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ABSTRACT

If the traffic offered to a delay system is
greater than the number n of trunks, the mean
number of calls which are present in the delay
system grows continuously. When considering a
delay system with non-preemptive priorities,
the situation may be multifarious. If the traf-
fic offered summed up for the highest priori-
ties is less than n, the calls of these prior-
ity classes 1,2,...1 form a stationary traffic.
alls of lower priority than the limit priority
1 (classes 1+1,...m) are added to the queue of
waiting calls. They cause the waiting traffic
to grow. In order to study the expectation val-
ses for the number of waiting calls of priority
classes 1...k, it is assumed that all n trunks
are continuously occupied by calls of priority
classes 1...k. POISSON arrival of calls and ex-
ponential distribution of holding times are as-
sumed.

For priorities lower than 1, it follows that
the mean number of waiting k-calls and their
nean waiting times increase linearly with the
time, until the traffic offered decreases to a
value which is less than n. Then the "peak" of
vaiting calls will be reduced gradually. Using
the same assumption we find: At first the mean
aumber of waiting 1-calls linearly decreases.
This is done comnsecutively for all priorities.
The mean waiting times decrease linearly, too.
fhen all expectation values of waiting calls
nave reached the stationary values which are
yalid for intervals, in which all trunks are
busy, a second ebbing period follows. It is
agsumed that the mean number of calls, which
are present in the system, decreases exponen-
tially to the ordinary stationary values.

It must be admitted that this method can give
but a rough approximation both of the time-de~
pendent expectation values of the number of oc-
supied waiting places, and of the mean waiting
times. One special result, confirmed by simula-
tion tests, is to be mentioned: A peak of wait-
ing calls exists. In the following interval the
total number of calls decreases. Nevertheless,
the mean number of calls of low priorities in-
creases, and decreases only after a period of
growing.
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1. INTRODUCTION
1.1 Intervals of saturation

In delay systems each call, which cannot occupy
an outlet of the connecting system at once, is
put to a waiting place. It is waiting until it
can occupy & trunk. No waiting call leaves the
gueue before service. When the mean number of
calls, which arrive during a unit of time, sur-
passes the service capacity of the delay system,
then the mean number of waiting calls grows
continuously. The state probabilities of the
system and the expectation value of the wait-
ing times are no longer constant and station-
ary, but they are time-dependent. This situa-
tion was called "saturation" /5/.

In real telephone connecting systems, the
traffic offered does not remain constant du-
ring long periods. Intervals with a high mean
rate of incoming calls are followed by periods
of smaller traffic offered. Therefore the gqueue
does not grow beyond all limits, but it grows
only as long as the traffic offered is large,
and then it begins to decrease.

1.2 Delay system without priorities

In order to give the time-dependent expectation
values, it is necessary to calculate the time-
dependent probabilities P(x,t) that the total
number of calls in the system will be x at time
t. Exact solutions were given for the case of
POISSON input and exponential holding times.
The formulae include series or integrals on
BESSEL functions /1,2,9,11/ or integrals on
trigonometric or TSCHEBYSCHEFF functions /4,9/.
Most of the solutions consider 1 outgoing trunk
/1,2,11/, others include the case of n trunks
and full availability /4/. Some of these formu-
lae are well suited for the growing queue,
others are adapted for the decreasing queue,

H. STORMER investigated the mean waliting times
and the probabilities of delay, which are valid
for the first call, the second etc., finally
for the i-th call /15/. The assumptions of this
study were POISSON input, comstant holding
times and 1 outgoing trunk.

An approximation method was introduced by

D.R. COX and WsIL. SMITH for 1 outgoing trunk
and general input and service time distribu-
tions /3/. For the growing as well as for the
decreasing waiting traffic they found a linear
time-dependency. A similar method was described
by J.M. ROBINS /10/. The corresponding formulae
for POISSON input and exponential service times
were deduced as limiting formulae for mean and
variance by A.B. CLARKE and by other authors,
too /2,11/.

1.3 Delay system with priorities

Demands which are connected from inlets to out-
lets of an exchange are not of the same impor-
tance. On account of their different importance
and urgency, the calls may be arranged in pri-
ority classes. Calls of higher priority take
precedence when waiting. The operation of the
delay system is specified by the following
rules:




1. Calls having occupied a trunk are never in-
terrupted, not even if calls of higher pri-
ority must wait (nonpre-emptive priority).

2, Calls of higher priority queue up in front
of calls of lower priority.

3. The order of service is "first come - first
served" or strict queueing within each pri-
ority class.

A first step to use an approximation method for
the mean number of waiting calls was done by
F.P. RANDAZZO /8/. He calculated each final
value at the end of a saturation period and
used each of them, as if it were constant du-
ring the whole period. ) )

In this paper, the time-dependent expectation
values of the number of waiting calls and of
their waiting times, as well as their variances,
are deduced for a delay system with nonpre-
emptive priorities. The method introduced by
D.R. COX and W.L. SMITH /3/ is used to obtain
formulae for the growing and the decreasing
queue. Examples are given in order to compare
this approximation to results of simulation
tests.

1.4 Holding times and service capacity

All calls belonging to any priority class have
the same exponential probability distribution
of holding times (respectively service times).
The holding times are mutually independent
random variables. The mean holding time is to
be unity. Thus, the time t is a normalized
variable throughout this investigation.

The trunk group of n trunks is fully available.
The number of waiting places is as large as
necessary, so that at any moment and at any
state of the delay system each new call can
occupy a free waiting place, i.e. a pure delay
system is considered, and no call is lost. No
call leaves the queue without service; there
are no defections.

1.5 The priorities and the traffic offered

The priority classes are usually numbered
k=1,2,...m according to decreasing urgency.
Higher priorities correspond to smaller indices
k., The system considered has m priority class-
es. In the sequel calls of priority k will be
termed k-calls /5/. The average number of k-
calls arriving per unit of time is 4y, i.e. the
traffic offered of priority k. For each priori-
1ty a distinct POISSON input is assumed.
A(SK) = A + A, + ...+ Ay (1)
2. THE PERIOD OF SATURATION AND THE
INCREASING NUMBER OF WAITING CALLS

2.1 The basic assumption

Let us suppose that all n trunks of the trunk
group will be busy at time t=0. Moreover it is
supposed that, from that time t=0, the traffic
offered A(%k) of the priorities 1,2,...k will
be much larger than the mean number of occupa-
tions which end during & mean holding time.

A(k)» n (2)

Then the probability, that at any moment after
t=0 a trunk is idle, is very small and may be
neglected.

The approximation is based on the assump-
tion that during the whole interval, when
A(%k)>n, 2ll n trunks are always occupied
by calls of the priorities 1,2,...k. (3)

The approximation disregards, that a trunk
might be free, or that a trunk might be occu-
pied by a call of lower priority, i.e. of any
of the priority classes k+1, k+2, ... m. The
growing queue is treated in detail because the
same formulae are valid for the decreasing
queue, too.
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2.2 The rate of calls arriving and of
occupations ending

During an interval of length d, r new calls of
the priorities 1,2,...k arrive and s occupa-
tions end. (Underlining indicates random varia-
bles.) The expectation values and the variances
are :

EXP r = A(3k)-4d (1)
VAR r = 4&(3k)-a (5)
EXPg = n-d (6)
VAR 5 = n-d (1)

2.3 The growing number of waiting calls

The random number of calls of the priorities
1,2,...k, which are waiting at the time t, is
called z(t). From (%) it follows

z(t) = z(t-d) + r-s (8)

where z(t-d) is the number of waiting calls at
the beginning of the interval d. The waiting
traffic Q(2kyt) of priorities 1,2,...k at time
t is given by the expectation value EXP z(0)
at time O and by EXP r and EXP s for an Inter-
val of length t:

EXP z(t) = BXP 2(0) + A(SK)-t - n-t (9)

The random variables r, s, and z(0) are inde-
pendent of each other.

VAR z(%) = VAR 2(0) + A(SK) -t + n-t  (10)

In order to check whether the waiting traffic
grows linearly and whether its standard devia-
tion YVAR gitg increases parabolicly, we com-=
are the values calculated from egs. (9) and
?10) to the results of a simulation, cf. fig.
1. The programme written by Mrs. I. KUHNLE and
the author is based on the time-true model /17/
or event-by-event simulation /16/. It is writ-
ten in ALGOL. With the AEG-Telefunken computer
TR4, it achieves a test speed of about 28 000
to 90 000 calls per hour.

EXP7 1)+ VARZ(1)
z
n=20
08t Aj=40
o Test B
80 %
EXPz(t)

| y 4
¥ Y4 (

S A
/

EXPz(t)-YVARZ(t)

40 I 03

20 >/

¥Q<O : A‘ =18
]
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Fig. 1 The mean number of waiting 1-calls at
the time t, calculated for a traffic offered
A, =40 to n=20 trunks. The initial conditioms:
a} z(0)=% waiting 1-calls (continuous curves),
b) stationary values, when A, =15 for t<0 (dot-
ted curves). The results of a simulation run
are indicated by points encircled.




2.4 The limit priority 1

If A(%k)>n, the mean number of waiting calls,
comprehending all calls of priorities from 1
up to k, is not constant, but is growing. But
for calls of priorities from 1 up to 1 the
stochastic traffic process reaches

stationarity, if a(%1) <n
vut  A(S141) Zn (11)

though the total traffic process of all calls
of. arbitrary priority classes does not reach
stationarity /e.g. 2,10,11/. The increase of
queue length results, on the average, only from
less urgent calls of priorities 1+1, 1+2,...m.
But the mean numbers of calls (k=1,2,...1)
which are present in the trunk group or in the
queue line are independent of time.

2.5 The waiting calls of priorities 1,2,...1

The mean number of waiting calls of priorities
152,...k is

1A

a0 - M oo

The probability of delay and of blocking is
E = 1 because of A(%m)»n (13)

The probabilities that there are z waiting
calls of priorities 1,2,...%

PROB(z=z) = [A%Q]l. [1 - A(ik)]. E o (14)

form a geometric probability distribution.
Therefore the variance of the random number of
walting calls of priorities 1,2,...k is

VAR z = ._EZj:é;QEEEEQ__ A(%K)-E - [__é&ﬁ__lg)__] ( 15)

[n-a (210 n-4(%k)

This equation was used to calculate the initial
variance for t=0 and A, =15 in fig. 1 (case b).
For E=1, VAR z turns out to be

VES _
VAR g = B A(2x) for k=1,2,...1 (16)

[n—A(gkﬂz and A(S1)<n

In order to dimension a delay system and to
determine the number of waiting places which
are necessary, the interesting gquantity is
given by the number of waiting calls summed up
from priority 1 to priority k. On the other
hand, the grade of service of a queueing system
is given by the waiting times, which must be
calculated distinctly for each priority. For
that, we quote the mean number of waiting k-
calls, if stationarity is reached:

. n-Ak
S = TECACSEIT[a-ACSE=T)T * F (17)

2.6 The waiting calls of priorities 1+1,
1+2, «.. m

The waiting traffic Q(2k;t) at the time t is
given by eq. (9) for k=1+1 and by eq. (12) for
k=1. Therefore, the waiting traffic of priori-
ty 1+1 seperately is

K QEL+158) - Q(51
) 52&4 +) +)(A<S§+1g_n] " (18)

The waiting traffic of priopities lower than

1+1 is, cf. egs. (1) and (9):
R (8) = Q35 6)-Q3k-158) = RO+ -t (19)

A1l arriving k-calls (k=1+2,...m) increase the
queue of waiting k-calls; on the average no one
of these calls is served during the period of
saturation.

&+1(

It
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2,7 The mean waiting time of f-calls

At first we investigate the special case that
there exists no limit priority (1=0) -~ or,
stated otherwise, A;>n. In order to £ind the
mean waiting time, we regard one single -
call which arrives just at the time t, cf.
fig. 2.

at time t the 1-call arrives

waiting time of gm i-call considered
3
2
1
trunk n
#" n,.]
v 2
" 1 .
beginn.of f~occ.no. |1 |2 3 2z(t)-1 z(t) z(t)+1
arriv. time ———§—~»91‘~§2—o-—93——~‘-QE4—9-79_

t

Fig. 2 A time chart which shows the random
waiting time of one single 1-call

The time interval from an arbitrary stariing
point to the next time, when any of the occu-
pations in the trunk group ends, is the random
time ¢. The time interval between two conse-
cutive ends of occupations with numbers j and
J+1 in the trunk group is Db;. Thus, the waiting
time of the 1-call considered is

w(t) = ¢ + Dyo+ byt oeee Dyt By (20)
The sum of the random variables b; contains a
random number z of terms. Its expectation value
is EXP z - BEXP B. If the holding times are ex-

ponentially distributed, time intervals b; and
¢ follow identical exponentlal dlstrlbutlons.

EXP b = EXP ¢ = (21)
(22)

B =51

VAR D = VAR =

The mean waiting time of an 1-call which ar-
rives at the time t is

n’t) + 1 (23)

B w(t) = t,,(t) = 2L

This formula was used by A. LOTZE to derive
the mean waiting time /6,7/. With eq. (9) for
k=1 we get

(24)

t (%) = L

EXP z(0)+1 (A.1 )
B I o . t
w1 n

2.8 The variance of waiting times of 1-calls

In order to determine the variance of the wait-
ing times, one starts with the assumption, that
the sum (20) consists of exactly z terms. The
7z random intervals between ends of occupations
are independent from each other. Therefore,
the variance is z-VAR b. Then, the variance of
the sum with a random number z of fterms is
found to be

VAR > Db = BXP z-VAR b + VAR z-[EXP pF (25)

=1

Using this formula (25) together with eq. (20)
the variance of the waiting times of 1-calls
arriving at the time t is

VAR y(t) = iy[EXP g(o) +1+4+VAR g(O) +2A{t]
v for A1>n

6)




Again we compare the calculated values for the

mean waitin% time tw{t) and its standard devia-

tion YVAR w(t) to the results of the same simu-
lation, which had been used for figure 1.

t

wi n=20
0$t: A= 40
5 o Test —
EXPw(t)+ WAR (D)
L
4 //
EXPw(t)
3 - s //////
//;// EXP wit)- WARw
1 ﬁ
t<0:IA‘ =15 .

0 1 2

(%)
&~

The mean waiting time and its standard
deviation. See the notes given above
at fig. 1.

Fig. 3

2.9 The mean waiting time of (1+1)-calls

Now we consider the case that the stochastic
traffic process is stationary for priorities
1,2,...1. The mean waiting time during inter-
vals of fully occupied trunk group is obtained
from Rk: Aty with eq. (17)

(27)

_ _ n
BEE W = Y= WeATSR] (=R (SE=T)]
for k=1,2,...1 and 4(%1)<n

On the average, all calls of priorities 1,2,
..l will occupy the trunks. During gaps be-
tween these occupations, some of the (1+1)-
calls will seize a trunk. Now, the mean wait-
ing time for priority k=1+1 is deduced. On the
average Ayd calls of priority 1+1 arrive be-
tween time O and d. The increase of queue
length is on the average, cf. eq. (18)

BR() = Ruy(d)- R 0) = [A(21) 44, -n]-a (28)

On the average Aged -AR,(d) calls of priority
1+1 have occupied a trunk between time O and 4.

Ayt = 8R(a) = [0-A(Z1)] -4

As the interval between ends of occupations is
1/n, on the average, n-d new occupations begin.
between O and d. During this interval, A(%21)-4a
occupations of priorities 1,2,...1 start; the
intervals between beginning times of these oc-
cupations are 1/A(21), on the average. The be-

inning times of the [n—A(él)}d occupations of

1+1)=-calls have an average distance of
1/[n=A(21)] .

The interval from an arbitrary starting point
t to the first end of an occupation, when this
trunk is seized by a waiting ?1+1)—ca11, is
called c; its unknown expectation value is
EXP c¢c. From fig. 4, it may be seen, that the
random waiting time w(t) of & (1+1)-call con-
sists of the. random Interval c, and of Quu(t)
intervals between beginning times of (1+1)-
occupations. Hence

§2,,4(t)

mazny (29

=l —
EXP w(t) = %, .

(t) = BXP ¢ +
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at time t the (+1) -call considered arrives
Ll its waiting time wit) ——————

Q +1(t) is the
mean number

of wait. (#)-calls)}___ T
at time t E;:

mean number )’ :

Q4

of wait.calls of

priorities 1,2,...
trunk n
* n-1 { ? !
1 be:ginning times of ccc. of p'ricrities 1,2,... l—J

" -
beginn.of (I+1)-occ. no. 112 B Q ol QM +
random intervals ¥ ¥ LR

arrival time t <

Fig. 4 A time chart which shows the random
waiting time of a (1+1)-call

In order to determine the unknown value EXP ¢,
we investigate the stationary waiting time
tw during a period of blocking, which is
given by eq. (27). Introducing eq. (17) with
E=1 into eg. (29), EXP ¢ turns out to be

§241 _ n
n-4(%1)  [n-a(Z1)P

For the purpose of calculating the time-depen-
dent mean waiting time, we introduce egs. (9)
and (3%0) into eq. (29)

EXP ¢ = %

wied T

n Q.(0) A(2141)-n
twk+1(t) = gt u! < < !
{ [n-A(S1)] n-A(21) n-A(%1)
(31)
2.10 The waiting times of calls of priorities
i+2, 1+3, ... m

Because all trunks are continuously occupied
by calls of priorities 1,2,...1+1, on the av-
erage, all calls of priorities 1+2, 1+3,
m must wait as long as the traffic offered sur-
passes the service capacity: A(21+1)s>n. Then,
the waiting times continue into the period
when the peak of waiting calls will be reduced
gradually. The time-dependent expectation
values during the interval of cutting down the
peak are determined in the next section.

3. THE PERIOD OF CUTTING DOWN A REAK
OF WAITING CALLS
3.1 The decreasing number of waiting 1-calls

The origin t=0 of the time scale is shifted to
the beginning of the period comnsidered. At the
time regarded t=0 many 1~calls are waiting in
front of the totally occupied trunk group. It
may be possible, that all n+%4(0) occupations
will be very short and that no new 1-call will
arrive during the duration of these occupa-
tions. But we consider mean holding times of
occupations to find an approximation for the
time-dependent expectation value EXP z(t).
Again, it is assumed that all n ftrunks are con~
tinuously occupied by 1-calls. Then, the mean
number of waiting 1-calls and its variance is
given by eqs. (9,10,24,26). For AC§1):Aﬁ<n,
it can be seen, that the mean number of wait-
ing 1-calls and the mean waiting time decrease
linearly whereas the variances increase.

During the period, when the queue decreases,
all arriving 1-calls must wait. The period of
cutting down the peak of waiting 1-calls ends,
when the influence of the high initial value
R,(0) has disappeared and when EIT z(t) has de-
creased to the stationary value BIF z, which 1s
given by eq. (12) with E=1 and k=1. The time-

(30)




dependent waiting traffic reaches this value,
which is valid during blocking periods, at the
time T, . Therefore, using egs. 9) and (12)
A
BXP z(7,) = (1) = R0) -(a-4) 1 = 1
n—A1
The duration T4 of this time interval is found
to be
Ay
R,0) - 573,
Ty = (32)
n - A1

Inserting eq. (32) into eq. (24), the mean
waiting time t,,(T,) at the time T, turns out
to be )
Q¥0)+1 n-A, 1
tw,‘(T/l) = mm—— T1 = —— = tw1 (33)
n n n-44

This is the well-known expression for the mean
waiting time, referred to delayed 1-calls.

3,2 The mean number of waiting calls of other
priorities and their mean times

At the time t=0 many calls of different priori-
ty classes are waiting, The initial values
Q4(0), R,(0), ... R0) may have been reached
at the end of a preceding saturation period; or
they may be fixed prescribed numbers.

From the time t=0, the total traffic offered is
sufficiently small that the traffic process can
reach stationarity. The long queue, whatever
its origin might have been, begins to decrease,
when mean values are considered. The passage to
 stationarity is investigated for all priorities
¥ with traffic offered A(%k)<n from t=0. -

During the period, when the waiting traffic de-
creases from the large initial value Q(£k;0) to
the vicinity of the stationary value Q(2k)/E,
it is assumed, that all n trunks are continu-
ously occupied by calls of priorities 1,2,...k,
¢f, the assumption (3). The mean number of
waiting calls of priorities 1,2,...k decreases
linearly with time t and is given by eq.(9);
eq.(10) holds for the corresponding variance.

a) During a first section of time the queue of
waiting 1-calls is reduced. This period of cut-
ting down the peak of waiting 1-calls was dis-
cussed in the preceding section 3.1. All ar-
riving calls of priorities 2,%,...m must wait.
Therefore, the mean number of these waiting k-
calls increases.

Q) = QK1) - QEk-151) = QLO) + At
for k=2,%,...m (34)

b) During a second section of time the mean
number of walting 1-calls remains constant.
During the gaps between 1-occupations 2-calls
are served, From eq. (9) the mean number of
waiting 1-calls and 2-calls at the time % is

QS2;6) = Q(E2;1,) - [0 - A(22)]- (%-1y)
for T,StET,

As the mean number of waiting 1-calls is con-
stant

A1
Q) =

n—A1

the mean number of waiting 2-calls turns out to
be

R(t) = 1) - (n-A,-4,) - (t-Ty) (35)
for T1§t§T2

£.<
for T1#t~T2
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The mean number of waiting 2-calls increased
from the time O to T,, as given by eq. (34) and
it decreases from the time Tyto T, as given by
eq. (35). The interval of cutting down the peak
of waiting 2-calls ends at the time Ty, when
the final value of waiting traffic during -
blocking intervals is reached, c¢f. eq. (17).
The length of the second sectlon of time is

fneAy
I SR U e St .Y )

- ,
2™ n-A(%2) n-4(%2)

(36)

Then, Q(%£2)/E corresponding to eq. (12) is
reached, too. Therefore, T, may be obtained al-
ternatively by the following formulas

A(s2)
n-AG2)
n-4(52)

This expression is analogous to eq. (32). Fol-
lowing the same considerations as in section
2.9, but for 1=2, we find:

QR(%2;0)-
T, =

(37)

n R.(0)+A,T n-A(52)

£ () = o b (-1
(n-4,) n-A, n-A,

for T, §t§T2 (38)

¢) Now a third section of time follows. During
this interval on the average only the queue of
waiting %-calls will be diminished. Looking at
the trunk group, an observer will see only 1-,
2- and 3~occupations, on the average, Followin
the same reasoning as above, the equations (35
(37) and (38) may be generalized.

Q1) = QLO)+ATy (- [n-aZK)] - (4T, ) (39)

for T,_St3m,
and k=1,2,...0

AGL

T, = A :“‘A‘s“’ for k=1,2,...m (40)

n-A(2k)
% (%) = #' + SﬁSqu)
Wi [n-A(Sk-1)]*  n-a($k-1)

- —E:ﬁiffl—-(t—T ) (41)

n-A(Sk=a) k-1 i
oo Me4,3,.%.m

3,3 An example

The fig. 5 shows that the mean number QEk; )
of waiting calls of priorities 1,2,...k de-
creases linearly with the time t. The example
given is described by the following parameters:
At the time t=0, 2 calls of priority 1, % calls
of priority 2 and 5 calls of priority 3 are
waiting in front of n=20 occupied trunks. From
t=0, the values of traffic offered are A;4=1.5,
A,=6.0, and A;=7.5 Erl.

Phe formula (40) gives the following results:
Ty =0,104, T,=0.352 and Ty=1.4. The approxima-
tion for Ty<t will De deﬁuced in the following
section (cf. fig. 9, which shows the continu-
ation of the curve $@(23;t) of fig. 5). The test
results show, that the real curves smooth. the
sharp angles between straight lines calculated
with this approximation method.

When regarding the waiting calls of each prior-
ity seperately, we find that the mean number

Q. (%) increases till the time T,,, then it de-

creases. This is shown in fig. 6, for the same

example as above,
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Fig. 5 The mean number of waiting calls of
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Fig. 6 The mean number of walting k-calls

seperately

Finally, we are going to examine the mean wait-
ing times of the same example. Eq. (41) yields
the straight lines plotted in fig. 7. The test
results lie on smooth curves. The mean waiting
times of 2-calls and 3~calls, which arrived at
the time t=0, are smaller than the calculated
values., The reason is: the assumption that all
trunks are only occupied by 1-calls and 2-calls
£1i11l the time T,, is too unfavourable, In real-
ity a non—vanisﬁing probability exists, that a
trunk might be occupied by a 3-call even before
Tz, and that a trunk might be 1dle.

3.4 The ebbing period

At the time T,, all expectation values of wait-
ing calls will reach the stationary values,
which are valid during blocking periods., The
approximation for the second ebbing period is
based on three assumptions for its beginning.
They express the conditions of continuity. The
expected total number of calls, the velocity of
its decrease, and the probability for delay
cannot jump. Two further assumptions for the
whole ebbing period are: The expected total
number of calls decreases exponentially with a
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time-constant D. Furthermore, the probability
for delay is supposed to decrease exponentially
with the same time-constant D. The expected
number of busy trunks approaches to the value
A(Zm), which is less than n. If the number of
calls were always less than n, no difference
could be observed between n finite and n-wes,
For n-se the exponential decrease is valid.
Therefore we use exponential decrease as an ap-
proximation.

EXP x(t)
x@)L

A(Sm) +52(dm)

The decrease of the expectation value
EXP x(t) of the total number of calls
which are present in the delay system
at the time t

Fig. 8

From the first and second assumption the time-
constant is obtained by means of the fig. 8:

ot Qégm) ~A(5m)-Q(%m)
D =
n-A(Em)
1-E A(S
=1 + A(Sm) _._...2_'1_[__(__2]. (42)
[n-a(Zm)]?




The ple given in figures § %o 7 leads to
D=1 .5 The expectation values EXP x(t) and
EXP z(%) found both by simulation and by this
approximation are plotted in fig. 9.
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Fig. 9 The decreasing expectation values of
the total number of-calls EXP x(t)
and of the waiting calls BYP z(t)
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Fig. 10 The probability of delay calculated
by the approximation method, and
found by a simulation test

4. CONCLUSION

The method deduced in this paper is but an ap-
proximation. It gives, however, the final val-
ues, which the waiting traffic will reach, and
its variance. From these figures the teletraffic
engineer can estimate the number of waiting
places which is necessary for the queue line of
the delay system. The approximation method
gives the mean waiting times during the periods
both of saturation and of reducing a peak. Thus
the grade of service of the delay system is
known. This analysis may be useful, to vary the
number of trunks or the priority classification
in order to achieve a higher grade of service,

In order to improve the calculation, the as-
sumption that all n trunks are always busy
should be substituted by a special assumption
on the temporary course of the blocking pro-
bability. Some of the results of this paper can
be generalized to a certain extent: Constant
holding times may be treated. In stead of
strict queueing, "last come - first served"
discipline within each priority may be re-
garded,
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