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Abstract—To cope with highly loaded networks in diverse
traffic situations, planning the scheduling for future time slots is
an efficient approach [1]. However, such Lookahead scheduling
relies on future Channel Quality Information (CQI), which
has to be accurately predicted. In this paper, we introduce a
generic model for channel prediction errors. With this model,
we study how the performance of Lookahead scheduling depends
on channel prediction’s accuracy. Finally, we propose a simple
channel predictor. This predictor provides high accuracy, is easy
to implement and of low complexity. Consequently, it is a large
step in making Lookahead scheduling feasible.

I. INTRODUCTION

Today, users request high throughput and low delay even
in cellular networks. This tremendous increase in traffic load
results from:

• Users that generate more traffic and spend longer time
with their device [2], [3].

• New applications and multitasking operation systems,
leading to traffic patterns that are difficult to model and
to predict [3], [4].

• Modern applications that heavily use IP, thus, forcing the
base station’s scheduler to treat their flows as best effort.
This ignores the applications’ individual delay and rate
requirements which decreases Quality of Service (QoS)
and wastes capacity.

To cope with these problems, we proposed Lookahead sched-
uling in [5]. This new type of scheduler exploits application
layer knowledge to trade off delay and throughput for each
application [1].

Instead of allocating the upcoming time slot to user packets,
this scheduler plans the allocation of a set of packets (called
transaction) to multiple time slots in advance. For these time
slots, the Channel Quality Information (CQI) has to be known
prior to allocation. Thus, the performance of Lookahead
scheduling relies on CQI prediction. In this paper, we study
how the errors of practical prediction affect the scheduler’s
performance.

A. Contributions

To understand how vulnerable Lookahead scheduling is to
practical CQI prediction we:

1) Propose a generic predictor model: This model allows
to study the estimation error of arbitrary unbiased pre-
dictors.

2) Use this model to study the performance of the Looka-
head scheduling heuristic introduced in [1].

3) Employ average-based CQI prediction for Lookahead
scheduling: Comparing it to ideal prediction shows a
negligible throughput loss.

From these contributions, we conclude that simple average-
based CQI prediction is sufficient for practical Lookahead
schedulers.

B. Related work

The related work falls in two categories. First, filter algo-
rithms for CQI prediction are extensively treated in standard
literature [6] and used in commercial products. In [7], the
authors studied the impact of linear predictors on the perfor-
mance of a downlink OFDMA channel. High throughput gains
where observed when this simple predictor was combined with
an Orthogonal Frequency-Division Multiple Access (OFDMA)
subcarrier allocation heuristic. Similar gains were found in
[8] for optimal OFDMA subcarrier allocation. Unlike this
work, we focus on Lookahead schedulers that do not perform
a subcarrier allocation for the next time slot but schedule
multiple slots in advance on the full frequency band.

The second category of related work is CQI predictor
models for simulation. Such models are widely used to abstract
the Physical layer (PHY) in higher layer simulators and are
described in, e.g., [9]. By generalizing the models of [9]
as in Section III-B, we can now study arbitrary unbiased
CQI predictors. This increases modeling flexibility and can
be useful beyond the scope of this paper.

C. Structure

In Section II we describe our scenario, traffic assumptions,
channel model, the utility-based QoS model, and the Looka-
head scheduler. We introduce our generic predictor model and
the practical average-based predictor in Section III. Simulation
results for utility and throughput are presented and discussed
in Section IV. In Section V we draw our conclusions.

II. SYSTEM MODEL

A. Scenario

We evaluate the predictors and schedulers with an event-
based system level simulator for 3GPP Long Term Evolution
(LTE) systems. For a summary of the parameters of our
simulations see Table I.



TABLE I
SYSTEM MODEL PARAMETERS

Property Value
BS/UE height 32 m / 1.5 m

Frequency 10 MHz @ 2 GHz
BS TX power 46 dBm

Antenna model Isotropic
Path loss 128.1 + 37.6 log10(d), d distance in km [10]

Shadowing 8 dB log-normal, correlation distance 50 m
Multi-path prop. Rayleigh fading with Jakes-like temporal

correlation [11], frequency-selective
fading with Vehicular A channel taps [12]

UE velocity 10 km/h for radio channel effects
Link adaptation Shannon, SINR clipped at 20 dB

We model the effects of channel variations and degradations
due to shadowing, multi-path fast fading, and interference from
neighbor cells. To focus on scheduling, we neglect control
loops such as Automatic Repeat-Request (ARQ), handover,
uplink, and Transmission Control Protocol (TCP).

We evaluate 20 User Equipments (UEs) in the center cell
of a hexagonal cell layout. We place the UEs randomly over
this cell on the start of each simulation drop, following a
uniform distribution. At an inter-cell distance of 1 km, a ring
of 6 neighboring cells cause interference by transmitting with
constant power. The interference received by a UE depends
on its individual position, which does not change during one
simulation drop. However, we account for the effects of the
UE’s velocity in the channel model. Shadowing causes the
channel to vary at a timescale of seconds and the multi-path
fast fading causes variations with a coherence time of ≈ 12 ms.

The scheduler operates per Transmission Time Interval
(TTI) of 1 ms and allocates all subcarriers to a single UE.
Rate adaptation follows Shannon’s equation but is clipped to
account for the highest possible modulation order.

B. Traffic Model

We model Hyper-Text Transfer Protocol (HTTP) and File
Transfer Protocol (FTP) traffic. This accounts for web surfing
and file downloads, which contribute to the majority of best-
effort traffic on mobile devices [2].

We use the traffic models from [13]. One transaction is
either the download of a single object using FTP or the
download of a web page including its embedded objects using
HTTP. These models use truncated log-normal distributions
for the size of objects, with the parameters given in Table II.
The number of embedded objects belonging to a web page is
drawn from a truncated Pareto distribution (mean 5.64 objects,
maximum 53 objects).

While 90% of the transactions are HTTP transactions,
this accounts only for 20% of the data volume. Since FTP
downloads have a larger data volume, they account for the
remaining 80%. We model the Inter-Arrival Time (IAT) of
the transactions to be a negative exponential process with
rate λ = 3/4 s−1 per user which leads to an average offered
load of 30.5 MBit/s. One user can have multiple unfinished
transactions at a time, which models modern Smartphones with
many applications that run in parallel.

TABLE II
PARAMETERS FOR TRAFFIC MODEL DISTRIBUTIONS [13]

Object type µ σ minimum maximum
FTP 14.45 0.35 0 5 MBytes

HTTP main obj. 8.37 1.37 100 Bytes 2 MBytes
HTTP embedded obj. 6.17 2.36 50 Bytes 2 MBytes

C. Utility Functions

We formalize the user’s QoS demand by a time-utility
function [14] which assigns a utility value to a transaction
finish time. Parameters for this QoS model can be obtained
from studies of the user’s delay acceptance such as [15], [16].

We model this quality degradation by a logistic time-utility
function which is monotonically decreasing and has an inverse
S-shape:

U(t) =
1

1 + e(t−tinfl)k
(1)

where t is the finish time of the transaction, tinfl is the time
of the inflection point, and k scales the steepness of the curve.
We obtain these parameters in (1) from values, depending on
each transaction:

tinfl = tstart + x · (texp − tstart) (2)

k =
dexp

(1− x)L
ln

(
1

U(texp)
− 1

)
(3)

texp = tstart +
L

dexp
(4)

The time tstart is the time, when this transaction arrives at the
scheduler. The users expectation, when the transaction should
be finished, is expressed by texp which depends on the data
size L of this transaction and the data rate dexp the user expects
to obtain for good experience. We model such experience by a
high utility value U(texp). We use the parameter x to configure
the steepness and solve for k accordingly.

We configure the requirements of the transactions as fol-
lows: The expected rate dexp is set to 6 MBit/s for foreground
(HTTP) and 3 MBit/s for background (FTP) transactions. The
expected utility U(texp) is set to 0.95. The parameter x is
set to 5.4462 for foreground and to 5.7799 for background
transactions. This configuration is reasoned in detail in [1].
We observed that our algorithms yield similar results for other
choices of the utility functions.

In cases where the system is overloaded some transactions
never finish. To be able to include these transactions in
the evaluation, transactions are dropped when their utility
value has fallen below a threshold of Udrop = 0.01. Dropped
transactions are accounted for with a utility of U = 0.

D. Lookahead Scheduling

The aim of our scheduling heuristic is to increase the sum
of the utility over all transactions. Therefore, we schedule
transactions instead of packets. Doing so reduces interleaving
of transactions and thereby reduces the average finish time.

Our algorithm consists of two components. First, it selects
the transactions’ serving order such that the utility increases.



The second component incorporates the short term channel
variations. This second step can override the decision of the
first component if users with high priority (first component)
have poor CQI. In the following, we describe both components
and their combination.

1) Sequence selection: Assume that T is the set of trans-
actions known to the basestation at time t0, with |T | = NT .
We define an arbitrary sequence of all transactions S :
{1, 2, . . . , NT } → T . The sequence S can be written as
S = (n1, n2, . . . , nNT

) with nj ∈ T being the transaction
at index j. The sum utility of the sequence S is defined as

Utotal(S) =

NT∑
j=0

Unj (tfin,j) (5)

where Unj
(t) is the utility function of transaction nj evaluated

at time t and tfin,j is the predicted finish time of the transaction
nj in sequence S. The finish times of the transactions depend
on the order of the sequence and on the predicted channel
capacities for the respective mobiles. They are calculated such
that they fulfill

tfin,j−1∑
τ=tstart,j

rnj
(t0 + τ) < snj

≤
tfin,j∑

τ=tstart,j

rnj
(t0 + τ) (6)

where snj is the size of transaction nj in bytes,

tstart,j =

{
t0 for j = 0
tfin,j−1 + 1 otherwise (7)

is the starting time of transaction nj , and rnj
(t) is the rate

which can be transmitted at time t to the mobile which owns
the transaction nj in bytes per TTI.

We aim to choose the serving sequence such that the sum
utility increases. This task is performed by an evolutionary
algorithm as follows:

1) Start with a sequence Sold. This is random for the first
TTI. For the following TTIs, use the sequence Sbest

determined in the previous TTI and append or remove
transactions to adapt to the changes in T .

2) Create a sequence Snew which is derived from Sold, but
modified randomly.

3) If Utotal(Snew) > Utotal(Sold) then replace Sold with
Snew, otherwise keep Sold.

4) Repeat steps (2) and (3) for NI iterations.
The resulting sequence is called Sbest.

2) Combination of sequence with proportional fair: The
Proportional Fair (PF) scheduling weight wn(t) of transaction
n at time t is determined as follows

wn(t) =
rn(t)

rn(t)
(8)

where rn(t) is the moving average of the data rate, which is
updated in each TTI:

rn(t) = αpfrn(t− 1) + (1− αpf)rupdate,n(t− 1) (9)

The value rupdate,n(t−1) is set to rn(t−1) if the user owning
n was served at time t−1, otherwise to 0. The parameter αpf

determines the time scale over which the average is calculated.
Based on that, the combined weight vnj

of transaction nj at
position j in the sequence Sbest is calculated as follows

∀j : vnj = wnj (t)− p · (j − 1) (10)

where p ∈ [0,∞) is called penalty-factor. The transaction with
the maximum vn is served in the current TTI. The scheduling
process, including sequence selection, is repeated in each TTI.

The free parameter p trades off the influence of the sequence
versus the PF weight. For p = 0, the transaction sequence
has no influence on vn, for p → ∞ the first transaction in
the sequence is served independently of the proportional fair
weight wn.

III. CHANNEL PREDICTORS

As described above, the scheduling heuristic uses the rate
rn(t) of transmissions in future TTIs to choose a beneficial
sequence of transactions. We introduce three predictor models
to analyze the influence of imperfect channel prediction on
that heuristic.

To measure the prediction accuracy, we present a generic
simulation model for estimation errors. This model allows
us to evaluate the performance of Lookahead scheduling for
various CQI prediction errors. Then, we propose a simple
prediction algorithm that is based on the latest CQI value, e.g.,
observed from CQI feedback. We use the following notation:

• t0 ∈ N: The time (in number of TTIs since start of the
simulation) of performing the estimation.

• τ ∈ N: The time offset (in number of TTIs) for which
the channel is predicted, τ >= 0.

• γreal(t): The real Signal to Interference-plus-Noise Ratio
(SINR) at time t in logarithmic scale.

A. Ideal predictor model

The baseline is given by full channel knowledge at the base
station scheduler. We denote this case as

γideal(τ, t0) = γreal(t0 + τ) (11)

and call it ideal CQI.

B. Generic predictor model

We design the generic model for the channel predictor γgen

to approximate the behavior of feasible prediction mecha-
nisms. This allows us to study how the performance of a
Lookahead scheduling algorithm depends on the prediction
accuracy, without restricting to a special realization of a
prediction mechanism. To draw valid conclusions, we have
to avoid that the scheduling algorithm under investigation
implicitly exploits properties of the prediction error model
which would not occur with real predictors.

We model γgen as a weighted combination of the future
channel quality γreal(t0 + τ) and a random error γerr(t0, τ),
where γreal(t1) and γerr(t2, τ) are uncorrelated for all values
of t1, t2, and τ . By setting the weight, we define the accuracy
of the hypothetical prediction mechanism.



The error γerr has to be random, because otherwise (e.g.
if using the long-term average γerr = γreal) the scheduler
could improve the estimation by amplifying the difference of
the estimation to the non-random value. It is required that
γerr(t0, τ) = γerr(t0 + ∆t, τ − ∆t) = γerr(t0 + τ, 0), so
that the scheduler cannot improve the estimation by averaging
over multiple predictions for the same TTI t0 + τ . Thus, the
value of γerr for an absolute time instant remains the same
for all observation times t0. As a consequence, we omit the
second parameter and write γerr(t0 + τ). In addition, the error
γerr has to have the same auto-correlation function as γreal to
assure that the scheduler does not improve the estimation by
averaging over τ .

We assume that the prediction error γgen(t) − γreal(t) fol-
lows a normal distribution. As γreal(t) is normally distributed,
γgen(t) also has to follow a normal distribution. The predictor
needs to be unbiased and needs to have the same variance as
the predicted value:

E (γreal(t)) = E (γgen(t)) (12)
Var (γreal(t)) = Var (γgen(t)) (13)

As mentioned above, the predictor model is formed by
combining γreal and γerr:

γgen(τ, t0) = a · γreal(t0 + τ) + b · γerr(t0 + τ) + c (14)

The random process γerr(t), which is independent and
identically distributed as γreal(t), produces the estimation
error. With a weight w(τ) controlling the size of the estimation
error, the parameters a, b, and c are determined such that the
conditions (12) and (13) are fulfilled:

a =
√

1− w2(τ)

b = w(τ) (15)
c = (1− a− b) · γreal

Ideal prediction is modeled with w(τ) = 0, whereas
w(τ) = wmax models an estimation without knowledge. We
determine wmax such that the maximum prediction error is not
higher than if the predictor is predicting the long-term average
channel quality γreal:

Var (γreal(t)− γgen(t)) ≤ Var (γreal(t)− γreal) (16)

With (12) to (15), this results in

w ≤
√

3/4 (17)

Therefore:
wmax =

√
3/4 (18)

We model a hypothetical channel prediction algorithm
which shows a prediction error that increases with τ :

w(τ) = min(wmax, s · τ) (19)

The value of s controls how fast the estimation error
increases. For s = 0, we model the ideal channel pre-
diction. With s = wmax the estimation error immediately
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Fig. 1. MSE of the generic predictor model, for illustration. The model pa-
rameter s configures how the prediction performance degrades with increasing
time offset τ .
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Fig. 2. MSE of the average predictor. The filter coefficient α configures how
quickly the average value adapts to the current channel situation. For α = 0,
only the current CQI is used, for α→ 1 the long term average is used.

rises to its maximum value for all τ > 0. We are not
interested in a non-ideal knowledge of the current chan-
nel situation, therefore w(0) = 0, which is independent
of s. By adding a constant offset to w, the model could
be extended to include inaccuracies from channel mea-
surement and signaling. Figure 1 illustrates the behavior
of Mean Squared Error (MSE) of the generic predictor
model. The parameter s defines the gradient of the MSE
curve.

C. Average predictor

The average predictor uses an auto-regressive filter on
the current channel quality. Filtering the previous channel
measurements averages-out short term variations (small scale
fading). The coefficient α controls the filter’s attenuation:

γavg(τ, t0) = γar(t0) with (20)
γar(t0) = αγar(t0 − 1) + (1− α)γreal(t0)

The prediction is independent of τ , i.e. the filter predicts a
constant value for all future TTIs.
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Fig. 3. Utility with generic predictor model, utility with ideal prediction
shown as reference. With increasing the prediction error s, utility degrades
only slightly. PF is not aware of utility functions and achieves an average
utility of 0.35 (not shown).
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Fig. 4. Throughput with generic predictor model, throughput with ideal
prediction shown as reference. When increasing the prediction error s,
throughput reduces by 2.7 %.

Figure 2 shows the mean square error of the average
predictor for different filter coefficients. For α = 0, the current
channel value is predicted, and no filtering is performed.
Therefore, the predictor performs well for τ < 10 ms as the
channel’s auto-correlation is high within the coherence time
of ≈ 12 ms. Beyond the correlation run-length of fast fading,
i.e., τ > 10 ms, the prediction is not accurate.

With α ≈ 0.98, the inverse cut-off frequency of the filter
lies between the correlation run-lengths of fast fading and
shadowing. Here, the filter removes the fast-fading fluctuations
but follows the shadowing. This improves prediction accuracy
for τ > 10 ms but is less accurate for τ < 10 ms. With larger
values for α, the filter also attenuates shadowing fluctuations.
This degrades the prediction performance for relevant ranges
of τ .
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Fig. 5. Utility with average predictor, utility with ideal prediction shown as
reference. Best utility is achieved when α is set such that the filter removes
the fluctuations by fast-fading but follows the shadowing. PF is not aware of
utility functions and achieves an average utility of 0.35 (not shown).
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Fig. 6. Throughput with average predictor, throughput with ideal prediction
(right bar) and with prop. fair (green line) shown as reference. With increasing
α, the predictor disregards knowledge of the current channel quality, which
hinders channel adaptation.

IV. PERFORMANCE EVALUATION

We first evaluate the influence of channel prediction on
the performance of the Lookahead scheduler by simulation
with the generic model. Then, we evaluate the performance of
the same scheduler with the realistic channel predictors using
the model from Section II. Based on the results in [1], the
scheduler is configured as follows: NI is set to 400, as with
this value the performance has converged to the maximum
for the simulated traffic load. The penalty-factor p is set to
1, which offers a beneficial trade-off between utility and cell
throughput. The PF coefficient αpf is set to 0.999.

We evaluate two metrics. Cell throughput, averaged over
all TTIs and independent replications, and the transaction
utility. The latter is defined as the arithmetic mean over the
utility achieved by all transactions in the cell, which are either
completely served or dropped within the simulation time.

Figure 3 shows the performance of the scheduling heuristic
in average utility. We see that, when the prediction accuracy
decreases (i.e., increasing s), the average utility only slightly
degrades.



As for the utility, increasing s degrades the cell throughput
by 2.7 % in comparison to ideal channel prediction (cp.
Figure 4). While scheduling can still adapt to short-term CQI,
the serving order of the transactions is not adapted to the
real channel quality. Since now only the second (short-term)
component of the heuristic is aware of the channel, the overall
cell throughput degrades.

After investigating the performance with the generic predic-
tor model, we now apply the realizable predictor. We focus on
three values of α. For α = 0, only the current channel value
is used and no filtering is performed. For α = 0.98, the filter
removes the fluctuations by small-scale fading but follows
shadowing. The MSE performance of these parametrizations
is the best in the regions of τ < 10 ms and τ > 10 ms,
respectively. For comparison, we also show results for α→ 1,
which completely ignores instantaneous CQI.

Figure 5 shows the utility performance of the Lookahead
scheduler for these configurations of the average predictor.
For all cases, the Lookahead scheduler outperforms simple
PF scheduling which is not aware of utility functions and
achieves an average utility of 0.35. Setting α = 0 performs
worst in terms of utility as this prefers UEs with a currently
good channel and impairs the stability of planning ahead.
With α = 0.98, the performance can be slightly increased
beyond ideal CQI. This is because the AR-filter reduces
the fluctuations in channel quality and, thus, simplifies the
sequence selection. Further increasing α towards 1 reduces
the utility performance again, because prediction accuracy
degrades and the real channel variations are strongly absorbed.
Thus, time-shifting of transactions based on this knowledge is
not advantageous anymore.

Besides utility, we show the cell throughput results in
Figure 6. The reference line gives the throughput result of
PF which equals to the result with ideal channel prediction in
this simulation. Except for α→ 1, the throughput performance
is similar. The poor performance with α → 1 results from
reducing the instantaneous CQI to average channel quality.
Then, the scheduler does not consider channel fluctuations to
decide when a transaction should be served.

As shown, α = 0.98 leads to the highest utility and
throughput. Fortunately, the Lookahead scheduler proves ro-
bust against impairments in channel prediction accuracy and
shows a graceful degradation for different values of α. All in
all, simple prediction algorithms with periodic CQI updates are
sufficient for Lookahead scheduling. The large utility gains,
compared to PF, can be sustained even with non-ideal CQI.
Consequently, the performance of a Lookahead scheduler is
mainly affected by accurate knowledge of the average CQI
and of the transaction properties.

V. CONCLUSION

From the above results we conclude that simple CQI predic-
tors, such as a moving average filter, are powerful companions
to new schedulers. Although CQI updates are more valuable
than sophisticated predictors, the average-based predictor still
provides acceptable performance while adding no overhead for
CQI feedback.

The performance degradation with our simple predictor
is still acceptable when compared to full CQI knowledge.
This is even the case when large transaction sizes require a
long prediction window. Consequently, simple predictors are
a feasible link layer extension to profit from the gains of
Lookahead scheduling.
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