency for the respective channel. At the same time, the optimizer performs IfCo depending
on the configured fairness scheme. The resulting allocations are shown in in figure 5.10. Each
group of bars results from a different fairness scheme. The three bars in each group stand, from
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Figure 5.10: Utilization of time-frequency resources and MIMO modes

left to right, for 105, 210, and 420 UEs. To give insight into the dependency on the degrees of
freedom, a fourth bar is shown for the None scheme which stands for 1680 UEs.

The total height of the bars represents the total amount of allocated time-frequency resources.
Wherever the bar does not reach 100 %, this is because resources are left free to reduce interference.
The heights of the differently colored sections of the bars stand for the amount of time-frequency
resources where the respective MIMO mode is used.

With a sufficient number of UEs, the None scheme does not perform IfCo but assigns each PRB
in each cell to a UE which has favorable channel conditions even with full interference. For
the MinR schemes, a small amount of time-frequency resources is left free, so that each UE can
receive its guaranteed rate. For the fairer configurations PF and MaxMin, about 10 % or 30 % of
the PRBs are idle, respectively.

No configuration uses eight transmit antennas on all PRBs. Instead, 10 % to 27 % of the PRBs
are occupied by modes using four virtual transmit antennas, and some even by modes with two
antennas. Although counter-intuitive, this effect can be reasoned as follows. Schemes with
less than eight transmit antennas are not inferior, but can be interpreted as just a different set
of precoding matrices, because UEs have only four antennas. Thus, the preferred number of
transmit antennas for a UE only depends on the phase shifts of the respective channel realization.
While most channels can be optimally utilized with a precoding from the codebook defined for
eight antennas, some benefit from the additional precoding matrices.

The system serves nearly all UEs with two to four spatial streams. This indicates that there
is typically sufficient orthogonality between the two polarization planes, while the remaining
characteristics of the channel matrix have a higher variance. The most spatial streams are used
by the None scheme. With increasing number of UEs the probability of experiencing favorable
channel conditions increases. Thus, in average, UEs can be served with more spatial streams.
The same applies also for the MinR schemes, which also assign a part of the resources to those
UEs which maximize system throughput. The shares of spatial layers are different for the PF and
MaxMin schemes. There, the largest fraction of resources is used with only two spatial layers. A
single spatial stream is only transmitted on about 2 % of the PRBs, and only in those schemes
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Figure 5.11: Occupied compute resources

which have to invest significant resources to provide fairness. In these cases, the optimizer always
decides to use eight virtual transmit antennas.

MIMO mode usage and IfCo influence the required processing resources. This is shown in
figure 5.11. The configurations occupy 50 % to 80 % of the compute resources.23 The most
resources are required by None, while the fairer systems use less resources. The compute resource
utilization for the None and MinR300 kbit/s schemes increases with the number of UEs. These
resource utilizations are caused by a combination of three effects. First, simpler MIMO modes
than the one using eight transmit antennas to transmit four spatial streams cause less effort.
Second, the compute effort is reduced whenever a UE is not served with the highest possible
MCS. And third, PRBs left free to reduce interference cause no processing effort. It can therefore
be expected that the compute resource utilization scales with the aggregated system rate. The
closer the system comes to deliver the theoretical peak performance, the more compute resources
are required.

The evaluations have shown that the system does not use all compute resources, although the
offered load is unlimited. Thus, dimensioning of the compute resources for 100 % compute
load is not efficient. Especially for those systems where the operator desires fair serving of the
customers, a large amount of compute resources can be saved. Figure 5.11 depicts how many
compute resources are required for optimal system operation. However, it does not show whether
the system could also operate with less resources. This is studied in the following section.

5.5.3 Utility under Restricted Compute Resources

The second study evaluates how the system copes with restricted compute resources. It is
evaluated how the system performance degrades when compute resources are limited. In addition,
it is evaluated what the main strategies of the system are to manage such a restriction. For this
study, the parameter ?max is set to different values to restrict the available compute resources.

23The configuration with 1680 UEs and the None scheme, for which the PRB utilization is shown in figure 5.10,
occupies 87 % of the compute resources.
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Figure 5.12: Evaluation results for optimization problem with restricted processing effort

The optimizer then maximizes the objective function for the respective fairness scheme. To limit
the scope of the evaluations, the number of UEs has been fixed to 210.

Figure 5.12a depicts how the average UE rate drops when compute resources are restricted. The
available compute resources are plotted on the x-axis, the achieved average rate on the y-axis.
The curves represent different fairness schemes. On each curve, the minimum compute resources
which are required to serve the UEs without impact is marked by a circle.24 The minimum
compute resources required to achieve 90 % of the not impacted rate is marked with a square.

In the right third of the plot, more compute resources than required are available. The compute
resources required to not impact system performance roughly corresponds to the values shown in
figure 5.11.25 When compute resources become restricted below that value (moving further to
the left on the x-axis), the system performance is degraded. Here, the evaluated fairness schemes
all follow a similar behavior. At first, the average UE rate is reduced only slightly. When the
compute resources are limited to values below 40 %, the slopes gradually become steeper. To
maintain 90 % of the original rate, the configurations require between 30 % and 35 % of the peak
compute resources %peak

|B |Bmax
.

Compared to the None and MinR schemes, the PF scheme requires less compute resources to
achieve full rate and also to maintain 90 % of the full rate. In contrast, the MaxMin scheme
requires even less resources to achieve its full rate, but is more severely impacted when further
limiting the compute resources.

For the PF configuration, the performance degradation simultaneously impacts all UEs. This is
depicted in figure 5.12b. Here, the empirical CDFs are plotted for different compute resource
limits from 5 % to 100 %. When reducing the compute capacity, the curves are shifted to the
left, but keep a similar shape.26 Only for the top 30 % of the rates, the impact is larger. For 5 %

24This is here defined as the point with the lowest compute resources where the average UE rate is degraded by
less than 0.1 %.

25For some configurations, small reductions of the occupied compute resources can be achieved without impacting
performance. Therefore, the marked compute resource levels are slightly lower than those in figure 5.11.

26The x-axis is scaled logarithmically. Thus, a parallel shift is equivalent to scaling all rates with the same factor.
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Figure 5.13: Utilization of time-frequency resources and MIMO modes with PF

compute resources, it seems not efficient for the system to maintain high rates for some UEs.
Instead, the CDF becomes steeper, i. e. the rates achieved by the UEs become more similar.

To cope with limited compute capacity, the system adapts IfCo, RA, and MIMO mode utilization.
Figure 5.13 shows this for the PF configuration. Here, the height of the differently colored areas
represent the amount of time-frequency resources where the respective MIMO mode is used.
The total height of the colored area is equivalent to the totally used time-frequency resources.
Analogously, the height of the white area at the top of the plot stands for the time-frequency
resources which are left free and serve to reduce interference.

The fractions plotted for 65 % (on the right side of the plot) are the same as those of the bar for
PF and 210 UEs in figure 5.10. Thus, there is not change in system behavior when allowing to
use more than 65 % compute resources. However, when compute resources are limited to values
below that, totally allocated resources are reduced and shares of MIMO modes change. Different
behavior of the system can be identified in different parts of the plot.

When reducing the compute capacity from 60 % down to 35 %, the use of MIMO modes using
eight transmit antennas is reduced. This is balanced by increasing usage of those modes with four
and two transmit antennas. However, these are not significantly used to transmit four spatial layers.
Simultaneously to the shift in MIMO mode usage, the fraction of empty resources increases with
a low slope.

This slope steepens when further limiting the compute resources down to about 10 %. At the
same time, the MIMO mode utilization gradually switches first from four to two antennas, and
then also to one antenna. The peak resource usage for four antennas is at 35 %, that for two
antennas at 20 %. This comes along with using only two or even one spatial layer. However, it
can be seen from the plot that only on few resources a single spatial layer is used except on those
where only one transmit antenna is available. Thus, reducing the number of transmit antennas
seems more efficient than reducing the number of spatial layers more than necessary. It is also
visible that for a single compute resource limit, the system uses a broad range of MIMO modes
to serve the different UEs.
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Figure 5.14: Impact of not changing the number of virtual transmit antennas

Below 10 %, most PRBs are occupied with the MIMO mode that uses only one transmit antenna.
Consequently, the only way to further reduce the processing effort is to leave more PRBs free.

The previous evaluation already indicates that the optimizer heavily relies on the ability to reduce
the number of virtual transmit antennas to cope with limited processing capacity. The benefit of
this flexibility is also illustrated by figure 5.14. There, the system is optimized for the PF scheme
in two different configurations. The one with flexible number of virtual transmit antennas is the
same as studied previously, i. e. the curve is the same as the respective one in figure 5.12a. For
the configuration which is fixed to eight virtual transmit antennas, only those MIMO modes have
been allowed to be used by the optimizer which do not reduce the number of transmit antennas.

For compute resources above 70 %, fixing the number of transmit antennas results in a reduction
of the average UE rate of about 0.4 %. This is caused by the reduced set of precoding matrices
as discussed in section 5.5.2. When compute resources are reduced below 60 %, the network
performance of the system which is not allowed to reduce the number of virtual transmit antennas
degrades almost linearly. For compute resources below 35 %, the flexible number of transmit
antennas gains more than 50 % UE rate compared to the restricted configuration.

Summarizing, the optimizer can maintain relatively high network performance when the compute
resources are not limited too severely. When restricting the available compute resources, the
performance degrades gracefully. To do so, it simultaneously and gradually reduces the number
of virtual transmit antennas and leaves more PRBs free to reduce interference. Not allowing to
reduce the number of virtual transmit antennas results in a significant performance degradation.
The system uses different MIMO modes at the same time to serve the UEs. Therefore, it
does not seem viable to change the number of transmit antennas for the whole system at once.
Instead, a more complex strategy seems to be required to achieve the gentle slope in a heuristical
implementation.

The evaluations have shown that, when given full flexibility, the optimizer adapts MIMO mode
selection as well as IfCo to cope with limited processing capacity. The following section evaluates
whether the combination of these strategies is required or it is sufficient to implement only one of
them.
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Figure 5.15: Comparison of strategies to cope with reduced processing capacity (UE rates)

5.5.4 Separation of Control Variables

Objective of the third study is to evaluate whether the combined adaptation of IfCo, RA, and LA
parameters is required to efficiently cope with limited compute resources. As in the previous
study, the parameter ?max is set to different values. However, here not the flexible optimization
problems from section 5.4.4 are solved, but the restricted versions defined in section 5.4.5. These
model that only single modules of the BBU system are adapted to cope with limited compute
resources. To simplify the evaluations, the number of UEs is fixed to 210. In addition, only the
PF configuration is evaluated.

The average UE rate and the 5th percentile of the UE rates are shown in figures 5.15a and 5.15b,
respectively. Here, the black curve, denoted as reference, resembles the unrestricted optimization
problem as evaluated in the previous section.27 The remaining curves represent the restricted
problems from section 5.4.5.

In general, the average rates of the different versions of the optimization problem show a similar
behavior. With compute resources above 60 %, all show the same performance (not shown in
the plot). The average rates degrade when compute resources are limited further. However, the
efficiency with which the variants cope with limited compute resources differs. The performance
of adapt LA, which adapts only MIMO mode selection, is close to the reference. However, with
this strategy it is not possible to reduce the required compute capacity to values below 7.5 %.
Thus, the optimization problem is infeasible, and the respective points are missing from the
plot. The second highest average rates are realized by adapt IfCo. By reassigning resources and
by making use of empty resources to reduce interference, a comparatively high performance
can be maintained. Similarly, adapt RA reassigns time-frequency resources. However, there
the optimization problem does not take advantage of empty resources. This results in further
degradation of the average rates. As expected, the lowest performance is achieved with the
simplest variant downsize. There, the average rate depends almost linearly on the available
compute capacity.28

27It is the same as the curve for PF in figure 5.12a.
28Note that, as not all sets of allocated resources have to be scaled down by the same factor, strictly linear

dependence is not necessary.
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Figure 5.16: Comparison of strategies to cope with reduced processing capacity (UE utility)

The percentiles of the UE rates in figure 5.15b show a similar behavior. The most striking
difference is that for the curves denoted with adapt IfCo, the percentiles of the rates increase
slightly when lowering the compute resource limit from 60 % to 50 %. This behavior can be
explained by two opposing effects: The variant adapt IfCo copes with limited compute resources
by transmitting on fewer channel resources. Thus, with fewer available compute resources, the
average interference experienced by the system decreases. At the same time, fewer channel
resources can be used to serve the UEs, which impacts the experienced rates. In average, the
second effect dominates the first one. Thus, in figure 5.15a, the average rate decreases when the
compute resources are limited. However, for UEs that suffer heavily from interference, the first
effect can dominate the experienced rate. As these UEs do also typically experience low rates,
this effect shows up in the percentiles plotted in figure 5.15b. The same behavior also occurs for
the reference. However, for this variant the difference is barely noticeable from the plot. This
behavior does not arise with the other strategies, because those do not reduce interference.

For compute resources below 40 %, the cell border performance of adapt LA is lower than that of
reference, while the average rates are still the same. This indicates that the change of MIMO
modes impacts the cell border users, which cannot be compensated by reduced interference
or adapted RA in this configuration. Especially for 7.5 % compute resources, this impact is
significant. Compared to the average rates, the adapt RA performs worse. The percentiles
achieved with that strategy are similar to that of the downsize variant.

By tuning the fairness configuration, average throughput can be traded for cell-border throughput
and vice-versa. A fair comparison of the strategies adapt LA and adapt IfCo is not possible with
these two metrics alone, because each performs better in one of the metrics. Therefore, the PF
utility, which represents the objective function of the PF configuration, is plotted in figure 5.16.29
There, it can be seen that the objective achieved with adapt LA is significantly better than that of
all other strategies. Thus, by shifting resources to cell border users, the 5th percentile performance
achieved by adapt IfCo can possibly also be achieved by adapt LA. However, that would reduce
the utility and thereby violate the definition of PF.

29Note that the absolute values of the utility are negative. This is caused by the normalization as defined in
equation (5.26). In this configuration, there are in average ten UEs served by each cell. Furthermore, as the radio
channels are not ideal, the UEs can not be served with highest spectral efficiency. Both effects cause the average
experienced rate A to be significantly lower than the maximum rate achievable in a cell Amax. This leads to utility
values of about -3.4 for the configuration with unconstrained compute resources.



130 Chapter 5. Elastic Utilization of Compute Resources

0% 20% 40% 60%
compute resources

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

av
er

ag
e

U
E

ra
te

[M
bi

t/s
]

reference
adapt individually
adapt per BS

(a) average UE rate

0% 20% 40% 60%
compute resources

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

5t
h

%
til

e
of

U
E

ra
te

s
[M

bi
t/s

]
reference
adapt individually
adapt per BS

(b) 5th percentiles of UE rate

0% 20% 40% 60%
compute resources

-6

-5.5

-5

-4.5

-4

-3.5

-3

av
er

ag
e

U
E

ut
ilit

y

reference
adapt individually
adapt per BS

(c) Average UE utility
Figure 5.17: Benefit of individually adapting LA parameters

Summarizing, in these evaluations the strategy adapt LA showed the best performance, which is
close to the reference for average rates and utility. A small performance drop is seen for cell
border users, however there the performance is still better than that of the other strategies for
the largest range of evaluated compute resource limits. The second best strategy is adapt IfCo,
which favors especially cell border UEs. A significant drawback of the strategy adapt LA is that
it cannot cope with arbitrary low resource limits. Thus, to achieve stable system operation in all
cases, it has to be complemented with a fallback mechanism.

In this section, it was assumed that LA parameters are adapted individually for each UE. The
next section evaluates whether this flexibility is required to maintain high network performance.

5.5.5 Benefit of Individual Adaptation

The objective of this study is to evaluate whether individual adaptation of LA parameters is
required or adaptation on a coarser level is sufficient. Individual adaptation brings fine-grained
control and results in high network performance as shown in the previous section. However, it
comes with additional complexity as a compute capacity dependent decision has to be made for
every UE which has PRBs assigned. When the number of transmit antennas is limited per BS,
that simplifies the system. It allows to omit assembly and further processing of the OFDM frame
which is to be transmitted on the disabled antennas, given that no other signals (e. g. CSI-RSs)
use these antennas.

The evaluations are performed in the same manner as those in the previous study. However, this
section focuses on the comparison of the performance achieved by the two optimization problems
defined in section 5.4.5.3. The problem which individually adapts LA parameters is identical to
the one studied in the previous section.

Figures 5.17a, 5.17b, and 5.17c depict the average UE rates, the 5th percentile of the UE rates and
the average PF utility, respectively. The curves reference and adapt individually correspond to the
respective curves in the evaluations in the previous section. The curve adapt per BS resembles
the optimization problem where the same restrictions are performed simultaneously for all UEs
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served by a BS. As expected, limiting the flexibility of the optimizer results in degraded network
performance. While the degradation of average rates is small, the cell border throughput is
impacted significantly. For example, with 40 % compute capacity available, adapt individually
maintains 99 % of the original rate, while adapt per BS achieves only 87 %. This indicates that
simultaneously reducing the number of transmit antennas harms especially those UEs which
have low channel quality. The average PF utility is also degraded with adapt per BS, although
the difference is not as large as for the percentile.

Summarizing, individually adapting LA parameters here shows to be beneficial compared to an
adaptation per BS. Especially for UEs with unfavorable channel conditions, the simplification
comes with a significant impact. However, the advantages of the adaptation per BS cannot be
captured by the metrics evaluated here. Thus, in scenarios different to the one considered here,
adapting LA per BS can be beneficial.

5.5.6 Summary and Derivation of Design Guidelines

Different evaluations of optimization problems have been presented by the previous sections.
Section 5.5.2 has shown that, even if the compute resources are not restricted, only 50 % to 80 %
of these resources are used. This utilization clearly depends on the fairness scheme, where fairer
systems use less processing resources.

Section 5.5.3 evaluated how the system copes with a restriction of the processing resources.
It has shown that 30 % to 35 % of the compute resources are sufficient to achieve 90 % of the
unrestricted rates. Furthermore, the evaluations indicate that the system simultaneously switches
to simpler MIMO modes and leaves PRBs free to cope with this restriction.

The influence of these strategies is separated by the evaluations in section 5.5.4. That section has
shown that the performance achieved by adapting only MIMO modes is close to that of the joint
optimization. In contrast, modifications of IfCo and RA cannot maintain high rates when the
compute resources are restricted.

Finally, the question arises whether it is required to adapt the MIMO mode for each UE
individually. Disabling transmit antennas per cell has advantages such as simpler system design
and reduced effort in other processing blocks. These advantages are not captured by the metrics
evaluated here. Section 5.5.5 has shown that this simplification comes at the cost of reduced cell
border throughput.

These outcomes form the foundation for the design of the system proposed in the following
section. The proposed system modifies LA, especially the MIMO modes, as that approach has
shown promising performance. The evaluations have shown that adapting the number of virtual
transmit antennas is crucial for this performance, so the same mechanism is used in the proposed
system. The LA is modified individually for each UE, because that is beneficial for the metrics
evaluated here. By modifying LA alone, it is not possible to operate with very few compute
resources. This mechanism is therefore complemented by a fallback mechanism which allows
the system to operate with arbitrary compute resource limitations.
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5.6 Proposed System

Based on the findings from section 5.5, the proposed system modifies LA to adaptively reduce
computational complexity. The system consists of a distributed heuristic to configure LA
parameters, a fallback mechanism to guarantee stable system operation under all circumstances,
and a prediction mechanism which configures the heuristic to achieve efficient utilization of the
available compute resources under different operation conditions. It is is integrated into the
components of an eNodeB such that the distributed heuristic acts after IfCo and RA have been
performed, but before data is encoded.

Section 5.6.1 states the requirements that the system should meet. The proposed system is derived
from a known algorithm to solve an optimization problem. To better understand the concepts
of the proposed system, section 5.6.2 introduces this optimization problem and the assocciated
solving algorithm. The proposed system itself is then presented in section 5.6.3. That section
also illustrates its integration with the components of an eNodeB. Subsequently, section 5.6.4
describes the integration with the remaining LTE system, especially how the proposed system
interacts with the UEs. A discussion of the proposed system is provided in section 5.6.5.

5.6.1 Requirements and Constraints

The main requirement for the proposed system is to maintain high network performance under
restricted compute resources. This should be implementable in a realistic LTE system. Especially,
the simplifications conducted for the optimization problem, which allow to use fractions of PRBs
to serve a UE simultaneously with different MIMO modes, will not be applied here. Besides
that, the following additional objectives apply for the design of the system.

In an unmodified LTE eNodeB, LA is a comparatively simple task, because the eNodeB can
follow the proposals from the UE in the CQI reports. Compared to that, the modified LA
heuristic should not introduce significant computational or architectural complexity into the
system. Especially, the selection of LA parameters should not be performed in tight cooperation
between all cells of a BBU pool, but in a distributed fashion.

In section 3.5, it was derived that resource allocation is a complex task. It serves for differentiation
between vendors of LTE eNodeBs. Therefore, the used algorithms are not publicly known. To
avoid additional complexity and allow evaluation independent of concrete RA algorithms, the
interaction of the LA heuristic and the RA should be avoided as far as possible.30

In addition, the proposed system shall be robust in different manners. It should be capable of
coping, not necessarily efficiently, with arbitrary low compute resources, so that it can maintain
at least minimum operation even under extraordinary conditions.31 It should also be able to
handle inexact predictions of compute effort.32

30The evaluation in section 5.5.4 has shown that the performance loss entailed by this restriction is marginal.
31Note that, even if not data is actually transmitted, a minimum amount of compute capacity is necessary to

execute the proposed heuristic and transmit control signals.
32Exactly predicting the computational effort on a general purpose computer system is often not possible. This is

caused by various effects like other tasks running in parallel, the operating system, varying cache hit ratios, and
memory latencies. Although guarantees are in principle possible by using a RT operating system and carefully
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5.6.2 Inspiring Optimization Problem

As introduced in section 5.4.5, it is assumed that IfCo and RA are executed before LA. Here,
it is not relevant whether IfCo is performed at each subframe, on coarser intervals, or not at
all. However, at each TTI RA decides which UE is served on which set of PRBs. The system
then has to select which UE is served with which MIMO mode. The objective for this selection
is to maximize system performance while not exceeding the limited processing capacity. It is
assumed that each UE is only served with a single MIMO mode and MCS at each TTI. This can
be formulated as optimization problem, which is similar to the problem (5.38).

The following section specifies this optimization problem. Subsequently, in section 5.6.2.2 an
algorithm is presented which solves the linear programming (LP)-relaxation of this problem.
This algorithm inspires the design of the proposed system. It can be interpreted as centralized
variant of the proposed distributed heuristic.

5.6.2.1 Problem Specification

The original problem (5.38) is defined as optimizing rates for a snapshot of the system state.
Without modification of the formulation this can be applied to optimize the data capacity
transmitted in a single subframe.33 While that problem encompasses all UEs in the system, it
can be supposed that in the considered subframe only a subset of UEs in the system get resources
assigned by RA. In the following the set U denotes that subset.

The original problem assumes that IfCo and RA have been performed before the problem is
solved. This is there formulated by introducing the parameters B̂=s with =s ∈ Rs, which denote
the fixed amount of allocated resources for each combination of power allocation and UE. The
variables for the optimization are then the sizes of the MIMO resources B=m with =m ∈ Rm.
The restriction of using only a single MIMO mode could be incorporated into that problem by
appropriately constraining the allowed sizes of the MIMO resources. However, this approach
does not allow to constrain the MCS, so that the same MCS is used for all resources allocated to
a UE. Therefore, a new problem is defined here as follows.

The variables of the new optimization problem are binary flags selecting the applied MIMO
modes. These flags are here denoted as 0̂D,< with 0̂D,< ∈ {0, 1} and

∑
<∈M 0̂D,< = 1 ∀D ∈ U .

Each flag variable is equal to one if UE D is served with MIMO mode < and equal to zero
otherwise. For each UE, each MIMO mode comes with a different data capacity and processing
effort.34 When UE D is served with MIMO mode < on the allocated PRBs, AD,< bits can be
encoded. This is calculated according to the description in section 5.3.5, taking into account that
a single MCS is used for the set of allocated resources. Analogously, the compute effort required
to encode the data is denoted as ?D,<. This can be derived from equation (5.14).

managing the remaining effects, this is a complex task and can result in reduced efficiency of the system. It is
therefore beneficial to have a system which does not strictly require exact prediction of the effort, but can cope with
certain variations.

33Note that, even if the problem formulation is the same, this does not mean that repetitive optimization per
subframe necessarily leads to the same long-term results.

34Note that the allocated PRBs are fixed and the MCS is always selected to maximize the capacity for a given
allocation and MIMO mode. Thus, data capacity and processing effort depend on the selected MIMO mode, only.
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Similar to problem (5.38), the system performance is here modeled as utility Ucap(•) , which
is now a function of the data capacity. As only one MIMO mode is used per UE, the utility
values corresponding to the MIMO modes can also be precalculated. These are here denoted as
hD,< = Ucap

(
AD,<

)
. Based on these definitions, the MIMO mode allocation can be formulated as

a multiple-choice knapsack problem (MCKP):

max
0̂D,<,D∈U ,<∈M

∑
D∈U

∑
<∈M

0̂D,<hD,< (5.43a)

s. t.
∑
D∈U

∑
<∈M

0̂D,<?D,< ≤ %
peak
|B |Bmax

?max (5.43b)∑
<∈M

0̂D,< = 1 ∀D ∈ U (5.43c)

0̂D,< ∈ {0, 1} ∀D ∈ U , < ∈M (5.43d)

The characteristics of an MCKP are discussed in detail by Kellerer, Pferschy, and Pisinger
[KPP04]. They specify upper bounds, list exact solution algorithms, and present solution
heuristics. The MCKP is known to be NP-hard. As computational efficiency is one of the
requirements for the MIMO mode selection algorithm, an exact solution of the problem is not
viable here. Instead, the proposed system is based on the LP-relaxation of the problem.

5.6.2.2 Algorithm to Solve the LP-Relaxation of the Problem

The LP-relaxation is formed by replacing the binary variables 0̂D,< in problem (5.43) with
non-negative continuous variables 0̌D,<. An efficient approach to solve the relaxed MCKP is
presented by Sinha and Zoltners [SZ79] as part of a branch-and-bound solution strategy.35 This
approach is followed here.

First, the problem can be simplified by removing dominated and LP-dominated modes. These
are defined as follows. A MIMO mode < of UE D is dominated if there exists another mode <,
such that

?D,< ≤ ?D,< and hD,< ≥ hD,<, (5.44)

i. e., the mode < produces higher utility with less compute effort. A MIMO mode < of UE
D is LP-dominated if there exists another two modes < and <̃, such that ?D,< < ?D,< < ?D,<̃,
hD,< < hD,< < hD,<̃, and

hD,<̃ − hD,<
?D,<̃ − ?D,<

≥
hD,< − hD,<
?D,< − ?D,<

(5.45)

This means that there is a linear combination of MIMO modes < and <̃ which achieves a higher
utility with the same compute effort as caused by mode <.

It can be shown that, if mode < is dominated for UE D, there exists an optimal solution to
problem (5.43) with 0̂D,< = 0 [SZ79]. This also holds for the LP-relaxed variant of the problem.
In addition, for modes which are LP-dominated, there exists an optimal solution to the relaxed

35The same algorithm is also reproduced by Kellerer, Pferschy, and Pisinger [KPP04], using a different notation.
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Figure 5.18: Exemplary illustration of dominated MIMO modes

variant with 0̌D,< = 0 [SZ79]. Therefore, these modes can be removed from the problem.36 In
the following discussion, the set of those MIMO modes of UE D, which are neither dominated
nor LP-dominated, is denoted as M̃D.

The concept of LP-dominance is illustrated in figure 5.18. There, the utility is plotted over the
compute effort for all modes for a single UE. Colors represent the number of virtual transmit
antennas, while shades of the same color denote different numbers of spatial layers.37 The
non-dominated modes are marked with black squares and connected by a dotted line. Note that
the dotted line resembles a part of the convex hull of the points. Modes below and right of this
dotted line do not need to be considered.

The simplified LP-relaxation can be solved by the following algorithm. First, sort the remaining
MIMO modes M̃D of each UE D by utility (or effort, which is equivalent) in ascending order.
Assign indices, such that AD,<8

< AD,<8+1 (with 0 ≤ 8 <
��M̃D

��). For each mode except those with
index 0, calculate the additional compute effort as

?̂D,<8
= ?D,<8

− ?D,<8−1 . (5.46)

In addition, calculate the efficiency of the mode as

4D,<8
=
hD,<8

− hD,<8−1

?̂D,<8

. (5.47)

Note that the efficiency 4D,<8
is equivalent to the slope of the dotted line segment leading to the

point which represents <8 in figure 5.18.

Start by selecting the mode with least compute effort for each UE, i. e. set 0̌D,<0 = 1 ∀D ∈ U .
Calculate the remaining processing capacity as ?rem = %

peak
|B |Bmax

?max −
∑

D∈U ?D,<0 . In case
?rem < 0, the problem (5.43) is infeasible. Otherwise, successively switch to more complex
modes. Thereto, first set the remaining candidate modes of UE D to M̃cand

D = M̃D \ {<0}. Then,

36Note that for the special case of ?D,< = ?D,< and hD,< = hD,<, which is included in equation (5.44), only one
of the modes can be ignored. As both effort and utility are the same, it is not relevant which of the modes is removed
from the problem.

37The colors are the same as those in figures 5.10 and 5.13.
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from all UEs and all remaining candidate modes, select the combination of UE and mode with
the highest efficiency:

Dnext = arg max
D∈U

max
<∈M̃cand

D

4D,< (5.48)

<next = arg max
<∈M̃cand

Dnext

4D,< (5.49)

Compare the additional effort for this mode ?̂Dnext,<next with the remaining processing capacity
?rem. In case ?rem < ?̂Dnext,<next , this mode can only be used partially. Set 0̌Dnext,<next =

?rem
?̂Dnext ,<next

.
Decrease the selection variable for the previously selected mode such that

∑
<∈M 0̌Dnext,< = 1.

The LP-relaxation of the problem is now solved. In case ?rem ≥ ?̂Dnext,<next , mode <next can be
used without restriction. Set 0̌Dnext,<next = 1 and 0̌Dnext,< = 0 ∀< ∈M \ {<next}. Account for the
additional effort by setting ?rem = ?rem − ?̂Dnext,<next . Remove the mode from the set of candidates,
i. e. set M̃cand

D = M̃cand
D \ {<next}.

Continue by selecting the combination of UE and mode with the highest efficiency from all
remaining candidates, until either all UEs use the mode with the highest complexity or the
algorithm stops because all compute capacity is occupied. This greedy algorithm is also presented
in pseudo-code in algorithm 1.

This algorithm is known to optimally solve the LP-relaxation of problem (5.43) [SZ79]. However,
due to the restrictions stated in section 5.6.1, the solution to the LP-relaxation is not directly
applicable here. Instead, a possibly non-optimal solution for the non-relaxed problem has to be
derived. The simplest approach thereto is to use all modes for which the greedy algorithm has
set 0̌D,< = 1. For that UE, for which there are two modes with 0 < 0̌D,< < 1, the mode with the
lower effort is used. This can be formulated as

0̂D,< =

{
1 for < = arg min{<̃∈M : 0̌D,<̃>0} ?D,<̃

0 otherwise
∀D ∈ U , < ∈M. (5.50)

The resulting total compute effort is always equal to or lower than the available compute capacity
%

peak
|B |Bmax

?max.

Note that this algorithm is not part of the proposed system. However, it can be interpreted as a
centralized variant of the system. The following section derives a distributed mechanism from
this algorithm.

5.6.3 Mechanism to Achieve Elastic Utilization of Compute Resources

The heuristic presented in the previous section, which solves the knapsack problem by deriving a
solution from the LP-relaxation, has to be executed centrally for the whole BBU. This contradicts
the requirements from section 5.6.1. Thus, the heuristic is converted to a distributed system here.

Section 5.6.3.1 derives the distributed system from the heuristic presented in section 5.6.2.2. The
following sections 5.6.3.2 to 5.6.3.4 present the three components of the proposed system in
detail. Subsequently, the integration of the components into the remaining system is described in
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Algorithm 1 Solve the LP-relaxation of problem (5.43) following the approaches of Sinha and
Zoltners [SZ79] and Kellerer, Pferschy, and Pisinger [KPP04]

1 ?rem ← %
peak
|B |Bmax

?max // initialize: remaining processing capacity set to total capacity

2 for all D in U do // initialize: assume mode with least compute effort is used for each UE

3 <0 ← arg min
<∈M̃D

?D,< // mode <0 defined to be that with least compute effort

4 0̌D,< ← 0 ∀< ∈M // unselect all modes of this UE

5 0̌D,<0 ← 1 // select mode <0

6 ?rem ← ?rem − ?D,<0 // subtract it’s effort from the remaining capacity

7 M̃cand
D = M̃D \ {<0} // set of remaining candidates per UE

8 end for

9 if ?rem ≥ 0 then // is the problem feasible?

10 done← false

11 while not done do // successively switch to more complex modes

12 (Dnext, <next) ← arg maxD∈U arg max
<∈M̃cand

D
4D,< // select the combination of UE

and mode with the highest efficiency

13 if none found then // more complex modes available?

14 done← true // problem trivial, highest throughput modes used for all UEs

15 else if ?rem ≥ ?̂Dnext,<next then // can mode <next be used without restriction?

16 0̌Dnext,< ← 0 ∀< ∈M // unselect the previously selected mode for this UE

17 0̌Dnext,<next ← 1 // select mode <next

18 ?rem ← ?rem − ?̂Dnext,<next // subtract the additional effort

19 M̃cand
D ← M̃cand

D \ {<next} // remove <next from the set of candidates for this UE

20 else // <next can only be used partially

21 0̌Dnext,< ← 0̌Dnext,<

(
1 − ?rem

?̂Dnext ,<next

)
∀< ∈M // scale down the previously selected

mode for this UE

22 0̌Dnext,<next ←
?rem

?̂Dnext ,<next
// partially select <next

23 done← true // processing capacity exhausted

24 end if

25 end while

26 end if

27 return done // if true problem is feasible and solved by variables 0̌D,<
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section 5.6.3.5. Finally, section 5.6.3.6 discusses the alignment of the strategies of the proposed
system and of the RA component.

5.6.3.1 Derivation of the Distributed System

Algorithm 1, which is described textually on pages 135 to 136, can be reinterpreted as deter-
mination of an efficiency threshold. Each UE starts with the most efficient MIMO mode. The
algorithm then successively switches to MIMO modes with lower efficiency and higher data
capacity. During this process, all modes with an efficiency above a certain value are selected at
least temporarily. When it completes, out of these modes those remain selected which provide
the highest data capacity for the respective UE.

The selection of MIMO modes can be derived from this threshold as follows. Define the threshold
4min to be the efficiency of the last mode which can be used without restriction.38 To simplify the
formulation, assume that modes with index 0 have infinite efficiency, i. e. 4D,<0 = ∞ ∀D ∈ U .
With this, equation (5.50) can be reformulated as

0̂D,<8
=

{
1 for 4D,<8

≥ 4min ∧
(
8 =

���M̃D

��� − 1 ∨ 4D,<8+1 < 4min

)
0 otherwise

∀D ∈ U , < ∈M. (5.51)

This means that a mode is selected if it is allowed by the threshold and either it is the most complex
mode of the respective UE or the next complex mode of the respective UE is disallowed. Phrased
differently, for each UE the most complex mode is selected out of those modes which have higher
efficiency than the threshold. Given that the threshold is known, the steps of removing dominated
MIMO modes, sorting the remaining modes, and selecting modes following equation (5.51) can
be performed independently for each UE. This forms the foundation for the proposed system.

The value of the threshold depends on the load of the system. In case the system load is low and
compute resources are plentiful, a low threshold is used to select computationally demanding
MIMO modes. When the system load is higher and / or compute resources are scarce, a higher
threshold is required, to restrict the system to use only those MIMO modes which are efficient
w. r. t. computational effort. Previous evaluations have indicated that the aggregated load of a
cluster of BBUs becomes smooth when the cluster is sufficiently large [WGP13]. It is therefore
here assumed that the optimal threshold is similar for consecutive subframes. This suggests that
a prediction of the threshold is possible.

The distributed algorithm consists of three components. First, the value of 4min is predicted
based on the previous subframes. Second, a selection algorithm is executed independently for
each UE, which takes the CSI of the UE and the predicted value of 4min and selects a MIMO
mode accordingly. The prediction of 4min may be suboptimal. Therefore, the total compute
effort resulting from the selected MIMO modes can exceed the compute capacity. Thus, the third
component cancels allocations of PRBs to UEs to bring down the total compute effort below the
available capacity. These three components are presented in detail in the following sections.

38This means it is the last mode for which algorithm 1 takes the branch of line 16 and the following lines.
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5.6.3.2 MIMO Mode Selection

MIMO modes are selected independently for each UE by the following mechanism. Assume
that the value of the threshold 4min has been predicted. Further suppose that CSI is available for
the set of resources allocated by RA. Determine the MCS which maximizes spectral efficiency
for each MIMO mode. For each MIMO mode, calculate the utility value hD,< and the compute
effort ?D,<. Sort all modes by increasing compute effort and assign indices correspondingly.

Removing dominated and LP-dominated modes and determining that mode which provides the
best throughput while having an efficiency higher than the threshold can be combined into a
single algorithm. This is described in pseudo-code in algorithm 2.

Algorithm 2 Select MIMO mode for UE D

1 8 ← 0
2 for 9 = 1 to |M| − 1 do
3 4D,< 9

← (hD,< 9
− hD,<8

)/(?D,< 9
− ?D,<8

)

4 if 4D,< 9
≥ 4min then

5 8 ← 9

6 end if
7 end for
8 return <8

The algorithm repeatedly tests whether to switch from an already accepted mode <8 to a more
complex mode < 9 . The ordering of the modes ensures that the processing effort of < 9 is larger
than or equal to that of <8. First, assume that modes <8 and < 9 are both neither dominated nor
LP-dominated. In line 3, the efficiency 4D,< 9

is calculated. If that exceeds the threshold 4min, the
index 8 is updated in line 5. This makes < 9 the accepted mode and the base for further efficiency
calculations. If it does not exceed the threshold, index 8 is not updated. Although the algorithm
could abort here, evaluating the efficiency of the remaining modes does no harm, because their
efficiency cannot exceed 4D,< 9

.

Now, consider the case that < 9 is LP-dominated. Here, two cases can be differentiated. Either,
the efficiency 4D,< 9

is below the threshold 4min, or it is above or equal. In case 4D,< 9
< 4min, index

8 is not updated, and <8 is compared to the next mode. Otherwise, i. e. in case 4D,< 9
≥ 4min,

mode < 9 is considered as the current best mode and index 8 is updated. However, the efficiency
of the following non-dominated and non-LP-dominated mode is larger than 4D,< 9

. Therefore, the
algorithm will definitely switch to that mode. So, it is not relevant that mode < 9 was considered
as best mode in the meantime. Finally, if < 9 is dominated, the slope calculated in line 3 is
negative, and thus index 8 is not updated.

Algorithm 2 returns a single MIMO mode. This is used in combination with the corresponding
MCS to transmit the data to UE D.

5.6.3.3 Encoding Data and Canceling Transmissions

After the MIMO modes have been selected for the UEs with resource allocations, their data can
be encoded. A certain amount of time is provided for the encoding, after which the encoded data
has to be forwarded to be assembled to a subframe, be further processed, and finally transmitted.
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Denote the effort to encode the data for a UE D as ?real
D . This effort depends on the number

of allocated PRBs, the channel quality, and the MIMO mode selected by the component
described in section 5.6.3.2.39 The total accruing effort is then ?real

total =
∑

D∈U ?real
D .40 In case

?real
total > %

peak
|B |Bmax

?max, the system is overloaded despite the adapted MIMO mode selection.

The proposed system handles overload situations as follows. Encoding starts and proceeds in
random order41 until the time provided for encoding is over. All remaining UEs, for which no
data could be encoded, get their resource allocations canceled.42 In case the system is currently
encoding data when it runs out of time, the calculations are aborted and the respective UEs also
receive no data in the current subframe.

5.6.3.4 Predicting the Threshold 4min

The efficiency of the proposed mechanism mainly depends on the apt choice of the threshold
4min. If the threshold is too high, only simple MIMO modes will be used. Compute resources
stay unemployed, and network performance is suboptimal. However, if the threshold is too low,
overload is caused and many resource allocations have to be canceled. Time-frequency resources
are left free, which also impacts network performance.

In this dissertation, the focus does not lie on elaborate prediction methods for the threshold 4min.
Instead, a simple control loop is applied to determine the threshold based on the compute effort
which occurred in previous subframes. After each subframe, the value of 4min is adapted. To
avoid frequent skipping due to overload, an offset parameter ?off is introduced, such that 4min can
be increased before the compute capacity is exceeded. Thus, when the actual compute effort rises
above the reference value, i. e. ?real

total > %
peak
|B |Bmax

?max − ?off, the system increases the value of 4min
by 4step, otherwise it decreases it by 4step. The parameters ?off and 4step allow to tune the system.

5.6.3.5 Integration into the BBU

The three components of the proposed system are integrated into the remaining modules of the
BBU as depicted in figure 5.19. Black text in the figure denotes functions not adapted to cope
with reduced compute capacity. In contrast, red text marks additions and modifications.

Here, steps A and B denote IfCo and RA, respectively. These are not modified. In step C, the
heuristic defined in section 5.6.3.2 is used to select a MIMO mode and a MCS for each UE to
which the RA has assigned a set of PRBs. Following that, in step D the data to be transmitted
to the UEs is encoded as described in section 5.6.3.3. Step E controls that the previous two
steps are repeated until the system runs out of compute time. If overload occurs, steps C and D
are skipped for the remaining UEs. Subsequently, in step F the radio frame is assembled and
further calculations are performed. Finally, in step G the subframe is transmitted. After each

39Ideally, ?real
D is equal to the compute effort assigned to the selected mode in section 5.6.3.2. However, deviations

could be caused by inaccuracies in the compute effort model or by unpredictable overhead.
40Note that, as defined in section 5.6.2.1, U comprises only those UEs which got resources assigned by RA for

the current subframe.
41Random order has been chosen here for simplicity. See also the discussion in section 5.6.5.3.
42For a discussion of the impact on the signaling between BS and UEs, see section 5.6.4.3.
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Figure 5.19: Schematic picture of distributed heuristic integrated into the BBU

subframe has been processed, in step H the variable 4min is adapted according to the overload
which occurred in step D as stated in section 5.6.3.4.

5.6.3.6 Alignment with Resource Allocation Policies

Although the RA module is not modified to cope with limited compute capacity, the proposed
system indirectly interacts with RA. The selection of MIMO modes decides the apportionment
of compute resources between multiple UEs. This influences the fairness of the system, analog
to the allocation of time-frequency resources. Contradicting actions of RA and MIMO mode
selection could impact the network performance.

For example, RA could choose to assign a large number of PRBs to a UE with low channel
quality. For the same UE, the LA module might select a MIMO mode with low complexity
and low spectral efficiency. The saved compute resources could be used to serve other UEs
and thereby maximize total data capacity. Thus, the result would be a significant amount of
time-frequency resources invested, but missing compute resources render their usage inefficient.

To avoid such contradiction, the utility function used in the proposed system has to be aligned
with the RA policy. The utility Ucap(•) introduced in problem (5.43) is similar to the utility used
in the resource allocation optimization problems discussed in section 3.3. However, here the
utility function is applied on data capacities per subframe, while the previous one is a function of
a long-term data rate. Nevertheless, the logarithm is used here to achieve a fairness of compute
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resource allocation which matches the PF heuristic used to allocate time-frequency resources.
Thus, here

Ucap(A) := log
( A

Amax

)
, (5.52)

where A is the data capacity of the allocated PRBs with a certain MIMO mode and Amax the
maximum capacity per subframe. This definition would have to be adapted if a different RA
policy than PF is applied.

5.6.4 Integration into the RAN

The proposed system does not interact only with the modules of the BBU, but also with other
components of the LTE system. The impact on the EPC is low, because varying data rates which
are under control of the eNodeBs are a core concept of LTE. In contrast, on the air interface the
proposed system behaves differently as an unmodified eNodeB. Aspects of this interaction with
UEs are discussed in the following sections.

5.6.4.1 Signaling the Number of Transmit Antennas

The proposed system relies on a flexible selection of MIMO modes to reduce computational
load. To decode the received data, UEs have to know how it was transmitted. As introduced
in section 2.3.4.4, MIMO operation in LTE is based on the definition of TMs. Each UE gets a
single TM assigned by a semi-static configuration. Depending on the configured TM, different
parameters of the encoding can be changed dynamically.

TM 4 was introduced in LTE Release 8 for closed-loop codebook based precoding with up to four
transmit antenna ports.43 It allows the eNodeB to configure the number of spatial layers, and also
to fall back to SFBC. However, it does not allow to configure the number of transmit antennas.
Instead, that is configured statically for the whole cell. In Release 10, TM 9 was introduced,
which allows to use spatial multiplexing with up to eight transmit antenna ports. It is based on
DM-RSs for demodulation, so that the applied precoding does not need to be communicated to
the decoding UE. This TM allows the eNodeB to apply an arbitrary precoding matrix. It can
thus be used to flexibly change the number of transmit antennas. The same applies for TM 10,
which was introduced in Release 11.

Compared to TM 4, the DM-RSs used in TMs 9 and 10 come with a certain overhead, which
can impact network performance. However, this overhead has to be accepted to be able to use
up to eight transmit antennas. These TMs are not applicable for legacy UEs. For those, which
have to use TM 4 for closed loop spatial multiplexing, the system can only switch to SFBC to
reduce computational complexity. However, as the major load is assumed to be caused by the
more complex transmissions used to serve newer UEs, this is not studied in this thesis.

43See table 2.4 for an overview of all TMs.
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5.6.4.2 Acquiring Channel State Information

The proposed system relies on the fact that CSI is available for different MIMO modes (see
section 5.6.3.2). As described in section 2.3.6.3, CSI measurement can either be based on CRSs
or on CSI-RSs. To use up to eight transmit antennas, CSI-RSs have to be applied. UEs measure
the channel and report the measurement results by transmitting a RI, a PMI and one or two CQIs.
These reports refer to the antennas which transmit CSI-RSs and to the number of spatial layers
encoded in the RI.

To get reports for different hypotheses of transmit antennas, TM 10 allows to configure multiple
CSI processes. Thus, the eNodeB can transmit different sets of CSI-RSs with different numbers
of virtual transmit antennas. UEs can be configured to measure these separately and provide
independent CSI reports.

The number of spatial layers which results in maximal spectral efficiency for a certain CSI process
is determined by the UE. However, this is only meant as recommendation for the eNodeB. The
eNodeB is also allowed to transmit a lower number of spatial layers, thereby overriding the
recommendation of the UE.44

Due to the special design of the precoding matrices, the reported PMI is also applicable for
a lower number of spatial layers. However, the reported CQIs cannot directly be applied to
the reduced number of spatial layers. As each spatial layer can provide different performance,
omitting a single layer may either increase or decrease the total channel capacity. Omitting a layer
decreases interference between layers and can thereby improve the channel quality experienced
on the remaining layers. As described in section 2.3.3.1, the eNodeB can apply an offset to the
reported CQI to achieve a desired average decode probability. This is meant to compensate for
UE-specific deviations, but can also be used to adapt the CQI to a reduced number of spatial
layers. The involved impact on performance, which results from inaccurate estimation of the
channel capacity, is not considered in this thesis.

Transmitting multiple sets of CSI-RSs with different numbers of transmit antennas causes
overhead and thereby impacts network performance. This can be minimized by extending the
transmission intervals, however that comes with reduced measurement accuracy. In case of a
rather static utilization of the compute capacity, some configurations of transmit antennas can
potentially be temporarily disabled. When these configurations then shall be used again, changes
to the semi-static configuration of the UEs are required. A similar concept applies for CSI reports
for multiple CSI processes. There, the eNodeB can selectively request reports for different CSI
processes (see also section 2.3.6.4). It can thereby dynamically trade overhead for more elaborate
channel information.

5.6.4.3 Canceling Allocated Resources

In case the threshold 4min is predicted too low, the proposed system selects too complex MIMO
modes. To cope with this situation, UEs which got sets of PRBs assigned by the RA module get
these allocations canceled. For higher layers, this cannot be differentiated from the case that a

44This is sometimes termed rank override [DPS16].
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transmission could not be decoded or did not take place at all. However, the interactions with the
lower layers of the air interface have to be discussed. There, the canceling of allocated resources
can be realized in two different ways, depending on when the PDCCH is encoded.

The PDCCH can be encoded when the OFDMA frame is assembled (i. e. as part of step F in
figure 5.19). In this case, the DCIs of a canceled allocation can be omitted from the PDCCH (see
section 2.4.3.2). Thus, the intended receivers do not recognize the allocation, but further await
transmissions in the following subframes. It is irrelevant what is transmitted on the respective
symbols in the PDSCH, because these are not decoded by any UE. The RA module in the
eNodeB should recognize that the transmission was skipped, so that it can allocate new PRBs in
a following subframe.

Encoding the PDCCH could also be implemented to start immediately after RA (i. e. after step B
in figure 5.19).45 In this case, it is not be possible to remove the DCIs when an allocation is
canceled. Consequently, one or multiple DCIs are transmitted for which the corresponding
data is missing from the PDSCH. The receiving UEs will recognize this as decode errors. The
respective HARQ process at the UE now holds useless data in its buffer, which should not be
combined with the next transmission. The eNodeB can circumvent that by instructing the UE to
discard the previously received data.46 As the receiving UE does not get any other information
from the received DCI, the remaining protocols are not disturbed.

When resource allocations are canceled, it does not make sense to transmit any PDSCH data
symbols on the respective PRBs. However, at this point in the processing, it is too late to make
use of this fact by deliberately adapting the MCS in neighboring cells. Thus, only the statistically
lower interference can be used. In the aspired operating point of the proposed system, where
the fraction of PRBs not used because of compute resource overload is low, this can only bring
marginal gain.

5.6.5 Discussion and Evaluation

Section 5.6.1 stated a number of requirements for the designed system. The focus of this section
is to qualitatively assess the proposed system w. r. t. these requirements. The complementing
quantitative evaluation of the network performance is provided in chapter 6. The requirements
can be divided into the topics network performance, implementation complexity, interaction with
RA, and robustness. They are covered by the following sections in this order.

5.6.5.1 Performance

The main objective of the proposed system is to maintain high network performance even with
limited compute capacity. By design, the proposed system does not impact the performance
of the network in case no effective compute resources limitation occurs. However, in case the
resources are restricted, the proposed system cannot be expected to achieve the same performance

45This can be beneficial, because the PDCCH can then be processed in parallel to the UE-related operations
(steps C to E). This also allows to calculate the inverse DFT for the first OFDM symbols of a subframe before the
OFDMA frame is assembled. Thereby, utilization of compute resources may be improved.

46For details about HARQ operation see section 2.3.3.2.
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as the combination of optimal IfCo, RA, and LA. Four different causes for reduced performance
are presented by the following paragraphs.

First, the proposed system operates consecutively for every subframe. It can therefore not
anticipate future variations of external conditions (e.g. channel variations). Furthermore, the
system applies its objective to the individual subframes. In principle, it is possible to evaluate
convergence behavior theoretically [Sto05]. However, that is out of scope of this thesis. Instead,
this is here evaluated empirically in section 6.1.3.

Second, the proposed system adapts only MIMO modes, while leaving IfCo and RA unmodified.
The impact of this restriction has already been evaluated in section 5.5.4. It is picked up again in
the evaluation in section 6.1.3.

Third, reduced performance is expected to be caused by the fact that the proposed system
resembles a greedy heuristic solving the MCKP. In the general case, this greedy heuristic has
arbitrary bad worst-case performance.47 However, performance is better if the effort for a single
UE is low compared to the total compute capacity: The LP-relaxation of the MCKP discussed in
section 5.6.2.2 provides an upper bound of the achievable utility. Relative to that, the greedy
solution derived in equation (5.50) loses the utility gained by the partially selected mode of one
UE. The additional compute capacity used by this mode is left unused, while the remaining
capacity is invested efficiently.48 The amount of unused compute capacity can be as large as the
additional effort required for a MIMO mode for a single UE. In contrast, the optimal solution
can possibly use this capacity efficiently. The maximum difference in terms of utility between
the greedy algorithm and the upper bound therefore is

hlost,max =

(
max

D∈U ,<∈M
?̂D,<

) (
max

D∈U ,<∈M
4D,<

)
, (5.53)

with ?̂D,< and 4D,< calculated as in equations (5.46) and (5.47), respectively. Given that the
threshold 4min is defined optimally, the proposed system achieves the same performance.

The fourth cause for performance impacts is the prediction of the optimal efficiency threshold
4min and the associated canceling of resource allocations in case overload is caused by a too low
threshold. In general, there is a trade-off between low utilization of compute resources and the
canceling of transmissions. A rather lower value of 4min results in more complex MIMO modes.
Thus, the utilization of the compute resources is high, but overload occurs frequently. In contrast,
less complex MIMO modes (higher 4min) mostly avoid canceling of transmissions at the cost of
underutilized compute resources. Possible errors in the prediction of the efficiency threshold
4min can result from the following three causes.

First, assume constant compute load, i. e. channels and RA do not change. The mechanism to
predict 4min was proposed in section 5.6.3.4. Assuming that the offset is not applied, i. e. ?off = 0,

47Kellerer, Pferschy, and Pisinger [KPP04] provide an example, which is similar to the following: Assume two
UEs with two MIMO modes each, and a total compute capacity of %peak

|B |Bmax
?max = G, with G > 2. For both UEs, <0

delivers zero utility with zero effort. For UE D0, <1 delivers utility 2 with effort 1, while for UE D1, <1 delivers
utility G with effort G. The greedy heuristic will select <1 for UE D0 and <0 for UE D1. This results in a total utility
of 2, while the optimal solution has utility G.

48Compare to the example provided in note 47: There, the unused compute capacity is G − 1. In contrast to the
greedy solution, the optimal solution can make use of this capacity to increase the total utility by G − 2.
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the total accruing compute effort ?real
total oscillates around the total compute capacity %

peak
|B |Bmax

?max.
Thus, marginal overload occurs every second subframe. Whenever that happens, the encoding for
at least one UE is skipped. The restricted granularity of this mechanism causes some compute
capacity to remain unused. However, that does not imply a significant performance drop as long
as the processing effort to encode a single UE is low compared to the totally available compute
capacity. In addition, the frequency of these overload situations can be reduced by configuring an
offset ?off > 0, at the cost of reduced resource utilization.

Second, assume that the load of the network is constant, but variations of the compute load are
implicated by small-scale channel fading and actions of the RA algorithm. These fluctuations
cannot be anticipated by the proposed prediction mechanism. The impact of this effect is
evaluated in a scenario with constant network load in section 6.1.

Finally, when not even the load of the network is constant, the magnitude of the fluctuations
increases. The performance of the proposed system then depends on the capability of the control
loop to dynamically adapt the value of 4min to the system conditions. A thorough control-theoretic
evaluation of the control loop is out of scope of this thesis. Instead, the performance of the
complete system is evaluated in a scenario with dynamic traffic in section 6.2.

Summarizing, it is expected that the proposed system does not achieve optimal performance due
to its heuristic nature. A quantitative performance evaluation is provided in chapter 6.

5.6.5.2 Complexity

The proposed system is used to reduce the computational effort required to operate a set of LTE
cells. However, the system itself also introduces additional complexity, which counteracts this
goal. Thus, the introduced complexity should not exceed the savings. In addition, it should be
predictable or at least manageable to facilitate efficient dimensioning of compute resources.

The proposed system consists of three main components. The following paragraphs focus on
the MIMO mode selection described in section 5.6.3.2. The remaining two components are the
mechanism to cancel the encoding when running out of compute capacity (section 5.6.3.3) and
the prediction of the threshold (section 5.6.3.4). Both do not contribute significant effort.

The newly introduced algorithm 2 is executed once per subframe for each UE which got resources
allocated by RA. As it iterates over the list of all MIMO modes, it’s total effort scales linearly
with the number of UEs with resources |U | and with the number of MIMO modes |M| .

In addition, a precondition for the algorithm is that for each UE, the MIMO modes are sorted
by compute effort. This scales with |U | · |M| log |M| , which dominates the complexity of
algorithm 2. However, ordering with random input sequence is not required. This is caused by the
fact that MIMO modes typically have a fixed order w. r. t. compute effort, which is determined by
the number of spatial layers and the number of transmit antennas. Only in rare cases, the influence
of the MCS on the compute effort results in a different order. Therefore, static pre-sorting of the
modes practically reduces the effort for sorting to that for a simple linear check for the correct
order, i. e. the effort now scales with |U | · |M| .
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In a real system, both |U | and |M| are limited to small values. The number of MIMO modes
is limited by system design.49 While more modes in general provide finer increments in effort
and capacity, they also come with overhead for CSI acquirement. The number of UEs which get
resources assigned are constrained by the capacity of the PDCCH as discussed in section 2.4.4.
It is thus assumed that the complexity for MIMO selection, i. e. for sorting of MIMO modes and
for execution of algorithm 2, can be neglected.

Besides the MIMO mode selection algorithm, additional effort occurs to gather the required
input data. To calculate the capacity of the allocated PRBs, the MCS has to be derived from the
UEs CSI reports. To allow the proposed system to select from different MIMO modes, this has
to be performed for each mode.

There are several ways to further reduce this effort. First, based on the CSI reports of the UE,
some modes can be identified to be not efficient. Assume that a UE reports a RI for each number
of virtual transmit antennas. All modes where the number of spatial layers exceed the respective
RI can be assumed to be dominated, and thus be ignored for the further processing. Second, a
slowly operating control mechanism could be used to limit the number of candidate modes. That
mechanism could take the efficiency threshold 4min and the average channel conditions of the UE
into account. Besides reducing the processing effort for MCS determination and MIMO mode
selection, this would also reduce the overhead for CSI acquirement.

Summarizing, the newly introduced computational effort is considered to be low compared to the
effort for encoding the data. In addition, the additional effort occurs in components which can
cope with overload. Determining MCS and selecting MIMO mode are performed independently
for each UE. This allows to parallelize the computations and to skip UEs in case of overload.
The proposed prediction mechanism does not only take into account the effort for the encoding
of the data, but also any other compute effort which delays the encoding. It thus manages the
total effort, including that for the proposed system itself.

Besides the computational complexity, architectural complexity is also a relevant criterion.
A benefit of the proposed system is that it does not introduce a component which requires
synchronized coordination of a whole BBU pool. It does, however, assume that there is either
a single compute unit, or a tightly synchronized pool of compute units which achieves ideal
utilization of all resources. Suitable adaptation of the proposed system for a loosely coupled pool
of compute units remains for further study.

5.6.5.3 Interaction with Resource Allocation

Section 5.6.1 stated that the proposed system should operate independently of RA. However,
besides the alignment of the objectives of RA and the proposed system, which were discussed in
section 5.6.3.6, the proposed system also interacts in two other ways with RA.

First, channel capacity predictions are distorted by changing the MIMO mode. Many RA
algorithms rely on a prediction of the channel capacity experienced by the UEs. This prediction is
often used as relative metric for opportunistic resource allocation. In that case, a false prediction
of the capacity is tolerable if it impacts all UEs in a similar way. However, RA can also use the

49Evaluations in this thesis were all performed with |M| = 11. See also section 5.4.3.2.
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prediction to determine the number of PRBs required to deliver an absolute amount of data. This
is necessary, e. g., for control messages of a fixed size, or in case only a limited amount of user
data is to be transmitted. In these cases, it is inappropriate to reduce the capacity after RA has
allocated PRBs, because few remaining bits force the system to allocate additional time-frequency
resources in a consecutive subframe.

There are multiple approaches to avoid this interaction. RA could be enhanced to mark those
UEs where the allocated capacity is strictly required and cannot be efficiently compensated by
later resource allocations. The proposed MIMO mode selection heuristic is then applied only to
the non-marked UEs. Another approach to handle this interaction is to modify the prediction of
the channel capacity. That could already incorporate the expected MIMO mode selection, so
that it better matches the realizable capacity. The RA can then assign more PRBs to those UEs
to which it plans to deliver a fixed amount of data. The first approach reduces the efficiency of
the proposed system, because the marked UEs use computationally less efficient MIMO modes.
The second approach could cause undesired interactions and oscillations between RA and the
proposed system, because the current value of 4min then influences the UEs selected by RA. For
the performance evaluations in this thesis, none of these approaches is implemented.

The second interaction discussed here is the canceling of allocated resources. As long as the
fraction of canceled resources is low, this effect is dominated by decode errors caused by varying
channel quality, and can therefore be ignored. However, in contrast to decode errors, canceled
resources are immediately known at the eNodeB, and could therefore be compensated in the
following subframe. Such compensation is not implemented for the evaluations performed here.
For some messages, where immediate delivery is essential, robust encoding can be used to reduce
the probability of decode errors. The RA mechanism can provide this information to the module
which performs the encoding. The respective data can then be encoded first, so that it is not
impacted by the skipping mechanism.

Summarizing, interaction with RA cannot be avoided completely. The described measures can
be implemented to reduce possible negative impacts.

5.6.5.4 Robustness

As last requirement, robustness of the proposed system was requested in section 5.6.1. The
main mechanism responsible for robustness of the proposed system is the fallback mechanism
defined in section 5.6.3.3. This allows the evaluated building blocks of the system to cope with
arbitrary low and / or sudden resource limits. Although the system can cope with such situations,
efficient operation cannot be expected. This property is beneficial to tolerate hardware failures.
In addition, it allows for operation in dynamic cloud environments, where an exact prediction of
the resources is often difficult.

In addition to external influences, the fallback mechanism also serves to make the system robust
w. r. t. false predictions of the processing effort. In case the model to estimate the compute effort
for the MIMO modes is not exact, that results in undesired fluctuations of the resulting processing
time. The fallback mechanism allows the system to handle this by skipping the encoding for
some UEs. Thus, the inexact model impairs the efficiency of the system, but does not endanger
its operation. A detailed quantitative evaluation of this property is out of scope of this thesis.
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The previous chapter presented a system which uses a combination of prediction and heuristics to
cope with compute resource limitations in a BBU. Several aspects of the proposed system were
already discussed in section 5.6.5. This chapter complements that with a thorough evaluation of
the achieved performance.

The evaluation is split into two parts, which are based on two different system models. The first
part compares the performance of the proposed system to that of an optimal solution. Thereby,
the consequences of the simplifications performed during the design of the proposed system
can be evaluated. However, this implicates that a simple system model is used, so that an
all-encompassing optimization problem can be formulated and solved.

The second part amends the first one by an evaluation in a more realistic system model. It focuses
on the effects of dynamic network load on the performance of the proposed system. These
dynamic effects are expected to impact especially the prediction mechanism, which relies on the
compute load of previous subframes to predict the efficiency threshold.

6.1 Evaluation Compared to Optimal Allocation

The objective of this section is to evaluate the performance achieved by the proposed system in a
simple scenario. It is expected that it achieves lower network performance than the optimization
problems used as basis for its design, because it is based on simplifications and heuristics. The
extent of the impact of these simplifications is to be studied here.

In this section, the proposed system and a simple baseline heuristic are evaluated by simulation.
As further references, multiple variants of an optimization problem are solved. These variants do
successively limit the flexibility of the optimizer, and thereby allow to identify which simplification
contributes to the lower performance achieved by the proposed system.

This section is structured as follows. First, section 6.1.1 describes how the evaluation methodology
applied here differs from that used in the previous evaluations. Section 6.1.2 defines the
optimization models used as reference and the baseline heuristic. The simulation and optimization
studies are subsequently presented in section 6.1.3. Finally, the evaluations are concluded in
section 6.1.4.
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6.1.1 Evaluation Methodology

The main objective for the design of the evaluation methodology for these studies is that it shall
be possible to compare the proposed system, evaluated by simulations, to optimal solutions for
RA and MIMO mode selection, which are derived from optimization problems. To be suitable
for optimization, the smaller scenario with seven sites and 21 sector cells, as introduced in
section 5.3.2, is used. For the same reason, the full buffer traffic model is applied here.

The evaluation method applied here is similar to that described in section 5.5.1. Thus, only
the differences are discussed here. To limit the scope of the evaluations, the system has been
configured with 210 UEs, only. For the same reason, only the PF fairness scheme is studied.

The proposed system assumes the successive processing of subframes. Therefore, the approach of
modeling a snapshot in time, as used for the optimization models in section 5.5, is not applicable
here. Instead, for the evaluation in this section a limited period of simulated time of 100 ms
is considered. This allows to formulate an all-encompassing optimization problem and also to
perform a step by step simulation of the temporal behavior. To achieve a more realistic RA, the
available system bandwidth of 10 MHz is split into 50 PRBs, which are assigned exclusively to
the individual UEs. The correlation of the radio channels w. r. t. time and frequency is modeled
according to the SCM as described in section 5.3.4.

To be able to solve the optimization problem with reasonable compute effort and memory, IfCo
has been disabled for this evaluation. Thus, each BS is allowed to transmit on each PRB without
considering the interference caused in neighbor cells. From the applied full-buffer traffic model
results that each BS uses all PRBs for transmission. In case the proposed system cancels the
resources allocated to a UE, the simulation model assumes that these PRBs still cause full
interference to neighboring cells, i. e. it is assumed that useless data symbols are transmitted.
This models the fact that neighboring BSs cannot adapt the used MCSs to make use of unused
PRBs. Together with the assumption that the precoding actually used by interfering BSs does not
influence the received interference (see section 5.3.5), this results in static interference.

For each parametrization, 20 independent UE drops are evaluated with a duration of 100 ms each.
The simulation requires a warm-up phase, so that transient effects resulting from start conditions
of the simulation do not influence the simulation results. Therefore, 10 s of simulated time have
been prepended to each drop.1 During this warm-up phase, the simulation operates but statistics
are not updated. To obtain a stationary system state, a radio channel trace with the duration
of 100 ms is read repeatedly. In contrast to the simulation, the studied optimization problems
encompass the whole evaluated time of 100 ms and do not require a warm-up phase.

For RA in the simulations, using the PF heuristic as introduced in equations (3.11) and (3.12) in
section 3.4.2 is a natural choice. This heuristic is not applicable for the optimization, because
there RA is part of the optimization problem. We are here interested in the differences between
the results of simulation and optimization. With different RA, it would be difficult to reason
which effects are caused by the proposed system and which by different RA implementations.
Therefore, the RA used for the simulations in this section is derived from the solution of an
optimization problem. This is defined in the section 6.1.2.1.

1As large-scale channel effects and data traffic are constant, 10 s has shown to be sufficient to achieve a stationary
state of the system.



6.1 Evaluation Compared to Optimal Allocation 151

As before, the evaluated metrics are the average UE rate and the 5th percentile of the UE rates.
The network performance achieved by the proposed system is evaluated for different compute
resource limits. It is compared to solutions to optimization problems, which serve as upper
bound of the performance. In addition, it is contrasted with the performance achieved by a simple
baseline heuristic. The reference configurations are presented in detail in section 6.1.2.

In addition to the absolute rates achieved with the different configurations, the relative differences
of the rates compared to a reference configuration are evaluated. This allows to zoom into the
range where the performance differs between the configurations. This evaluation is based on
the fact that all configurations operate on the same problems, i. e. for each drop number, the
positions and radio channels of the UEs are the same in all configurations. To calculate the
relative differences, first, for each UE the achieved rate is divided by that achieved in the reference
configuration, and 1 is subtracted from the quotient. Subsequently, the average of the resulting
values is calculated over all UEs in all drops. This provides the evaluated metric.

The confidence intervals are calculated analogously to the method used for other metrics. Thereto,
the average over the relative differences of all UEs in a drop is calculated. Following the central
limit theorem, this drop-averages are assumed to be normally distributed. The t-distribution is
then used to derive the confidence intervals from the drop-averages. The resulting intervals are
smaller than those calculated for the average absolute rate, because variations caused by the radio
channel are canceled out by comparing the same UE in different configurations.

The objective of these evaluations is to compare optimization and simulation. Thus, special
care has been taken to achieve comparability in most components. For both realizations, the
calculation of the small-scale effects of the radio channel and part of the PHY layer model are
performed in MATLAB. A single Java program, which is based on the IKR SimLib [IKRSimLib]
and IKR RadioLib, loads this data. It also loads the RA from a file which is generated by a
preliminary optimization run. Repeatable streams of random numbers are used to ensure that the
placement of UEs and other models give the same results for simulation and optimization. The
Java program then either runs the simulator or defines and configures the optimization problem.
The latter is solved by the IBM ILOG CPLEX Optimizer.

There is a single aspect which is not aligned between simulation and optimization: The simulation
model allows each UE to be served with one or two codewords per subframe (depending on the
number of spatial layers), where each of these codewords is transmitted with a single MCS. This
constraint is not kept for the optimization. To be able to solve the optimization problems with
feasible resources, the selection of the MCSs cannot be included in the problem formulations.
Instead, separate MCSs are precalculated for each PRB. The optimization problems therefore
allow that a single UE is served on multiple PRBs with different MCSs in one subframe.

The remaining aspects of the evaluation methodology are the same as introduced in section 5.5.1.
This comprises the parametrization of the optimization solver.

6.1.2 Reference Configurations

For the studies in this section, four optimization problems are evaluated as reference. These
problems encompass the whole evaluated time and frequency range. The first problem, which
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is defined in section 6.1.2.1, allows the optimizer to flexibly allocate time-frequency resources
and select MIMO modes.2 A variant of this problem is also used to decide the allocation of
time-frequency resources to UEs for the remaining problems and for the simulation studies.

Compared to the first problem, the proposed system has several limitations by design. The second
problem adapts only MIMO modes to the available compute resources. It serves to evaluate the
impact of this limitation on the network performance. This problem is defined in section 6.1.2.2.
Two other optimization problems are defined in section 6.1.2.3. These model the fact that the
proposed system does not allocate MIMO modes optimally. Instead, multiple simplifications
were made to design a simple distributed heuristic.

Finally, a simple baseline heuristic is introduced in section 6.1.2.4. This shows the performance
achievable without MIMO mode adaptation.

6.1.2.1 Optimal Resource Allocation and Link Adaptation

The applied resource model is similar to that defined in section 5.4.3.1. That defines power
allocation resources to model the fact that neighboring BSs transmit with either zero or full power,
which influences the received interference. These are here replaced by channel resources, which
resemble different PRBs with individual channel characteristics. To formulate a more realistic
RA, PRBs are considered to be indivisible, and each PRB can be assigned to a single UE, only.
Consequently, the sizes of the channel resources are fixed. In addition, each scheduling resource
has either the size zero or has the same size as the corresponding channel resource, i. e. one PRB.

As before, different MIMO modes can be used to serve the UEs. However, to be more realistic
and to apply the same constraints in the simulation and the optimization, in each subframe each
UE can only be served with a single MIMO mode. Therefore, sizes of the MIMO resources are
also either zero or one PRB, and an additional constraint prohibits the combination of different
modes for one UE and subframe. These differences suggest to use a formulation based on binary
flag variables instead of continuous sizes.

Assume that the set of all channel resources Rc resembles a two-dimensional structure of PRBs.
It is defined as

Rc =
{
=c
B, 5 : B ∈ S , 5 ∈ F

}
, (6.1)

where S is the set of subframes and F (with |F | = #PRB) the set of all PRB positions in
frequency dimension. The channel resources of a single subframe B can be grouped as

Rc
B =

{
=c
B, 5
∈ Rc : B = B

}
∀B ∈ S . (6.2)

The allocation of scheduling resources to UEs and the selection of MIMO modes is represented
by binary variables 0D,=c,< with D ∈ U , =c ∈ Rc, and < ∈ M. The value of 0D,=c,< is one if
the channel resource =c is used to serve UE D with MIMO mode < and zero otherwise. An
additional set of binary variables 0̃D,B,< (with D ∈ U , B ∈ S , and < ∈M) is defined to prohibit

2In contrast to the problems defined in section 5.4, IfCo is not considered here.
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the combination of different MIMO modes. A variable 0̃D,B,< is one if UE D uses MIMO mode
< in subframe B and zero otherwise.

For each UE, channel resource, and MIMO mode the MCS delivering maximum throughput can
be selected.3 Based on this, the resulting data capacities and processing efforts can be calculated
in advance. These are here denoted as AD,=c,< and ?D,=c,<, respectively. The total amount of data
received by an individual UE D is then

AD =
∑
=c∈Rc

∑
<∈M

0D,=c,<AD,=c,< . (6.3)

Based on these definitions, the basic problem is defined as follows.

max
0D,=c ,<,

D∈U ,=c∈Rc,<∈M,
0̃D,B,<,

D∈U ,B∈S ,<∈M

∑
D∈U

Ucap(AD) (6.4a)

s. t.
∑
D∈U

∑
=c∈Rc

B

∑
<∈M

0D,=c,<?D,=c,< ≤ ?abs
max ∀B∈S (6.4b)∑

D∈U1

∑
<∈M

0D,=c,< =1 ∀1 ∈B,=c ∈Rc (6.4c)∑
<∈M

0̃D,B,< =1 ∀D ∈U ,B∈S (6.4d)

0D,=c,< ≤ 0̃D,B,< ∀D ∈U ,B∈S ,=c ∈Rc
B (6.4e)

0D,=c,< ∈ {0,1} ∀D ∈U ,=c ∈Rc,< ∈M (6.4f )

0̃D,B,< ∈ {0,1} ∀D ∈U ,B∈S ,< ∈M (6.4g)

In constraint (6.4b), ?abs
max denotes the absolute compute resource limit per subframe. It is defined

as ?abs
max = %

peak
|B |#PRB

?max.

This problem simultaneously adapts resource allocation and MIMO mode selection, so that the
sum utility is maximized under limited time-frequency and compute resources. Here, again,
the PF utility function as defined in equation (5.52) is applied. Constraint (6.4b) limits the total
processing effort for each subframe. Equation (6.4c) ensures orthogonality of resource allocation
within each BS. Constraints (6.4d) and (6.4e) prohibit the usage of multiple MIMO modes to
serve a single UE at one subframe. Finally, the binarity of the variables is enforced by equations
(6.4f) and (6.4g). In the evaluations, this problem is denoted as opt. RA and LA.

A derived form of this problem is also used for resource allocation in the simulation runs.
Thereto, unlimited compute resources are assumed, i. e. ?abs

max = ∞. This effectively removes
constraint (6.4b). The solution to this modified problem resembles the optimal resource

3Note that this is different to the simulation, where a single MCS is used for all PRBs allocated to a UE in a
subframe. However, capturing this constraint would have made the formulation of the optimization problem even
more complex.
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allocation without considering limited compute resources. For the simulation studies, only the
allocation of resources to UEs is extracted from the optimal solution, while the MIMO modes
are ignored. PRB allocation flags can be derived from the solution. These are here defined as
0

(∞)
D,=c =

∑
<∈M 0̂D,=c,< ∀D ∈ U , =c ∈ Rc, where 0(∞)

D,=c ∈ {0, 1} and 0̂D,=c,< denotes the value of the
respective binary variable in the optimal solution to problem (6.4). These PRB allocation flags
are taken as input for the simulation.

6.1.2.2 Optimal Link Adaptation

The problem (6.4) allows the optimizer to simultaneously adapt RA and MIMO mode selection.
In contrast, the proposed system only adapts MIMO modes. To assess the impact of this limitation
on the network performance, the following problem opt. LA is defined.4

Assume that problem (6.4) has been solved for ?abs
max = ∞. Let 0

(∞)
D,=c ∀D ∈ U , =c ∈ Rc

denote the allocation of channel resources to UEs in the optimal solution. Then, modify
problem (6.4) by enforcing the same resource allocation as in that solution. Thereto, a constraint
0

(∞)
D,=c =

∑
<∈M 0D,=c,< ∀D ∈ U , =c ∈ Rc can be added. From the definition and interrelationship

of the variables in problem (6.4) follows that this is equivalent to 0D,=c,< = 0
(∞)
D,=c 0̃D,B,< ∀D ∈

U , B ∈ S , =c ∈ Rc
B. This allows to omit the resource allocation variables from the problem.

Equation (6.3) can thus be reformulated as

AD =
∑
B∈S

∑
<∈M

0̃D,B,<

∑
=c∈Rc

B

0
(∞)
D,=c AD,=c,< . (6.5)

With these definitions, the problem opt. LA is just concerned with selecting MIMO modes per
UE and subframe. It is defined as

max
0̃D,B,<,

D∈U ,B∈S ,<∈M

∑
D∈U

Ucap(AD) (6.6a)

s. t.
∑
D∈U

∑
<∈M

0̃D,B,<

∑
=c∈Rc

B

0
(∞)
D,=c ?D,=c,< ≤ ?abs

max ∀B ∈ S (6.6b)

constraints (6.4d) and (6.4g).

Here, the compute capacity constraint (6.6b) is equivalent to the constraint (6.4b), but reformulated
to remove the resource allocation variables.

6.1.2.3 Optimal Efficiency Threshold

The previously defined problem opt. LA just adapts MIMO modes to cope with limited processing
capacity. However, to do so it can freely combine different MIMO modes for different UEs. In
contrast, the proposed system is bound to define a single efficiency threshold value, which then

4Note that this is similar to the evaluations in section 5.5.4, however a different scenario is applied here and the
results will be compared to the performance achieved by the proposed system.
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determines which UE uses which MIMO mode. This is equivalent to using the greedy algorithm
to solve the knapsack problem as described in section 5.6.2.2. In addition, the proposed prediction
mechanism assumes that the same value of the threshold is valid for consecutive subframes. A
third optimization problem is defined in this section, which serves to evaluate the impact of these
two limitations. Two variants model the case where the threshold is adapted individually per
subframe and the case where it is constant. These variants are denoted as opt. 4min (per subframe)
and opt. 4min (constant), respectively. The threshold values are then used to derive the MIMO
modes for all subframes. Both use the allocation of channel resources as optimized for unlimited
compute resources.

The proposed system skips the encoding of data for some UEs whenever too complex MIMO
modes are selected. It is acceptable that the optimal value of the threshold causes overload in
some subframes, because that can be required to achieve high utilization of compute resources.
However, if the solver were allowed to decide which UEs do not get served, it would have an
additional degree of freedom that is not available to the proposed system. Therefore, the skipping
of UEs is here not modeled directly in the optimization problem. Instead, the optimizer is allowed
to proportionally scale compute effort and data capacity of all UEs served in a subframe. This
models the fact that the skipping hits all UEs with the same probability.

The variant opt. 4min (per subframe) is defined as follows. Assume that problem (6.4) has been
solved for ?abs

max = ∞. As before, let 0(∞)
D,=c ∀D ∈ U , =c ∈ Rc denote the allocation of channel

resources to UEs in the optimal solution. Based on that resource allocation, let dominated and
LP-dominated modes be determined as described in section 5.6.2.2. Let M̃D,B denote the modes
of UE D which are neither dominated nor LP-dominated in subframe B. Further, assume that
the modes of each set are sorted by utility and the corresponding indices assigned. Define
the efficiency 4D,B,< of all except the least complex mode in each set to be calculated as in
equation (5.47).

Let 4opt
min,B be the variable denoting the optimal efficiency threshold in subframe B (B ∈ S). This is

used to select the MIMO modes, which are variables in the previous problems. For each useful
mode < define an interval (4(-)

D,B,<, 4
(+)
D,B,<] of efficiency threshold values where it is active. The

least complex mode is active whenever the efficiency threshold is arbitrarily large. However, it
is not used any more when the threshold is sufficiently small to enable the next complex mode.
Thus, for the least complex mode 4

(-)
D,B,<0 = 4D,B,<1 and 4

(+)
D,B,<0 = ∞. Similarly, the other modes

except the most complex have their interval bounded by their own efficiency and that of the
respective next complex mode in the set. This results in 4

(-)
D,B,<8

= 4D,B,<8+1 and 4
(+)
D,B,<8

= 4D,B,<8
.

Finally, the most complex mode is active whenever the threshold is lower than its efficiency.
Consequently, 4(-)

D,B,< = −∞ and 4
(+)
D,B,< = 4D,B,<.

Furthermore, let 0̆B with B ∈ S denote the set of scaling variables. This scales the UE rates in
each subframe, so equation (6.5) is modified to

AD =
∑
B∈S

0̆B

∑
<∈M

0̃D,B,<

∑
=c∈Rc

B

0
(∞)
D,=c AD,=c,< . (6.7)

This allows to define opt. 4min (per subframe) as follows.



156 Chapter 6. Performance Evaluation

max
4

opt
min,B ,B∈S ,
0̆B ,B∈S

∑
D∈U

Ucap(AD) (6.8a)

s. t. 0̃D,B,<=

{
1 if 4opt

min,B>4
(-)
D,B,<∧4opt

min,B≤4
(+)
D,B,<

0 otherwise
∀D∈U ,B∈S ,<∈M̃D,B (6.8b)

0̃D,B,<=0 ∀D∈U ,B∈S ,<∈M\M̃D,B (6.8c)

0̆B

∑
D∈U

∑
<∈M

0̃D,B,<

∑
=c∈Rc

B

0
(∞)
D,=c ?D,=c,<≤ ?abs

max ∀B∈S (6.8d)

0≤ 0̆B≤1 ∀B∈S (6.8e)

Here, the objective (6.8a) is based on the rate calculation as defined in equation (6.7). Con-
straint (6.8b) enforces the MIMO modes to be selected following the definition of the efficiency
intervals. Equation (6.8c) ensures that dominated and LP-dominated modes are not used.
Constraint (6.8d) limits the processing effort per subframe and thereby considers the scaling
variables. Finally, equation (6.8e) confines the range of the scaling variables.

The second variant opt. 4min (constant) constrains the threshold to be the same in all subframes.
Thereto, the variable 4

opt
min is introduced. The problem is defined as follows.

max
4

opt
min

0̆B ,B∈S

∑
D∈U

Ucap(AD) (6.9a)

s. t. 4
opt
min,B = 4

opt
min ∀B ∈ S (6.9b)

and equations (6.8b), (6.8c), (6.8d), and (6.8e)

6.1.2.4 Baseline Heuristic

In addition to the optimization problems used as reference, the following studies also evaluate the
performance of a simple baseline heuristic, denoted as baseline. The objective of this heuristic is
to show the performance achievable without adapting MIMO modes. To still be able to cope
with limited processing resources, it operates as follows.

IfCo, RA, and LA are performed without considering the available resources. Thus, MIMO
modes are selected to maximize the spectral efficiency for the respective set of allocated PRBs.
Subsequently, system starts to encode the data for all UEs with allocated PRBs in random order.
When overload occurs, i. e. the time provided for encoding is over before data for all UEs could be
encoded, the remaining UEs are skipped. Skipped UEs receive no data in the current subframe.

This heuristic is equivalent to the fallback mechanism of the proposed system, which was defined
in section 5.6.3.3. Compared to the schematic picture of the proposed system in figure 5.19, it
contains only the modification to step D, but neither step H nor the modification to step C.

Note that the decision to skip the encoding for a UE comes only when the data for the remaining
UEs has already been encoded. Therefore, in reality this cannot be taken into account for the
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MCS selection in neighboring cells. However, if the fraction of skipped encodings becomes
significant, the lower average interference could allow to decode less robustly encoded data. The
efficiency then depends on the measurement of CQI and on the accepted error probability. This
cannot be directly integrated into the simulation model, because that assumes ideal CQI.

There are two approaches to simplify this effect on the interference. First, it could be assumed
that the interference level is not reduced by skipped resources. This is equivalent to a system that
transmits random data on the respective symbols. Second, it could be assumed that the information
about skipped encodings can be taken into account for the MCS selection in neighboring cells.
That is not possible in reality, because the data to be transmitted is already encoded when the
skipped encodings are known. It can, however, be implemented in the simulation model by
iteratively selecting transmissions to be skipped and re-encoding the data.5

The first approach is the same which is also used to evaluate the proposed system. However, it
under-estimates the achievable network performance. Therefore, the second approach is used for
the evaluation of the baseline heuristic. Consequently, the simulated performance of the baseline
heuristic is not realizable in reality.

6.1.3 Studies

The previous sections defined the evaluation methodology and the reference configurations to
be applied for the studies. This section presents the evaluation results. Its central objective is
to evaluate the impact of the simplifications made in the design of the proposed system on the
network performance. The proposed system is configured with ?off = 0.25 % and 4step = 0.1.
The tuning studies presented in appendix C have shown this to be efficient configurations.

6.1.3.1 General Performance

Figures 6.1a and 6.1b show plots with the average UE rate and the 5th percentile of the UE
rate on the y-axis, respectively. As before, the available compute resources are plotted on the
x-axis. The curves represent the reference optimization problems opt. RA and LA and opt. LA,
the proposed system, and the baseline heuristic. They follow the general shape of those presented
in section 5.5.

For compute resources above 70 %, network performance is not impacted. In this range, no
significant difference between the compared problems and heuristics is expected. Indeed, the
optimized solutions show the same network performance. Compared to that, the simulations
achieve 1.2 % reduced average UE rate (1.8 % for 5th percentile of the UE rates). This can be
explained as the penalty for using a single MCS per UE and subframe.6

For lower compute resource limits, a larger difference of the compared systems is expected,
because there the different approaches to cope with limited processing capacity come into play.

5Adapting the MCSs to reduced interference can result in more complex encoding. Thus, it can be necessary to
skip more resource allocations. This process is repeated until the compute capacity is not exceeded any more.

6As stated in section 6.1.1, this is the only difference between the optimization problems and the simulations for
the configuration with unlimited compute resources.
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Figure 6.1: Evaluation of the UE rate

Here, the average rates achieved by the proposed system and by the two optimization problems
do not differ significantly. At the same time, the baseline heuristic suffers from an almost linear
decrease of the average rate as soon as compute resources fall below 70 %.

The radio network requires between 70 % and 75 % of the theoretical peak compute resources to
operate without impacting the network performance. With only half of this, i. e., about 35 %, the
average rate of the proposed system is still 86 % of the rate achieved in the unlimited case. For the
same compute resource limit, the baseline heuristic maintains only 56 % of the original average
rate. Any other approach which is restricted to adapt MIMO modes (modeled by opt. LA) cannot
achieve more than 87 %. When also incorporating changes to RA (modeled by opt. RA and LA),
not more than 90 % are possible.

The 5th percentile plotted in figure 6.1b behaves similarly as the average rates. Especially,
the proposed system does not significantly impact cell border UEs to achieve better average
performance. Comparing the average and the percentile achieved by the baseline configuration,
the benefit of reduced interference for cell border UEs becomes visible.

The proposed system skips encoding of data in case the predicted threshold results in overload.
For 15 % to 65 % compute resources, about 0.5 % to 0.8 % of the allocated resources get skipped
(not shown in the plots). This value is much larger in case even the simplest MIMO modes
are too complex to meet the compute resource limit. Thus, in the simulations performed with
?max = 5 %, about 42 % of the allocated resources are skipped.

6.1.3.2 Performance Drop Compared to Optimal Solution

To better illustrate the causes for the performance drop of the proposed system, the average relative
difference of the UE rates is plotted in figure 6.2. Thereto, for each UE, the relative drop of the
rate compared to the rate achieved by opt. RA and LA is calculated. For each parametrization,
the plot shows the average over the relative differences of all UEs.7

7The method used to calculate confidence intervals for these values is described in section 6.1.1.
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Figure 6.2: Drop of average UE rate

In addition to the configurations from figure 6.1, the two additional reference configurations
opt. 4min (per subframe) and opt. 4min (constant) are shown here. Also, two different parametriza-
tions of the proposed system are shown. The solid line, marked as proposed, represents the
configuration ?off = 0.25 %. The dotted line represents ?off = 1 %.

Note that it is difficult to cope with compute resource limits of 5 % and 10 % by adapting MIMO
modes alone. Thus, for these parametrizations the skipping and scaling mechanisms of the
compared configurations have significant influence on the network performance. For example,
the reference configuration opt. RA and LA here utilizes only 55 % and 94 % of the available
PRBs. With 5 % compute resources, the optimization problem opt. LA becomes infeasible, so
the respective point is missing from the chart. At the same parametrization, the proposed system
skips encoding of 42 % of the allocated PRBs. The remainder of the discussion focuses on higher
compute resource limits, which are assumed to be more common operating points of the system.

The following paragraphs follow the structure of the discussion in section 5.6.5.1. That lists four
causes for performance drops. First, the proposed system considers each subframe separately,
which is suboptimal compared to a joint optimization over all consecutive subframes. The
following comparisons show that the other three causes fully explain the performance drop of the
proposed system. Thus, separate evaluation of each subframe has no significant impact on the
performance.

The second cause for performance drops is the restriction to adapting only MIMO modes. By
also modifying RA, the problem opt. RA and LA balances compute resource utilization between
subframes. It also avoids allocations of PRBs which can only be used efficiently with complex
MIMO modes. Figure 6.2 shows that, compared to opt. RA and LA, the performance of opt. LA
drops by up to 7.7 %. The impact of this simplification increases for more stringent compute
resource limits.

The third reason for reduced performance is that the proposed system does not select MIMO
modes optimally. Instead, it uses a greedy heuristic to solve the MIMO mode selection problem.
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This is reflected by the reference configuration opt. 4min (per subframe). Compared to opt. LA,
this further reduces the performance for low compute resource limits. There, it entails an
additional performance penalty of 2.5 %. This optimization problem also defines a scaling
variable per subframe. However, that is not used by the optimizer, i. e., 0̆B = 0, except for
?max < 10 %. There, the compute resource limit cannot be met otherwise.

The fourth cause for performance impairments is the prediction of the threshold 4min. Sec-
tion 5.6.5.1 further subdivides this into three different effects. The most influential of these are
here fluctuations in the radio channel and actions of the RA, which cause variations of the compute
load even if the load of the network is constant.8 The proposed system is incapable of anticipating
these variations. This limitation is evaluated by the reference configuration opt. 4min (constant).
It models the assumption that a single threshold is applicable for the evaluated time. When com-
paring opt. 4min (constant) to opt. 4min (per subframe), the largest difference occurs at medium
compute resource limits. At 40 % compute resources it reaches 1.3 %.

In the optimal solutions to this problem, the average value of the scaling variables 0̆B is equal to
one for compute resources of 50 % and higher (not shown in the plots). The value falls below
0.97 only for 5 % compute resources, where operation of the system cannot be realized with
the simplest MIMO modes alone. This implies that a parametrization which avoids skipping is
beneficial for most resource limits.

Compared to the optimization problems, the average rate achieved by the proposed system is
reduced by 1.2 % for practically unlimited compute resources. As stated before, this can be
explained by the different modeling of the MCSs in the simulator. This difference diminishes
when the compute resource limit is lowered. For compute resources between 25 % and 40 %,
the performance achieved by the proposed system is almost the same as that achieved by
opt. 4min (constant).

As also shown in appendix C, the offset parameter ?off can be used to tune the performance for
different compute resource limits. The parametrization ?off = 1 % (the dotted line) achieves
higher performance for ?max > 45 %, but suffers a significant performance drop for low
compute resource limits. This aligns with the optimal values of the scaling variables 0̆B in the
problem opt. 4min (constant). A more elaborate prediction mechanism can potentially achieve
the performance of the respective better parametrization in both ranges. However, exceeding the
performance of opt. 4min (constant) is not possible without anticipating the fluctuations of the
radio channel and the actions of the RA algorithm.

When comparing the proposed system directly to opt. RA and LA, the relative drop reaches 11 %
at 5 % compute resources. However, the performance of the proposed system is better for higher
compute resource limits. As long as more than half of the compute resources required for
non-impaired operation are available (i. e. more than 35 %), the performance of the proposed
system drops not by more than 5 % compared to the optimum. Thus, it allows to efficiently
handle compute resource overload as long as that is not too extreme. For lower compute resource
limits, the bigger part of the performance drop is caused by the restriction to only adapt MIMO
modes. To avoid this drop, RA and LA have to be adapted simultaneously.

8The remaining two effects are that the control loop requires frequent overload to react and variations caused by
dynamic load of the network. The former can almost be avoided by configuring a sufficiently large value for the
offset ?off. The latter is not modeled in this evaluation.
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6.1.4 Summary and Conclusion

The evaluations presented in this section compared the proposed system to a simple baseline
heuristic and to different variants of an optimization problem. To facilitate this comparison, a
simplifying full-buffer traffic model was used.

The results discussed in section 6.1.3.1 indicated that in this scenario the performance of the
proposed system is close to the global optimum. By adapting MIMO modes, it can maintain
high network performance when the available compute resources get limited. With only 50 %
compute resources, it still achieves more than 95 % of the average data rate. Under the same
conditions, the baseline heuristic suffers from a linear degradation of the network performance.
At some compute resource limits the baseline heuristic cannot maintain half of the average rate
achieved by the proposed system.

Section 6.1.3.2 zoomed into the differences between the optimal solution and the outcome of the
proposed heuristic. It compared the results of different variants of the optimization problem,
which successively limit the flexibility of the optimizer to approach the proposed system. It has
shown that the performance is close to the optimum in case the compute resources are marginally
restricted. The difference increases as the compute resource limit becomes tighter. The bigger
part of the performance drop is induced with the limitation to adapt only MIMO modes.

The proposed system performs well in the applied evaluation scenario. Especially in case the
compute resources are only slightly overbooked, the network performance is barely impacted.

It was stated before that adaptation of the RA mechanism is avoided, because that would cause
additional complexity. Given that restriction, another heuristic cannot perform significantly better
than the proposed one. Lifting this restriction could allow to increase the average rate by 5 % to
10 % for situations with stringent compute resource limits. It is, however, assumed that this is not
worth the effort of modifying the RA mechanism.

6.2 Evaluation with Dynamic Load

The evaluations in the previous section have shown that the proposed system allows an LTE
BBU pool to cope with limited processing resources without significantly impacting network
performance. However, those evaluations were performed with a simplifying full-buffer traffic
model to allow comparison with an optimization problem. That model implies that the system is
fully loaded and that there are only little variations in the requested compute capacity.

The proposed system assumes that the efficiency threshold can be predicted based on the compute
effort which occurred in previous subframes. It therefore requires a correlation of compute effort
of consecutive subframes. The higher the variations of the compute load is, the more difficult the
prediction of the required efficiency becomes. The main objective of this evaluation is to show
whether a simple prediction mechanism such as the proposed one is applicable for a system with
realistic dynamic behavior.

Furthermore, the full-buffer traffic model used for the evaluations in section 6.1 causes a constantly
high load of the radio network. In reality, the load is lower and more variable. While this makes



162 Chapter 6. Performance Evaluation

prediction of the compute load more difficult, it also reduces the average compute requirements.
In addition, the fluctuating load suggests that it is possible to balance the compute load over
consecutive subframes. Evaluating the effect of this on the network performance achieved with
the proposed system is a second objective of the following studies.

This section is structured as follows. First, section 6.2.1 discusses the effects which can cause
variations of the compute load. Subsequently, section 6.2.2 describes the applied evaluation
methodology, which includes the system model and the reference configurations. Initial calibration
of the model is performed in section 6.2.3 based on pilot runs. Section 6.2.4 presents the evaluation
results, and section 6.2.5 concludes with a discussion of the results.

6.2.1 Effects Causing Variations of the Compute Load

It is important for the model used in this section to capture all relevant effects which cause
variations in the compute effort. The external influencing factors for the actions of a mobile
communication system are the data traffic, the channel, and the system configuration. Changing
system configuration, e. g. by operating personnel or by SON mechanisms, is not considered here.
The expected effects from data traffic and channel are discussed in the following paragraphs.

The data traffic also has a significant influence on the accruing compute effort. For example, users
starting a new transmission can have significantly different channel conditions than other users. In
addition, a new request can cause the system to transmit on previously free resources. A majority
of the data transmissions can be assumed to be small.9 Thus, in a significantly loaded system
there is a large number of small transmissions. This results in many newly starting transmissions
and many transmissions being completed per time interval. The effects from dynamic data traffic
are considered as relevant and are therefore included in the evaluations in this section.

Channel variations are caused by mobility of the users and changes in the environment (e. g.
movement of shadowing or reflecting surfaces). Following the introduction in section 5.3.4,
these effects can be separated into macro-scale attenuation and small-scale fading effects. The
small-scale fading effects were already regarded in the evaluations in section 6.1 and are also
included in the evaluations in this section. In contrast, slow fading effects do not cause significant
changes between consecutive subframes.10 They are therefore not modeled here.

The channel also determines the serving cell of a UE. When a UE moves and the channel changes
as result thereof, it can be handed over to a different cell. This instantaneously changes the load
in the two involved cells. However, handover events cause the same kind of load variations as
begin and end of data transmissions, and those data traffic events occur more frequently. Effects
from handover are therefore omitted here.

In urban scenarios where cells are placed densely, interference also significantly influences the
channel capacity. As a consequence of data traffic changes and RA decisions in neighboring cells,

9For example, in the data traffic model used here, 29 % of the data traffic objects are smaller than 10 KiB, and
58 % are smaller than 100 KiB. See also figure 5.4.

10According to [3GPP 25.913], LTE is designed to support velocities up to 500 km/h, while high performance
should be maintained for up to 120 km/h. This corresponds to a movement of 14 cm and 3 cm per subframe,
respectively. For comparison, the correlation distance for shadow fading is typically modeled to be 50 m (see also
section 5.3.4).
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the set of applicable MIMO modes can change quickly. This determines the accruing compute
effort. Hence, the effect from interference is included in these evaluations.

Summarizing, the most relevant effects which cause variations in the compute load are assumed
to be the data traffic and the interference. In addition, the RA algorithm influences compute load
and interference. Consequently, these are modeled for the evaluations in this section.

6.2.2 Evaluation Methodology

The evaluation is performed by simulation. This is similar to the previous evaluations, but
uses a more complex system model. Its parametrization is described in section 6.2.2.1. The
different model also implicates adaptation of the evaluated metrics, which are introduced by
section 6.2.2.2. An all-encompassing optimization problem cannot be used as reference. Instead,
a smaller optimization problem is embedded into the simulation. This is defined in section 6.2.2.3.
As the applied RA algorithm influences the compute load and significantly contributes to the
performance of the system, it has to be modeled realistically. Section 6.2.2.4 describes the variant
of the PF heuristic, which is used here. The implementation of the simulation model and the
procedure of the simulation are illustrated in sections 6.2.2.5 and 6.2.2.6, respectively.

6.2.2.1 Parametrization of the System Model

The system model was defined in section 5.3. Here, the parametrization applied for the evaluations
in this section is defined. These evaluations use the BS layout with 19 sites and 57 sector cells,
which is compliant with 3GPP specifications [3GPP 36.814]. This also implies the application of
the matching configuration of the wrap-around geometry model.

The main difference to the previous evaluations is the dynamic data traffic model, which was
defined in section 5.3.6. This interacts with the placement of UEs as also described there. The
only parameter of the data traffic model is the IAT of the requests. This is a parameter of the
following studies. It is normalized to 100 % system load in section 6.2.3.3.

The radio channel and the physical layer are modeled as in the previous evaluations. However, the
preprocessed channel traces are used differently here. There are 1000 trace files with a duration
of 1 s each. Whenever a UE starts a new transmission, it is assigned a random trace and a random
position in that trace. As the simulation continues, consecutive samples are read from the trace.
When the trace ends, it is wrapped, i. e. the next sample is the first sample from the trace.

The remaining components of the system model are the same as in the previous section.

6.2.2.2 Evaluated Metrics

With a full-buffer traffic model, the average UE rate is proportional to the average cell rate and
to the system rate. However, this simple relationship does not hold with a dynamic data traffic
model. Therefore, the metrics are here separated into cell and user metrics.
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The average system or cell rate is not as meaningful in this dynamic traffic evaluations as it is in
the previous evaluations. If the system operates under partial load, the cell rate is determined by
the offered load. In those situations, delayed data transmissions do not influence the cell rate,
but impact experienced network performance of the users. The cell rate is therefore ignorant of
performance degradation in these configurations. However, whenever the cell rate falls below the
average offered load, this means that the system is incapable of serving all requests. The average
cell rate is therefore included in the evaluated metrics. It is complemented with the measured
fraction of AC drops.11

In the previous evaluations, the average UE rate is used as main metric for network performance.12
The average UE rate is simple to derive in a full-buffer model. However, its definition is more
complex in the dynamic scenario.

Each UE appears in the system only to transmit a single data object. It thus does not make sense
to calculate the average rate of a UE over the whole simulated time. Instead, the experienced rate
is evaluated. This is here defined as the size of a data object in bits divided by the time it took the
system to transmit this to the UE in seconds. The duration of the transmission is measured from
the arrival of the object at the BS until it is fully reassembled at the UE. Processing times are not
modeled. Consequently, the minimal duration is 1 ms. The experienced rate is not measured
for messages dropped by the AC mechanism. Analogously to the UE rates in the previous
evaluations, the average and the 5th percentile of the experienced rates are evaluated.

One of the objectives of the studies in this section is to evaluate whether the simple prediction
mechanism is sufficient to efficiently operate a dynamic system. Therefore, in addition to the
cell and user metrics defined in the previous paragraphs, two other metrics are used to evaluate
the quality of the prediction. These are, first, the fraction of skipped resource allocations, and,
second, the fraction of unused compute resources. Whenever the predicted threshold is too small,
that results in overload and the system has to skip the encoding of data for some UEs. In contrast,
when the threshold is too low, the utilization of the compute resources is reduced.

6.2.2.3 Reference Configurations

In the previous studies, the proposed system was compared to an all-encompassing optimum and
to a baseline heuristic. The baseline heuristic defined in section 6.1.2.4 is also evaluated in this
dynamic model. All-encompassing optimization, however, cannot be performed with the model
used in this section. First, dynamic data traffic is difficult to include in the formulation.13 As it
also implicates temporal correlation in the simulation, it requires longer simulation times, which
make the optimization more complex. Second, the interference regarded in these studies cannot
be modeled consistently in optimization and simulation. This is caused by the mutual interactions
of RA, LA, and interference. If variable interference is included in an optimization problem, the
optimizer implicitly performs IfCo. However, this cannot be realized optimally in the simulation.

11For the definition of the applied AC mechanism see section 5.3.6.
12Note that for the full-buffer traffic model applied there, there average UE rate is also proportional to the cell and

system rates. However, that is not the case in these evaluations.
13Especially, the objective function has to be formulated depending on the experienced rates of the UEs. Proebster

et al. [Pro+12] formulated this as binary flags per transmission and subframe, which denote whether a transmission
is finished at that subframe. However, that significantly complicates the optimization problem.
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Therefore, the all-encompassing optimization problem is not defined and solved for this model. A
smaller optimization problem is used instead, which is termed opt. per subframe in the evaluations.
This problem selects MIMO modes by solving the MCKP introduced in section 5.6.2. It is
embedded in the simulator and solved for every subframe. The remainder of this section defines
this problem.

Let AD,B,< denote the data capacity of the resources allocated to UE D at subframe B when
MIMO mode < is applied. This capacity can be calculated as in the previous problems, i. e. as
AD,B,< =

∑
=c∈Rc

B
0

(∞)
D,=c AD,=c,<. However, this reference configuration is realized as component of

the simulator, and therefore allows only a single MCS per codeword for all PRBs allocated to a
UE. Consequently, the data capacities are calculated by the simulator and do not follow the same
definition as those used in the previous problems. Analogously, the processing effort associated
with each MIMO mode is calculated by the simulator. This is here denoted as ?D,B,<. Based on
this, the MCKP for a single subframe B is defined as follows.

max
0̃D,B,<,

D∈U ,<∈M

∑
D∈U

Ucap

( ∑
<∈M

0̃D,B,< AD,B,<

)
(6.10a)

s. t.
∑
D∈U

∑
<∈M

0̃D,B,< ?D,B,< ≤ %
peak
|B |#PRB

?max (6.10b)

constraints (6.4d) and (6.4g).

6.2.2.4 Resource Allocation Algorithm

The PF heuristic, similar to that introduced in section 3.4.2, is used for RA in the simulations. In
each BS 1, each PRB 5 is assigned to that UE which maximizes the metric <PF

D, 5
, i. e.

0D, 5 =

{
1 for D = arg maxD∈U1

<PF
D, 5

0 otherwise
∀D ∈ U1 . (6.11)

PRBs are assigned successively until each PRB is assigned to a UE or no UEs have data left in
their queues. To avoid excessive interference on PRBs with low indices, the PRBs are processed
in different random orders for each BS.

First input of the metric calculation is the predicted capacity of the PRBs. In real systems, this is
based on CSI reports. Thus, there are errors from noise and quantization. In addition, values
received at the BS are in general outdated. Complex mechanisms can be applied at the BS to
correct the reports so that robust encoding is possible without unnecessary overhead. This is
not modeled in the simulation. Instead, for the calculation of the predicted capacity, which is
here denoted as AD, 5 (B) for UE D on PRB 5 in subframe B, ideal knowledge of all channels is
assumed. The channel capacity also depends on the interference caused by neighboring BSs that
transmit on the same PRBs. As this depends on the RA of these neighboring BSs, it cannot be
idealized without creating circular dependencies. Therefore, for RA purposes it is assumed that
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all other BSs in the system cause interference. The MIMO mode is selected to maximize the
data capacity, i. e. potentially limited processing resources are not taken into account.14

The data capacity of a PRB can be calculated individually by performing LA for that PRB, i. e.
selecting the best MIMO mode and MCS. However, this does not reflect the capacity which can
be realized when the PRB is assigned to a UE and encoded together with other PRBs. That is
caused by potentially different MIMO modes and MCSs being optimal for the other PRBs, which
enforces the BS to make a compromise in the final LA. To avoid this error in rate prediction,
in the simulations the calculation of AD, 5 (B) takes the previously assigned PRBs into account.
Whenever AD, 5 (B) is calculated, LA is performed for the combination of the already assigned
PRBs and the current PRB 5 . The value of AD, 5 (B) is then the difference between the capacity of
the previous allocation alone and the capacity of the combination.

Second input of the metric calculation in equation (3.11) is the average of the rate allocated in the
previous subframes. Equation (3.12) describes the calculation for the general case. There, the
average rate '̄D (B) is calculated by filtering the actually allocated rates Aact

D (B) with a low-pass
filter. To avoid unwanted interactions with MIMO mode selection, the history is here updated
at each subframe with the sum of the predicted capacity of the allocated PRBs. So, when 0D, 5
denotes allocation of PRB 5 to UE D in the current subframe B, the allocated rate is calculated as
Aact
D (B) =

∑
5 ∈ F0D, 5 AD, 5 (B). It is thus neither influenced by the adapted MIMO mode selection

nor by potentially canceled encoding.

When a new data transmission starts, i. e. a new UE enters the system, no resources have been
allocated to this UE before. Therefore, the average of the previously allocated rates is zero. When
strictly following equation (3.11) for calculation of the allocation metric, this results in <PF

D, 5
= ∞.

Consequently, all PRBs of the current subframe would be allocated to that UE, before the average
is updated for the first time and the metric takes a reasonable value. This undesired behavior
is counteracted by a modification of the metric calculation. In the simulations, the metric for
allocation of PRB 5 to UE D is calculated by

<PF
D, 5 =

AD, 5 (B)(
1 − 1

C2

)
'̄D (B − 1) +

(
1
C2

) ∑
5 ∈F 0D, 5 AD, 5 (B)

. (6.12)

where 0D, 5 = 0 is assumed for those PRBs which are not assigned to any UE yet. So, instead of
dividing by the average rate updated after allocation of the previous subframe B − 1 alone, the
already performed allocations for the current subframe B are taken into account. This anticipates
the update of the average after the current subframe B. With this modification, <PF

D, 5
= ∞ only for

the first considered PRB.

To further quicken the convergence of '̄D (B) to the stationary average, the value of C2 is adapted
over time. Let Bstart

D denote the subframe when the transmission to UE D started, i. e. that subframe
where it gets the first PRB assigned. The value of C2 for this UE at subframe B is then defined as

C2,D (B) = min
(
B − Bstart

D + 1, Cmax
2

)
. (6.13)

14Note that these simplifications are only made for the RA algorithm. After RA has been performed by all BSs,
the real interference occurring in that subframe is known. That is then used as the basis for LA, where the proposed
system or the baseline heuristic are used to select the MIMO modes actually used for transmission.
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This gives additional weight to the current values in the subframes shortly after the new
transmission arrived in the system. The weight gradually decreases and approaches the weight
corresponding to the maximum time constant Cmax

2 . This parameter is here configured as
Cmax
2 = 1000.

The described RA algorithm, which includes the repeatedly performed LA, contributes sig-
nificantly to the simulation complexity. The complexity scales linearly with the considered
candidate UEs. To reduce it, the described heuristic is prepended with a simple filter, which
limits the considered candidate UEs per subframe and BS to #cand = 32.15 These are selected in
a round-robin fashion from all active UEs served by that BS.

In a preliminary evaluation, this RA heuristic is compared to the optimizer in the same scenario
as evaluated in section 6.1. There, it achieves about 99 % of average UE rate realized by the
optimizer. The same is true for the 5th percentile of the UE rates.

6.2.2.5 Implementation of the Simulation Model

Small-scale effects of the radio channel and the offline component of the PHY layer model
are calculated in MATLAB. There, channel trace files are generated, which are then read by
the main simulator. That is based on the IKR SimLib [IKRSimLib] and IKR RadioLib and is
mainly implemented in Java. Some performance-critical components (e. g. the RA algorithm)
are implemented in OpenCL. These use the OpenCL Runtime for Intel Core and Intel Xeon
Processors for efficient parallelization on standard central processing units (CPUs). For the
reference configuration opt. per subframe, the IBM ILOG CPLEX Optimizer is called repeatedly
to optimize the MCKP for each subframe.

6.2.2.6 Procedure of Simulation

In contrast to the previous evaluations, which are conducted in independent drops, the simulations
for this section use the batch-means method and therefore consist of a single continuous run for
each parametrization [Law07]. This is reasoned as follows.

In the full-buffer traffic model, the positions of the UEs are fixed. Therefore, independent drops
are required there to sample different constellations. However, with the dynamic traffic model
UEs are repeatedly placed on new positions. Thus, the argument for independent replications
does not hold any more. At the same time, the dynamic traffic model implicates that the system
requires a significant warm-up time, where its load is not stationary but still influenced by the
initial conditions.16 The batch-means method allows to have only a single warm-up phase for
each parametrization. This is therefore applied here to reduce the computational effort for the
simulations.

15Gains from opportunistic RA do not improve further when considering more UEs. E. g., Ellenbeck et al.
[Ell+09] show that there is no significant difference between considering 20 or 40 UEs. A power of 2 has been
chosen here because of implementation reasons.

16It is difficult to reliably determine startup conditions which allow to initialize the system in a stationary state.
Therefore, the simulations are started without any UEs transmitting. As waiting UEs slowly accumulate in the
system, that requires a significant amount of time to reach a stationary state.
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The duration of the warm-up phase is configured to be Cwarm-up = 300 s. This value is derived
from pilot runs in section 6.2.3.1. Configurations where this is not sufficient to reach a stationary
system state are detected by statistical tests, which is described in section 6.2.2.7. During this
warm-up phase, no metrics are evaluated.

To be able to calculate confidence intervals for the evaluated metrics, the simulated time following
the warm-up phase is divided into #batches = 10 batches. Each batch has the duration Cbatch = 60 s.
This duration is derived from pilot runs in section 6.2.3. The evaluated metrics are first averaged
over all events in a batch.17 The batch-averages are then used to calculate the 95 % confidence
interval as described in section 5.5.1.

6.2.2.7 Detection of Non-Steady Behavior

The system can operate in one of three stationary states. In case the offered load is low compared
to the capacity of the system, the RA algorithm does not allocate all PRBs. Therefore, the
interference is low, which results in high spectral efficiency. Active UEs do not accumulate,
because they are served more quickly than new UEs arrive. When the load of the system is
sufficient to utilize all PRBs in all cells, transmissions take more time to complete. That results in
an increasing number of UEs in the system, because arrivals still occur at the same rate. However,
the more UEs are waiting, the more flexibility the RA algorithm has to assign resources. Thus,
the spectral efficiency increases. This counteracts the increasing load, and can lead to a balanced
state. Finally, in case of extreme overload, the number of UEs is limited by the AC mechanism.

It is plausible that slow transient behavior occurs when the system is loaded only marginally above
its maximum capacity. In that case, it takes a long time until so many UEs have accumulated that
they are limited by AC. Thus, it is not possible to give an upper limit for the required warm-up
time. These configurations cannot be avoided, because the system capacity also depends on the
amount of available compute resources, which is a parameter of the simulations. Therefore, a
hypothesis test for trends is used to detect these configurations.

The experienced rates of the data traffic objects are used as metric to which the test is applied.18
These are evaluated in the order in which the objects are completed, ignoring objects which
are completed during the transient phase. The variance of the experienced rates is high, which
impairs the performance of the test. Therefore, the samples are split into 100 equally sized groups,
so that each group contains consecutive samples.19 Subsequently, the average is calculated for
each group. The unweighted test of Cox and Stuart [CS55], denoted as (3 in their publication, is
then applied to the sequence of averages.

The null hypothesis of the test is that there is no trend in the samples. As the number of
group-averages is large, the result of the test is assumed to be normally distributed. The CDF of

17So, e. g., the experienced rate is calculated for each object for which the transmission is completed. Then, the
average is calculated over all objects which complete during a batch.

18Other metrics could also be used. One obvious approach is to count the actual number of UEs in the system.
Another one is to sum up the total data waiting to be transmitted in all queues (see section 6.2.3.1). The experienced
rate is chosen here because it is also one of the most important evaluated metrics.

19This approach is similar to the batching described below. However, more groups of samples are used here,
because the higher number has shown to give more sensible results for this test.



6.2 Evaluation with Dynamic Load 169

0 100 200 300 400 500 600 700 800 900
time [s]

0

1

2

3

4

5

6

7
su

m
da

ta
in

al
lq

ue
ue

s
[G

iB
]

0.5 ms
1 ms
1.5 ms
1.75 ms
2 ms
2.5 ms

Figure 6.3: Determination of the warm-up phase. Each curve corresponds to a different average IAT.

the normal distribution is used to derive the probability that the result of the test occurs although
the null hypothesis holds. It is here assumed that a trend arises in that simulation run whenever
this probability falls below 5 %. The respective parametrizations are marked in the plots.

6.2.3 Configuration and Calibration of the System

The procedure of simulation described in section 6.2.2.6 requires configuration of the durations
of the warm-up phase and the batches. This is performed by evaluating a set of pilot runs in
sections 6.2.3.1 and 6.2.3.2, respectively. The same pilot runs are used to derive the capacity of
the system in section 6.2.3.3. Based on the capacity, the offered load to be used in the following
studies is defined.

For the simulations in this section, the evaluation methodology is the same as for the following
studies. However, the compute resources are not restricted. Consequently, none of the compared
reference configurations applies here.20

6.2.3.1 Configuration of the Duration of the Warm-Up Phase

Two effects occur during the transient phase. First, small objects and those for UEs with
high channel capacity are transmitted quickly, while objects which take more time to transmit
accumulate in the system. Second, the number of active UEs increases, until either the efficiency
of the opportunistic scheduling suffices to serve the offered load or the AC limit is reached. As a
metric for these effects, the sum of the data waiting to be transmitted in all queues is evaluated.21

This metric is plotted over the simulated time in figure 6.3 for different average IATs. The plot
shows that the data in the queues accumulates until it reaches a load-dependent value. In case of
extreme overload, the AC mechanism and the distribution of object sizes restrict the total amount

20Note that the proposed system and the reference configurations only influence the behavior of the system in
configurations where compute resources are limited.

21The experienced data rate, which is used in the statistical tests described in section 6.2.2.7, can also serve to
derive the duration of the warm-up phase. However, transient effects have shown to be less clearly visible from a
plot of that metric.
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of data in the queues.22 From the plot can be derived that for the pilot simulations performed
here, Cwarm-up = 300 s seems to be a reasonable configuration.

6.2.3.2 Configuration of the Duration of the Batches

After cutting off the warm-up phase, the remainder of the simulated time is divided into equally
sized batches. Their size has to be chosen such that there are a sufficient number of samples per
batch and such that the correlation between consecutive batches can be neglected.

The evaluated metrics are based either on a sample per data object or on samples occurring per
subframe. As the IAT CIAT = 1 ms already constitutes an overloaded system, samples associated
with data traffic objects occur less frequently than the other types of samples. However, even
an IAT of CIAT = 10 ms still results in 100 data objects per second, so the number of events is
considered to be not the limiting factor for the batch duration.

Long-term correlation in the model used here can be caused by large data objects that are
transmitted to UEs which have low capacity channels.23 To estimate the duration of these effects,
the distribution of transfer times of data objects is evaluated (no plot shown). The outcome of
that evaluation is that in general, the transfer of data objects takes more time the higher the load
of the system is. Under overload (e. g. CIAT = 0.5 ms), 90 % of the objects are transmitted in less
than 32.5 s, and 98 % finish transmission in 55.5 s.24

As result of this evaluation, the batch duration is set to Cbatch = 60 s. While this can still cause
some correlation of consecutive batches, no effects are expected that influence the next but one
batch. This duration is chosen as a compromise to keep simulation complexity at a reasonable
level. The total simulated time is Ctotal = Cwarm-up + #batches · Cbatch = 900 s for each configuration.

6.2.3.3 Calibration of the System Load

Besides the parametrization of the warm-up phase and batch duration, the preliminary simulations
are also used to normalize the system load. The higher the system load is, the lower is the
experienced rate. When the system load increases above a certain threshold, some requests
get dropped by the AC mechanism. The effective IAT is introduced here as a metric for the
carried load. It is defined as the average time between two consecutive requests that pass the
AC mechanism. In a stationary system state, this is equivalent to the average time between two
consecutive completed transmissions. These three metrics are shown in figure 6.4.

22The maximum size of traffic objects is 108 MiB. AC limits the number of active UEs to 5700. Therefore, the
absolute maximum amount of data in the queues is 601 GiB. The stationary amount of data accumulated in the
case of overload is, however, difficult to determine analytically. It is determined by the effect that small objects are
quickly transmitted and replaced by new objects, while large objects stay in the system for longer time.

23E. g., in a configuration with low load, such a data object can cause a single BS to use all PRBs for a significant
amount of time. This causes interference to other cells and increases compute resource utilization. The duration of
such an effect is extended if multiple large objects happen to be transmitted simultaneously by the same BS.

24Note that, when the system capacity decreases because of limited compute resources, the transmissions also
take longer. However, for reasonable configurations, i. e., those for which the experienced rate is plotted in figure 6.6,
never more than 0.5 % of the transmissions take more than 60 s.
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Figure 6.4: Calibration of the dynamic traffic model

From figure 6.4c can be derived that the effective IAT does not fall below 1.72 ms. This is
considered to be the capacity of the system. It is, however, not expected that the system is
operated at this load, because there AC drops already occur and the experienced performance
is low. For the following studies, fractions of 80 %, 60 %, and 40 % of this load are evaluated.
This corresponds to CIAT = 2.15 ms, CIAT = 2.86 ms, and CIAT = 4.29 ms, respectively. With
the average object size of 688 KiB, this results in data rates of 46.1 Mbit/s, 34.6 Mbit/s, and
23.0 Mbit/s per cell.

6.2.4 Studies

Simulations have been performed based on the system model and the calibration from the previous
sections. The results of these simulations are presented in this section. It is structured according
to the metrics introduced in section 6.2.2.2. First, section 6.2.4.1 evaluates metrics on cell level,
which show under which conditions the systems are capable of serving the offered load. Second,
section 6.2.4.2 focuses on the network performance as seen from the perspective of the users.
Finally, section 6.2.4.3 evaluates additional metrics to assess the performance of the prediction
component of the proposed system.

6.2.4.1 Metrics on Cell Level

The average transmitted data rate per cell is plotted on the y-axis of figure 6.5a. The x-axis of that
figure shows the compute resource limit. The curves in the plot represent the three configurations
opt. per subframe, proposed, and baseline, each of which is evaluated with 40 %, 60 %, and
80 % offered load. The former are differentiated by colors, the latter by line styles.25

For each evaluated load, the compute resources required for unconstrained operation are marked
by a vertical bar on the respective curve.26 In addition, for each parametrization, the lowest

25Solid, dashed, and dotted lines denote 40 %, 60 %, and 80 % load.
26Strictly, the horizontal position of the bar is equivalent to the compute resources which are sufficient for

unrestricted operation in 99.9 % of the subframes, given that the available compute resources are not limited. The
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compute resource limit where more than 99 % of the offered load is served is marked with ×.
Parametrizations which show non-steady behavior are not marked here, because it is assumed
that the cell rate does not increase significantly when further UEs accumulate.

For large amounts of compute resources, the average cell rate is determined by the offered load.
When the compute resources are restricted, the cell rate starts to drop at different values. In
general, with higher offered load the system requires more compute resources to serve this load.

Compared to the compute resource usage in the unconstrained case, the configuration baseline
requires between 7 % and 14 % less compute resources to serve the offered load.27 The required
resources are roughly equal to the average compute resource utilization in the unconstrained
system. This can be explained by an averaging effect in time: When UEs are skipped in the
encoding module, their transmissions are retried at a later subframe. This delays the data objects.
However, as long as the compute resources are not constantly exhausted, the system can complete
all requests and waiting requests do not accumulate. Thereby, peaks in the compute resource
utilization are cut off and shifted to later subframes.

In addition to this shifting effect, the proposed system also increases the efficiency of the compute
resource usage, i. e. it can transmit more bits per compute effort. This allows to maintain the
full cell rate with a significantly lower amount of compute resources. Thus, for 40 % load, 10 %
compute resources are sufficient, which is a quarter of the peak compute resources utilization in
the unconstrained case.28 Similarly, for 60 % and 80 % load, 20 % and 35 % compute resources
are required. This roughly corresponds to a third and half of the peak resource utilization,
respectively. The same is true for opt. per subframe, i. e. there is no significant difference
between the cell rates achieved by the proposed system and the optimization per subframe.

When the compute resources are limited to values below the marked thresholds, the cell rate drops.
The curves for different loads approach a common limit, which can be interpreted as the capacity
of the system depending on the compute resource limit. This capacity seems to be a linear
function of the compute resources for baseline (about 850 kbit/s per 1 % compute resources).
For opt. per subframe and proposed, a linear dependency cannot be identified clearly.

When the average cell rate drops below the offered load, that means that the system cannot serve
all requests, but some are dropped by the AC mechanism. This is shown in figure 6.5b. Here, the
fraction of messages dropped by AC is plotted over the compute resource limit. The y-axis is
scaled logarithmically, so that differences between small as well as between large drop rates are
visible. Points with zero drop rate are omitted from this plot. For parametrizations for which a
trend is detected as described in section 6.2.2.7, the confidence interval is replaced with an arrow
pointing upwards. Colors and line styles are the same as in figure 6.5a.

Figure 6.5b shows that for 80 % load, there are about 0.1 % to 0.2 % AC drops even with 70 %
compute resources. Here, the variations of the data traffic cause single cells to be in temporary
overload. The fraction of dropped requests rises as the compute resources are limited. For
baseline, 10 % of the requests are dropped when only 50 % compute resources are available.

vertical position of the bar does not carry any meaning, but is adjusted so that the bar lies on the curve of the
respective load.

27This is seen in the plot as the horizontal distance between the respective markings.
28The resource utilization in the unconstrained case is defined as described in footnote 26.
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Figure 6.5: Evaluation of cell rate and AC drops

With the same limit, opt. per subframe and proposed drop only 1.7 % and 1.9 % of the requests,
respectively. For lower system loads, the drop rates increase at lower compute resource limits.
This matches the results from figure 6.5a.

It is here assumed that the system will not be operated at a drop rate of more than 5 %. It
can be argued that the users of the network will not accept a service which fails to serve 5 %
of the requests. This threshold is marked with a horizontal dashed line in figure 6.5b. For
parametrizations with higher drop ratios, the following section does not evaluate the user level
metrics.

6.2.4.2 Metrics on User Level

The previous subsection discussed at which configurations the system is capable of serving all
requests. It did, however, not consider the performance perceived by those users who get their
data objects transmitted. This is the focus of this section.

Figures 6.6a and 6.6b show the average and the 5th percentile of the experienced rates, respectively.
The plots show the same set of configurations as the previous plots. As before, the compute
resources required for unconstrained operation are marked by a vertical bar.29 In addition, in both
plots the compute resources sufficient to maintain 90 % of the unconstrained experienced rate
are marked with a triangle. The only parametrization for which a trend is detected as described
in section 6.2.2.7 is designated with an arrow pointing downwards. This symbolizes that the
stationary experienced rate is probably lower than the plotted value. As stated in section 6.2.4.1,
points where the AC drops more than 5 % of the requests are omitted from the plot.

In general, the experienced rate is higher when the offered load is lower, because in that case
less UEs compete for resources and the average level of interference is lower. Compared to the
cell rate in figure 6.5a, the experienced rates drop earlier. The curves for the average and the
percentile follow the same shape, so the cell border users are neither preferred nor penalized.

It is reasonable that for all configurations the experienced rate drops as soon as the compute
resource limit falls below the resources required for unconstrained operation. Independently of

29See note 26 on page 171.
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Figure 6.6: Evaluation of experienced UE rates

whether the system copes with the limited compute resources by only adapting MIMO modes or
by skipping to encode some PRBs, the transmissions are not served as quickly as without limit.
However, for baseline, the experienced rates degrade significantly when reducing the compute
resources to values more than 5 % below the marked values. At the same compute resource limit,
the degradation is barely visible for the configurations opt. per subframe and proposed.

To maintain experienced rates equivalent to 90 % of those achieved with unlimited compute
resources, the configuration baseline requires about 10 to 15 percentage points (or 30 % to 50 %)
more compute resources than the remaining configurations. Even when the compute resources
are limited further, the performance achieved with the configurations opt. per subframe and
proposed degrades more smoothly than that achieved by baseline.

6.2.4.3 Metrics for the Performance of the Prediction Mechanism

The evaluations presented by the previous sections have shown that the performance achieved by
the proposed system is close to that achieved with optimal MIMO mode selection. To maintain
the same performance as those two configurations, the baseline system requires significantly
more compute resources. This section complements these results by an evaluation of two internal
metrics of the system.

Figure 6.7a plots the fraction of skipped sets of PRBs over the compute resource limit. Adaptation
of MIMO modes alone cannot reduce the processing effort to values below 10 %. Therefore,
many UEs are skipped for ?max = 5 %. For higher compute resource limits, the fraction of
skipped UEs does not rise above 2 %.

As expected, no UEs are skipped when the compute resources are effectively unlimited. When
lowering the limit, the fraction of skipped UEs rises to a load-dependent maximum and then falls
again. The general shape can be explained by the variance of the compute load, which is higher
when the system does not use all PRBs. The most UEs are skipped for 40 % load, and the peak
fraction is lowered as the load increases.

The amount of unused compute resources is shown in figure 6.7b. The y-axis is shown in
logarithmic scale, so that small values can be differentiated in the chart. In case more compute
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Figure 6.7: Evaluation of internal metrics

resources than required are available, low utilization is expected and acceptable. When the
compute resources are limited, the amount of unused compute capacity quickly falls below 1 %.

The three curves show bends at about 20 %, 40 %, and 55 % compute resources for 40 %, 60 %,
and 80 % load, respectively. At these points, the reduced spectral efficiency of the low-complexity
MIMO modes forces the system to use all PRBs. At lower compute resource limits, under-
utilization of the compute resources is directly equivalent to a loss in system performance. The
higher the load, the more quickly the under-utilization decreases when the compute resource
limit is lowered. This matches the outcome of figure 6.7a. It can be interpreted as the proposed
system performing better at higher load.

When reducing the compute capacity down to 10 %, the under-utilization approaches the value
0.25 % for all configurations. This equals the configured value of the offset parameter ?off. For
5 % compute resources, only the simplest MIMO modes are selected and the system performance
is determined by a large fraction of skipped UEs. Thus, the under-utilization of compute resources
approaches zero.

The compute resource utilization of the configuration baseline, which is not shown in the plot, is
higher. There, the under-utilization approaches 0.04 % for low compute resource limits. This
value is determined by the granularity of compute jobs. Due to the fact that data for a UE is either
encoded completely or skipped as a whole, in average half of the compute effort of such a compute
job cannot be utilized. The utilization achieved by opt. per subframe is even higher, because there
the optimizer can combine MIMO modes to make best use of the available capacity. However,
the achieved network performance of the two reference configurations differs significantly. Thus,
high utilization of the compute resources does not guarantee high performance.

6.2.5 Summary and Conclusion

The main objective for the evaluations in this section is to show whether a simple prediction
mechanism is sufficient to handle dynamic load. An additional objective is to demonstrate
the effect of partial system load on the compute resource requirements. Dynamic traffic and
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interference models are applied, because it is assumed that these effects are the main contributors
to variations of the compute load.

Section 6.2.4.1 evaluated metrics on a cell level. These allowed to derive the amount of compute
resources which is required to serve the offered load. By shifting the compute effort in time, the
baseline heuristic can cope with a compute resource limit roughly equal to the average compute
resource utilization in an unconstrained system. Compared to the peak resource utilization, this
saves between 7 % and 14 %. At the same time, the proposed system uses the resources more
efficiently. That allows to serve the offered load with a quarter to half of the peak utilization.
As expected, most resources are required for a highly loaded system, because there the capacity
headroom is lowest. A marginal difference between the proposed system and the optimization
per subframe is only visible in the fraction of messages dropped by AC.

The performance from the perspective of the users was studied in section 6.2.4.2. When limiting
the compute capacity, the experienced rate drops much earlier than the cell rate. For a certain range
of compute resource limits, the system can serve the offered load by using less complex MIMO
modes or by skipping the encoding of transmissions. However, both delays the transmissions
of the data objects. By using the compute resources more efficiently, the proposed system
can maintain the same experienced rate as the baseline heuristic with about 10 % to 15 % less
compute resources.

Section 6.2.4.3 studied internal metrics of the system to evaluate the performance of the applied
prediction mechanism. The proposed mechanism achieves a low fraction skipped encodings,
which is typically below 1 % and never higher than 2 %. From this, no significant negative impact
on the remaining components of the RAN is expected, because these numbers are much lower
than the typical decode error rate. The system achieves a high utilization of the available compute
resources. The simple control loop, which is used in the proposed system for the prediction of
the efficiency threshold, already provides reasonable results. However, both metrics might be
improved by a more sophisticated control loop or other prediction mechanism.

This section has shown that the proposed system can cope well with the dynamics caused
by realistic data traffic and interference models. The simple control loop, which predicts the
efficiency threshold based on the compute load in previous subframes, already leads to results
which are close to the optimum. The variations of the load over time allow to cope with moderate
compute resource shortages by just delaying transmissions. However, by using the resources
more efficiently, the proposed system can maintain nearly unimpaired network performance with
significantly lower compute resource limits.



7 Summary and Conclusion

7.1 Summary

Subject of this thesis is the design of an efficient mechanism which achieves elastic utilization
of compute resources in a cellular communication system. This mechanism is developed
and evaluated using the example of an LTE system. Thus, chapter 2 introduced LTE and its
architecture. Originally, the LTE RAN is designed as a large number of self-contained eNodeBs
distributed in the field. This is modified by the concept of C-RAN, which centralizes the signal
processing of multiple eNodeBs in a central pool of BBUs.

LTE is optimized to make efficient use of the radio channel. OFDM splits a large bandwidth up
into narrow subcarriers. OFDMA allows to assign these (on a coarser granularity of PRB pairs)
to different users. This is used by a flexible RA, so that each user is served on those parts of the
radio channel where a high capacity can be achieved. For each user, LA configures modulation
and coding to match the actual capacity of the assigned resources. In addition, it selectively
applies MIMO to transmit multiple spatially separated streams in parallel.

This is all controlled by the eNodeB. Thus, all decisions have to be communicated to the
respective UEs to enable these to decode the transmissions. The flexibility is partially restricted
by the signaling capabilities of the eNodeB. These are standardized as part of the air interface
specification. RA and LA are not part of the standardization, but can be implemented individually
by eNodeB vendors.

Typically, LA tunes modulation, coding, and MIMO to make maximum use of a set of allocated
resources. This influences only the single user that is receiving or transmitting the data. In
contrast, RA is the central mechanism in LTE that balances between the demands of different users.
Each user may apply different metrics for QoS, e. g., throughput, packet drop rates, and packet
latency. When handling competing demands, RA mechanism can either try to achieve fairness or
prefer single users, e. g., those with favorable channel conditions. Fairness often comes at the
cost of reduced average performance. A widely used fairness definition is that of proportional
fair. It can either be formulated as objective of an optimization problem, or be realized by a
matching heuristic. More advanced RA heuristics do typically also take other parameters such as
queue length or differing requirements into account. Requirements, optimization problems, and
heuristics for RA were discussed in chapter 3.

While RA copes with competing demands inside a cell, neighboring cells do also influence
each other. To make best use of the available bandwidth, LTE is designed so that the same
spectrum can be used in adjacent cells. However, that results in high interference for those UEs
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which are located close to the border of a cell’s serving area. There are multiple approaches
to handle this. Either receivers can be enabled to suppress interference, or transmitters can
coordinate to reduce the interference. This IfCo can be seen as a RA problem spanning multiple
cells. So, analogously to a normal RA problem, it can be approached by optimization or with
heuristics. Chapter 4 gives an overview over all related aspects. It especially focuses on the
optimization, because IfCo is also part of the optimization problem used as foundation for the
design of the proposed mechanism. Different sources of literature are compared by unifying
their understanding of coordinated resources to a common resource model. In addition to mere
coordination, neighboring eNodeBs can also collaborate more closely to simultaneously serve
their users. This is, however, not focus of this thesis.

Signal processing required to encode data that is to be transmitted and to decode received data
generates processing effort. This effort contains a rather static share, which is related to cell
specific functions (e. g. reference signals and OFDM processing). In addition, it contains a more
dynamic share, which is associated with individual users and therefore influenced by RA and LA.
This thesis focuses on the dynamic share occurring during DL transmission of data.

Varying demands of users, varying radio channels, and dynamically changing RA cause
fluctuations of the total compute effort. These can be partially limited by combining the
processing of multiple cells in a single central BBU pool. However, to efficiently cope with
these fluctuations, a mechanism is required which allows to cut the peaks without significantly
impacting the network performance. The same mechanism can also facilitate the implementation
of a BBU as software running on a non-RT system. Having an efficient way to achieve elastic
utilization of compute resources allows to forgo without stringent planning and management
of these resources. This is beneficial, because these often come with high complexity and low
resource utilization.

This thesis presents such a mechanism, together with the reasoning leading to its design and
a thorough performance evaluation. The proposed mechanism makes the compute resource
utilization of a mobile communication system elastic, i. e., it allows the computational complexity
to dynamically adapt to the available resources. In doing so, it maintains high network performance
under all but the most stringent resource limits.

Mobile communication systems provide multiple ways to trade network performance off for
reduced computational complexity. The related decisions are, however, typically made at design
time of a system, e. g., by selecting certain algorithms or implementing them with a certain
numerical accuracy. Proposals to perform dynamic adaptation, which are available in literature,
focus on the requirements of single links and do not deal with the complexity of a whole system.
Approaches related to this thesis also exist in the subject of RT scheduling. However, these
do not capture the special requirements of mobile communication systems. Thus, they either
rely on more flexible system models or on a central coordinator. The processing resources for
mobile communication systems are typically planned statically. Some publications also propose a
dynamic resource management. They do, however, either only target the allocations of functions
to compute units, or are content with simply dropping transmissions in case the resources are
overloaded.

The simulations and optimizations applied in this thesis use a common system model defined
in section 5.3. The model for the radio network mainly follows the guidelines specified for
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system level simulations by 3GPP. It gives a realistic estimation of the channel capacity achieved
by different MIMO modes. This is complemented by a model for the processing effort, which
also takes the LA parameters into account. Three variants of this system model are used in the
different evaluations.

In section 5.5 a small scenario with 21 cells was used to limit the complexity. In addition, a
full-buffer traffic model was applied and variations of the radio channel over time and frequency
were neglected. Section 6.1 also used the small scenario and the full-buffer traffic model. It
did, however, consider the variation of the radio channel over 10 MHz bandwidth and 100 ms
evaluated duration. To compensate for this additional complexity, IfCo was not modeled there.
Section 6.2 finally did not consider an all-encompassing optimization problem. This allowed to
use the larger scenario with 57 cells and model IfCo as well as dynamic data traffic. In addition,
the evaluated time frame was extended to match the dynamic variations of the data traffic.

The design of the proposed adaptation mechanism is based on insights derived from solving an
optimization problem. This problem was defined in section 5.4, based on the resource model
introduced for the comparison of IfCo problems in section 4.2. It jointly evaluates IfCo, RA, and
MIMO mode selection. To achieve a manageable problem size, only the interference caused by
the strongest three interferers is modeled. Different variants of the problem are defined to model
different fairness requirements. Orthogonal to that, other variants restrict the problem so that
only subsets of the variables are adapted to the available processing resources.

Solutions to these optimization problems were then studied in section 5.5. The evaluations
show that the required processing resources depend on the desired fairness scheme. The highest
throughput is achieved when fairness is not considered. In contrast, fair systems achieve a lower
throughput, but also require less processing resources. This is caused by differences in selected
MIMO modes and in the fraction of resources which remain unused to reduce interference. When
jointly adapting all variables, the system can cope well with limited processing resources. It
achieves 90 % of the original throughput with only 30 % to 35 % of the peak processing resources.
This is realized by simultaneously changing MIMO modes and increasing the fraction of empty
resources. When only adapting subsets of the variables, the performance is reduced. The least
significant drop is achieved by adapting MIMO modes individually for each UE.

The proposed mechanism is designed based on these findings. It adapts the MIMO modes used
to serve the UEs to the channel conditions and available processing resources. The selection
of the modes is interpreted as MCKP. A distributed heuristic is developed which is based on a
known greedy solving heuristic for such problems. It consists of three components. A MIMO
mode selection algorithm is executed individually for each UE. It selects a mode based on the
UE’s channel conditions and a global threshold value. A fallback mechanism ensures stable
system operation in case the selection algorithm chooses too complex MIMO modes. Finally, a
prediction mechanism defines the value of the global threshold based on the overload experienced
in previous subframes.

This mechanism can be integrated into a BBU without modifying existing components performing
IfCo and RA. It introduces only limited additional complexity, because the selection algorithm,
which resembles the most complex part of the proposed mechanism, can be executed independently
for each UE. It is also robust, because it can tolerate variations in the available processing
capacity as well as deviations in the estimated complexity of the MIMO modes.



180 Chapter 7. Summary and Conclusion

The evaluation of the proposed mechanism is split into two parts. First, its performance was
compared to that of differently constrained optimization problems in section 6.1. The studies
show that the proposed system achieves performance comparable to the optimizer. Compared to
the all-encompassing optimization problem, the UE rates drop by 2 % to 11 %. Here, the smaller
deviations are achieved in situations with moderate compute resource overload.

The proposed mechanism relies on a component which predicts the efficiency threshold based
on previous subframes. It thus depends on a temporal correlation of the compute load. In
section 6.2, it was checked whether high performance can be maintained in a dynamic scenario.
Those evaluations show that the proposed system achieves significant gains over a simple baseline
mechanism. Its performance is close to that achieved by centrally optimizing the MIMO mode
selection at every subframe.

7.2 Conclusions

The proposed system has shown to be successful in adapting the compute requirements of a
mobile communication system to the available resources. While achieving this elasticity, it also
maintains a high efficiency, which is close to that of an optimal solution. During the design of
the mechanism, an encompassing view of the whole LTE system was kept in mind. In addition,
realization aspects have been considered. Consequently, the proposed mechanism is ready to be
integrated into the LTE system.

The proposed system allows to cope with moderate compute resource overload without noticeable
impact for the users. Depending on the expected data traffic, only 25 % to 55 % of the compute
resources required to handle the theoretic peak situation are sufficient. These resource savings
can be realized without noticeably impacting the network performance perceived by the users.
The mechanism thus facilitates a tight and economical dimensioning of compute resources.

Furthermore, the mechanism also allows for a more dynamic resource management, which is
typical in IT cloud environments. With elastic resource utilization, the system can tolerate
variations in the available compute power. These can be caused, e. g., by the OS or by other
virtual instances running on the same hardware. It also facilitates a network operator to switch
off unused hardware units in low load times. When then the load increases again, the proposed
mechanism can bridge the time until the hardware is brought online. Similarly, it maintains stable
network operation in case of hardware failures.

In this thesis, the design is based on findings from an optimization problem. Compared to
an ad-hoc design of a heuristic, this has shown to be very time-consuming. It also increased
the complexity of the work, because different methodologies were applied. This approach did,
however, come with multiple advantages.

First, it allowed to identify and restrict the relevant variables. Thus, the final heuristic only
has to adapt a single aspect of the system. Second, the preliminary evaluations facilitated the
understanding of the overall system behavior. This allowed to avoid misjudgments. Instead of
relying on estimations and guesses, the design of the heuristic thus became a straight-forward
path. Third, this approach gave confidence that adapting the selected variables should result
in the expected performance. In situations where preliminary implementations did not deliver
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this performance, this confidence allowed to concentrate on development, fixing, and tuning. In
contrast, without the in-depth understanding of the system, a researcher could be tempted to
hop between completely different, misleading approaches. Finally, the foundations laid with the
initial optimization problem did here also serve for the final evaluation. As an assessment of
absolute performance is often difficult in such complex systems, having a sound reference for
relative comparison is beneficial.

7.3 Outlook

This thesis makes use of a model for the processing effort caused by signal processing for data
transmission. The effort does, however highly depend on the chosen hardware architecture and
software implementation of a C-RAN system. To apply the proposed mechanism, it is thus
required to re-evaluate the results with a model correctly fitted to the target system. The model
does furthermore not consider the cell specific processing (e. g. for OFDM and reference signals)
and higher protocol layers (e. g. RLC and PDCP). While the higher layers can be assumed to
have limited impact on the compute effort, the influence of the lower layers depends on the system
architecture. In case they are performed at the BBU using the same processing resources as user
specific calculations, it could be beneficial to include them in the evaluations. Such a system
could, e. g., benefit from completely switching of a subset of transmit antennas for single cells.

This thesis focuses on processing effort for DL processing. However, UL processing also comes
with high processing effort, and can be handled by the same processing units. To manage the
computational effort for UL processing, Rost et al. [Ros+15b] proposed to use more robust
encoding and thereby cope with fewer iterations in the turbo decoder. Similar to this thesis, they
also selectively switch UEs to different MCSs. They do, however, propose a central algorithm
for this task.

It remains open for further investigation whether the system proposed in this thesis could be
combined with their approach. Such a system could, e. g., use a global variable to indicate the
severity of the current overload. For DL operation, this is equivalent to the proposed threshold
4min. For UL, the mapping of that variable to an MCS is performed independently for each UE.
Finally, a fallback mechanism skips decoding for individual users in case the scheduled set of
MCSs causes overload. The processing effort for UL operation not only depends on a correct
compute effort model, but also on an accurate prediction of the channel quality. Thus, compared
to DL, the prediction of effort for UL operation is more difficult. By jointly considering UL and
DL processing, such a system can balance resources between both components.

Tight collaboration of adjacent cell sites, known as CoMP, is not covered by this thesis. CoMP
comes with additional processing effort, because more transmit or receive antennas are combined
for a single transmission. Thereby, the dimensioning of compute resources for the theoretical
peak load becomes even more inefficient. It is possible to extend the proposed system to also
include CoMP. For example, the decision to use CoMP to serve a UE can take a global processing
load indicator into account. Thereby, in case processing resources become scarce, CoMP is only
applied to those transmissions where it brings the most significant benefits. However, CoMP
also influences RA in multiple cells, so it requires a tighter integration into the system.
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This thesis assumes that the processing for multiple cells is performed by a single BBU pool.
The resources of this pool are modeled as a single homogeneous mass. Such a setup is difficult to
realize, because the performance of single processing units is limited. Larger computer systems
achieve high performance by employing multiple compute units in parallel. Depending on the
degree of coupling between these units, this has different impact on the proposed system.

In case tasks can be moved between compute units during a subframe, such an architecture
can be covered by the proposed system. The encoding of data for UEs is performed in parallel.
When the time reserved for processing is over, possibly multiple processing tasks have to be
aborted. The impact on the expected performance is small as long as the number of compute
units is significantly lower than the number of served UEs. When tasks cannot be moved between
compute units instantly, an active load balancing is required, e. g. as proposed by Scholz and
Grob-Lipski [SG16]. The compute units then act like separate, smaller BBU pools. Inside each
pool, the variance of the requested compute load is higher, so more load peaks have to be cut
off. This variance also makes the prediction of the global threshold more difficult. In reality,
the architecture of a BBU pool probably lies between both concepts. Tighter coupling can be
realized by employing larger computers and specialized interconnects.1 As this often comes at a
higher cost, an efficient design has to be found by jointly considering network performance and
economical aspects.

1Inside a single computer, multiple cores use shared memory and can interact tightly. 20 to 40 cores are typical
for current two socket x86 servers, e. g. based on Intel Broadwell architecture. 192 cores can be realized with an
eight socket server, where each socket is equipped with an Intel Xeon E7-8894 v4 with 24 cores. Multiple of these
computers can be interconnected with standard networking technology or dedicated low latency interconnects.



A Definition of the Wrap-Around
Geometry

The definition of the wrap-around geometry is based on the shape and rotation of the scenario. This
geometry is designed to achieve a regularly repeating pattern of BS locations (see section 5.3.2).
Two configurations of the geometry are defined. These correspond to two BS layouts with seven
and 19 sites.

Assume that the distance between two adjacent BS sites (the inter-site distance) is defined as
3is. The shape of the scenario is a hexagon with an inscribing circle with radius A7 ≈ 1.323is
or A19 ≈ 1.903is for seven and 19 sites, respectively. For seven sites, the first edge points to
U7 ≈ 49.11°, for 19 sites to U19 ≈ 53.41°. For calculation of scenario sizes and rotations refer
to equations (A.1) to (A.4). The whole scenario, including positions of the BSs, is depicted in
figures A.1 and A.2.
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Figure A.1: Cell layout for seven tri-sectorized sites with wrap-around
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Figure A.2: Cell layout for 19 tri-sectorized sites with wrap-around



B Measurement of Processing Effort

The objective of this appendix is to compare the processing effort model used in this thesis with
a measurement available from literature.

Kai et al. [Kai+12] provide measurement results for a software implementation of a BBU. Their
system uses one transmit antenna (0 = 1, ; = 1), 64-QAM modulation (< = 6), and code rate 5⁄6
(2 = 5/6). It simultaneously transmits on 100 PRBs. Applying these parametrization to our model
in equation (5.14) results in

%PRB = 105
(
3 · 1 + 1 · 1 + 1

3
· 6 · 5

6
· 1

)
= 105

(
3 + 1 + 5

3

)
= 105

(
17
3

)
= 567 × 103. (B.1)

This is equivalent to a total effort of 100 · %PRB = 56.7 × 106 operations per subframe.

The authors have measured a latency of 172 µs + 426 µs = 598 µs for symbol level and bit level
operations, which corresponds to the processing tasks represented by our model. A single
core of the Core i7-2600K processor with Sandy Bridge architecture performs eight double
precision (DP) FLOPs per cycle (four multiplications, four additions) [Intel12]. With 3.4 GHz
and four cores, this results in a total performance of 108.0 × 109 DP FLOPs per second, or
65 × 106 operations in 598 µs. This is about 115 % of the effort calculated with the model in
equation (5.14).

Note that from the publication, it is not clear whether DP or single precision (SP) was used for
the implementation. With SP, the same hardware can handle twice the number of operations per
second. That results in approximately 230 % of the effort calculated by our model. However, the
efficiency of signal processing greatly depends on the applied optimization.1 Thereby, it can be
assumed that the measured effort could be reduced by further optimization.

1For example, Tan et al. [Tan+11] realized speedups up to factor 50.
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C Tuning of the Proposed System

The proposed system has two tuning parameters 4step and ?off, which were defined in section 5.6.3.4.
These influence the control loop used to predict the efficiency threshold 4min. In this appendix, the
configuration of these parameters is studied. Thereto, the same scenario is used as in section 6.1,
i. e. a full-buffer traffic model with frequency selective RA and 100 ms simulated time.

The main metric applied for these evaluations is the PF utility, i. e. the average of the logarithmized
UE rates. This is used to avoid to be influenced by changes in the fairness, i. e. resources being
shifted to cell border users or away from them. In contrast to the main evaluations in chapter 6,
the focus of this appendix is not to provide easily interpretable metrics, but to facilitate a technical
comparison. To be independent of the absolute value of the utility for a certain amount of
compute resources, the utility is compared to the utility achieved with opt. per subframe, which
was defined in section 6.2.2.3. This means that, for each amount of compute resources, the utility
achieved with opt. per subframe is subtracted from all other utility values.1

As a second metric, the error of the total compute load resulting from the prediction is evaluated.
This is calculated as ?err = ?real

total − ?max. In case ?err > 0, the system is in overload and has to
skip the encoding for some UEs. Otherwise, i. e. whenever ?err < 0, compute resources are not
fully utilized. To gain insight into the performance of the prediction component, the empirical
CDF of this metric is plotted.

For the first study, the step size 4step is evaluated while the offset is fixed at ?off = 0. Figures C.1a
and C.1b show the difference of the UE utility and the error of the compute load, respectively.
In figure C.1a can be seen that the step size has only marginal impact on the performance. In
general, a large step size hinders the system to adapt closely to the optimal threshold. This is
visible especially for 50 % to 60 % compute resources, where the optimal efficiency threshold is
low. The lower the step size, the better the system can adapt to the optimal threshold. However,
for very low thresholds and few available compute resources, the system does not reach the
optimal threshold during the simulated warm-up time of 10 s.

The CDF of the error of the compute load supports this interpretation. Figure C.1b shows that
all configurations have a median error of 0 %, i. e. they over- and underestimate the compute
load with the same probability. For large step sizes, the curves become more flat, because there
a close adaptation is not possible. The curves are steeper for smaller step sizes, but do not
improve further for values of 4step < 0.1. This can be explained by the inherent variability of the

1The method used to calculate confidence intervals is the same as the one described in section 6.1.1 for relative
differences. That means that, first, the difference in utility is calculated for each UE. These values are averaged per
drop, and the confidence intervals are calculated from the drop-averages.
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Figure C.1: Evaluation of the step size 4step (?off = 0)

system, which is not covered by the prediction mechanism. Consequently, the threshold step size
4step = 0.1 is selected for the further studies.

The second study evaluates the effect of different values for the offset ?off, while the configuration
of the step size is fixed to 4step = 0.1. Under constant conditions, ?off = 0 results in skipping
a single UE every second subframe. A larger offset adds a safety margin, i. e. the resulting
value of the threshold is higher. This results in a more restrictive MIMO mode selection, and
consequently less compute resources are used. Thus, a larger offset can be used to avoid skipping
at the cost of a reduced utilization of compute resources.

Figures C.2a and C.2b show the error of the compute load resulting from prediction for 20 %
and 60 % compute resources, respectively. In general, the CDFs for ?max = 20 % are steeper
than those for ?max = 60 %. As expected, the CDFs of ?err is shifted by the value of −?off.
Consequently, the occurrences of ?err > 0, i. e. overload situations which result in skipping,
become more infrequent. With suitable configurations (e. g. ?off = 1.5 % for ?max = 20 %),
skipping can almost be avoided. At the same time, the available compute resources are utilized
less efficiently. The area between the CDF, the x-axis (i. e., the lower border of the chart) and the
y-axis (i. e., the vertical line at ?err = 0) can be interpreted as the wasted compute capacity.

The effect this shifting has on the PF utility can be seen in figure C.3. Whenever the system can
use large amounts of compute resources, the error of the compute load is larger (the CDFs are
less steep). Consequently, it benefits from moderate offset values. However, the same offset
values result in reduced performance for ?max < 40 %. There, the error of the prediction is lower,
and the effect of the inefficient utilization of the available resources dominates. When increasing
the offset to values above 1.5 %, no improvement is visible for any compute resource limit.

Summarizing, there is no single optimal value of ?off. As a compromise, the value ?off = 0.25 %
is used for the studies in chapter 6. Compared to ?off = 0 %, this improves the utility for the
range of 40 % to 70 % compute resources. At the same time, the drop of utility for less compute
resources is not too severe. The design of a more elaborate control loop could facilitate a more
efficient adaptation of the threshold over the whole range of compute resource limits.
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