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Abstract—The tremendous increase of mobile user traffic load
within the last few years forces us to efficiently use the wireless
network and processing resources. Cloud computing and virtual-
ization techniques offer an exciting opportunity to considerably
reduce operation costs and provide flexible and dynamic systems.
In this paper we present a simulation study for a cloud base
station, which concentrates baseband processing functions of
multiple radio sites. There we focus on the multiplexing-gains
induced from user load and traffic heterogeneity. Our simulation
results show that the data traffic influences the variance of
the compute resource utilization, which in consequence leads to
significant multiplexing gains if multiple sectors are aggregated
into one single cloud base station. In addition, the spatial user
distribution has a high impact on the compute resource load.
These findings should be taken into account for the assessment
of multiplexing gains in real networks.

I. INTRODUCTION

During the last few years, the Internet as well as mobile
terminals like smartphones and tablets have reached the mobile
networks [1]. The numbers of mobile broadband subscribers
using at least 3G bitrates have dramatically grown and between
2011 and 2012 the global wireless traffic has increased by 70
percent [2]. Applications like social networking and video have
become popular and lead to new consumption paradigms and
growing traffic demands within wireless networks [1], [2]. This
fast increase in user traffic requires additional compute and
transmission resources and network operators are confronted
with expensive investments and high operation costs for radio
access systems. Studies show that this trend will intensify due
to the increasing number of 4G connections, which generate
in average much more traffic than non-4G connections [2].

To satisfy the traffic demands and maintain or even improve
the operators’ economic perspective, intelligent systems and
mechanisms are required, which support an effective use of
the wireless network and compute resources. Emerging tech-
nologies like cloud computing and flexible sharing of resources
through virtualization enable us to offer adaptive and dynamic
systems. Simultaneously, they are able to reduce the operation
costs significantly.

In [3], the authors propose the Centralized RAN (C-RAN)
concept as a further development of the Radio Access Network
(RAN). The approach moves the base station into the cloud and
separates the radio units. By centralizing compute resources,
the number of sites for baseband processing can be reduced
considerably. This approach provides a concentration of base
station functions, which also reduces backhaul connections and

lowers maintenance costs. Unlike conventional radio access
systems, where each antenna has dedicated compute resources,
the mobile cloud system dynamically assigns compute re-
sources to Remote Radio Heads (RRHs).

Conventionally, a base station is dimensioned to process
maximum busy hour traffic for the respective radio cells.
However, typical cellular deployments consist of cells of
various sizes with heterogeneous traffic characteristics with
different peak traffic loads. In addition, there are movements
over time from areas at the periphery to the center of the cell
cluster and vice versa [4]. These traffic variations in time and
area hold a considerable potential for multiplexing gains by
pooling compute resources.

The cloud base station concept introduced in [5] constitutes
the base of the investigations in this paper. The future cloud-
based RAN architecture has been derived to support flexible
pooling on user respectively bearer level. This means that
the dedicated user processing per user or per radio bearer in
uplink and downlink are virtualized. If required, e.g. in order
to reduce blocking, the computational effort for the dedicated
user processing is offloaded to remote processors within the
same Multi-Site/Multi-Standard Base Band Unit (MSS-BBU)
or even to processors in remote pools.

Figure 1 depicts the future RAN architecture comprising
multiple RRHs connected with high speed optical links to
the associated MSS-BBU. Each MSS-BBU comprises several
Base Band Units (BBUs). Multiple MSS-BBUs can be inter-
connected with each other via high speed optical links, e.g.
via eX2, an enhancement of the X2-interface. In each MSS-
BBU, a Distributed Cloud Controller (DCC) decides whether
the processing of a bearer can be performed by a BBU within
the MSS-BBU or by a BBU of a neighbor MSS-BBU.

In this publication, we present a detailed multi-layer model
which describes data traffic, user distribution, mobile radio
network, and compute resource requirements. Based on this
model, we evaluate by simulation the short-term pooling
effects induced from user load distribution and traffic hetero-
geneity within one cluster. The traffic and the corresponding
compute effort vary over time and load peaks do not occur
simultaneously in different cells. From the simulations we
derive how this multiplexing gain scales with the number of
aggregated cells. In addition, we investigate the influence of
the spatial user distribution on the utilized compute resources.

Similar studies as ours have been performed in [6] and
[7]. Both evaluate compute resource utilization with different



Fig. 1. Future cloud-based RAN architecture.

models for the compute effort. To assess the influence of
the traffic, the authors of [6] use traffic measurements from
a real Wideband Code Division Multiple Access (WCDMA)
network. However, the data throughput could be measured
only at coarse intervals of 15 minutes. This limits the level of
detail available for the evaluation. Besides they do not provide
any insight into the distribution of users over the area. The
authors of [7] use the NGMN traffic model [8]. While focusing
on the architecture, they did not investigate the influence of
the number of aggregated sectors. In addition, they simply
modeled a homogeneous user distribution.

In Section II, we give an overview of the user system
model, comprising the user load distribution, the data traffic
model, and the radio network model. Furthermore, we intro-
duce our computation resource model derived from [9]. Then,
Section III gives the simulation results for the load operation
point in dependence of the offered traffic and user distribution.
Finally, we conclude the paper in Section IV.

II. EVALUATION METHODOLOGY

The aim of our studies is to analyze the possible multi-
plexing gain for RAN compute resources due to pooling of
baseband resources. Therefore, we need to capture all influ-
encing factors on the compute resource usage, namely the user
and traffic model, the radio network model, and the compute
resource usage model. With this model, we can then evaluate
the multiplexing gain. Beyond that it may also be used to
optimize the position of MSS-BBUs and the allocation of cells
to MSS-BBUs. In our simulations, we assume unrestricted
compute resources and study their utilization. Given that the
operator accepts a certain probability that the capacity of the
radio system is limited by compute resources, we are able to
estimate possible savings of compute resources by looking at
percentiles of the resource utilization.

We assume a 10 MHz LTE system. The base stations are
placed in a hexagonal arrangement of 19 sites. Each base
station supplies three sector cells, resulting in 57 sectors. We
apply wrap-around to avoid border effects. In our simulations,
we concentrate on downlink transmissions. Although uplink
also causes high computational effort at the base station, it

behaves similar as the downlink direction. For each evaluation,
we compute a total of 10000 s (about 2.8 hours) of simulated
time. To avoid transient effects, we prepend 500 s of transient
time and do not utilize the output from this phase. Such
long simulation times are required to eliminate distortions
introduced by large downloads which require significant trans-
mission time.

A. User and Traffic Model

The traffic model has a large influence on the resource
usage. Opposed to a full buffer assumption, real Internet traffic
is bursty and has a heavy-tailed object size distribution [10].
This leads to a fast-varying number of active users within a
cell. As the traffic in the individual cells contributes to the
behavior of the aggregated traffic a BBU has to handle, it
is important to have a proper model for the per-user traffic
demands.

We model traffic as pairs of request and response objects.
This covers many of today’s Internet applications. The objects
are transmitted as quickly as possible, i.e. there is no rate
limitation introduced by the sender. As we concentrate on
the downlink in this publication, the uplink objects are not
discussed further. Our model is based on the assumption that
the network load is caused by a high number of independent
users. The Inter-Arrival Time (IAT) of these request-response
pairs follows a negative exponential distribution and is used to
control the offered traffic in the system. We use an object size
distribution measured on a campus link [10]. To avoid prob-
lems arising from very large objects, we clip the distribution
at 108 bytes. Thereby, we cut off a part of the heavy tail of the
distribution. However, objects above this size contribute only
0.7 % of the traffic volume.

Besides the traffic properties, in a cellular system, the
location of the users is also important. To build an efficient
network, an operator has to adapt the cell density to the
traffic load per area. This results in an approximately equal
load per cell. However, the planning is inaccurate, and the
setup of new cells may be delayed to save cost or because of
regulatory issues. In addition, the load typically changes over
day. As a consequence, the cell density does not always match
the user distribution. We model this with a configurable non-
uniform user distribution by choosing the user location from
a combination of a uniform and a non-uniform distribution.
Uniform means that users are evenly spread over the whole
area. The non-uniform part models a hot-spot situation, where
the user density follows a normal distribution in the x- and y-
dimension with the mean placed at the center of the scenario.
We fixed the standard deviation of these normal distributions
to 350 m, resulting in a broad hot-spot covering the area of the
central site. By adjusting the ratio between the uniformly and
the non-uniformly placed users, we can vary the unevenness in
the user distribution. In the simulations, the user distribution
is parameterized by the proportion of uniformly placed users.
The remaining users are placed according to the normal
distribution. To avoid spending a high number of resources
for users with very low channel quality, we drop requests
originating from mobiles which have an average SINR below
-3.9 dB. This results in an outage of about 5 %.

In order to simulate changing user locations, each request
originates from a new user with a new location. During



TABLE I. SYSTEM MODEL PARAMETERS

Property Value
Cellular layout 19 sites, 3-sectors per site, wrap-around
Inter BS distance 500 m
BS TX power 46 dBm
UE TX power 23 dBm
BS/UE height 32 m / 1.5 m
Path-loss [dB] 128.1+37.6·log10 d[km], from [12]
BS Antenna model 2D, 70◦ beamwidth
Shadowing 8 dB log-normal
UE velocity 0 km/h; for fast fading model: 3 km/h
Carrier frequency 2 GHz
System bandwidth 10 MHz
Frame duration 1 ms
Min. SINR -3.9 dB

transmission, the users do not move. After the user has finished
his transmission, he leaves the system. Note that, as users with
low channel quality need more time to transmit their requests,
the density of active users is higher at the cell edge. We apply a
simple admission control, which drops arriving requests when
there are more than 100 users active in the sector.

For our scenario, we are interested in the effects at the
network layer and below. Therefore, we idealize transport layer
effects and assume that both, the request and response objects
arrive as a whole at the BBU respectively User Equipment
(UE) buffers.

B. Radio Network Model

Besides the user and traffic model, also the radio net-
work model is important to determine the required compute
resources for a cell. For the radio propagation, we consider
path-loss and shadowing. The parameterization of the radio
propagation is summarized in Table I and complies with
3GPP specifications. From the transmit power and the signal
degradation between all transmitters and the receiver as well as
the noise level, we determine the mean Signal-to-Interference-
and-Noise-Ratio (SINR) of a user.

With our system level simulation, we want to look at
effects on time scales of hundreds of seconds. Therefore,
due to the computational complexity, it is difficult to model
multipath-propagation. Instead, we use the model in [11] to
consider fast-fading and frequency-selective scheduling with
the commonly known proportional fair scheduler. This model
uses the number of active users and their respective mean
SINR to determine an effective SINR diversity gain. With the
enhanced SINR, we derive the possible rate on the channel
according to LTE Modulation and Coding Scheme (MCS). For
this, we use Block Error Rate (BLER) tables generated from
link layer simulations, including two Multiple-Input-Multiple-
Output (MIMO) modes. Above an SINR of about 4 dB, we use
2x2 spatial multiplexing MIMO. At lower channel qualities,
we apply Space-Frequency Block Coding (SFBC). We assume
ideal channel knowledge at the base station and apply a target
decode probability of 80 %. Failed transmissions are reinserted
into the sending buffer after 8 ms.

C. Computation Resource Model

From the traffic and radio network models, we know which
radio resources are actually in use and which transmission
mode has been chosen (e.g. MIMO-diversity, MCS). With this,
we are able to determine the required computational resources

per user, per cell and for a whole BBU with the computation
resource model described in the following.

In [9], the authors provide a detailed model of the power
consumption in base stations of different sizes (macro, micro,
pico, femto). They distinguish the components and functional-
ities of base stations in downlink and uplink. For the compo-
nents, [9] gives the power budget. For the functionalities, the
Giga Operations Per Second (GOPS) are defined per function
block and how they scale with load and transmission mode.

We use this model as a baseline and extend the model
according to our needs. Especially the numbers for computa-
tional complexity are of interest. First, we concentrate on the
compute resources for physical layer calculations (Frequency-
Domain processing (FD) and Forward Error Correction (FEC)
in their publication). We extend the model by the separation of
antennas and spatial MIMO layers: The computational effort
for FD still scales with the number of antennas. However,
we assume that the effort for FEC scales with the number
of MIMO layers. This means that the effort for FEC is not
significantly increased when a transmission uses SFBC instead
of Single-Input-Single-Output (SISO).

The authors of [9] use a reference system and specify all
input parameters relative to the reference values. In contrast,
we define the compute effort as a function of the absolute
values of the input parameters. To this end, we divide the
absolute values by the respective values of the reference
system. Then the following equation describes the compute
resource effort in GOPS Pu,t that is required to serve UE u
at time t:

Pu,t =

(
30Au,t + 10A2

u,t + 20
Mu,t

6
Cu,tLu,t

)
· Ru,t

50
(1)

where A is the number of used antennas, M the modulation
bits, C the code rate, L the number of spatial MIMO-layers
and R the number of Physical Resource Blocks (PRBs), each
as allocated to UE u at time t. Note that the baseline model
from [9] is based on an example implementation. The model
needs to be adapted for other implementations.

To derive the compute resource load for a sector or for
multiple sectors aggregated in an MSS-BBU, we sum up the
load of the respective users u ∈ U :

PU,t =
∑
u∈U

Pu,t (2)

III. SIMULATION RESULTS

In this section, we analyze the compute resource usage.
We assume unrestricted compute resources and evaluate their
utilization, determined by the user traffic, channel conditions,
and bandwidth resources.

In the following, we first derive operation points for the
later analysis, then we estimate the compute resource utiliza-
tion for a system with uniform user distribution and finally we
study the scenario with a non-uniform user distribution.
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Fig. 2. Number of parallel transmissions per
cell over total system load.
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Fig. 3. Proportion of requests dropped by
admission control over total system load.
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Fig. 4. Compute effort caused by a single sector,
for 60% system load.

A. System Load Operation Point

Depending on the user distribution, the system can handle
different maximum loads. If the users are distributed uniformly,
load is equally spread over all sectors, so that the system
capacity is high. When users are placed in the hotspot, the
load concentrates in the central site. For a certain load, the
central site becomes overloaded, and the admission control
starts to drop a significant number of requests. We think that
these conditions do not correspond to reality. Therefore, we
use a different load operation point for each user distribution,
which will be defined in the following paragraphs.

When the system load increases, the probability rises that
multiple users are concurrently active in the same sector. This
allows the system, for example, to utilize the channel diversity
and thereby acquire a scheduling gain. However, as the users
have to share resources with other users, the data rate achieved
by each user decreases. This results in a longer duration for
the users’ file transfers, which in turn raises the likelihood
that additional requests arrive before the previous ones are
completed. Without admission control, this could lead to a
system which becomes unresponsive under high load.

In the following figures, we depict the system behavior for
a uniform user distribution. For other user distributions, the
results are similar but the system capacity is lower. Figure 2
shows the number of parallel transmissions in dependence of
the offered load. At about 700MBit/s the offered load reaches
the system capacity which leads to a sudden increase in parallel
transmissions, as individual transmissions last longer. For an
offered load above 800MBit/s, the number saturates, because
admission control drops new requests when there are already
100 ongoing transmissions. This can also be seen in Figure 3,
which shows the ratio of dropped requests on a logarithmic
scale. Our aim is to define the load operation point where the
admission control has no noticeable effect on the simulation
results. For each user distribution, we set our load operation
point to 1% dropping ratio. This operation point is denoted as
100% system load in the following. For each user distribution,
we run a preliminary simulation with a simple control loop
steering the offered load to the desired admission control drop
ratio.

Table II shows the resulting load levels for different config-
urations of the user distribution. For later simulations, we also
use partial loads, which we define in relation to the respective
load operation point. Note that 100% load does not directly

TABLE II. LOAD OPERATION POINTS FOR THE USER DISTRIBUTIONS.

uniform users [%] system load [MBit/s]
100 769
80 553
60 423
40 340
20 282
0 242

correspond to the load where all PRBs just become occupied,
because (a) the load is not constant and (b) even if all PRBs
are used, more users could still be handled due to the gain
from channel dependent scheduling.

B. Compute Resource Usage for Uniform User Distribution

In a first evaluation, we investigate a uniform user dis-
tribution. In each sector, compute effort is spent to serve
transmissions to the UEs. Due to the web-like data traffic
behavior, a sector is typically either empty or all PRBs are
spent to serve one or more UEs as quickly as possible. There
are only some situations where few PRBs are sufficient to
transmit a small object or the remainder of a larger one.

When a sector is nearly empty, only few compute resources
are used. When all PRBs are occupied, the compute resource
requirement is mainly determined by the used MCS and MIMO
mode, which depends on the channel quality. Therefore, there
are two major factors which influence the compute effort: data
traffic and channel quality. Variations in the traffic load result
in strong fluctuations of the compute effort per cell. Compared
to that, the variations introduced by the channel quality are
smaller. An exemplary trace of the resource utilization of a
single sector is shown in Figure 4. The maximum possible
compute effort of 68.1 GOPS is defined by the compute
resource model (see subsection II-C) and the highest available
MCS and MIMO mode. Typically, this is not reached even if
all PRBs are used, because spatial multiplexing MIMO and
higher order modulations schemes are rarely used.

Figure 5 shows a trace of the compute effort required by
all 57 sectors in our simulation scenario for different load
configurations. As expected, compared to a single sector trace,
the sum of 57 sectors is more stable. When the system load
increases, the compute effort approaches a level of about
3050 GOPS. For high load scenarios, high interference is
caused for most transmissions, which limits the usage of
higher order modulation schemes and spatial multiplexing
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Fig. 6. CDF of the sum of the compute effort
caused by 57 sectors.
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Fig. 7. CDF of the sum of the compute effort
caused by different numbers of sectors, for a
system load of 60%. (x axis normalized)

MIMO. This prohibits higher compute resource utilization.
Figure 6 depicts the Cumulative Distribution Function (CDF)
corresponding to the traces in Figure 5, which shows the same
effect.

We now want to study how the aggregation of more sectors
smoothes the resulting compute effort. By pooling multiple
BBUs in one MSS-BBU, the overall load can be balanced.
This reduces the variations of the compute load and thereby
allows for a tighter dimensioning of the hardware resources.
In this publication, we assume that the compute resources are
homogeneous, i.e. there are no quantization effects and the
load can be accumulated ideally.

Figure 7 depicts the CDF of the compute load for different
numbers of aggregated sectors at a system load of 60 %. The
x axis is normalized to the compute load of a single sector.
As discussed above, a single sector is typically either nearly
empty or uses all available PRBs. The latter results in a
compute load depending on the MCS, typically between 50
and 60 GOPS. This is visible for the single sector case: In
23 % of the Transmission Time Intervals (TTIs), it does not
use compute resources at all and in about 60 % of the TTIs, the
sector uses 50 to 60 GOPS. Concentrating the compute load of
more sectors reduces the variance, because it is unlikely that
several sectors are simultaneously empty or that all sectors use
all available PRBs. For small numbers of aggregated sectors,
discrete states (full/empty) of the contained sectors are visible.

The dimensioning of the compute resources can be derived
from a percentile of the compute load. E.g. an operator
could decide to accept service degradation due to hardware
limitations in 1 % of the TTIs. The hardware would then be
dimensioned according to the 99 %-ile of the compute load,
which can be derived from Figure 7. Compared to the same
number of separate sectors, the aggregation of five sectors
would gain 9 %, 20 sectors would gain 20 % and 57 sectors
would gain 27 %. Note that, as we use a wrap-around scenario,
interference causes a correlation of load even across the border
of the scenario. In reality, such a correlation would not be
present. This could further increase the multiplexing gain.

From these simulations, we have seen that the variance of
the compute resource usage is mainly influenced by the data
traffic behavior. Beyond this, the aggregation of multiple sec-
tors in a single MSS-BBU can lead to significant multiplexing
gains for the compute resource utilization.

C. Compute Resource Usage for Non-Uniform User Distribu-
tion

Figure 8 shows the CDF of the sum of the compute effort
caused by 57 sectors for different user distributions. For each
configuration, the system is operated at 60 % system load (see
Table II). It is clearly visible that the compute load is much
higher for the uniform distribution. However, this is mostly
caused by the different load of the network. For a uniform user
distribution, the system can handle over three times more load
than for the configuration with 0 % uniformly placed users.
To separate the effects, we performed two distinct evaluations,
which are discussed in the following paragraphs.

First, we scaled the x axis of the curves in Figure 8 by the
offered load used for the respective simulation. The outcome
is shown in Figure 9. Even after scaling, 100 % uniformly
placed users result in the highest compute load per transmitted
bit. For more hotspot users, the average load is lower but
its variance is higher. This can be explained by the different
interference conditions: For the uniform user distribution, the
average SINR per received PRB is 5 dB. Caused by reduced
interference from lower loaded neighbor cells, the average
SINR per received PRB is 9 dB for 0 % uniformly placed users.
A lower SINR causes longer transmissions, resulting in an
increased computational effort per transmitted bit. In contrast,
a higher SINR allows to use spatial multiplexing MIMO and
higher order modulation schemes, which contributes to the
variance of the compute load.

In a second evaluation, we simulated all configurations of
the user distribution with the same offered load of 242 MBit/s,
which is feasible for all user distributions. For a uniform user
distribution, this results in a medium load per cell. For the non-
uniform configurations, the cells at the hotspot location are
highly loaded while the remaining cells are even lower loaded
than in the uniform case. Figure 10 shows the resulting CDF of
the compute effort. Here, the highest compute effort is caused
by the system with 0 % uniformly placed users. For more
uniform distributions, the average load reduces but variance
increases. This again can be explained by the SINR, which
is 10.4 dB in average for the uniform distribution and 6.4 dB
in average for the 0 % uniform case. These simulations have
shown that the spatial distribution of the load also influences
the compute resource usage. If multiplexing gains have to be
evaluated in real networks, the user distribution should be taken
into account.
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caused by 57 sectors, at 60 % of the respective
load operation point.
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Fig. 10. CDF of the sum of the compute effort
caused by 57 sectors, at a load of 242 MBit/s.

IV. CONCLUSION

In this publication, we have described a simulation model
which is capable of capturing the effects from data traffic, user
distribution, and radio transmissions. With our simulations we
have shown that in typical scenarios, the compute resource
utilization is limited to about 80 % of the theoretical maximum,
which is mainly caused by the channel conditions. We also
evaluated how the multiplexing gain increases when more
sectors are aggregated in a single MSS-BBU. While the
combination of five sectors already saves 9 %, the aggregation
of 57 sectors saves more than a quarter of the compute
resources. Finally, we have shown that the user distribution has
a strong influence on the utilization of the compute resources.
In future work, we plan to increase the size of the scenario
and integrate smaller cells, so that the model better resembles
typical urban network layouts. In addition, we will investigate
how the load balancing between multiple adjacent MSS-BBUs
can be achieved and what gains can be expected from this.
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