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Abstract-A promising architecture for future cellular mobile 
networks is to place remote radio heads on the cell towers and 
connect those via fibers with a centralized pool of baseband units. 
Among other things, the centralization of baseband computation 
facilitates multiplexing gains and can thereby save compute 
resources. To realize these gains, an efficient and load-balancing 
assignment of compute jobs to computation units is required. In 
contrast to approaches in literature, our architecture virtualizes 
the processing for each UE separately. It thereby provides a finer 
granularity and allows to newly decide the assignment of a com­
pute job to a processing unit whenever a UE starts transmitting 
data. In this publication, we present multiple heuristics to decide 
this assignment. We compare the efficiency of the assignment and 
the perceived service quality realized by the heuristics with an 
ideal assignment and the classical static cell-based assignment. 
Our evaluation shows that by using a good assignment heuristic, 
about 50 % of the hardware resources can be saved. 

I. INTRODUCTION 

The C-RAN (Cloud or Centralized Radio Access Network) 
was introduced by China Mobile Research Institute in 20 10 
[ 1] to initiate the architectural evolution of the currently 
deployed distributed base station infrastructure. It is based on 
the Wireless Network Cloud (WNC) concept from IBM [2] as 
a first assembly of IT and wireless network platforms. 

The basic idea of C-RAN is to separate the Remote 
Radio Head (RRH) and the BaseBand Unit (BBU) by using 
interfaces like Common Public Radio Interface (CPRI) or 
Open Base Station Architecture Initiative (OBSAI) [3]. Within 
this architecture the RRHs provide the radio transmit and 
receive components like digital processing, frequency filtering 
and power amplification and the BBUs perform the centralized 
signal processing functionalities as modulation, coding and 
Fast Fourier Transformation (FFT) for several RRHs. 

With C-RAN the number of conventional sites and hard­
ware resources as well as backhaul connections can be reduced 
considerably [4]. Beyond this LTE-Advanced features like 
enhanced Inter-Cell Interference Coordination (eICIC), Carrier 
Aggregation and Coordinated Multi-Point (CoMP) will benefit 
from the centralized architecture. 

The V-RAN (Virtualized-RAN) as a logical evolution of 
C-RAN virtualizes the BBU functionalities and dynamically 
allocates them to the virtual BBUs. Based on a C-RAN 
deployment V-RAN has the capability to further reduce capital 
and operating expenditures [5]. However, virtualization of 
wireless communication systems requires thorough planning 
due to the strict real-time processing requirements [6]. 
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A. Contributions and Related Work 

The virtual base station introduced in [7] constitutes the 
base concept of the investigations presented in this publication. 
This future V-RAN concept has been derived to support 
virtualization and flexible pooling on user respectively bearer 
granularity level. The authors identify the traffic load depen­
dent functions per user or per radio bearer in uplink (UL) and 
downlink (DL) direction in an eNodeB for virtualization. These 
functions, herein after called User Processing (UP), comprise 
the S 1 termination, Packet Data Convergence Protocol (PDCP), 
Radio Link Control (RLC), Medium Access Control (MAC) 
and user scheduling and the load depending functions of the 
physical layer (PHYuser). The physical layer cell functions 
(PHYcell: Framing/De-framing, inverse FFTIFFT, etc.) will 
not be virtualized. 

The architecture comprises multiple RRHs, which are 
connected with high speed optical links to the associated 
multi-site BBU (MS-BBU). Such a MS-BBU covers several 
BBUs. Each RRH has a statically associated Home-BBU, 
which performs the PHYcell functions for the RRH's cell. A 
centralized controller decides to which BBU a UP of a newly 
arriving UE is assigned. If necessary, e.g., in case of overload, 
the architecture allows to reallocate a UP to a different BBU. 

An earlier publication deals with multiplexing gains that 
can be achieved with the just explained V-RAN architecture 
[8]. Therein we describe a detailed multi-layer model of the 
virtual base station and present simulation results showing 
short-term pooling effects induced from user load distribution 
and traffic heterogeneity. We prove that traffic variations in 
time and area hold a considerable potential for multiplexing 
gains by pooling processing resources. The publication also 
derives how the multiplexing gain scales with the number of 
aggregated cells and investigates the influence of the spatial 
user distribution on the utilized compute resources. 

Other architectures also benefit from the statistical multi­
plexing effect. In [9] the Colony-RAN network architecture is 
introduced. A BBU is able to connect to one or more RRHs 
in dependence of the traffic demand, by which the number of 
BBUs can be reduced enormously. A dynamic BBU to RRH 
mapping scheme based on the asymmetric DLiUL conditions 
in a Time Division Duplex (TDD) LTE system is presented in 
[lO], [ 1 1]. This approach is combined with a novel interference 
coordination, solved with clustering for DLIUL partitioning. 
As these approaches focus on the interference in a TDD 
LTE system, they are not directly applicable to the Frequency 
Division Duplex (FDD) LTE system considered here. 
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The publication [ 12] outlines the potential pooling gain 
when exploiting the variations of processing load across base 
stations. It presents a resource management framework for the 
trade-off between network quality and network operation costs. 
The authors in [ 13] analyze the statistical multiplexing gain 
and parameterize the network to maximize the potential cost 
savings. Their packet based architecture adapts to changing 
traffic conditions during the day. The optimized mix of cells 
with different traffic profiles and BBU pool positions leads 
to a reduced number of required BBUs and fibers. Also [ 14] 
evaluates the influence on the statistical multiplexing gain in 
a BBU pool and propose an architecture that is able to adapt 
to diurnal load patterns of cells. The architecture requires a 
packet based fronthaul, to change the relation between RRHs 
and BBU pools dynamically. 

The referenced approaches do all concentrate on the as­
signment of RRHs or cells to BBUs. They partially allow to 
change these assignments during runtime of the system, which 
means that compute tasks have to be migrated. 

In this paper we concentrate on the initial placement based 
on the V-RAN architecture as described above. We propose 
a heuristic for the assignment of UPs to computation units 
when the respective UE arrives at the system. Although in 
principle possible with our architecture, this allocation will 
not be changed afterwards. This distinguishes our approach 
from the other referenced approaches. The results presented in 
this paper are achieved without the need to migrate compute 
tasks. This saves implementation complexity. In addition, our 
system does not suffer from service interruptions caused by 
task migration, as e.g., observed by [ 15]. 

Based on a system simulation we demonstrate that by 
considering average processing load our advanced heuristic 
performs significantly better than a classical static allocation or 
a random placement. With some impact on the user experience 
the advanced heuristic delivers possible savings of 50 % of the 
compute resources. 

B. Structure 

In Section II, we start with the description of the sys­
tem models comprising user and traffic model, radio net­
work model, computation resource model, and the overload 
prevention mechanism. Then, Section III explains the initial 
placement strategies, starting with the baseline and an opti­
mization. Then four heuristics will be introduced, which can be 
employed in reality for compute effort assignment. Section IV 
gives the overload results and the pooling gains occurring for 
the different placement heuristics and comparing them with the 
evaluation results from optimal placement. Further the user 
experience under limited compute resources in combination 
with the overload prevention mechanism is evaluated. Finally, 
we conclude the paper in Section V.  

II. SY STEM MODEL 

Our model needs to capture all influencing factors on the 
compute resource usage. Subsection II-A depicts the traffic 
load caused by the users. This load is carried by the radio 
network as explained in subsection II-B. The baseband pro­
cessing effort caused in the radio network depends on the two 
preceding models and is defined in subsection II-C. Finally, 
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Fig. 1. Heat map of the active user density 

in subsection II-D we define overload and describe how our 
system copes with this by allocating less frequency resources. 

We assume a lO MHz LTE system. The macro base stations 
are placed in a hexagonal arrangement of 19 sites. Each base 
station supplies three sector cells, resulting in 57 sectors. We 
apply wrap-around to avoid border effects. In our evaluations, 
we concentrate on DL transmissions. Although UL also causes 
high computational effort at the base station, it behaves similar 
as the DL direction. 

A. User and Traffic Model 

The traffic model has a large influence on the resource 
usage. Opposed to a full buffer assumption, real Internet traffic 
is bursty and has a heavy-tailed object size distribution [ 16]. 
This directly influences the processing effort required to serve 
the UPs. Therefore it is important to have a proper model for 
the per-user traffic demands. 

We model traffic as pairs of request and response objects. 
Requests are generated by the users and send to a server that 
reacts by sending the response. This covers many of today's 
Internet applications. The objects are transmitted as quickly 
as possible, i.e., there is no rate limitation introduced by the 
sender. For our scenario, we are interested in the effects at the 
network layer and below. Therefore, we idealize transport layer 
effects and assume that both, the request and response objects 
arrive as a whole at the BBU respectively User Equipment 
(UE) buffers. As we concentrate on the DL in this publication, 
the UL objects are not discussed further. Our model is based 
on the assumption that the network load is caused by a high 
number of independent users. The Inter-Arrival Time (IAT) 
of these request-response pairs follows a negative exponential 
distribution and is used to control the offered traffic in the 
system. We use an object size distribution measured on a 
campus link [ 16]. To avoid problems arising from very large 
objects, we clip the distribution at 108 bytes. Thereby, we cut 
off a part of the heavy tail of the distribution. However, objects 
above this size contribute only 0.7 % of the traffic volume. 

In order to simulate changing user locations, each request 
originates from a new user with a new location. The users are 
placed with a probability of 50 % uniformly over the whole 
scenario. The other 50 % are placed in three hotspots which 
are located in the scenario so that the distance between the 
centers of the hotspots is maximized. Hotspots are defined by 
their center and two normal distributions with mean 0 and a 
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Property 
Cell layout 
BS TX power 
BS / UE height 
Path-loss [dB] 

TABLE l. 

BS antenna model 
Shadowing 
UE velocity 
Carrier frequency 
System bandwidth 
Subframe duration (TTT) 

SYSTEM MODEL PARAMETERS 
Value 
19 tri-sectorized sites, 500 m distance, wrap-around 
46dBm 
32m / L5m 
128.1 + 37.6· loglO d [kmJ, from [18] 
30,15° tilt, from [18] 
8 dB log-normal 
o km/h (for fast fading model: 3lanlh) 
20Hz 
10MHz 

I ms 

standard deviation of 180 m for the user coordinates relative 
to the centers of the hotspots. The resulting user density in 
our scenario is depicted in Figure 1. During transmission, the 
users do not move. After a user has finished his transmission, 
he leaves the system. Note that, as users with low channel 
quality need more time to transmit their requests, the density 
of active users is higher at the cell edge. We apply a simple 
Admission Control (AC), which drops arriving requests when 
there are more than 100 users active in the sector. 

B. Radio Network Model 

Besides the user and traffic model, the radio network model 
is important to determine the required compute resources for 
a cell. For the radio propagation, we consider path-loss and 
shadowing. The parameterization of the radio propagation is 
summarized in Table I and complies with 3GPP specifications. 
From the transmit power and the signal degradation between all 
active transmitters and the receiver as well as the noise level, 
we determine the mean Signal-to-Interference-and-Noise-Ratio 
(SINR) of a user. 

With our system level simulation, we want to look at effects 
on time scales of hundreds of seconds. Therefore, due to the 
computational complexity, it is difficult to model multipath­
propagation. Instead, we assign resources in a round-robin 
fashion and use the model in [ 17] to consider fast-fading and 
frequency-selective scheduling with the commonly known pro­
portional fair scheduler. This model uses the number of active 
users and their respective mean SINR to determine an effective 
SINR diversity gain. With the enhanced SINR, we derive the 
possible rate on the channel according to LTE Modulation and 
Coding Schemes (MCSs). For this, we use Block Error Rate 
(BLER) tables generated from link layer simulations, including 
two Multiple-Input-Multiple-Output (MIMO) modes. Above 
an SINR of about 4 dB, we use 2x2 spatial multiplexing 
MIMO. At lower channel qualities, we apply Space-Frequency 
Block Coding (SFBC). We assume ideal channel knowledge at 
the base station and apply a target decode probability of 80 %. 
Failed transmissions are reinserted into the sending buffer after 
8 ms. 

C. Computation Resource Model 

From the traffic and radio network models, we know which 
radio resources are actually in use and which transmission 
mode has been chosen. With this, we are able to determine the 
processing effort per UP with the computation resource model 
introduced in [8]. We concentrate on the PHYuser components 
of the UP, i.e., the compute resources for physical layer calcu­
lations which can be directly associated to a UE (Forward Error 
Correction (FEC) encoding, modulation, MIMO processing). 
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The following equation describes the compute resource effort 
in Giga Operations Per Second (GOPS) Pu,t that is required 
to serve UE u at time t: ( 2 1 ) Ru,t 

Pu t = 3Au t + Au t + -Mu tCu tLu t . --, , , 3 ' " 10 
( 1) 

where A is the number of used antennas, 1\;[ the modulation 
bits, C the code rate, L the number of spatial MIMO-layers 
and R the number of Physical Resource Blocks (PRBs), each 
as allocated to UE u at time t. 

D. Handling of Overload 

As we evaluate how to handle reduced processor capacities, 
the system has to be able to cope with overload situations. We 
call this functionality overload prevention mechanism. In our 
model, UPs are assigned to BBUs. Thereby the load of a BBU 
consists of the sum compute effort caused by UPs assigned to 
that BBU. We define the overload of a BBU b at time t as 
load of the BBU which exceeds the capacity of the BBU: 

(2) 

where Cb is the capacity of BBU b and Ub is the set of UPs 
assigned to BBU b. 

Each subframe, our system handles overload by modifying 
the scheduler's decisions, especially reducing the number of 
allocated PRBs Ru,t. For that purpose, each UP is assigned a 
reduced processing capacity: 

( Put ) Pu,t,reduced = Pu,t 1 - Ob,t 
L 

' 

P VEUb v,t 
(3) 

This ensures that the overload is distributed to the UPs relative 
to the UPs' requested processing capacity. Subsequently, for 
each UE, the number of allocated PRBs is reduced such that 
the allowed processing capacity of the respective UP is not 
exceeded: 

R lR Pu,t,reduced J u,t,reduced = u,t p 
u,t 

(4) 

Note that thereby we assume that single PRBs can be 
assigned to UEs, which is not possible in current LTE systems 
due to signaling restrictions. 

By disabling PRBs, UEs in neighboring cells experience 
reduced interference. The MCS of these UEs could be adapted 
to take advantage of that and increase the throughput. However, 
this would require tight integration of the overload handling 
with the MCS selection of neighboring cells. In addition, as the 
processing effort depends on the selected MCS, adapting the 
MCS to the reduced interference would result in a circular 
dependency. Therefore, we assume that our system cannot 
take advantage of the reduced interference. To model this, 
we calculate the interference based on the PRBs assigned 
by the schedulers of the neighboring cells, without taking 
into account the PRBs disabled to handle BBU overload. The 
reduced number of PRBs is only considered for the calculation 
of the capacity of the transmissions. 
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III. INITIAL PLACEMENT STRATEGIES 

In this publication, we compare different heuristics to as­
sign the processing effort of UPs to BBUs. For the evaluation, 
we first define an ideal baseline and an optimal assignment. 
Subsequently we introduce the heuristics in subsection III-C. 

A. Baseline 

We define ideal as the baseline for the comparisons as 
follows: We do not regard the assignment of UPs to BBUs, but 
instead compare the total processing effort to the total capacity. 
The overload of the ideal case is defined as 

Oideal ,t = max (0, L Pu,t - L Cb) (5) 
uEU bEB 

For the evaluation in subsection IV-A, we average the over­
load over the evaluated time span: Oideal = I�I LtET Oideal ,t 

B. Optimization Problem 

When UPs have to be placed to dedicated BBUs, we 
expect the utilization to be less than ideal because of two 
reasons: ( 1) For a single subframe the effort caused by a UP is 
indivisible. (2) As we do not allow to change the assignments 
of UPs to BBUs after initial placement, the whole series of 
efforts caused by a UP at subsequent subframes has to fit 
into the capacity of the BBU. To evaluate the performance 
loss caused by these two effects, we introduce an optimization 
problem (herein after called optimal) as additional baseline for 
the evaluation. 

To restrict the complexity of the optimization problem, we 
evaluate a limited time span T of 30 subframes (=30ms). The 
input of the optimization problem consists of the compute 
effort Pu,t caused by each UP u for all subframes t E T. Note 
that this is equivalent to knowing the future compute effort 
caused by all UPs, which is difficult to achieve in reality. 

We introduce the following variables: The binary flag 

au,b E {O, I} is set to 1 if UP u is served by BBU b, and 
to ° otherwise. The restriction 

u E U : L au,b = 1 
bEB 

(6) 

ensures that each UP is served by exactly one BBU (here, B 
denotes the set of all BBUs and U the set of all UPs). We 
define the overload of BBU b at time t to be 

Ob,t = max (0, L au,bPu,t - Cb) 
uEU 

and the total overload to be 

1 
Oopt = TTl L L Ob,t 

tET bEB 

(7) 

(8) 

The constant factor I�I is introduced for comparison with 

the other heuristics in subsection IV-A. The objective of the 
optimization problem is to minimize the total overload OOpl' 
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C. Heuristics 

In this subsection, we define four heuristics to assign the 
processing effort of UPs to BBUs. Each heuristic is to be 
executed when an UE starts a transmission. The assignment 
of UPs to BBUs is not changed afterwards. 

Heuristic static resembles the traditional scenario of a non­
centralized RAN. Each BBU handles the load of the UPs which 
are served by three sectors of a single site. This heuristic 
suffers from the inability to perform load-balancing between 
BBUs serving hot-spot cells and BBUs serving lowly loaded 
cells. However, it benefits from a mutual restriction of the 
effort caused by UPs of the same cell: As the scheduler assigns 
each PRB to only one UE, the sum of the processing effort 
caused by all UPs of a cell is limited. 

Heuristic random, in contrast, assigns UPs to BBUs ran­
domly (and uniformly) without taking the serving cell of the 
UE into account. Thereby, the load is implicitly balanced 
between the BBUs, i.e., the long term average of the load 
assigned to each BBU is the same. However, as UPs of many 
cells can potentially be allocated to the same BBU, the variance 
of the load per BBU is higher than with the static assignment. 

Heuristic static load-balancing aims at reducing the vari­
ance of the load while still achieving long-term load-balancing. 
Thereto we try to keep the UPs of a cell together as far as 
possible. Furthermore, we assume that it is beneficial for the 
operation of the BBU pool to assign as many UPs to the 
Home-BBU of their respective cells as possible. We define 
an assignment probability ae,b for each combination of cell 
e and BBU b. These probabilities are calculated offline based 
on a measurement of the processing effort on a per-cell basis. 
Upon start of a transmission, the BBU to serve a UP is then 
selected based on the assignment probabilities of the UEs cell. 

As preparation for the heuristic static load-balancing, we 
calculate the assignment probabilities by solving the following 
optimization problem (not to be confused with the optimization 
problem in Section III-B). Input to the optimization is the 
long-term processing effort Pc generated by the UPs of each 
cell e and the Home-BBU he E B of each cell. Variables 
are the assignment probabilities ae,b E [0, 1] as introduced 
above and binary flags fe,b E {O, I}, which are set whenever 
the corresponding assignment probability is larger than zero: 
Ve E C, Vb E B : ae,b ::; fe,b. In addition, we define the 
restrictions that all load is served Ve E C : LbEB ae,b = 1 
and that each BBU serves an equal share of the total load 
Vb E B : LeEC ae,bPe = 111 LeEC Pc. Based on these 

definitions and restrictions, we minimize the usage of non­
Home-BBUs U = LeEC LbEBlb#hc fe,b. This optimization 
problem is solved offline. At runtime, the heuristic static load­
balancing assigns each arriving UP to a BBU based on the 
optimized probabilities ae,b. 

The heuristic dynamic uses the actual load of the BBUs 
to derive a placement decision. The current load Pb of a BBU 
b is calculated as the average over the non-reduced load, i. e., 
the load before the overload prevention mechanism, during 
an averaging window of W ( 1  ms and 1 s evaluated). At the 
end of each averaging window, the value of Pb is reported to 
the centralized controller. The processing effort Pu,pred for a 
new UP u is predicted to be the mean value of the last 1000 
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Fig. 2. Overload with different placement strategies at reduced compute 
capacity, evaluated at 80% system load over a time frame of 30 ms_ 

samples of the processing efforts of the other UPs served by 
the same BBU. A new UP is assigned to the Home-BBU he 
of it's cell whenever that BBU has sufficient free capacity 
(Phc + Pu,pred < Chj Otherwise, the UP is assigned to the 
BBU with the lowest current load. In case several BBUs have 
the same load, one of them is selected randomly. Phc is only 
updated at the beginning of the window W, i. e., the predicted 
processing effort of a newly arriving UP is not added to Phc• 
This heuristic explicitly balances the load and is able to adapt 
to short-term load fluctuations. 

IV. EVALUATION 

The evaluation is split into two parts. The first evaluation 
shows upper and lower bounds of the achievable pooling 
gains for different placement heuristics. This part includes 
mathematical programming to find the optimal placement 
decisions. The second part uses a simulation model of the 
presented V-RAN including several placement heuristics as 
well as the overload prevention mechanism. In this evaluation 
part we show the impact of reduced processing capacities to 
the perceived user experience. 

We define 100 % system load to be reached when 1 % of 
newly arriving users are dropped by the AC mechanism. For 
the following evaluations we configured a system load of 80 % 
by increasing the IAT of new request-response pairs. 

We assume to have 19 equal BBUs. The capacity of 
the BBUs is configured in percent of the theoretical upper 
bound of the load. 100 % corresponds to a BBU capacity of 
204.33 GOPS, which is the peak load required to serve three 
cells with the maximum MCS on all PRBs. 

A. Comparison of Heuristical and Optimal Placement 

This subsection evaluates the overload of the BBUs, which 
is influenced by the placement strategy. Here, no reduction of 
the allocated PRBs is performed as described in Section II-D. 
Instead the overload is recorded and processing continues as 
if the BBU capacities would be sufficient. 

Figure 2 shows how much overload occurs with the com­
pared placement strategies. At high installed BBU capacity, no 
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overload occurs, as distributing the load to the BBUs is easy. 
If the installed processor capacity is reduced, the compute jobs 
cannot be allocated to the BBUs without causing overload. The 
performance of the placement strategy defines how quickly 
the overload raises. A good placement strategy would be 
able to maintain zero (or low) overload when reducing the 
processor capacity. With very low installed capacity, all BBUs 
can be filled and the remaining overload is independent of the 
placement strategy. 

The ideal scheme determines the best possible perfor­
mance. Down to 40 % processor capacity, it shows no overload. 
As there is no wasted BBU capacity, below 30 % the curve 
increases linearly. 

The optimal assignment shows nearly the same perfor­
mance as the ideal scheme. This means that, although the 
load caused by each UP is considered as atomic unit of work, 
the BBUs can be filled up almost ideally. This also leads to 
the conclusion that a reallocation of UPs to different BBUs 
during transmission is not required. However, in our evaluation 
the processing effort of each UP is known in advance. In 
reality, a reassignment may still be beneficial, because an exact 
prediction of the future effort is impossible. The heuristics 
generally perform worse than the ideal and optimal strategies. 

The static heuristic does not show overload for more than 
80 % installed processor capacity. This can be explained by 
the fact that cells rarely make use of the theoretical peak 
processing power, because it is unlikely that all PRBs are 
transmitted with the highest MIMO mode and MCS [8]. For 
smaller processor capacities, the overload quickly increases, as 
the static heuristic does not perform load-balancing. 

In contrast, the random heuristic implicitly balances the 
load between the BBUs. Therefore, it shows a slightly better 
performance than the static heuristic for processor capacities 
below 60 %. However, as the assignment is performed ran­
domly, overload sometimes occurs even with more than 80 % 
installed capacity. 

The static load-balancing heuristic performs better than 
the static and random heuristics in most cases. Compared to 
the random heuristic, it reduces the variance of the load by 
keeping UPs of the same cell together. However, it does not 
regard the current load situation of the BBUs, and thereby 
cannot completely avoid inefficient assignments. 

The dynamic heuristic realizes significantly lower over­
load than the other heuristics. By adapting the assignment 
to the current load of the BBUs, it does not only perform 
long-term load-balancing, but can also adapt to short-term 
load fluctuations caused by traffic variations and scheduling 
effects. As we did not implement advanced predictors for 
the load of the BBUs or the processing effort caused by a 
newly arriving UP, the dynamic heuristic can still make poor 
assignment decisions. As we currently do not allow to change 
the assignment after the transmission has started, this causes 
an increased overload compared to the optimal assignment. 
The measurement window W has an obvious influence on the 
performance. The shorter the measurement window, the better 
the heuristic can adapt to the current BBU load. The reason 
is that the processing effort is fluctuating on a small time 
scale. However, shorter measurement windows could result in 
increased overhead for the management of the BBU pool. 
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B. User Experience under Limited Compute Resources 

In the following we evaluate the performance of the 
presented placement strategies in combination with limited 
compute resources and the overload prevention mechanism. 
We measure the achieved DL bit rate for individual trans­
missions as an indicator for the user experience. Because the 
implemented AC mechanism influences the number of users 
in the system, a bad placement decision may lead to higher 
drop rates and therefore a higher bit rate for remaining users. 
Therefore, we define the bit rate r as follows: 

{ object size 
r = transmis�on time UE accepted 

UE dropped by AC 
(9) 

Transmission time is defined as the duration between 
sending the object at the server and receiving it in the UE 
(including additional 20 ms to model the effects of the core 
network). An equal distribution of the processing effort to 
the BBUs, i. e., a better load balancing, results in higher bit 
rates. Additionally, a better placement strategy leads to less 
AC drops. The simulation results can be seen in Figure 3 for 
the bit rate and in Figure 4 for the AC drops. A bit rate of 
100 % corresponds to the bit rate in a system with sufficient 
processing capacity. We define a pooling gain according to the 
rate degradation. We assume that a degradation of the rate by 
20 % is acceptable. The pooling gain is then the amount of 
hardware saved by accepting this degradation in comparison 
to the 100 % hardware deployment. For processing capacities 
smaller than 30 %, the impact of the AC drops becomes 
dominant. Therefore, it is pointless to evaluate the data rate 
for these configurations. 

The static placement strategy is the reference for the evalu­
ation of the heuristics performance. A significant degradation 
in terms of bit rate as well as an increase of the AC drops 
begins for processing capacities below 80 %. According to our 
definition, this placement strategy achieves a pooling gain of 
40 %. This is realized by accepting the rate degradation and 
by the pooling of three cells, but without making use of load­
balancing between the sites. The lack of load-balancing results 
in an imbalance of the AC drops, i.e., there are high drop ratios 
in cells serving hotspots. 

The random heuristic can not be applied in real systems, 
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since the random assignment may lead to situations where a 
single BBU is in overload all the time. In this case the overload 
prevention mechanism reduces the processing effort in such a 
way that the granted processing effort of a single user is not 
even sufficient to process one PRE. This worsens the situation 
even more, because more users are allocated to the BBU but no 
user is served at the same time. Therefore, we do not include 
the random heuristic in this evaluation. 

Best bit rates can be achieved by the ideal setup. However, 
the bit rate decreases by more than 50 % if the processing 
capacity is reduced to values lower than 40 %. This is caused 
by a minimal overload, which occurs for these processing 
capacities (compare Figure 2). As a result, equation 4 of the 
the overload prevention mechanism reduces the number of 
allocated PREs of every active UE. By the flooring operation, 
the processing effort can be reduced more than required. 
Because every UE is affected, the bit rate shows the sharp edge. 
Interesting is the fact that 100 % AC drops are reached earlier 
than with the dynamic or static load-balancing heuristics. The 
reason is that the overload prevention mechanism reduces the 
number of PREs for all active UEs and thereby the UEs 
stay longer inside the system. In a system with independent 
smaller BBUs (like in the evaluation of dynamic and static 
load-balancing) the overload prevention becomes only active 
for a subset of all active UEs. So the probability for a single 
UE to be not affected by the overload prevention is higher 
and the UE is able to leave the system earlier. By ignoring 
the inefficiencies caused by assigning UPs to BBUs, the ideal 
configuration achieves a pooling gain of 62 %. 

Our proposed dynamic placement variant shows higher bit 
rates than the other heuristics as well as lower AC drops 
for W = 1 ms. It achieves a pooling gain of 57 %. For this 
dimensioning, no AC drops arise. AC drops start occurring for 
processing capacities below 40 %. We can conclude that the 
dynamic placement strategy (W = 1 ms) in combination with 
the overload prevention mechanism is able to achieve results 
close to the optimum. The overload prevention can shift the 
required processing effort to a later point in time and thus 
reduce the negative impact on the user experience. 

The dynamic placement with W = 1 s performs worse 
than the static load-balancing variant, because during the time 
window all newly arriving UPs are placed to the same BBU. 
This results in increasing load on the respective BBU over 
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the duration of W. This effect is not visible in the plot in 
Figure 2, because there only the first 30 ms of the window 
have been evaluated. 

V. CONCLUSION 

In this paper we investigated a V-RAN scenario with non­
uniformly distributed load. The evaluations have shown that an 
advanced dynamic heuristic for initial assignment of UPs to 
BBUs balances the load of the processing units significantly 
better than a random or static assignment strategy. With the 
dynamic placement heuristic combined with the proposed 
overload prevention mechanism pooling gains (savings of 
compute resources) of 57 % can be achieved when a certain 
bit rate degradation is accepted. This strategy enables highest 
bit rates and lowest AC drops in relation to conventional 
heuristics. However, there is still room for improvement when 
we compare these results with the outcomes generated with the 
optimal placement. In future studies we will first examine a 
mechanism that reallocates UPs to different BBUs as a reaction 
to load disparities between BBUs and find out to which degree 
such a reallocation can be used to mitigate the effects of 
missing or poor predictions of future load. In a next step we 
want to evaluate to which degree the processing effort caused 
by a UP can be predicted. 
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