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Summary

The number of queue places is considered
as being infinite for delay systems. It is
finite for combined delay and loss systems
which were investigated by H. Stdrmer /18/,
and by J.R.W. Smith and J.L. Smith /17/. On
account of their different importance and
urgency calls are arranged in priority
classes. Nonpre-emptive priority service
and delay systems with infinite number of
queue places were studied by A. Cobham /4,
/5/, S.A. Dressin and E. Reich /8/, H.
Kesten and J.T. Runnenburg /13/, H. Stormer
/19/, and other authors /7/, /11/. (See al-
so /6/, /16/, /20/, /22/.)

This paper extends nonpre-emptive prior-
ity service to combined delay and loss sys-
tems. With a finite queue line a call may
wait or may be lost. It is considered to be
intolerable that a call of low priority is
waiting in the queue line while an impor-
tant call of high priority should be reject-
ed, because the queue line is totally occu-
pied. Nevertheless a call of high priority
enters the queue line and begins waiting.

A waiting call of lower priority is pushed

away and is lost. The specifications of the

system and traffic considered are:

1. combined delay and loss system with s
queue places including the special case
of delay system s-wo0;

2. full-access trunkgroup of nZl trunks;

nonpre-emptive priority for calls which

have occupied a trunk; for waliting calls
priority pushing away in case of a com-
bined delay and loss system;

4, independent holding times with one nega-
tive exponential distribution for all
calls;

5. K priority classes with distinct Poisson
inputs;

6. no defections;

7. lost calls cleared.

The stationary probability p(¥% Sk) -
¢, calls of priority class k or of higher
priority are wailting in front of the total-
ly occupied trunkgroup - is derived. From
this the probabilities are deduced that an
arriving call of priority class k
1. occupies a free trunk at once, or
2. is rejected at once, or
3. begins waiting and will be pushed away
out of the queue line later, or
4, begins waiting and will occupy a trunk
becoming idle.
The formulae are deduced for the mean

waiting times

1. referred to all calls,

2. referred to delayed calls,

3. referred to calls which wait success-
fully, and

4, referred to calls which wait in vain.

(The calls belong to the priority class k.)

The delay probability distribution of wait-

ing times can be deduced from a system of

differential equations given in this paper.

The results determine the quality of serv-

ice of the system considered.

This investigation has been made possi-
ble by the support of the Deutsche For-
schungsgemeinschaft (German Research Socie-
ty). I should like to thank the Deutsche
Forschungsgemeinschaft for the support
granted.

1. Introduction

1.1 Combined delay and loss system

Calls arrive at a connecting system. n
trunks are leading to the aim desired by
the calling subscriber. If there is an idle
trunk at the arrival instant of a call, the
call occupies this trunk at once. The
trunkgroup of n trunks is fully available.
If the trunkgroup is totally occupied, an
arriving call is stopped and has to wait.
The number of queue places is limited.
Therefore the connecting system considered
is a "combined delay and loss system".
Sometimes it is termed "delay system with
finite queue line". A call arrives during
a period when the trunkgroup is tota.ly
occunied. If the call finds a Iree Juzue
place, 1t begins waiting. No priorities are
assumed. If all s queue places are occupied
by calls waiting, a call arriving is dis-
missed and is lost. /18/, /17/, /21/, /20/,
/167, /3/

1.2 Quality of service

If a connecting system works as a loss
system, the quality of service is given by
the probability of loss. The quality of
service of a delay system is determined by
the probability of delay and by the proba-
bility of exceeding a waiting time. It 1is

given by the probability distribution of
waiting times referred to delayed calls.
The mean value of this distribution is the
mean waiting time of delayed calls. /3/

The analysis of a combined delay and loss
system requires to know the probabilitles
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of loss, of delay, and of exceeding a wait-

ing time.

1.3 Priority

Demands which are connected from inlets
to outlets of an exchange are not of the
same importance. There are different types
of messages. For example some messages may
call for a physician or may report a catas-
trophe. They are most urgent. Others are
less pressing, because they are private
communications and conversations. It is de-
sirable that the first class of messages
should take precedence of the other. There
are also different types of telegrams in
the general telegraph exchange service or
in special telecommunication networks. For
common telegrams a much longer waiting time
may be tolerated than for express telegrams.,
On account of their different importances
and urgencies the calls may be arranged in
priority classes. These classes are usually
numbered k=1,2,...K 1in order of decreas-
ing urgency. Higher priorities correspond
to smaller indices k of priority classes.
The system considered here has K priority
classes. /4/, /11/, /5/, /7/, /8/, /13/,
/19/, see also /20/, /6/, /16/, /22/.

Calls of higher priority take preced-
ence when waiting. The operation of the de-
lay and loss system considered is specified
by the following rules:

1. Calls having occupied a trunk are never
interrupted (nonpre-emptive priority).

2. Calls of higher priority queue up in
front of calls of lower priority.

3. The order of service is "first come -
first served" or strict queueing within
each priority class.

1.4 Holding times

All calls belonging to any priority class
have the same probability distribution of
holding times (respectively service times).
The holding times are mutually independent
random variables, each with negative expo-
nential distribution. The mean holding time
is unity.

priority classes:
1,2,...k,...K
- urgency

queue line:
s queue places

E ? trunkgroup:
~ ‘ n trunks
\\\\\\ connecting
A network: /' P
k :
full : —
]

//////// accessibility

Poisson input holding times:
neg. exp. distrib.
mean hold. time 1

Fig.l. Combined delay and loss system
with priorities

1.5 Traffic offered

The average number of calls of priority
class k arriving per mean holding time is
i.e. the traffic offered of the prior-
1%y class k. For each priority class a dis-
tinct Poisson input is assumed. The calls
arrive *individually and collectively at
random®. The pooled traffic input of calls
of arbitrary priority classes is a Poisson
input, too. The total traffic offered is A.

2. Probabilities of state

2.1 Calls of arbitrary priority classes

At first priority classification is ig-
nored. The state of the system at any in-
stant 1s given by the total number x of
calls which are present in the system. In
the number x both, the calls occupying a
trunk and the calls waiting on a gqueue place
are contained. (See fig.2.) Provided that
the process is stationary the probabilities
of state are independent of time. Let be p.
the stationary or equilibrium probability
that the system is in state x. The probablil-
ities are defined by formulae given by H.
Stormer /18/, and by J.R.W. Smith and J.L.
Smith /17/.

queue line: 6 a 3-call waliting
s=6 on queue place U
queue places 5

l..an arriving 3-call
71y begins walting on

‘ 3 queue place 5 and
3 pushes back the
at this :3 waiting 4-call
instant to queue place 6
x=7 2 :3
calls of at this instant
arbitrary 1 ’) ¢, =l waiting calls
priority L1 & J/ of priority classes
classes bri from 1 to 3
trunkgroup:

a 3-call which is
n=2 trunks (Eg}f//occupying a trunk

Fig.2. An example for a momentary random
state

2.2 Calls of priority classes from 1 to k

The influence of priorities will be in-
vestigated henceforth. In the sequel calls
of priority class k will be termed k-calls
/13/. A k-call arriving inserts in the
queue in front of waiting calls of lower
priority. The new k-call finds ¢ waiting
calls of the priority class k or of higher
priorities.

The state of the system is determined by
the random number ¢, of calls of priority
classes from 1 up to k which have been wait-
ing in front of the totally occupied trunk-
group. Let be p(kok) the stationary proba-
bility that both all n trunks are busy and
¢, calls of the priority classes from 1 up
to k waiting.



The number of waiting calls f_ is di-
minisned by one when any of the n occupa-
tions ends. The call waiting at the head of
the queue occupies the trunk which has be-
come idle. The probability density of end-
ing is n, because the mean holding time 1is
the unit of time.

The number of waiting calls Q is raised
by one, when a call of one of the priority
classes from 1 up to k arrives. The call
probability density is /19/

A(SK) = A, + A, + ..o+ A (1)

The state that both, the trunkgroup is
totally occupied, and no call of priority
classes from 1 to k is waiting, has the
probability p(0gk). The next call arriving
must wait. If it belongs to one of the
priority classes from 1 to k, § 1is raised
to the value 1.

The queue line with s queue places is
common to all the calls of arbitrary prior-
ity classes. Even if all s queue places
should be occupied, the priority rule is in
force: Calls of higher priority queue up in
front of calls of lower priority. If all s
calls waiting are of the same priority as
the call arriving or even of higher prior-
ity than it, the call arriving is rejected.
If, on the other hand, at least one call of
lower priority is waiting, the arriving
call begins waiting. It inserts in the queue
behind the calls of higher and of the same
priority which have been waiting. All calls
of lower priority are pushed back by one
place in the queue. The call which has been
waiting on queue place s finds no queue
place left. Although it had been waiting up
to now, it is pushed away and lost.

2.3 Lost calls cleared and no defections

Lost calls have either been rejected or
have been pushed away. Both kinds of lost
calls may be disregarded. They leave the
system and have no effect on the traffic
input: lost calls cleared. There are no re-
trials. /16/

kach call on any queue place continues
waiting till it is allowed to occupy a trunk
or till it is .pushed away by an arriving
call of higher priority. No call refuses to
wait; waiting is not conditional: no defec-
tions /16/, /14/. .

2.4 State diagram and equations of state

The state § =s means that all s queue
places are occupied by walting calls of the
priority class k or of a higher priority.
wWhether an arriving call of priority class-
es from 1 to k will either be rejected or
will begin waiting by pushing away a call
which has been waiting on queue place s
till now: in both cases the state ¢ =s does
not change. It is left only by the end of
any of the n occupations. The ending rate
is n and is valid for all other states [rom

fk =0 up to f“ZS, too.

A k-call may arrive during a period when
the trunkgroup is totally occupied. The
gquestion whether the k-call will either be

re jected or will begin waiting, depends
merely on the number of waiting calls of
priority classes from 1 to k. The transi-
tions from state {, to the neighbouring
state § +1 do not depend on the number of
walting calls of priority classes from k+l
to K. The set of possible states extends

from §=0 to Ys=s.

$ $,=123  s-t
Alsk)

|

£ 1
poo]

n b AGK
K

Fig.3. State diagram

By reference to the state diagram it can
be seen that the equations of statistical
equilibrium for the delay and loss system
considered reduce to

-*,%k) = n-p(g,=k) (2)

for {=1,2,...s
and k=1,2,...K

A(SK)- pl

o

At any state all n trunks are busy. Oth-
erwise stated, at least n calls of arbi-
trary priority classes are present in the
system.

3

+5

s
D p(fuSk) = > p, = E (3)
g’kzg Xx=n
To repeat the specitications of the con-

necting system and traffic considered:

1. combined delay and loss system with s
queue places, and delay system with an
infinite number of queue places;

2. full-access trunkgroup of nZl trunks;

3. nonpre-emptive priority for calls which
have occupied a trunk; ror waiting calls
priority pushing away in case of delay
and loss system;

4. independent holding times for all calls,
negative exponential distribution with
mean value 1;

5. K priority classes with distinct Foisson
inputs, A, being the traffic offered of
priority class k;

6. no detections;

7. lost calls cleared, no retrials.

2.5 Probability of blocking

The probability £ 1s the time congestion
which is the probability for "the condition
where the further establishment of a con-
nection is stopped (blocked), because the
submitted occupation (call) cannot be ex-
tended at once" /3/. Write E for the proba-
bility of blocking or time congestion 1ol-



lowing the notation of A.K. Erlang and the
papers of various Swedish teletraffic theo-
rists.

Write o for the specific traffic offered,
the total traffic offered per trunk:

i.e.
" - A A Btk Attt By ()
“n "~ n

A.K. Erlang gave the probability of
blocking for a loss system /2/:

n

A
n!
E = E,; (&) = ru— (5)
x'
X=0
H. Stormer /18/, and J.R.W. Smith and
J.L. Smith /17/ derived the probability of
blocking for a combined delay and loss sys-
tem:

1-
E = T 1-o = for (6)
ELn(A) I s=0,1,2,... finite

For the special case of total traffic
offered A being equal to the number of
trunks n:

s + 1
E = —g— for a=1 and (7)
EZ;THY + s s=0,1,2,... finite

A.K. Erlang deduced the probability of
blocking for a delay system /2/:

1
B = By (A) = — = ror @a (8)
ELAT F T And T

10

If the traffic offered A equals or ex-
ceeds the number of trunks n, the trunk-
group is always totally occupiled:

E =1 for «21 and s-o0 {(9)

2.6 Probabilities of state for combined
delay and loss systems

The s equations of state (2) together
with the normalization condition (3) deter-
mine the solution. Write «(2k) for the traf-
fic offered of priority classes from 1 to k
per trunk:

A(SK) A+ A,t...t A
(x,(.(—-k) - - 1 2 k

= = (10)

For brevity write
[w(10] = k) (11)
for the powers of w(2k).

Thus the probability of state that at an
arbitrary instant ¢, calls of priority
classes from 1 up to k are waiting in front
of n occupied trunks turns out to be

. ¢ l-a($k)
p(f,5k) = o($k)* —F7 - E for (12)

§=0,1,...5

S+ 1

'l-a(ik)

Both in loss systems and in combined de-
lay and loss systems the stochastic traffic

process reaches stationarity for any value
of traffic offered. The reason is: there
are lost calls because of the finite number
of queue places.

If the traffic offered A(£k) equals the
number of trunks n, alls+istates are equal-
ly probable.

E
for «(2k)=1
and {=0,1,...8

(13)

p(fuék) =
s + 1

For the lowest priority (i.e. priority
class k=K) eq. (12) and (13) change to
equations which are valid for the combined
delay and loss system without priorities

/18/, /17/.

2.7 Probabilities of state for delay systems

For delay systems the set of equations
of state (2) contains an infinite number of
equations since the number of queue places
tends to infinity. If the traffic offered
A(2k) of priority classes from 1 to k is

inferior to the number of trunks n, the so-
lution is
3
p(€,5k) = a(fk)*  [1-a(2k)]-E (14)

for «(2k)<1 and £=0,1,...
and s-» o

This formula was derived for the case
n=1 by S.A. Dressin and E. Reich /8/, /16/.
Eq. (8) or (9) yield the probability of
blocking E for n=1. Without the factor E
the probabilities p(¢,%k) belong to a geo-
metric distribution. /10/

For calls of priority classes from 1 up
to k¥ the stochastic traffic process reaches

(15)

for s-—oo,

stationarity, if  A(Zk*) < n,
but A(=k#+l) 2 n
4/, s/, 13/

though ‘tne toutal traffic process of all

" calls of arbitrary priority classes does

not reach stationarity. The probabilities
are constant and independent of time only
for the priority classes from 1 to k*. The
number of waiting calls grows, on the aver-
age, continuously. The increase of queue
length results, on the average, only from
less urgent calls of priority classes from
k*+1 up to K. The mean numbers of calls
which are present in the trunkgroup or in
the queue line are independent of time for
the priority classes from 1 to k*. All
calls of priority classes from 1 to k* will
occupy any trunk after a finite waiting
time. During remaining gaps of time some of
the (k#*+1)-calls will occupy some trunks.
The probability that a call will succeed in
occupying a trunk is finite for priority
class k*+1. It tends to zero for priority
classes from k#*+2 to K. This holds during
a period of "saturation" /13/, /1/, with
A(Sk*+1)2n,

Starting with the probability of state
according to eq. (12) we shall determine
the probabilities of delay and of loss in
section 3. In section 4 waiting times will
be dealt with.



3, Probabilities of delay and of loss

3.1 Account of traffic intensities

A call either occupies a trunk or is
lost. We make up the accounts of the mean
number of calls only of priority class k
which are termed k-calls shortly (see fig.
4). The mean number of k-calls which arrive
during a unit of time (during a mean hold-
ing time) equals the traffic offered A, of
priority class k. The partition of these
calls according to their lot - they become
either an occupation or a lost call - gives
the account of traffic intensities.

call e lOst call

occupation

mean number of k-calls arriving
during a mean holding time 1: A,

i

at their arrival instants:

B.-A

k- caﬁls are

rejected
(1-E)-A at once

k-calls occupy
a free trunk
at once

W
k-calls_
begin
walting

after having waited
a random waiting time:

© A BY A,
K calls occupy k-calls are
a trunk\ pushed away
PN w—
Total: e
(1-B, )" B, -

k- occupatlons 10at k-calls

The account of the mean number of
k-calls during a mean holding time 1;
the account of traffic intensities

Fig.bk.

3.2 Calls at their arrival instants

Arriving k-calls, which succeed in
finding an idle trunk, occupy it at once.
The trunkgroup is not blocked, if at least
one idle trunk is left: probability 1-E. No
one but the probability of blocking E 1is
independent of the priority class consid-
ered; E is equal for all calls.

some of the k-calls which arrive during
a period of blocking or time congestion are
re jected at once. They are rejected, if all
s queue places are occupied by calls of the
priority classes from 1 to k. Figure 5
shows a realization of a random instantane-
ous state. All s=6 gqueue places are occu-

pied by l-calls, 2-calls, or 3-calls.
3-calls or 4-calls arriving are rejected
immediately, because thils instantaneous
state belongs to the state =6 and at the
same time to the state ¢ =6.

an arriving 3-call or L-call

queue
_ e 1s rejected immediately

an arriving 2-call is
allocated to queue
place 4 and pushes back
all waiting 3-calls

by 1 place in the queue

the 3-call which has

32
2 1 been waiting on queue
{ place 6 is pushed
1 away and is lost,
”«¢~—- because the 2-call
arrives

An example lor an instantaneous
state. It is a possibility for the
following states: ¥, =2; ¢, =3;

¢, =6=s; ¢, =b=s.

Fige9.

The probability of the state $,=s - all
s queue places are occupied by calls of
priority classes from 1 to k at any in-
stant - equals the probability that a
k-call arriving is rejected at once and is
lost. This probability 1s termed probabil-
ity of loss by immediate rejection B/.
¢ l-a(fk)
B = p(s,%k) = «(fk) - ———— +E (16)
-a( 2k)

Let us look on k-calls only. On the av-
erage, (1-E)-A, calls occupy a free trunk
at once, and B/-A, calls are rejected imme-
diately at their arrival instants. The re-
maining W/-A, calls begin waiting. Hence
the probability of delay W/:

3

, 1-af £k)
ZZPU:L,;k) = .‘:)—B& = W - E (17)

The primes note the probabilities for
the lot of calls at their arrival instants.

3.3 Calls having waited

If a k-call is delayed, it begins wait-
ing; there are two lots possible. On the
average, W - A calls occupy a trunk at the
very instant, when an occupation ends. The
remaining B} -A, calls are pushed away out
of the queue line. W - A  calls are waiting
successfully and BJ- A, calls are waiting in
vain. (See fig.k. )

Calls-of higher priority (priority
classes from 1 to k-1) insert in the queue
according to the priority rule, i.e. in
front of all waiting calls of lower priori-
ty. They push back all waiting calls of
lower priority by one place in the queue.
Thus they may cause the pushing away of a
call which has been waiting on queue place
s .



et us return to the example of an in-
stantaneous state (sec fig.5). A 2-call ar-
riving is allocated to queue place 4. All
calls, which have waited on queue places
behind the place allocated, are pushed back
by one place. The 3-call, which has been
waiting on queue place 6, is pushed away
out of the queue line and is lost. In order
to register the calls pushed away it is in-
sufficient tc make up an account of nothing
but the k-calls. We must also consider pos-
sible events and calls of higher priorities
which may cause the pushing away of k-calls.

We use the formal presentation of all
possible events as domains within a rec-
tangle: the sample space /10/ (see fig.6).
The state {, ;=s - all s queue places are
occupied by calls of priority classes from
1 to k-1 -« corresponds to the area within
the inner circle., Therefore calls of prior-
ity clasces from k-1 to K are rejected im-
mediately. If the state ¢ =s prevails, ar-
riving calls of priority classes from k to
K are rejected immediately. If § ,=s occurs,
¢, =s occurs, too; if s calls of priority
classes from 1 to k-1 wait, s calls of
priority classes from 1 to k walt, too. 'The
area of the circle ¢, ,=s is contained in
the area of the circle ¢{ =s; the event
{.,.,=s 1implies ¢ =s.

the k-call Oc(upleu
4 trunk or a
queue place

there is

at least 1
k-call in
the queue

S00s, Ek- T - ARk

b,w
\ call oi higher priority
/ \ insert in the queue and
/ "+ /ipush away k-calls waiting J
A < : : .
' rf?ﬂif:n'F'

arrive L;jiggtjgpggléggly N
A(Sk-1) [p(s,%k)-p(s,3k=1)] A(Sk-1)
calls or = b"-A
higher k- calls wnich are puShed
priority away out ol' the queue line
arrive
(1,2,...k=1)

~ig.6. Sample space with domains repre-

senting possible events. Account oOf
the mean number of k-calls ana of
calls of higher priority during a
mean holding time 1; account of
traffic intensities.

The ring-shaped domain between the two
circles represents the events that there is
at least one k-call among s waiting calls
of priority classes from 1 to k, but no
waiting call of priority classes from k+1
to K. The probability for these events is
p(s,%)-p(s,k-1). A call arriving of any of
the priority classes from 1 up to k-1 en-
ters the queue and pushes away one waiting
k-call.

During a mean holding time the mean num-
ber of k-calls which are rejected at once
is

B{ A, = pls,$k) A

During a mean holding time the mean num-

ber of k-calls which are pushed away out of
the queue line turns out to be

By-A, = [p(s,fk)-p(sfk-1)] - A(Zk-1)
= ( Bl - B, ) A(Sk-1)
Bf is termed the probability of loss by
pushing away.

Introduce the traffic offered of prior-
ity class k per trunk:

(18)

@ = (19)

The probability of total loss B, 1is the
probability that a k-call is lost either by
rejection or by pushing away.

B -a(fk) - B} -a(

B = Bi+B} = -

%y
The probability of waiting successfully

k-1)

(20)

W, results from the probabllity of delay W,
and the probability of loss by pushing away
i (cf. fig.h):

W, :wi - Blo= B - B (21)

Now we have succeeded in determining all
probabilities for all possible ways which
are listed in the account of k-calls (see
'ig.4). The probabilities of not being
stopped 1l-, of waiting successfully W, ,
and of total loss B, determine the final
lot of a k-call.

3.4 Diagrams for the probabilities of
blocking, of delay, and of loss

Let us look back. As occupations never
are interrupted for nonpre-emptive priority
service, the probability of blocking E is
valid for all priority classes. (cf. eq.
(5) to (9), see fig.7) The curves show the
influence of the size of the queue line.
The extremes are on the one hand the delay
uystem (s--00), on the other hand the loss

ystem (s=0). The probability of blocking
it can be factored out of most equations.

The quantity b)/r, meaning the probabil-
ity of loss by rejection divided by the
probability of blocking (cf. eq. (16)), is
plotted in figure 8. It does not depend on
the number of trunks n, if the traffic of-
fered of priority classes irom 1 to k per
trunk o«(%k) is used. Thus o(£k) proves to
be useful. Starting with the value k& drawn
from diagram 7 for a given number of trunks,
diagram 8 is used two times: for priority
classes from 1 to Kk, and for priority



classes from 1 to k-1. when we use these
three values, the formulae (1¥), (20), and
(21) can easily be evaluated.

Fig.7. The probability of blocking I de-
pends on the total trarfic oftered
per trunk a, on the number of queue
places s, and on the number of
trunks n.

Fig.o. The propabilities of loss Dby rejec-
tion B! and of delay W} divided by
the probability of blocking i depend
on the traffic oftered of priority
classes from 1 to k per trunk «(2k),
and on the number of gqueue places s.

4. Mean walting times

L.l waiiling traffic

The mean number of calls of priority
classes from 1 to k which are waiting in
the queue line equals the waiting traffic
2(%k). when we use eq. (12), this expecta-
tion value turns out to be

QUEK) =) §-p(g,2k)
;Tooc(ék)

(s+1) oe(Zk)" (22)

B

-l $K) 1-a($k)

For delay systems the second term within
the brackets vanishes, if o«ffk)<l. The mean
number of calls waiting increases, if the
number of queue places increases.

The mean number of waiting calls of
priority class k seperately is the waiting
traffic £.

Q, = k) - QUk-1)  for k=1,2,...K  (23)

(Calls of highest priority belong to prior-
ity class k=l: Q,=(X%1); £2(20)=0.)

L,2 Mean waiting time referred to all calls

The mean holding time is used as unit of
time. The mean waiting time ¥ is referred
to all k-calls., I!f' the traffic process 1is
stationary tor priority class k, the wait-
ing traftic $) 1is equal to the average num-
ber A, of k-calls arriving per unit of time
multiplied by the mean waiting time tj re-
terred to all k-calls (cf. /3/).

Q= A TR (24)

Use eq. (1lu) and (19), and the abbrevia-
tion

al2k-1) = wl<k) (25)
and insert eq. (23) and (22) into eq. (24).

The mean waiting time retferred to all k-
calls is found to be

T B _<m)[oc<sk>5"—oc(<u)‘”]} )
wk ni[{—oaék)]{uakk)] ock~[1—a¢(§L)"‘]-[1-a(«lJ‘"j

The waiting traffic Q(%k) is equal to
the average number A(%k) of calls of prior-
ity classes from 1 to k per unit of time
multiplied by the mean waiting time (k)
referred to all calls of priority classes
from 1 to k.

R(Zk) = A(Sk) - (k) (27)
Herce with eq. (10) and (22)
) E 1 (s+1) «($k)
t*(=k) = — - (28)
" n |1-x($k) 1-al Sk’

Inserting eq. (24) and (27) into egq.
(23), we get with (10) and (19) (cf. /13/)
2*(Sk) a(Sk) -vo($k-1) ou( $k-1)
- . (29)

T* =
wk
&y

Eq. (29) together with eq. (28) is equiv-
alent to eqg. (26). The structure of eq. (29)
for the mean waiting time t4 referred to
all k-calls agrees with the structure of
eq. (20) for the probability of total loss
B, . In order to evaluate 73 we use Tt (2k) .



v%(%k)/E and t(£k-1)/E are drawn from fig.
9, and E is drawn from diagram 7 for the
number of trunks n.

?t:ék)

' E

Fig.9. The mean waiting time t3(%k) referred
to all calls of priority classes
from 1 to k divided by the probabil-
ity of blocking E depends on the
traffic offered of priority classes
from 1 to k per trunk «(%k), and on
the number of queue places s.

L.,3 Delayed calls of highest priority

For calls of the highest priority: k=1,
«(%1)= a,, and a(<1)=0. Eq. (26) yields the
mean waiting time <% referred to all 1-
calls. With the probability W, =W' according
to eq. (17) a l-call is delayed and begins
waiting. l-calls never are pushed away. The
mean waiting time v, referred to delayed
and waiting l-calls is

,C,l’ 1 1 S~O(f
voo= M e for (30)

1 B
o n\1-«  1-a//s=1,2,... finite

For s-oo (delay systems) the second term
within the brackets vanishes, if o,<1. If
a, approaches 1, the mean waiting time Twy
tends to infinity. Only for «,<1 the traffic
process is stationary (cf. section 2.7).

In delay and loss systems with one single
queue place each l-call walting has to wait
till one of the n occupations ends. (See
fig.10.)

1

twiz n

If for delay and loss systems the traffic
offered per trunk «, -, each l-call that
must wait is allocated to queue place s. It
must wait till s occupations have finished,
and at the very instant it is to occupy a
trunk. (See fig.10.)

(31)

for s=1

for «,~wmand (32)
s=1,2,... finite

‘C‘-»E-
w1 n

E T MM:L |
6 ...l =S i//
n
4. \s R L
n

N 5=
2
n ~ 2 -
A
\

o ¢y

0 05 1 15 2 25

Fig.10. The mean waiting time =z, referred
to the l-calls waiting depends on
the traffic offered of priority
class 1 per trunk «,, and on the
number of queue places s.

L.4 Delayed calls in delay systems

With infinite number of queue places
calls waiting are never pushed away. The
waiting traffic ©, 1s equal to the average
number W, - A, of delayed k-calls occuring
per unit of time multiplied by the mean
walting time t@kreferred to waiting k-calls.,

R = WAL T,
With eq. (23), (22), and with %{zE for swoo

for s— oo

1
[1-2(2K)]-[1-a(< k)]
(efo /8/, /13/, /19/)
The mean waiting time z* 1s changed to
tX by priority classification. In delay

systems the probability of delay W =E does
not depend on the priority class considered.

for s-o (33)
and o $k)<1

Sl

t@k=

Ty T l-«
—“Tkz—w—k= for s-oo (34)
tw  Tw [1-a(Sk)][l-axl<k)]and «<1

The formula (34) for the relative pro-
longation of the mean waiting times by in-
troducing priorities is valid for
the delay system with Poisson input,
negative exponential distribution of
holding times, and n%l fully accessible
trunks.
It was deduced quite differently by A.
Cobham /4/. The formula (34) holds even for
a delay system with Poisson input,
general probability distribution of in-
dependent holding times, and one single
trunk n=1 /4/, /13/, /19/, /22/.

4.5 Delayed calls in delay and loss systems

For combined delay and loss systems the
walting traffic contains all waiting calls;
we leave out of account whether they will
occupy a trunk, or will be pushed out of
the queue line after their waiting times.
Starting from the mean waiting time 73,



referred to all k-calls the mean waitin
time t,, referred to delayed k-calls (l.€.
k-calls that begin waiting) is

plo= {35)

As well as tg (cf. eq. (26) or (29)) the
mean waiting time v, of delayed k-calls de-
pends on both o«{£k) and a(<k), too.

So far the mean waiting time t¥ referred
to all k-calls cannot be divided in the
mean waiting time 7., referred to k-calls
which are waiting successfully (probability
W, ¢f. eq. (21)), and to the mean waiting
time ¢y, referred to k-calls which wait in
vain (probability B} cf. eq. (18)).

Ta = Yo Gu BTy (36)
In order to determine the mean waiting
times 7, and tj, we must take into consider-
ation the queue place on which a call is

waiting.

L.6 Conditional probability distribution of
the waiting times for given queue place

We are looking for the probability that
the waiting time of a k-call exceeds the
time v on condition that this k-call waits
on queue place j at the instant v=0. Be-
cause of the Markov property of the traffic
process (/10/, /14/) it is identical to the
conditional probability that the waiting
time of an arriving k-call exceeds the time
v on condition that this k-call is allocat-
ed to queue place j. On condition that the
k-call occupies the queue place j, various
waiting times must be distinguished:

a) referred 'to all k-calls that begin

walting,

b) on additional condition of waiting suc-
cessfully,

c) on additional condition of waiting in
vain.

a) All calls that begin waiting

The distribution function Wi{>z/j) ex-
presses the probability that during a time
t a k-call that occupies the queue place
at the beginning of the interval t has kept
waiting. It waits at least time v, till it
is allowed to occupy a trunk immediately
after an occupation has ended, or till it
is pushed away out of the queue line by an
arriving call of higher priority.

At the instant v=0 a k-call is waiting
on queue place j. During the subsequent
short interval dv one of the following pos-
sibilities may occur:

1. A new call of higher priority arrives
and pushes back the call considered to
queue place Jj+1l,

2. No call of higher priority arrives, and
no occupation ends. The k-call consid-~
ered stays on queue place J.

3. One of the n occupation ends. The call
considered advances to queue place j-1.

After this the k-call considered is assumed

to wait at least time t. There are 2 neigh-

bouring queue places, if j=2,3,...S8-1. The
input of calls and the terminations of oc-

cupations are mutually independent. When dv

is so small that multiple arrivals, termi-

nations, and arrivals- termin&tions have
probabilities of the order of (dv) they
can be ignored. Hence (cf. fig.1l)

wé(>t+dt/j}

= A(;k)'dt‘vl;()‘ﬁ‘/s*l) ’ {38&)
+ [1-a(<k)-de]-[1-n-de] W (>/§)
+ nedr =wg(>t/3-l) for j=2,3,...8<1
The deduction follows the method intro-

duced by C. Palm /ik/, /16/.
time:

} T +dt

; dr 4 -4
a k-call the k-call
on queue considered ...
place j

possible event
during the tim
iinterval dv:

a call of ..s Keeps waiting
[ higher on queue place j+1
priority

| 4, i

L

A{<k)-dr- w*(>t/3+l

|
|
|
probability f
|
|

... keeps walting
no call 1z on queue place j
no probability:
ﬁ»A(ck)-dt}[l—n»dﬂ
“WiT/d)
... keeps walting l

i on queue place j-1

probability:

‘ an end n<dt-w;(>t/j-l) i
walilts at I
least time E
T+dr
probability: é
W£(>Y+dt/j) ... Still waits

Fig.1ll is designed to illustrate the deduc-
tion of the differential equation
f'or the distribution function
Wil>T/ ) (el /14/)

When the k-call considered is walting at
the head of the queue (i.e. on gqueue place
j=1), it occupies a trunk becoming free
during the time interval dc at once. [t
brings its waiting time to a successful
end. A k-call on queue place 1 has to wait
(either successfully or in vain) at least
t+dr, if during dv one of the following
possibilities may occur:

1. A call of higher priority arrives and

pushes back the k-call to queue place 2.
2. No call of higher priority arrives, and

no occupation ends. The k-call stays on

queue place 1.

After this the k-call is assumed to wait
at least time 7. Hence

wk(>r+dr/1)
= A(<k)-dr -HL()t/E)
+ [l—A(<k)‘dt}[l-n-dt]~

(37a)

wg(>t/1) for j=1



When the k-call considered is waiting at
the end of the queue (i.e. on gqueue place
j=s), it is pushed away by a call of higher
priority which has arrived during the time
interval dv. A k-call on queue place s has
to wait (either successfully or in vain) at
least z+dt, if during dv one of the follow-
ing possibilities may occur:

1. No call of higher priority arrives, and
no occupation ends. The k-call stays on
queue place s.

2. An occupation ends. The k-call advances
to queue place s-1l.

After this the k-call is assumed to walt at

least time 7. Hence

Wi(>t+dt/s)
= [1-A(<k)-dT]-[1-n-dt]-W] (>€/s)
+ n-dr 'W£(>t/s-1)

(3%a)

for j=s

. Differential equations. Probabilities
that both an arrival and an end occur du-
ring a time interval dv are of second order
in dtv. When dr tends to zero, we get a sys-
tem of s linear differential equations.

dW, (>z/1)
= A(<k)-w‘:(>t/2) -In +A(<k)]-%'(>'rl1) for j=1
d W, 0tli)

dr (38)

= A(<k)- %’(n/jm-[n +Ak)] %’(>c/j)+n. W 1)
for j=2,3,...s8-1

dW,/(>/s)
dr (39)
= —[n+A(<k)]-W“'(>t/s)+n» W‘:(ﬂ'/s-f) for j=s
Wi(>0/j) = 1 for j=1,2,...s (40)

Starting from the system of differential
equations the delay distribution function
Wl (>T) for any delayed k-call without con-
dition of a given queue place can be de-
duced on principle. To cite the formulae
which have been derived for the cases s=1
and s=2 1is beyond the scope of this paper.

4,7 Mean walting times of delayed calls for
given queue place

The mean waiting time z4(j,k) referred
to delayed k-calls which begin waiting on
queue place j is the mean value of the de-
lay distribution function. In order to find
Tw(J, k) we integrate wa(>c/j) J1L/.

oo
t‘;v(j,k) = fw‘:(w/j)-dv (41)
T=0
W, >t/3)
Because - T is the probability den-
sity we get
)
aw, (>e/ )
- ——~E§————-dt = 1 (42)
=0

By integrating the differential equa-

tions (37), (38), (39) we get a system of
linear equations for the mean waiting times

2., (J,k) of k-calls that begin waiting on
gqueue place j.

(n+A(CKI] - 2 (1,k) = Al<k) -2 (2,k) + 1 ,3a)
for j=1

(n+a(<K)] - T3, k)

= A(<k)-tu(j+l,k) + n-ogli-1,k) + 1
for j=2,3,...8-1
)

(1ba)

[n+A(cKk)}- ' (s,k) = n-2(s-1,k) + 1 (45a
W W /

for j=s

Write
Dy = [n*ACI]-2(3,K) (46)

then

. . Alkkk)
bi = mracwn P2 *l (43)
for j=1
_ _A(<k) n
Dy = mrarey Pt mrAey Dt L (Lh)
for j=2,3,...8-1
n 1

D¢ = n+AE<k5'Ds—1+ 1 (45)
for j=s

L.8 Roulette method of simulation

Let us consider the roulette method of
simulation which was introduced by L.
Kosten /23/, /24/. Kosten's traffic model
uses call-originating and call-terminating
random numbers. It is well known and is
frequently used, e.g. /25/, /26/, etc. The
program advances from step to step. At each
step it decides whether an event may occur.
We disregard the steps when no event oc-
curs. The k-call waiting on queue place j}
advances to queue place j-1 with probabil-

ity q.

— n’
9= TFAKY R

The k-call waiting is pushed back by one
queue place from j to j+1 with probabil-
ity p=1-q.

A(<k) ,
p=——-1-(——ymA<k (48)

The roulette method is based on
Bernoulli trials. W. Feller treated prob-
lems on Bernoulli trials and used the lan-
guage of betting /10/. Remember the classi-
cal ruin problem. A gambler wins a dollar
with probability p, or loses a dollar with
probability q=1-p. His initial capital is
j, the capital of his adversary is s+1-].
The game continues until the gambler pos-
sesses no dollar (ruin), or until he pos-
sesses the combined capital s+l (gain). The
expected duration of the game until one of
the two players is ruined is D'. The eq.
(43), (44), and (45) with (L7)> (48) yield
Dj /10/.

The roulette method of simulation gives
the probabilities of delay, and of loss.
It yields the mean values, too. The mean
waiting times may be determined by roulette
simulation /26/. We use the correspondence
between the real traffic process in the
queue line and the process of a roulette
simulation. A k-call waiting moves up and
down in the queue line. Its queue place
corresponds to the gambler's capital.



The simplest case is a combined delay
and loss system with one single gueue place.
A k-call begins waiting on queue place 1.
Consider the process of the simulation. At
the next step when an event occurs, the
program ends the waiting duration of the k-
call; the waiting duration of a delayed k-
call is D{=1. The k-call is successful with
probability q and a waiting duration of 1.
step. We consider merely k-calls which wait
successfully. We intend to determine the
mean waiting time ¢, referred to k-calls
wailting successfully. The waiting duration
of a k-call which waits successfully is
Dy;=1 step. Steps when no event occurs are
disregarded. The conversion from the wait-
ing duration D, =1 of the simulation to the

mean waiting time %, is done by eq. {(46)
(¢f. /10/ problem no. XIV.1).
D
_ - 1 _ 1 1
t@k"' Tl k) = n+tA{<k) n 1+x{<k) (49)

The k-call waiting on queue place 1 walts
in vain with probability p. The simulation
gives a waiting duration of 1 step. Con-
vert Di=1 to the mean waiting time tj re-
ferred to k-calls which wait in vain. With
eq. (46)

_ 1. 1 _
Yk T R TFRcRT T Bk

for k=2,3,...K (50)

and s=1

For s=1 the following equivalence is
valid: The mean waiting time ¢, referred to
delayed k-calls (i.e. k-calls that begin
waiting) equals the mean waiting time
referred to k-calls which wait successfully
and will occupy a trunk, and equals the
mean waiting time e, referred to k-calls
which wait in vain and will be pushed away.

The investigation of the classical ruin
problem for different values of the total
capital s+l1, e.g. s=2, and all possible
values of the initial capital j=1,2,...s

_yields the expected durations of the games
which are terminated by the ruin of the
first gambler. Further calculations will
give the formulae for the mean waiting
times Ty referred to k-calls waiting suc-
cessfully, and %) referred to k-calls wailt-
ing in vain. In this paper we restrict our-
selves to the special results Tu=ty=Tuw fOr
s=1 ¢f. eq. (50), and %=t and t3=0 for
swa(cf. section 4.4).

5. Conclusion

There are different types of calls with
different tolerable waiting times. The con-
necting system is adopted to these reguire-
ments by priority classification. Technical
systems have small or very large, but fi-
nite queue lines. Known formulae are based
on the assumption of an infinite number of
queue places. The formulae deduced in this
paper are intended as an aid to study the
influence of the finite number of gqueue
places together with nonpre-emptive priori-
ty service. For usual assumptions on the
traffic the probabilities of delay and of
loss, and the mean waiting times have been
deduced. Some diagrams give an idea of the
influence and importance of the size of the
queue line. They show the way of solution.

The formulae yield exact values. To shorten
the calculation, approximate values of the
interesting probabilities and the mean
walting times can easily be calculated by
reading out the formula-terms from the dia-
grams. The starting-points are given for
the further calculation of the delay dis-
tribution function, and of the mean waiting
times referred to calls waiting successful-
ly, respectively referred to calls waiting
in vain.

I should like to express my thanks to
the Deutsche Forschungsgemeinschaft (Ger-
man Research Society) for the support of
this investigation, and to Professor
Dr.-Ing. A. Lotze for many valuable dis-
cussions.
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