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Abstract. In this paper we compare the three Active Queue Managements
(AQMs) Adaptive Random Early Detection (ARED), Controlled Delay
(CoDel) and Proportional Integral controller Enhanced (PIE) in static
as well as dynamic scenarios. We find significant issues when these algo-
rithms are used for big Round Trip Times (RTTs) as well as a significant
utilization decrease when used for high bandwidth links. When used for
low and medium sized links, CoDel, PIE and ARED are suitable alike,

but for corner scenarios clear recommendations can be given.

1 Introduction

In the recent years high delays and jitter were observed [7] in the Internet,
originating from oversized network buffers; often referred to as Bufferbloat. Long
lasting Transmission Control Protocol (TCP) transmissions fill up these buffers,
delaying all traversing packets. Since these are a problem for delay-sensitive
applications like VoIP, since 2012 new AQM schemes have been proposed aiming
to keep queuing delays below a target delay, e.g. CoDel and PIE. This paper
extends the research on performance of these algorithms by simulations using
own AQM code of CoDel, PIE and ARED, a well known algorithm, fed by most
realistic TCP traffic generated by Linux TCP stacks embedded in the simulation
[14].

2 Related work

Although CoDel and PIE date from 2012 and 2013 respectively, there already
exists some research evaluating their performance. In [8] the authors present
statistical simulation results targeting the same AQM algorithms only for rather
low bandwidths between 400 kbps and 5 Mbps. Moreover, they just use the stan-
dard ns-2 TCP model to generate traffic which significantly differs from TCP
congestion control used in today’s operating systems (e.g. regarding initial win-
dow size or proportional rate reduction [11]). In contrast, the authors of [9] use
testbed measurements using the Linux kernel implementation of the aforemen-
tioned three AQMs. The measurement scenarios also just cover static scenarios
while dynamics, such as a newly starting flow, are the real challenge when aim-
ing for small queues. There is another publication to appear [10] which evaluates
the overall performance of a system using not only loss-based TCP congestion
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control (cubic in this case) but also delay-based TCP congestion control (vegas).
Nevertheless, this research only considers a bottleneck bandwidth of 1 Mbps and
again uses the ns-2 TCP traffic generator.

Evaluation of AQM algorithms is currently discussed in research and also in
the AQM working group of the IETF [3]. According to current discussions, the
aforementioned evaluations are not exhaustive and we aim to fill some of the
remaining gaps. In contrast to existing work, we use own implementations of the
AQM algorithms in our simulations combined with real Linux TCP stacks em-
bedded in the simulation [14] for most realistic traffic generation. Moreover, we
evaluate not only static scenarios with long lasting TCP flows but also dynamic
ones.

3 Active Queue Management Schemes

3.1 Adaptive Random Early Detection (ARED)

The original Random Early Detection (RED) [5] algorithm calculates a drop
probability p from the average queue length ¢q.¢, calculated as an Exponen-
tially Weighted Moving Average (EWMA). p is zero below a minimum threshold
man_th, increases linearly to max_p at a maximum threshold max_th and equals
one for qu,g > max_th. When using RED, the mentioned parameters have to be
set by the operator according to the topology properties, such as the bandwidth
of the outgoing link and the expected RTT.

The extension ARED [6] initially sets all parameters automatically based on
the bandwidth of the outgoing link and a reference delay value. During operation,
ARED periodically adopts maz_p depending on the traffic load in order to keep
Gavg between min_th and max_th. For min_th it uses a minimum value of 5
packets to guarantee a high throughput for small bandwidths. As recommended
in [6] our ARED implementation used RED in gentle-mode, where not all packets
are dropped when ¢4, is greater than max_th, but instead p is increased linearly
between maz_th and 2 * maz_th. When q,,4 is greater, all incoming packets are
dropped.

3.2 Controlled Delay (CoDel)

In contrast, CoDel [12] monitors the real delay for each packet and, if all packets
in a configured observationInterval are delayed more than the target delay,
drops single selected packets. When dropping a packet, CoDel calculates the
next packet drop taking into account the number of dropped packets since the
first drop (noO f Drops) according to Equation 1.

observationInterval (1)
v/noO f Drops

CoDel stops dropping when a packet’s delay is below the target delay. Since
CoDel actually measures the packets’ queuing delays, in contrast to ARED and
PIE packets are dropped at the head of the queue.

Our implementation is aligned to the Linux Kernel implementation [1].

nextDropTime < lastDropTime +
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3.3 Proportional Integral controller Enhanced (PIE)

PIE [13] in contrast to CoDel does not measure the queue delay but estimates
it using the smoothed average of the measured draining rate. PIE uses a drop
probability p like ARED but in contrast updates it just every 30 ms. As shown
in Equation 2 this calculation takes into account both the current relation to
the target delay as well as the trend since the last update.

p < p+ax(queueDelay —ref Delay)+ B (queueDelay — lastQueueDelay) (2)

The factors o and § increase with increasing p. Additionally, PIE avoids drops
during short bursts during generally low congestion. When the estimated delay
has been below half the target for two update intervals, for 100 ms PIE ignores
p and enqueues all incoming packets. We decided to align our implementation
to the Linux Kernel implementation [2], adopting three minor extensions not
mentioned in [13]:

— When there are less than 3000 bytes in the queue, no packets are dropped.

— The drop probability p is not raised by more than 2 percentage points,
except for queueing delays greater than 250 ms, for which it is increased by
an additional 2 percentage points.

— If queueDelay and lastQueueDelay equal zero, p will be decreased nonlin-
early by multiplying it by 0.98.

4 Simulative Evaluation

4.1 Simulation Setup and Scenarios

We use IKR SimLib [4] and its Linux Virtual Machine (VM) integration [14] for
simulations to generate realistic TCP traffic. We use the Cubic congestion control
of Linux kernel version 3.10.9. The modeled topology is depicted in Figure 1: A
greedy TCP cubic sender has always data to send and transmits packets through
a bottleneck to a TCP receiver. Bandwidth and delay of this link are fixed during
each simulation, but we varied each parameter in a series of simulations. The
bottleneck queue is managed by one of the candidate AQMs and the buffer size
is twice the Bandwidth-Delay-Product (BDP) but minimum ten packets. Since
a first bottleneck shapes the overall bandwidth of all traversing flows to the
bottleneck bandwidth, there is no need to examine scenarios with several queues
in a row. If not otherwise stated, we use one TCP flow and 25 Mbps links with
a delay of 25 ms (50 ms RTT). All simulations ran 1010 seconds, consisting of
ten seconds start up phase ignored in statistics and 1000 seconds measurements.
The target delay was configured to 5 ms in all experiments.

4.2 Static scenario

We evaluated the three AQMs in the static scenario for several values of bot-
tleneck bandwidth, RTT and number of flows regarding average delay but also
bottleneck utilization.
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Fig. 1: Simulation Scenario

Table 1: Delay d in ms and link utilization u in % in static scenarios

(a) for different bandwidths (in Mbps) (b) for different RTTs (in ms)
CoDel PIE ARED CoDel PIE ARED
bw ||d u |d u |d u RTT ||d u |d u |d u

1 22.24 99.8]16.15 99.7(94.69 100 5 4.66 100 |5.00 100 [4.66 100
2 12.07 99.8|7.03 97.8/45.05 100 10 3.48 100 |4.70 99.8/4.51  99.8
5 2.87 96.0/5.57 96.7|16.13 99.5 20 2.46 99.0(3.5198.7|3.44 99.1
10 2.59  95.9(3.34 95.7|7.01 98.2 50 2.23  95.9]2.21 95.1|11.91 94.1
35 1.01  93.9|1.56 94.1|1.18 92.6 100 ||0.85 90.6/1.47 89.9/1.26  81.7
100 |{0.90 93.8{1.31 93.7|0.71 86.7 200 ||0.75 69.6/1.26 85.1|1.30 72.6
mean|(4.95 96.0/4.62 95.7|18.06 94.9 mean||2.19 92.02.83 94.7|12.51 91.4

(c) for different numbers of TCP flows

CoDel PIE ARED

No of flows||d u [d u |[d u

1 2.23  95.8(2.21 95.1{1.91 94.1
2 2.73  99.2|3.40 98.7|3.11 98.0
5 3.28 98.9|4.97 99.8/5.05  99.5
10 5.16 99.8/5.18 99.9|7.62  99.9
20 7.09 99.9(4.99 100 [10.45 99.9
mean 4.45 98.9|4.30 98.9|6.18  98.6

For varied bandwidth, the results are given in Table 1a. For low bandwidths
PIE shows the smallest mean delays, while ARED results in very high delays.
For bandwidths greater than 10 Mbps the delay is acceptable for all candidates.
Utilization is close to the optimum for all AQMs for low bandwidths, but for
high bandwidths was significantly lower with ARED than with CoDel and PIE.
For our simulations with different RTTs we found decreasing link utilization and
mean delay with increasing RTT for all three AQMs, see Table 1b. There is no
significant difference between the algorithms for RTTs up to 100 ms, while for
200 ms PIE achieves significantly higher utilization.

When simulating with different numbers of TCP flows, ARED and CoDel
could only observe the target delay for few flows, whereas PIE always satisfied
the target delay, see Table 1c.
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4.3 Adaptation to Newly Starting CBR traffic

In order to evaluate the candidates’ ability to adapt to changing situations, we
performed simulations with five TCP flows and, starting from a random point
in time, 10 Mbps of Constant Bit Rate (CBR) traffic. In such situations, two
metrics can be of interest:

— the extend of the impact, i.e. the time 7 the AQM needs to recover
— the severity of the impact, i.e. the maximum queuing delay occuring in con-
sequence of such event

We measure the period 7 until packet delay decreases below the reference de-
lay for the first time after starting the CBR traffic and the maximum delay
delay_max within that period. As the exemplary traces shown in Figure 2 indi-
cate, we found significant differences as shown in Table 2.

Table 2: Measured mean and standard deviation for 7 and delay_-maz in mil-
liseconds
CoDel|PIE|ARED

T mean 412|869 [293
7 standard deviation 64 148 (38
delay_-maxr mean 30.3 |41.0(39.6

delay_max standard deviation||6.0 3.8 14.0

On one hand, the mean reaction time 7 of ARED, 0.29 s, is lower than
CoDel’s, 0.41 s, and by far lower than PIE’s, 0.87 s. Although we executed just
ten runs of this simulation, the derived standard deviation suggests a statistically
significant advantage of ARED and CoDel with this respect. On the other hand,
the emerged discrepancy from the configured target delay, i.e. delay_max in that
phase, is much higher for PIE and ARED than for CoDel. The average for ten
runs is 41.0 ms and 39.6 ms for PIE and ARED, but 30.3 ms for CoDel. Again,
the derived standard deviation indicates a statistically significant advantage of
CoDel with this respect.

5 Conclusion and Outlook

We evaluated the robustness of the three AQM algorithms CoDel, PIE and
ARED for various static and dynamic scenarios. For low bandwidth links, PIE
achieves significantly lower delays than CoDel and ARED. For high RTTSs, uti-
lization decreases for all candidates but PIE performs clearly best. When there
are many flows, only PIE still keeps the target delay. In dynamic scenarios, CoDel
achieves lower maximum delay than the other candidates. Moreover, CoDel and
ARED recover significantly faster from changes in the traffic offer than PIE
does. Overall, CoDel, PIE and ARED are suitable alike for most scenarios, but
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Fig. 2: Transient period with starting CBR traffic at 59.77 s simulation time.

for corner scenarios clear recommendations can be given. To show robustness
and estimate performance for deployment in real Internet, it is still necessary to
evaluate a broader set of scenarios, in particular including other TCP congestion
control algorithms and including more traffic patterns such as web traffic.
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