
Copyright Notice
c© 2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this

material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must

be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright
and all rights therein are retained by authors or by other copyright holders. All persons copying this

information are expected to adhere to the terms and constraints invoked by each author’s copyright. In
most cases, these works may not be reposted without the explicit permission of the copyright holder.

Institute of Communication Networks and Computer Engineering
University of Stuttgart

Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Phone: ++49-711-685-68026, Fax: ++49-711-685-67983

Email: mail@ikr.uni-stuttgart.de, http://www.ikr.uni-stuttgart.de

Future Network and MobileSummit 2010 Conference Proceedings
Paul Cunningham and Miriam Cunningham (Eds)
IIMC International Information Management Corporation, 2010
ISBN: 978-1-905824-18-29978-1-905824-16-8

Dynamic Protocol Functionality in
Cognitive Future Internet Elements
David WAGNER1, Jens MOEDEKER1, Thorsten HORSTMANN1

1Fraunhofer FOKUS, Birlinghoven, Germany
Email:{david.wagner,jens.moedeker}@fokus.fraunhofer.de

Abstract: Composing communication protocols as needed is a topic researched for
a long time with moving focus. Nevertheless the vast flexibility of these proposals
also prevented the real world success: there was no management solution available
that could cope with the many degrees of freedom such architectures offer. This pa-
per discusses the Dynamic Protocol Composition (DPC) architecture developed in the
Self-NET project which aims at integrating cognition and autonomics in self-managed
networks by the Generic Cognitive Cycle consisting of three phases: Monitoring,
Decision-Making and Execution. The presented DPC architecture is therefore de-
signed to serve as an execution capability for a powerful and intelligent decision mak-
ing process. Since the various potential use cases of DPC in autonomous networks
differ heavily with respect to situation awareness and decision making, an example
is given. Furthermore the architecture and operation of the DPC implementation is
presented. First experiments on packet loss compensation show that dynamically ap-
plying Automatic Repeat Request (ARQ) using DPC on routers allows to improve
quality of service and network performance significantly without constantly adding
load to the link concerned.

Keywords: Future Internet, dynamic protocol composition, cognitive network man-
agement, autonomic communication, communication protocols

1. Motivation
The Internet as we know it is the result of thoughtful design that was supported by a
repeated pattern of implementation and testing in the 1970’s [1]. The decision for a
narrow waist of oblivious datagram forwarding that avoids any connection state within
the intermediate switching nodes paved the way to the Internet’s success because it
allowed the development of diverse novel applications and services on top of this very
basic foundation. Nevertheless the limits of this design are apparent in today’s networks:
On one hand the simple mechanisms and assumptions of the Internet Protocol are being
softened or even given up in many places, just think of middle boxes like firewalls,
NAT-routers etc., VPNs, application proxies and so on. On the other hand devices,
networks and service have become very heterogeneous, ranging from error-prone wireless
sensor networks (WSNs) to multi-gigabit fibre-based storage area networks (SANs). It
becomes more and more apparent that today’s Internet protocols, namely the transport
protocols, fail to offer a service that is acceptably close to the best possible service.
We identified two major subjects that would allow overcoming current limitations in a
transparent and evolutionary way: First, protocol functionality should be managed in a
dynamic way that allows to take into account changing context like available bandwidth
or packet loss caused by very different reasons e.g. user mobility, higher load or bad
weather changing the characteristics of wireless links. Second, we propose to give up
the end-to-end principle and to establish protocol functionality in intermediate nodes
in the network. The management of this in-network soft state seems to be feasible in
the Future Internet making use of Cognitive Network Management (CNM) that allows
making complex and fine-grained decisions in a cognitive manner.

Copyright c© The authors www.FutureNetworkSummit.eu/2010 1 of 8

2. Research on Dynamic Composition of Communication Protocols
The idea to compose protocol functionality according to requirements attracted Internet
researchers very early in the 1990’s and since has been researched for different moti-
vations, with varying focuses and assumptions. In the beginning frameworks like the
early x-kernel [2] have been developed which allowed building static protocols according
to the actual needs. These protocols had to be developed, compiled and distributed
in a static manner and did not allow for runtime changes. With time, the proposed
architectures got more dynamic, proposals like DaCaPo [3], Protocol Boosters [4] or
DiPS/CUPS [5] allow dynamic runtime reconfiguration of the protocol stack. The fo-
cus of the DaCaPo and DiPS/CUPS architectures is still on the end systems whereas
the authors of the Protocol Boosters proposal already described the deployment of ad-
ditional protocol functionality within the network. Nevertheless there were no results
published and this idea was not further pursued. Although the authors expected proto-
col boosters to evolve fast because of their transparency with respect to the end nodes
they still assumed homogeneous deployment within an administrative domain.
The guiding vision for developing this Dynamic Protocol Composition (DPC) frame-

work is a potential node-by-node deployment of an evolutionary DPC in the Future
Internet which will be autonomously managed by a much higher degree than todays
networks.

3. Our Concept of Dynamic Protocol Composition
The design of our concept for DPC is based on the idea of most Future Internet nodes
being equipped with a cognitive management entity that is able to understand the
challenges of the current network situation and the consequences of available execution
options. The Network Element Cognitive Manager (NECM) will be able to provide
consistent and resilient intelligent network management since it takes situation aware
decisions using an ontology that allows reasoning based on the stored formal represen-
tation of administrator expert knowledge. Therefore the DPC framework itself should
rely on NECMs decision wherever possible. Nevertheless the decision making on this
level is resource-intensive, in particular it is expected to cost more time than accept-
able for many packet-handling decisions. Therefore the design defines several levels of
control that e.g. allow the NECM to proactively define rules defining how to act if
certain conditions are met. By this the overall system will be able to achieve a very
fine-grained control of the protocol behaviour regarding functionality and time without
needing to consult the NECM for each decision.
Hence the functional components, called Functional Protocol Elements (FPEs), han-

dled by this framework are designed as small as reasonable: adding a sequence number,
sending an acknowledgement or forwarding a packet are typical examples. This results
in a world of micro-protocols that allows for highly efficient execution and minimal
overhead in the network. The composed protocols can be tailored exactly to the needs
of the service in a particular situation and can be adapted at any time. To imple-
ment these composed protocols FPEs may express dependencies to other FPEs. This
allows single FPE instances and the respective header fields to be used to achieve sev-
eral independent and more complex functionalities: A byte counter FPE can be used to
achieve flow control at the same time as loss detection, maybe combined with automatic
retransmissions.

Copyright c© The authors www.FutureNetworkSummit.eu/2010 2 of 8

The DPC design therefore is targeted on an efficient and highly dynamic packet
handling which incorporates setting up of so called Functional Couplings like Automatic
Repeat Request (ARQ) between nodes. To achieve this goal there is an architecture
needed that on one hand allows fast and efficient packet processing but on the other
hand allows for fast and transparent adaptation triggered either by the NECM directly,
by preconfigured policies or by requests from cooperating nodes.

3.1 Applying DPC to intermediate nodes
The concept of minimal functional elements also facilitates the fine grained extension
and adaptation of functionality within the network to the current network situation:
With such a framework it is possible e.g. to activate adding Forward Error Correction
(FEC) to a (UDP-like) video streaming service on wireless hop and at the same time
at the same link to activate local buffering and retransmissions for a flow known to
be a reliable file transfer. More general applying communication functionalities, e.g.
encryption or reliable transmission, dynamically between arbitrary nodes in the Future
Internet allows to tailor the performance of each link to exactly the requirements of
each flow and to the capabilities available in the current situation.
Still the application of the principle of DPC to intermediate nodes i.e. routers creates

need for setting up and managing state in these nodes in an efficient and resilient
manner. These challenges do not apply to current end-to-end protocols of the IP-
based protocol family that on purpose do not set-up any state in intermediate nodes
in order to protect state information from loss and to be able to mask local changes
and failures. We assume that in a first phase in-network DPC functionality will be
used to improve network performance and capabilities but end nodes won’t rely on
it and will still manage the crucial state themselves. This scenario will be facilitated
by CNM combined with soft state mechanisms (regularly refreshing signalling). The
potential benefit of dynamically providing functionality within the network is promising
a better network performance and higher efficiency. Therefore this topic is worth to be
investigated more deeply.

4. Cognitive Management of DPC
The management of the proposed fine-grained micro-protocol-based DPC framework is
a very complex task that requires an understanding of the current network situation.
Therefore we assume that situation awareness and cognitive decision making are the key
to successful deployment of DPC mechanisms and designed the architecture to allow
efficient cooperation with NECM. The different requirements and resources of the DPC
framework and the NECM lead to the design of several levels of control interfaces and
respective decision making facilities defining different lines of division of work. They
allow NECM to proactively define condition-action-policies for DPC and also to directly
configure protocol functionality for arbitrary filters.
The complete process shall be pointed out for a basic use case where NECM as the

decision making entity, a monitoring component and the DPC framework as execution
module run the cognitive M-D-E cycle on a wireless router serving several point-to-
point links. The monitoring component providing also filtering and simple correlations
will have thresholds defined e.g. for packet loss. In case of violation of this threshold
on one interface it will alarm the NECM providing all relevant state information, in
particular packet loss, load in each direction, modulation and signal to noise ratio (SNR)

Copyright c© The authors www.FutureNetworkSummit.eu/2010 3 of 8

for all interfaces. The NECM will use its ontology to characterise the current network
situation: The packet loss on the wireless link occurs due to bad physical conditions as
indicated by a low SNR. Overload or aggressive queuing strategies are not the reason.
The expert knowledge stored in the ontology is also the basis for deriving potential
actions and rating them: In this example changing to a lower modulation is not possible
since the load on that link is too high. Rerouting the traffic in the mesh topology would
be possible but has a low priority since it will increase the load on other links. Since
the next hop is known to support DPC, additional options exist. Adding FEC requires
a certain amount of bandwidth and would improve reliability but achieving acceptable
reliability can’t be guaranteed so the rating is not high. Activating ARQ will provide
the desired reliability but requires bandwidth for both directions on that link. The
rating of this decision is highest so DPC will configured to request the establishment
of ARQ with the next hop router for all packets routed on this link. After the well-
known time needed for this mechanism to take effect, NECM queries the monitoring
component to check for success of the action taken.
So for the CNM DPC provides additional execution options. In order to correctly

identify the situations where changing functionalities in the network by the means
of DPC is the best option NECM has to be provided with the appropriate expert
knowledge stored in an ontology. The quality of the ontology is crucial since it decides
on the performance of the overall system. The ontology allows the knowledge base to
be transparently updated and extended at any time, conceivably by a supervised or
even unsupervised learning process.

5. The DPC architecture and implementation
The DPC implementation developed in the Self-NET project [6] unified framework that
replaces the Linux IPv6 protocol stack but runs as a user space application. It is based
on the C++ open source Simple and Extensible Network Framework (SENF [7]) and
uses packet sockets. For inter-node signalling IPv6 extension headers are used which
allow the DPC signalling to be transparent for legacy IPv6 nodes: the highest-order two
bits of the used option type are set to zero, by this advising nodes that don’t recognise
this option to skip over it and continue processing.
The main objects of this framework besides packets are:

Functional Protocol Elements (FPEs) A FPE implements network protocol function-
ality. Some FPEs require the cooperation with other FPEs so these define dependencies
in their Self-Description. FPEs that don’t have any dependencies are called basic FPEs
and only these FPEs can be instantiated in Composed Protocol Chains (CPCs).

Packet Filters (PFs) A PF is defined by a set of packet attributes which partitions
all packets into matches and not-matched, e.g. a destination IPv6 network as used in
routing rules. More complex examples use more attributes like source address, traffic
class, flow label, transport protocol, port address etc. Two different filters are either
disjoint, have a partial overlap or one includes the other.

Composed Protocol Chains (CPCs) A CPC consists of a PF and a (ordered) chain
of FPEs that defines what this nodes does with a packet that matches the PF. CPCs
can be configured to be linked by a common signalling system. A CPC defines a

Copyright c© The authors www.FutureNetworkSummit.eu/2010 4 of 8

unidirectional protocol composition, this allows DPC functionality to be tailored to the
actual needs which are often asymmetric: Two nodes will usually have different CPCs
active if they are configured to collaboratively provide a certain functionality, e.g. when
providing ARQ (shown in figure 3).

5.1 Components and operation
An overview on the modules of the implemented DPC architecture and their interop-
eration is given in figure 1. The main components and their roles are introduced in the
following:

Filter

Mapper

FPE

Dependency

Resolver

Dependency Resolver

Behaviour

Policy

Manager

Ordering and

Conflict

Resolver

Rule Provider

Function

Policy

Manager

FPE Execution Engine

Data flow

Composed Protocol Chains

Chain

Selector

Data flow Data flow

Packet Inspector

Management API

FPE self-descriptions

Figure 1: Dynamic Protocol Composition Architecture

The Packet Inspector (PI) This module checks an incoming packet for so called Ac-
tive Information Elementss (AIEs) which trigger the reconfiguration / activation /
deactivation of a specific FPE, e.g. a packet could contain an activate CRC-check flag.

The Rule Provider (RP) This module manages policies for the application of FPEs
for certain filter and policies for reacting on modification requests from other nodes
received via AIEs. The FPE policies include rules as known from routers or middle boxes
like routing rules or firewall rules. More important these rules may define additional
functionality, e.g. FPEs for adding or checking checksums, adding sequence numbers,
triggering or sending acknowledgements, time based retransmission, buffering, etc.

The Dependency Resolver (DR) This module composes the set of CPCs that is de-
fined by the rule sets provided by the RP by executing three steps: First, the dependen-
cies of the FPEs are resolved using the Self-Description of the FPEs. Second, policies
with overlapping PFs are resolved and merged to a set of policies with non-overlapping
PFs but larger sets of FPEs. In the third step the FPE are ordered, again using their
Self-Description.

Copyright c© The authors www.FutureNetworkSummit.eu/2010 5 of 8

The FPE Execution Engine (FEE) This module is responsible for the execution of
the configured CPCs. For each incoming packet it selects the best matching filter, just
like a router selects the longest matching prefix, and applies the FPEs in the order
given by DR.

6. Initial trials
In a first step we implemented the basic components RP, DR, PI and FEE and six
FPEs that in combination allow two hosts to set up an ARQ functionality for the
link between them. At this point of time the implementation does not include the
CNM so the focus is on the evaluation of the DPC framework and its implementation.
Nevertheless the selected execution corresponds to the scenario described in section 4.
and shows a link that is affected by packet loss (10%, Gaussian distribution) which
is after some time transparently and seamlessly compensated by a hop-by-hop ARQ
mechanism dynamically activated using the DPC framework. The experimentation

R1

Streaming

Client

R2

R3

R4

L4-3
L1-4

L1-2 L2-3

Streaming

Server
V1

Cache &

Retransmit

AckReader

AckSender

AckTrigger

R
et
ra
ns
m
is
si
on
s

A
ck
no
w
le
dg
em
en
ts

Topology

Data Traffic

DPC Signalling

Key FPEs
SeqNumber

Inserter

Figure 2: Experimentation network setup

setup as depicted in figure 2 consists of seven Linux based PCs connected with Fast
Ethernet. Two of them play the role of a streaming server and a streaming client and
use a standard Linux IPv6 protocol stack. Four others, R1-R4, are equipped with the
Fraunhofer DPC implementation and shall represent the routers of a wireless mesh
network that serves the client with an Internet connection. The seventh computer V1
uses a standard Linux IPv6 protocol stack and allows to induce packet loss in a defined
manner at the link between R4 and R3 with the Linux kernel network emulation feature
Netem [8].
In the experiment we start with no loss and no DPC functionality except forwarding

active on all routers. In a first step we induce ten per cent packet loss at V1. After
some seconds we manually activate ARQ for transmissions from R3 to R4. This is
implemented by two CPCs on R4 and two CPCs on R3, one sending and one receiving
chain for this interface on each router. Please find the precise composition in figure 3.
The packets to be forwarded to R4 are extended by a Hop-by-Hop extension header
carrying a Self-NET DPC sequence number option. It will be acknowledged by a packet
carrying only a Self-NET DPC acknowledgement option.

Copyright c© The authors www.FutureNetworkSummit.eu/2010 6 of 8

SeqNumber

Inserter

Cache &

Retransmit
Forwarder AckTrigger Forwarder

AckSenderForwarderAckReaderDropper

R3 R4

Event

Network

Traffic

Internal

Packet

Handling

Figure 3: CPC configuration when ARQ is enabled

6.1 Initial results
Our first measurements are depicted in figures 4 and 5. A first result is that our user
space implementation creates no significant delay and is reasonable fast, we can see
roughly 1 ms delay over four hops including three nodes where DPC replaces the IPv6
stack. Figure 4 depicts the packet loss in the last second for each given point, in fact
after activation of ARQ not one packet is lost. The increase of packet loss induced at 8.1
seconds and the improvement after 11.4 seconds can be seen. While before activation of
DPC-based ARQ in figure 5 only one main cluster of delay can be recognised at ca. 1 ms,
after point 19.5 two, maybe three, additional clusters can be recognised, representing
packets that reach their destination after the first, second or third retransmission.

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30

pa
ck

et
 lo

ss
 in

 %

time

adding
packet loss

adding
link ARQ

Figure 4: Packet loss at receiver

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30

pa
ck

et
 d

el
ay

 in
 m

s

time

adding
link ARQ

Figure 5: Packet delay at receiver

6.2 Assessment of results
As expected from work in this specific area the application of a hop-by-hop ARQ sig-
nificantly improved the link reliability while inducing higher jitter. Though jitter and
network load are lower than for end-to-end ARQ as used by Transmission Control
Protocol (TCP) since this mechanism causes acknowledgements and retransmissions to
be forwarded along the complete end-to-end path. Additionally the proposed archi-
tecture allows removing that functionality when the conditions improve and by avoids
constant load on the network. More general the results show that certain properties of
network performance can be significantly improved by the application of the DPC ap-
proach between routers. More specifically the implementation developed is validated to
be able to provide protocol functionality within the network that improves the network
performance for unaware end-nodes. It is also shown that the implementation allows
dynamically changing the provided functionality and adapting it to the requirements
without interruptions.

Copyright c© The authors www.FutureNetworkSummit.eu/2010 7 of 8

The experiments demonstrate that it is possible and may be effective to implement
communication protocol functionality within the network. Additionally they show, that
these mechanism can be applied and may dynamically changed transparently to the end
nodes by a generic architecture that is designed to be very detailed and fine-grained
managed by an external entity.

7. Conclusion and Outlook
The concept of applying DPC principles to intermediate nodes proves to be advan-
tageous and the first experiments show that DPC allows to greatly improve quality
of service in a seamless and transparent way. There are two main areas that require
deeper research: First, a very important topic for further research is the definition of
a control and management architecture for the integration with a CNM that bridges
the gap between a fast reacting execution and resource-intensive and time-consuming
decision-making. Second, the formal storage of decision relevant knowledge in ontolo-
gies shall be extended. Here, the approach to focus on selected use cases and to research
their aspects in detail has been productive and since the set of potential parameters is
overwhelming, this approach should be continued for further research.
In general the combination of DPC mechanisms with its many degrees of freedom

with CNM that allows to autonomously make situation-aware decisions based on knowl-
edge is very promising and opens up many new opportunities to increase the efficiency
of operating communication networks and by this save scarce resources like spectrum
and energy.

Acknowledgment The work presented in this paper was supported by the European
Commission Seventh Framework Programme through the Self-NET Project [6].

References
[1] D. Clark, “The design philosophy of the darpa internet protocols,” in SIGCOMM ’88:

Symposium proceedings on Communications architectures and protocols, (New York,
NY, USA), pp. 106–114, ACM, 1988.

[2] N. C. Hutchinson and L. L. Peterson, “The x-kernel: An architecture for imple-
menting network protocols,” IEEE Trans. Softw. Eng., vol. 17, no. 1, pp. 64–76, 1991.

[3] M. Vogt et al., “A run-time environment for da capo,” in Proceedings of International
Networking Conference INET’93 (B. Leiner, ed.), pp. BFC–1–BFC–9, August 1993.

[4] D. Feldmeier et al., “Protocol boosters,” Selected Areas in Communications, IEEE
Journal on, vol. 16, pp. 437–444, April 1998.

[5] N. Janssens et al., “Towards hot-swappable system software: The dips/cups com-
ponent framework,” April 2002.

[6] “Self-NET (Self-Management of Cognitive Future InterNET Elements).” EU FP7
project INFSO-ICT-224344. https://www.ict-selfnet.eu.

[7] “The simple and extensible network framework.” http://senf.berlios.de.

[8] “Netem homepage.” http://www.linuxfoundation.org/collaborate/
workgroups/networking/netem.

Copyright c© The authors www.FutureNetworkSummit.eu/2010 8 of 8

