
Rate Adaptation for Hierarchical Packet Schedulers

Considering

Traffic Differentiation by Congestion Control

Von der Fakultät für Informatik, Elektrotechnik und Informationstechnik
der Universität Stuttgart zur Erlangung der Würde

eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

vorgelegt von

David P. Wagner

geb. in Bonn-Bad Godesberg

Hauptberichter: Prof. Dr.-Ing. Andreas Kirstädter
Mitberichter: Prof. Dr. Michael Menth

Tag der mündlichen Prüfung: 12. März 2019

Institut für Kommunikationsnetze und Rechnersysteme
der Universität Stuttgart

2019

II

To Thea and my parents.

ii

Summary

In today’s wired broadband Internet access networks, the aggregation links often constitute
bottlenecks at times of peak load. This results in Quality of Experience (QoE) deterioration
during these periods. The downstream Best Effort (BE) traffic in such networks contains a
significant amount of deferrable traffic, which does not contribute to immediate QoE. A large
share of this background traffic behaves differently from foreground traffic because it uses
special background Congestion Control Algorithms (CCAs), e.g. BitTorrent’s uTorrent Transport
Protocol (uTP). When competing with a standard foreground CCA for a bottleneck’s bandwidth,
such background traffic yields. The use of background and foreground CCAs builds a system for
traffic differentiation based on an implicit signaling, that is, the bottleneck’s queuing delay. For
most downstream traffic in the regional access network, the bottleneck is located in this access
network, i.e. in the hierarchical packet scheduler of its Broadband Network Gateway (BNG).

Today’s Internet Service Providers (ISPs) either accept performance degradation during peak
periods or apply traffic management systems. These traffic management systems are based
on bandwidth consumption or on traffic classification, typically supported by Deep Packet
Inspection (DPI). In the research community, the concepts of Congestion Policing based on
Congestion Exposure and Congestion Policing Queue (CPQ) have been proposed and evaluated.
These approaches have substantial drawbacks since they either ignore the senders’ implicit
priority signaling or deployment in regional access networks is not feasible.

This thesis aims to improve QoE during peak periods by adapting the BNG’s hierarchical packet
scheduling.

The core concept of Rate Adaptation Considering Traffic Differentiation by Congestion Control
during Overload (RADICCO) is identifying foreground and background traffic and adapting
the scheduling weights during overload. RADICCO operates on access link level, i.e. on per-
subscriber level. It recognizes foreground and background traffic by observing the size of
respective queues in the hierarchical scheduler. Based on the recognized traffic types, it increases
the bandwidth of the foreground traffic and reduces the bandwidth of background traffic. This
thesis presents an algorithm implementing the two functionalities, discusses design decisions
and alternatives, and evaluates the proposed concept.

The performance of the presented algorithm is evaluated by simulations that incorporate the
unmodified CCA implementations of the Linux kernel as well as BitTorrent’s libutp. In these
simulations, RADICCO’s impact on QoE-relevant Quality of Service (QoS) is measured for four

iii

iv Summary

traffic models. The results show that RADICCO improves QoE for all modeled services if the
BNG is the bottleneck.

The contribution of this thesis is threefold: First, this work combines two fields in packet switched
networks, namely Medium Access Control (MAC) layer packet scheduling and transport layer
Congestion Control (CC). Although the two inevitably interact, the interaction is often neglected
in the respective research. This thesis proposes a novel mechanism that exploits understanding
transport layer CC to derive an adaptation of the packet scheduling, which considers its impact
on the traffic’s CC. Second, this thesis defines an algorithm that implements this concept for
hierarchical schedulers with an arbitrary number of hierarchy levels. The algorithm consists
of a traffic type recognition function and a rate adaptation function for peak periods. Third,
RADICCO is evaluated using a prototype implementation and simulations incorporating CCA
implementations widely used in today’s Internet. The evaluation proves the effectiveness of
RADICCO.

Kurzfassung

In heutigen drahtgebundenen Breitbandzugangsnetzen bilden zu Spitzenlastzeiten oft Aggregati-
onsverbindungen Engpässe. Dies führt zu einer Verschlechterung des Nutzererlebnisses. In diesen
Netzen enthält der nicht priorisierte Verkehr in Richtung der Kundenanschlüsse einen signifi-
kanten Anteil von aufschiebbaren Übertragungen, die nicht zum unmittelbaren Nutzererlebnis
beitragen. Ein großer Teil dieses Hintergrundverkehrs verhält sich anders als der Vordergrund-
verkehr, weil er besondere Überlastregelungssalgorithmen (ÜRAs) verwendet, z.B. das uTorrent
Transport Protocol (uTP) von BitTorrent. Wenn ein solcher Hintergrund-ÜRA mit einem Standard
Vordergrund-ÜRA an einem Engpass um Bandbreite konkurriert, gibt der Hintergrund-ÜRA nach.
Das Verwenden von Hintergrund- und Vordergrund-ÜRAs bildet ein System für Verkehrsdiffe-
renzierung, das auf impliziter Signalisierung basiert, nämlich der Wartenschlangenverzögerung
am Engpass. Für den meisten Verkehr in Richtung der Kundenanschlüsse in einem regionalen
Zugangsnetz befindet sich der Engpass in diesem Zugangsnetz, d.h. im hierarchischen Scheduler
des Netzabschlussrouters.

Heutige Internetprovider akzeptieren entweder die Leistungseinschränkung in Spitzenlastzeiten
oder setzen Systeme zur Verkehrsverwaltung ein. Diese Systeme basieren entweder auf der
Bandbreitennutzung oder auf Verkehrsklassifizierung, typischerweise unterstützt durch detail-
lierte Paketanalyse (Deep Packet Inspection). In der Forschungsgemeinde wurden die Konzepte
„Überlastüberwachung basierend auf dem Preisgeben von Überlast“ (Congestion Policing based
on Congestion Exposure) und „Überlast überwachende Warteschlange“ (Congestion Policing
Queue) vorgeschlagen und untersucht. Diese Konzepte haben erhebliche Nachteile, da sie entwe-
der die implizite Priorisierungssignalisierung des Senders ignorieren oder ein praktischer Einsatz
im regionalen Zugangsnetz nicht möglich ist.

Das in dieser Dissertation verfolgte Ziel ist es, das Nutzererlebnis während Spitzenlastzeiten
durch das Anpassen des hierarchischen Schedulings des Netzabschlussrouters zu verbessern.

Das Kernkonzept von „Rate Adaptation Considering Traffic Differentiation by Congestion
Control during Overload“ (RADICCO) ist es, Vordergrund- und Hintergrundverkehr zu er-
kennen und während Spitzenlastzeiten die Gewichte des Schedulers anzupassen. RADICCO
arbeitet auf Ebene der Internetanschlüsse, d.h. auf Kundenebene. Es erkennt Vordergrund- und
Hintergrundverkehr anhand der Beobachtung der entsprechenden Warteschlangengrößen im
hierarchischen Scheduler. Basierend auf den erkannten Verkehrstypen erhöht es die Bandbreite
des Vordergundverkehrs und senkt die Bandbreite des Hintergrundverkehrs. Diese Disserta-
tion stellt einen Algorithmus vor, der diese beiden Funktionalitäten implementiert, diskutiert
Entwurfsentscheidungen und ihre Alternativen und untersucht das vorgeschlagene Verfahren.

v

vi Kurzfassung

Die Leistung des vorgestellten Algorithmus wird durch Simulationen untersucht, die die unver-
änderten ÜRA-Implementierungen des Linux-Kernels und von BitTorrents libutp integrieren. In
diesen Simulationen wird die durch RADICCO bewirkte Veränderung der für das Nutzererlebnis
relevanten Dienstgüte für vier Verkehrsmodelle gemessen. Die Ergebnisse zeigen, dass RADIC-
CO bei einem Engpass im Netzabschlussrouter das Nutzererlebnis für alle abgebildeten Dienste
verbessert.

Diese Dissertation leistet drei Beiträge: Erstens kombiniert diese Arbeit zwei Gebiete in paket-
vermittelten Netzen, nämlich das Paket Scheduling der Medienzugangskontrollschicht und die
Überlastregelung der Transportschicht. Obwohl beide unweigerlich interagieren, wird diese In-
teraktion in der jeweiligen Forschung oft nicht beachtet. Diese Dissertation schlägt ein neuartiges
Verfahren vor, das ein Verständnis von Transportschichtüberlastregelung nutzt, um eine Anpas-
sung des Paket Scheduling abzuleiten, die ihren Einfluss auf die Überlastregelung des Verkehrs
berücksichtigt. Zweitens definiert diese Dissertation einen Algorithmus, der dieses Konzept für
hierarchische Scheduler mit einer beliebigen Anzahl von Hierarchieebenen implementiert. Der
Algorithmus besteht aus einer Funktion zur Erkennung des Verkehrstyps und einer Funktion
zur Anpassung der Raten während Spitzenlastzeiten. Drittens wird RADICCO mittels einer
prototypischen Implementierung und Simulationen untersucht, die im heutigen Internet verbreitet
genutzte ÜRA-Implementierungen integrieren. Die Untersuchung belegt die Wirksamkeit von
RADICCO.

Contents

Summary iii

Kurzfassung v

Contents vii

List of Figures x

List of Tables xiii

List of Abbreviations xiv

List of Symbols xxi

1 Introduction 1
1.1 Contributions . 3
1.2 Outline . 4

2 Background 5
2.1 Wired Broadband Internet Access . 5

2.1.1 Topologies and Architectures of Internet Service Provider Networks . . 5
2.1.2 Wired Access Technologies and their Impact on Topologies 8
2.1.3 Traffic Patterns and Link Dimensioning in Wired Access Networks . . 10

2.2 Packet Scheduling . 12
2.2.1 Introduction and Definitions . 12
2.2.2 Packet Scheduling Evolution . 17
2.2.3 Delay Relative to the Perfect Schedule and Fairness of Scheduling Algo-

rithms . 19
2.2.4 Complexity of Scheduling Algorithms 23
2.2.5 Hierarchical Schedulers . 24
2.2.6 Rate Limiting Schedulers . 25
2.2.7 Packet Scheduling of Multi-Class Traffic 26
2.2.8 Best Effort Packet Scheduling at the Edge of Access Networks 27

2.3 Congestion in the Internet . 29
2.3.1 Introduction to Congestion . 29
2.3.2 General Congestion Control . 31
2.3.3 Prevalence of Protocol-based Congestion Control in the Internet 33

vii

viii CONTENTS

2.4 Transport Layer Congestion Control . 36
2.4.1 General Principles of Transport Layer Congestion Control Algorithms . 37
2.4.2 Bandwidth Allocation:

Fairness Challenge and Opportunity for Prioritization 40
2.4.3 Selected Congestion Control Algorithms 44
2.4.4 Relation to Buffer Sizing . 52

3 Rate Adaptation Considering Traffic Differentiation by Congestion Control during
Overload 55
3.1 Motivation . 55
3.2 Problem Statement . 57
3.3 Concept of Rate Adaptation Considering Traffic Differentiation by Congestion

Control during Overload . 57
3.4 Objectives of Rate Adaptation Considering Traffic Differentiation by Congestion

Control during Overload . 58
3.4.1 Qualitative Objectives . 59
3.4.2 Quantitative Objectives . 60

3.5 Related Work on Peak- and Overload Management 63
3.5.1 Definitions . 63
3.5.2 Context of Overload Management . 64
3.5.3 Comcast’s Protocol-Agnostic Congestion Management System 65
3.5.4 Traffic Management based on Deep Packet Inspection 66
3.5.5 Congestion Policing based on Congestion Exposure 68
3.5.6 Congestion Policing Queues . 70

3.6 Assumptions and Prerequisites . 72
3.6.1 Regional Access Network Properties 72
3.6.2 Packet Scheduler . 74
3.6.3 Traffic Differentiation by Congestion Control 76
3.6.4 Incentives for Using Background Congestion Control Algorithms . . . 77
3.6.5 Information of Subscribers . 80

3.7 Algorithm Description . 80
3.7.1 Definitions . 80
3.7.2 Execution Overview . 82
3.7.3 Definition of Load States and Operating Modes 84
3.7.4 Traffic Type Recognition . 85
3.7.5 State Calculation for Leaf Nodes . 87
3.7.6 State Calculations for Inner Nodes . 88
3.7.7 Calculation of Effective Rates . 92

3.8 Rationales for Core Design Decisions . 95
3.8.1 Granularity of Operation . 96
3.8.2 Extent of State Updates . 97
3.8.3 Filling Up the Rates of Background Traffic 97
3.8.4 Calculation of Target Rates of Background Leaf Nodes 99
3.8.5 Traffic Type Recognition . 102
3.8.6 Initial Traffic Type . 108

4 Evaluation 111

CONTENTS ix

4.1 Evaluation of Qualitative Objectives . 111
4.1.1 Network Neutrality . 111
4.1.2 Sufficient Efficiency . 112
4.1.3 Smooth Rate Allocations for Foreground Traffic 113

4.2 Performance Evaluation Approach . 114
4.2.1 Simulation Utilizing Wide-spread Congestion Control Implementations 115
4.2.2 Simulation Topologies . 117
4.2.3 Scaling Load . 122
4.2.4 Traffic Models . 125
4.2.5 Model Parameterization and General Simulation Parameters 130
4.2.6 Algorithmic Parameters . 131
4.2.7 Reference Scheduler Implementation 131

4.3 Performance Metrics . 131
4.3.1 Improved Quality of Service for Foreground Traffic 132
4.3.2 Bottleneck Utilization . 132
4.3.3 Fairness of Bandwidth Allocation . 133
4.3.4 Correct Subscriber Recognition . 134

4.4 Performance for Software Updates Traffic . 135
4.4.1 Transfer Times of Foreground Traffic 136
4.4.2 Bottleneck Utilization . 139
4.4.3 Fairness among Foreground Subscribers 143
4.4.4 Fairness among Background Subscribers 143
4.4.5 Correct Recognition of Foreground Traffic 146
4.4.6 Correct Recognition of Background Traffic 147
4.4.7 Scenario Conclusion . 148

4.5 Performance for Video on Demand Streaming Traffic 149
4.5.1 Transfer Times of Foreground Traffic 149
4.5.2 Bottleneck Utilization . 152
4.5.3 Scenario conclusion . 155

4.6 Performance for Web Browsing Traffic . 155
4.6.1 Transfer Times of Foreground Traffic 155
4.6.2 Bottleneck Utilization . 157
4.6.3 Scenario Conclusion . 158

4.7 Performance for Otherwise Rate-limited Greedy Traffic 159
4.7.1 Phases of Constant Recognition . 160
4.7.2 Waiting Time . 161
4.7.3 Bandwidth Allocation . 166
4.7.4 Scenario Conclusion . 167

4.8 Evaluation Summary . 167

5 Conclusion and Outlook 171

Bibliography 175

A Acknowledgments 197

x CONTENTS

List of Figures

2.1 Schematic illustration of the typical high level Internet Service Provider (ISP)
network architecture . 6

2.2 Mapping of exemplary topology to hierarchical scheduler 8
2.3 The ratio of actual download speed to advertised download speed 11
2.4 Comparison of the structures of queuing discipline and packet scheduler 14
2.5 Comparison of a generic packet scheduler structure and the typical structure . . 14
2.6 Traffic shares by protocol during four weeks in 2009 33
2.7 UDP to TCP ratio during the years 2002 and 2010 34
2.8 Flow of information in the TCP control loop 37
2.9 Evolutionary graph of variants of TCP congestion control 45
2.10 Top 10 peak period applications in wired access networks’ downstream 46

3.1 Illustration of a locally fair foreground allocation that is not globally fair 62
3.2 Illustration of a desirable allocation with highly unfair rate allocation among

background subscribers . 62
3.3 Signaling of a ConEx-enabled TCP connection relevant for the ConEx system . 68
3.4 Corresponding hierarchical scheduler . 81
3.5 Visualization of load levels by relation between decisive state variables (not to

scale) . 93
3.6 Schematic of the evolution of states of a leaf node receiving otherwise rate-

limited traffic only . 107

4.1 Access network topology BROAD used in simulations 118
4.2 Access network topology DEEP used in simulations 118
4.3 Simulation topology (only downstream depicted) 120
4.4 Foreground object transfer times for BROAD topology, software updates and

TCP Vegas . 136
4.5 Foreground object transfer times for BROAD topology, software updates and uTP137
4.6 Foreground object transfer times for the DEEP topology, software updates and

TCP Vegas . 138
4.7 Foreground object transfer times for the DEEP topology, software updates and uTP139
4.8 BNG interface utilization for the BROAD topology, software updates and TCP

Vegas . 140
4.9 BNG interface utilization for the BROAD topology, software updates and uTP . 141
4.10 BNG interface utilization for the DEEP topology, software updates and TCP Vegas142
4.11 BNG interface utilization for the DEEP topology, software updates and uTP . . 143

xi

xii LIST OF FIGURES

4.12 Jain’s fairness index of the foreground traffic for the BROAD topology, software
updates and uTP . 144

4.13 Jain’s fairness index of the background traffic for the BROAD topology, software
updates and uTP . 144

4.14 Jain’s fairness index of the foreground traffic for the BROAD topology, software
updates and TCP Vegas . 145

4.15 Correct recognition of foreground traffic for the BROAD topology and software
updates . 146

4.16 Duration of phases of false recognition of foreground traffic 147
4.17 Correct recognition of background traffic for the BROAD topology and software

updates . 148
4.18 Foreground object transfer times for BROAD topology, short interval VoD traffic

and TCP Vegas . 151
4.19 Foreground object transfer times for BROAD topology, short interval VoD traffic

and uTP . 151
4.20 Utilization for BROAD topology, short interval VoD traffic and TCP Vegas . . 152
4.21 Utilization for BROAD topology, short interval VoD traffic and uTP 153
4.22 Utilization for BROAD topology, large interval VoD traffic and RADICCO . . 154
4.23 Foreground object transfer times for BROAD topology, web traffic and TCP Vegas156
4.24 Foreground object transfer times for BROAD topology, web traffic and uTP . . 156
4.25 Relative change in foreground object transfer times introduced by applying

RADICCO for BROAD topology and web traffic 157
4.26 Utilization for BROAD topology, web traffic and uTP 158
4.27 Duration of stable recognition of rate-limited traffic for the BROAD topology

and one uTP-controlled background subscriber 160
4.28 Waiting times for rate-limited traffic in the BROAD topology and uTP 161
4.29 Maximum waiting times for rate-limited traffic in the BROAD topology and uTP 162
4.30 Waiting times for rate-limited traffic in the BROAD topology and uTP 163
4.31 Maximum waiting times for rate-limited traffic in the BROAD topology and uTP 164
4.32 Throughput of rate-limited traffic for the BROAD topology and uTP 166

List of Tables

2.1 Summary of scheduler properties . 24

4.1 Evaluation summary . 168

xiii

xiv Abkürzungen und Symbole

List of Abbreviations

IKR Institute of Communication Networks and Computer Engineering

3GPP 3rd Generation Partnership Project

AAA Authentication, Authorization and Accounting

ABC Appropriate Byte Count

ACK Acknowledgment

ADSL Asymmetric Digital Subscriber Line

ADSL2 ADSL 2

ADSL2+ Extended bandwidth ADSL2

AGS Aggregation Switch

AIAD Additive Increase, Additive Decrease

AIMD Additive Increase, Multiplicative Decrease

ANCP Access Node Control Protocol

AN Access Node

AQM Active Queue Management

ARP Address Resolution Protocol

ATM Asynchronous Transfer Mode

BBRR Bit-by-Bit Round Robin

BDP Bandwidth Delay Product

BE Best Effort

BIC Binary Increase Congestion Control

BITS Background Intelligent Transfer Service

BNG Broadband Network Gateway

xv

xvi Abkürzungen und Symbole

BNetzA Bundesnetzagentur

BRAS Broadband Remote Access Server

CAPEX Capital Expenditure

CBR Constant Bit Rate

CC Congestion Control

CCA CC Algorithm

CDN Content Delivery Network

CPC Congestion Policing based on ConEx

CPQ Congestion Policing Queue

CPU Central Processing Unit

CoDel Controlling Queue Delay

ConEx Congestion Exposure

DASH Dynamic Adaptive Streaming over HTTP

DCTCP Data Center TCP

DC Data Center

DOCSIS Data Over Cable Service Interface Specification

DPI Deep Packet Inspection

DRR Deficit Round Robin

DS-Lite Dual-Stack Lite

DSCP Differentiated Services Code Point

DSLAM Digital Subscriber Line Access Multiplexer

DSL Digital Subscriber Line

DWDM Dense Wavelength Division Multiplexing

DiffServ Differentiated Services

ECN-CE ECN-Congestion Encountered

ECN Explicit Congestion Notification

EWMA Exponentially Weighted Moving Average

FCC Federal Communications Commission

List of Abbreviations xvii

FCFS First-Come, First-Served

FEC Forward Error Correction

FIFO First In, First Out

FQ Fair Queueing

FRR Fair Round Robin

FTTB Fiber To The Building

FTTC Fiber To The Cabinet/Curb

FTTH Fiber To The Home

FullHD Full High Definition

G.fast Fast Access to Subscriber Terminals, ITU G.9701

GMPLS Generalized Multi-Protocol Label Switching

GPS Generalized Processor Sharing

GRE Generic Routing Encapsulation

GRO Generic Receive Offload

H-TCP Hamilton TCP

HFC Hybrid Fiber Coax

HFS Hierarchical Fair Scheduler

HTTP Hyper Text Transport Protocol

IAT Inter-Arrival Time

IETF Internet Engineering Task Force

IMAP Internet Message Access Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

IP Internet Protocol

ISP Internet Service Provider

ITU International Telecommunication Union

IXP Internet Exchange Point

IoT Internet of Things

xviii Abkürzungen und Symbole

LAN Local Area Network

LBE Lower than Best Effort

LEDBAT Low Extra Delay Background Transport

LFVC Leap Forward Virtual Clock

M2M Machine-to-Machine

MAC Medium Access Control

MIAD Multiplicative Increase, Additive Decrease

MIMD Multiplicative Increase, Multiplicative Decrease

MIPS Million Instructions Per Second

MTU Maximum Transmission Unit

NAPT Network Address and Port Translation

NAS Network Access Server

NAT Network Address Translation

NDP Neighbor Discovery Protocol

NG-PON2 40-Gigabit-Capable PON2

OSI Model Open Systems Interconnection Model

OS Operating System

OWD One-Way Delay

P2P Peer-to-Peer

PEP Policy Enforcement Point

PGPS Packetized Generalized Processor Sharing

PON Passive Optical Network

PRR Proportional Rate Reduction

QoE Quality of Experience

QoS Quality of Service

RADICCO Rate Adaptation Considering Traffic Differentiation by Congestion
Control during Overload

RED Random Early Detection

RFC Request For Comment

List of Abbreviations xix

RR Round Robin

RTCP RTP Control Protocol

RTO Retransmission TimeOut

RTP Real-time Transport Protocol

RTT Round-Trip Time

SACK Selective Acknowledgment

SEFF Smallest Eligible virtual Finish time First

SIP Session Initiation Protocol

TCP Transmission Control Protocol

TDM Time-Division Multiplexing

TOE TCP Offload Engine

TSO TCP Segmentation Offload

TV Television

UDP User Datagram Protocol

USA United States of America

VBR Variable Bit Rate

VC Virtual Circuit

VDSL Very High Speed Digital Subscriber Line

VDSL2 VDSL 2

VLAN Virtual LAN

VM Virtual Machine

VPN Virtual Private Network

VoD Video on Demand

VoIP Voice over IP

WF2Q+ The successor of WF2Q with lower complexity

WF2Q Worst-case Fair Weighted Fair Queueing

WFI Worst-case Fair Index

WFQ Weighted Fair Queueing

xx Abkürzungen und Symbole

XG-PON 10-Gigabit-PON

cwnd Congestion Window

mDRR modified DRR

nWFI normalized Worst-case Fair Index

rmcat RTP Media Congestion Avoidance Techniques

ssthresh slow start threshold

uTP uTorrent Transport Protocol

List of Symbols

CR The capacity of the scheduler’s root node R, i.e. of the Broadband Network Gateway
(BNG)’s downstream link.

Ce The capacity of edge node e, i.e. of the downstream link from the aggregation
switch to Access Node (AN) e.

Ci, j The capacity of leaf node i, j, i.e. of the downstream link of the j’s subscriber
attached to AN i, subscriber i, j.

wT T
i (t) The target rate for the traffic type T T of inner node i at time t.

wFG
i, j The target rate of leaf node i, j if recognized as carrying foreground traffic.

For all foreground leaf nodes holds at any time: wFG
i, j = Ci, j.

wBG
i, j (t) the target rate of leaf node i, j at time t if recognized as carrying background traffic

at time t.

rFG
i, j (t) The effective rate of leaf node i, j at time t if recognized as carrying foreground

traffic at time t.

rBG
i, j (t) The effective rate of leaf node i, j at time t if recognized as carrying background

traffic at that time t.

swFG
i (t) The sum of target rates for foreground traffic of all child nodes of inner node i.

swBG
i (t) The sum of target rates for background traffic of all child nodes of inner node i.

oi(t) The local load factor of inner node i.

wFG
i (t) The target rate of foreground traffic at inner node i.

wBG
i (t) The target rate of background traffic at inner node i.

xxi

xxii List of Symbols

rMAX
BG
i (t) The maximum possible rate of background traffic at inner node i due to restrictions

of links transporting the background traffic further down the hierarchy.

srMAX
BG
i (t) The sum of maximum possible rates of background traffic of all child nodes at inner

node i.

h̄BG
i (t) The best-case headroom for background traffic at inner node i, calculated based on

the capacity Ci.

hBG
i (t) The headroom for background traffic at inner node i, calculated based on the

effective rate ri(t).

fi(t) The fill up fraction at inner node i at time t that defines the fraction of best-case
headroom for background traffic that is actually allocated to each child of i.

rFG
i (t) The effective rate of foreground traffic at inner node i.

rBG
i (t) The effective rate of background traffic at inner node i.

ri(t) The effective rate of inner node i. Calculated as ri(t) = rFG
i (t)+ rBG

i (t).

1 Introduction

Today, wired broadband Internet access plays an important role in most people’s life in industrial
countries. It is used for a large and growing set of service types, ranging from home automation
to Video on Demand (VoD) streaming. Since traffic is mostly triggered by human activity,
the load of access networks follows a diurnal pattern. In combination with economical link
dimensioning this creates a problem during peak periods: At these times, the Internet access link
of many subscribers does not deliver its contracted bandwidth, i.e. bitrate, as aggregation links in
the regional access network become bottlenecks during these periods, deteriorating the Quality of
Experience (QoE). Yet, not all transported traffic is of equal importance or urgency: While some
traffic such as VoD streaming contributes to QoE since it results in an immediate user experience,
other traffic has no short-term impact on QoE, e.g. file sharing or software update downloads.
Moreover, not only QoE-relevant, i.e. foreground traffic, but also a substantial share of so-called
background traffic is transported during periods of peak load. Therefore, QoE deterioration due
to overload of aggregation interfaces could be avoided, if the background transfers were deferred.

Nevertheless, up to now there is no satisfactory solution available. Some Internet Service
Providers (ISPs) try to identify foreground and background traffic by carrying out Deep Packet
Inspection (DPI) and then assign different priorities to the identified services. However, this
approach has several drawbacks: DPI-based service identification is error-prone and works inade-
quately in case of encrypted traffic. Moreover, these systems base on the ISP’s rating of services
only and provide no incentive for senders to cooperate, e.g. to communicate openly. Introducing
and obeying explicit priority signaling, e.g. based on Differentiated Services (DiffServ), would
avoid uncertainty and false classification, but is no feasible alternative for three reasons: First, the
traffic concerned originates from external sources. Thus, an in-band signaling is not possible due
to the lack of a trust relationship between the traffic sources and the delivering ISP. Second, such
an approach would require changes to many devices and configurations, and is therefore likely
to cause undesired deterioration of services not implementing the new signaling. Lastly, such
system would require an incentive not to mark all traffic as high priority. With today’s flat rate
Internet plans, such incentive could only exist in the technical domain, but that fundamentally
contradicts the core concept of implementing priorities according to the subscribers’ requests.
So, DiffServ or other explicit priority signaling is not used in today’s access networks.

An analysis of the situation in wired access networks shows that a signaling for priority dif-
ferentiation exists and is already in use. Moreover, it leaves the decision on the priority to the
receiver and provides a robust incentive system. This system for traffic differentiation is based
on the end hosts using different transport layer CC Algorithms (CCAs) that result in unbalanced
resource sharing at bottlenecks, i.e. the different CCAs correspond to different priorities. Priority

1

2 Chapter 1. Introduction

differentiation by Congestion Control (CC) works if the bottleneck is shared, that means a shared
queue enables indirect feedback on the bottleneck’s congestion to all connections. Today, Apple’s
software updates and BitTorrent’s Peer-to-Peer (P2P) service use a CCA designed as background
CCA, and are responsible for a significant traffic share.

A subscriber’s access link is an element of the lowest level of a hierarchical topology, which is
rooted at a Broadband Network Gateway (BNG)’s downstream interface. This topology typically
features two or three levels with decreasing link speeds from BNG to access link. In capacity
dimensioning, the ISPs use oversubscription, i.e. the bandwidth of an aggregation link is lower
than the sum of capacities of all links fed by it. In contrast, the ISP’s core or metro network that
feeds the BNG usually is contention-free. Therefore, by design, there is never a bottleneck in
this part of the network. So, for most traffic destined to broadband subscribers the bottleneck is
located in the regional access network downstream of the BNG, during normal load at the access
link and during peak load often at an aggregation link.

To enforce Quality of Service (QoS) guarantees and to avoid deployment of such functionality
to every node in the regional access network, BNGs implement hierarchical scheduling at their
downstream interfaces. In the hierarchical packet scheduler, every link in the hierarchical
topology is represented by a scheduling node. It ensures that packets for this link are only
transmitted on the BNG’s interface if and when they can be forwarded by the respective link.
Typically, access networks use three or four traffic classes to support QoS guarantees for certain
traffic, e.g. the ISP’s Voice over IP (VoIP) and VoD services. In that case, the scheduling tree has
one level more than the network topology. This hierarchical scheduling causes any congestion
in the regional access network to occur not at the limiting link, but within the hierarchical
packet scheduler. On each hierarchy level, today’s schedulers deployed at BNG downstream
interfaces share the bandwidth available for Best Effort (BE) traffic among all active child nodes
proportionally fairly. This isolates the traffic of each subscriber from effects caused by traffic
of other subscriber and thus prevents CC-based traffic differentiation from functioning across
subscribers.

Summarizing, a solution to the described problem must combine the advantages of a hierarchical
scheduler in terms of QoS enforcement and of considering traffic differentiation by CCA in
terms of QoE optimization. In order not to lose the guarantees of the hierarchical scheduler, the
solution proposed in this thesis is based on a hierarchical scheduler but adapts its weights. Such
solution must consist of two functional components:

1. A mechanism for recognizing the traffic type, i.e. for distinguishing foreground from back-
ground traffic.

2. A means to adjust the resource allocation.

Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload
(RADICCO), proposed in this thesis, recognizes the traffic type based on buffer utilization and
distinguishes two types of traffic: foreground traffic and background traffic. During overload,
RADICCO adapts the weights of the hierarchical scheduler to adjust resource allocation to
the priorities signaled by the end hosts to optimize the overall QoE. This weight adaptation
interacts with the senders’ CC as well as with the traffic type detection, which is considered in
the algorithm design.

1.1 Contributions 3

Consequently, RADICCO transports more of the more important foreground traffic, and less
important background transfers are deferred when bandwidth is scarce. This results in advantages
for both the ISPs and the users, i.e. the subscribers. The ISP benefits from a smoother utilization
of his infrastructure, a higher average utilization and, most importantly, from a deferred and
reduced pressure for investments in infrastructure. For subscribers, the most important benefit is
increased QoE during peak periods compared to the same situation operated without RADICCO.
This benefit is made possible by automatically postponing non-urgent traffic of all subscribers
during overload, so it is a mutual benefit.

1.1 Contributions

The three main contributions of this thesis are:

1. A novel concept called RADICCO for improving the overall performance by combining
packet scheduling with traffic differentiation by CC.

2. An algorithm elaborating this concept.
3. An evaluation of this algorithm that uses real-word CCA implementations.

The relevance of each contribution is outlined in the following.

This dissertation brings together packet scheduling and transport layer CC in one single mecha-
nism. Among the mechanisms of the Medium Access Control (MAC) layer, according to the
Open Systems Interconnection Model (OSI Model), some Active Queue Managements (AQMs)
aim to impact Transmission Control Protocol (TCP) CCAs. The literature on QoS enforcing
mechanisms however, in particular on packet schedulers, usually neglects interconnections to
higher layers. Likewise, transport layer CCAs are designed to perceive the network as black box
and only selectively use information the network provides. Yet, these two mechanisms inevitably
interact. This thesis proposes an extension to packet schedulers that exploits knowledge on
transport layer CCAs to adapt the packet scheduling so that a better overall performance in terms
of QoE is achieved. To the author’s knowledge, it is the first packet scheduling mechanism that
explicitly considers the implicit signaling of end hosts selecting different CCAs. Furthermore,
this mechanism takes into account the impact of these changes on the transport layer control
loops.

This thesis also defines an algorithm that implements this concept for hierarchical schedulers
with an arbitrary number of hierarchy levels. It shows that the approach can be implemented
with computational effort that allows implementation in today’s devices and thus deployment.
The algorithm consists of two functional blocks: Firstly, a traffic type recognition function and
secondly, a rate adaptation function. The traffic type recognition function identifies foreground
and background traffic by its buffer utilization. During peak load periods, the rate adaptation
function reduces the rates of subscribers receiving only background traffic and re-distributes
bandwidth among aggregation links so that subscribers receiving foreground traffic are allocated
more capacity than their proportionally fair share.

Finally, a prototype implementation is used to evaluate the performance of the algorithm when
facing realistic traffic. The simulations use unmodified transport layer CCA implementations

4 Chapter 1. Introduction

that are widely-used in today’s Internet. The simulative evaluation is based on simulations with
four traffic models, two background CCAs, two access network topologies and a wide range of
shares of background traffic. During simulations, various statistical data on the traffic as well as
on the internal states of RADICCO are gathered.

1.2 Outline

This thesis is organized in five chapters, including this introduction in Chapter 1.

Chapter 2 gives an overview on the relevant background for this thesis. Since RADICCO targets
a specific problem in today’s networks, and moreover combines two fields of communication
networks, this chapter covers a broad range: Section 2.1 presents today’s access networks for
broadband Internet, outlining their role in the ISP network, the impact of access link technologies
on access network topologies and typical traffic patterns in such networks. Section 2.2 covers
general packet scheduling and the properties crucial for BNG schedulers. Section 2.3 introduces
the topic of congestion and its relevance for and prevalence in today’s Internet. Section 2.4
focuses on transport layer CC. It explains the system of differentiating traffic by using different
CCAs and the relation of CC to buffer sizing.

Chapter 3 is focused on the novel approach called RADICCO. First, the motivation of this thesis
is explained in Section 3.1 and the technical problem statement is outlined in Section 3.2. Then,
Section 3.3 presents the core concept of RADICCO. Next, the qualitative design objectives
and quantitative performance objectives are defined in Section 3.4. Related work that aims for
similar goals is presented in Section 3.5. Before presenting RADICCO, Section 3.6 details the
assumptions and prerequisites RADICCO is based on and discusses their future validity. The
following Section 3.7 presents the algorithm of RADICCO and introduces the calculations for
internal states and the effectively allocated rates. Finally, Section 3.8 discusses core design
decisions and potential alternatives.

Chapter 4 provides an evaluation of RADICCO, including a performance evaluation based on
simulations. It starts with an evaluation of the qualitative objectives in Section 4.1. Section 4.2
presents our approach of performance evaluation. It details the integration of wide-spread CCA
implementations, the used topologies, our approach to scale overload, the four traffic models used
in our simulations and our parameterizations. Furthermore, Section 4.3 presents the performance
metrics, some of which correspond directly to defined objectives, e.g. bottleneck utilization. For
QoE, a primary objective, we estimate if RADICCO achieves a QoE improvement by measuring
QoS parameters that, for the modeled service type, decide on QoE. Moreover, the reliability of
RADICCO’s traffic type recognition function is evaluated. Sections 4.4, 4.5, 4.6 and 4.7 present
the results for the four traffic models and Section 4.8 summarizes the evaluation.

Chapter 5 draws conclusions focusing on the benefits for the affected players and outlines
potential changes a deployment of RADICCO-enabled BNGs could foster. Lastly, this section
outlines fields for further research and classifies the respective research questions.

2 Background

This chapter provides the background necessary for RADICCO. Since RADICCO exploits
today’s network architecture and topologies, Section 2.1 presents today’s access networks for
broadband Internet, outlining their role in the ISP network, the impact of access link technologies
on access network topologies and typical traffic patterns in such networks. Section 2.2 presents
general packet scheduling and the properties crucial for BNG schedulers, the schedulers that
RADICCO is designed to extend. In Section 2.4, the congestion phenomenon and the mechanisms
for congestion control are introduced. This section also details how traffic differentiation is
implemented by different CCAs and the relation of CC to buffer sizing.

2.1 Wired Broadband Internet Access

In this section, three topics are presented: First, the role of regional access networks and in
particular of the BNG in the overall ISP network is outlined in Section 2.1.1. Second, the internal
topologies and their relation to the used access technology are detailed in Section 2.1.2. Lastly,
Section 2.1.3 provides information on the typical traffic patterns in access networks and typical
link dimensioning.

2.1.1 Topologies and Architectures of Internet Service Provider Networks

Today’s ISP networks are divided into several domains with clearly separated functions and
different technologies: The core network, the metro or aggregation networks, and the regional
access networks or short access network, which we focus on. Figure 2.1 shows a schematic
illustration of a typical ISP network architecture. The core network of an ISP provides re-
liable long-distance high-bandwidth connectivity, typically between few core nodes located
in larger cities. Therefore, it works on large traffic aggregates and uses high capacity Dense
Wavelength Division Multiplexing (DWDM) fiber-optical networking. At the core nodes, metro
or aggregation networks attach. Typically, today’s aggregation networks are optical networks,
often constructed as ring or several stages of rings, forming a hierarchical topology of links of
decreasing speed [TR-134].

The nodes in this aggregation topology that translate links of a lower speed level to a higher
speed level are called Aggregation Switch (AGS). Attached to these aggregation networks, i.e. to
its lowest level, are the access networks. Usually each access network is served by one Access
Node (AN), e.g. a Digital Subscriber Line Access Multiplexer (DSLAM) serving several Digital

5

6 Chapter 2. Background

Core NetworkMetro-/DistributionRegional

Internet / other ISPsNetworksNetworks
Access

Figure 2.1: Schematic illustration of the typical high level ISP network architecture

Subscriber Line (DSL) access links. One AN may also serve several access networks. In that
case, it usually serves one access network per downstream interface using a shared-medium
technology. While the links in aggregation networks are usually symmetric, i.e. downstream
capacity equals upstream capacity, access links are asymmetric for most technologies and in
particular for the widely-deployed ones such as DSL. The access link connects the AN to
the subscriber’s handover point, often called home gateway. While the network beyond the
home gateways is under control of the respective subscribers, the home gateway itself usually
receives at least fundamental configuration from the ISP, e.g. which frequency bands to use for
transmission on the upstream channel. In many networks, it even is owned and controlled by the
ISP, so it is part of the ISP’s network. While the control on the home gateway makes a difference
with respect to upstream transmissions, it does not matter for downstream. For downstream,
the access link is the last transmission controlled by the ISP, so the ANs are the layer two edge
nodes according to the OSI Model.

The core and aggregation networks carry different types of traffic with a wide range of applicable
QoS guarantees: They transport BE traffic, typically from and to residential subscribers. They
also carry traffic with specific QoS guarantees regarding delay, loss, bandwidth or/and availability.
A significant share of that traffic receives soft guarantees compared to the other QoS criteria
because it belongs to private customers. Nevertheless, it is prioritized compared to BE traffic
because some services should work reliably, e.g. VoIP and provider-prioritized video streaming
services. Then there often is also a third group of traffic with tighter QoS guarantees in all
aspects, such as traffic of business customers. Obviously, in such a tiered hierarchical network
architecture the number of devices increases exponentially with decreasing aggregation level:
Typically, there are just a handful of routers at core nodes but thousands of ANs.

At a certain hierarchy level the ISPs typically insert a device called service edge router, edge
router, Internet Protocol (IP) edge device or just IP edge that fulfills various crucial functions. A
core function is downstream QoS enforcement, which requires this node to be placed before any
potential bottlenecks.
In former architectures, these edge routers have been called Broadband Remote Access Server
(BRAS) as in [TR-59] and often have been placed at the transition between aggregation and core
network. Such placements typically result in several levels of aggregation between the BRAS

2.1 Wired Broadband Internet Access 7

interface and an access link. Today, service edge routers are usually called BNG as in [TR-101]
and are usually placed between aggregation and access networks. In some documents, the name-
distinguishing feature is the basic network technology like Asynchronous Transfer Mode (ATM)
for the BRAS in [TR-59] and Ethernet for the BNG in [TR-101]. Another commonly used term
is Network Access Server (NAS) as used in [RFC5851]. Nevertheless, the core functions are
the same and moreover, the terms are not used consistently in the community. In this document,
we use the term BNG without implying that this device must serve ANs directly. We use the
term regional access network for a network downstream of the BNG regardless of the number
of hierarchy levels it consists of. A BNG typically possesses several downstream interfaces,
each serving a regional access network that is isolated from the remaining ISP’s network except
for the connection by this interface. Links downstream of the BNG are often not redundant to
simplify access control. In that case, placing the BNG topologically close to the access also
means minimizing the impact of failures of physical links or interfaces. The BNG function may
also be deployed deeper in the network and we explicitly consider a placement further up in the
hierarchical topology in RADICCO.
BNGs usually fulfill several core functions for the subscribers served by it. A BNG implements
Authentication, Authorization and Accounting (AAA) functionality, i.e. they authenticate the
subscriber, provide authorization for service access and, if applicable, also cover accounting.
A BNG also fulfills networking functions such as address assignment, routing and possibly
Network Address Translation (NAT). It also works as Policy Enforcement Point (PEP), i.e. it
enforces subscriber-specific policies, e.g. a maximum data rate even if served by a faster access
link.

Another crucial function of the BNG is QoS enforcement. Today’s networks not only transport
traffic with different requirements and guarantees on aggregation links, they also provide a
set of services to its private customers, typically the triple-play combination of VoIP, video
streaming and Internet access. Usually, all three types of services are implemented on top of IP
and transported in one packet-switched logical link on the access link. Nevertheless, since these
services have certain QoS requirements to provide acceptable QoE to the user, the respective
traffic has to be handled accordingly. From the ISP’s perspective, the broadband Internet traffic is
BE traffic, which means it is of lowest priority. Enforcing QoS guarantees in the access network
requires proper classification and then appropriate queuing or scheduling [1]. To not require QoS
guarantees at several places in the network, two contrasting approaches are used:

1. Overdimensioning in the core network.
2. Hierarchical scheduling at the service edge.

First, to not require QoS enforcement at fast core network nodes, the resources in the core
network are lavishly dimensioned, so that any bandwidth shortage can only occur at the ingress
or egress. Usually, ISP networks are designed to allow bandwidth shortages, i.e. bottlenecks,
only in the access networks and such design is also confirmed by measurements [2, 3].
Second, to not require functionality for classification and scheduling in the lower network nodes
as well as to not require these nodes, e.g. the ANs, to access AAA and policy repositories, the
BNG implements hierarchical packet scheduling and traffic shaping on each downstream inter-
face. This means that the scheduler of a BNG downstream interface implements all QoS-relevant
functions in place of the downstream nodes so that these just require packet buffers. As detailed
in Section 2.2, these scheduling and shaping functions may be integrated or performed by a hier-

8 Chapter 2. Background

Deployment Point of
Hierarchical Scheduler

Access Link

Aggregation Link

BNG output link

AN

AGS

BNG

Subscriber

0

1

0,0
0,1

0,2

1,0
1,1

1,2
Downstream Packet Flow

(a) Exemplary topology

0,2

0,1

0,0

1,2

1,1

1,0

0

R

C
lassification

1

"schedules" Relation

R Flow Scheduler Instance
within Hierarchical Scheduler

Scheduling Decision

(b) Corresponding hierarchical scheduler

Figure 2.2: Mapping of exemplary topology to hierarchical scheduler

archical scheduler and a separate hierarchical traffic shaper. In both cases the resulting function
represents all downstream links and their capacities from the BNG downstream interface to the
downstream access links in a reverse hierarchical structure as shown in Figure 2.2. Today, a
typical router intended to be deployed as BNG can serve about 50.000 subscribers, but more
important, today’s products like the Nokia 7750 SR [4] or the Cisco ASR 9000 [5] typically
use 1 or 10 Gb/s Ethernet downstream interfaces. In 2016, the average downstream speed in
Germany is reported to be 14.1 Mb/s [6] and many ISPs offer broadband Internet access with 50,
100 or even 200 Mb/s. This combination means that on average, a BNG downstream interface
can serve not more than 70 subscribers at their nominal access link speed.

The actual topology of the regional access network, i.e. how the subscribers served by one
BNG downstream interface are connected to it, heavily depends on the technology of the access
links. Therefore, we will give a short overview on today’s technologies in that field and draw
conclusions on access topologies of the near future.

2.1.2 Wired Access Technologies and their Impact on Topologies

Today, residential subscribers are connected to their ISP’s infrastructure by either two-wire
copper lines, a coaxial cable or an optical fiber. In Germany, by far most of the subscribers
(2016: 75 % of a total of 31.2 M broadband subscribers [7]) use copper lines running one of
the DSL variants. A significant and in the last years increasing number of subscribers (2016:
22.8 %) are connected by coaxial cable or short coax which is commonly operated applying
the Data Over Cable Service Interface Specification (DOCSIS) system, at the time of writing
typically DOCSIS 3.0. A rather small share of 2.2 % is connected using optical fiber, applying
either a Point-to-Multi-Point (P2MP) technology such as Passive Optical Network (PON) or
Point-to-Point1 technologies such as Ethernet.

1Point-to-Point is often abbreviated by P2P but we use this abbreviation for Peer-to-Peer

2.1 Wired Broadband Internet Access 9

For copper two-wire lines, the deployed generation of DSL impacts the maximum distance
to the subscriber and therefore the number of subscriber lines terminated in a DSLAM. Basic
Asymmetric Digital Subscriber Line (ADSL) ([G.992.1]) provides a maximum speed of 8 Mbit/s
and a reach of, depending on the installed cable’s attenuation and crosstalk, about 6 km. Newer
generations, notably ADSL 2 (ADSL2) ([G.992.3]), Extended bandwidth ADSL2 (ADSL2+)
([G.992.5]), Very High Speed Digital Subscriber Line (VDSL) ([G.993.1]) and VDSL 2 (VDSL2)
([G.993.2]), in comparison increase the maximum bitrate for short lines (24 Mbit/s maximum
for ADSL2+ and 250 Mbit/s for VDSL2). Nevertheless, in each case the increase compared to
the predecessor technology only holds for ever shorter lines: ADSL2 and ADSL2+ increase
bandwidth mostly for lines shorter than 2.5 km compared to ADSL, VDSL compared to ADSL2+
is faster only for lines shorter than 1.5 km. Because of this, the VDSL variants require the
DSLAM being installed close to the subscribers. Usually it is installed in a cabinet at the curb,
then also called outdoor DSLAM, and is connected to the AGS or BNG by fiber. Therefore,
these concepts are also termed Fiber To The Cabinet/Curb (FTTC), highlighting that these
technologies are a means to drive the optical network closer to the subscribers. The upcoming
Fast Access to Subscriber Terminals, ITU G.9701 (G.fast) ([G.9701]) and its proposed successor
XG-Fast [8] will improve bandwidth only for even shorter lines, 300 or 70 meters respectively.
The decreasing distance also results in a decrease in the number of subscribers served by one AN,
i.e. DSLAM, and an increasing number of ANs served by one BNG. Therefore, the resulting
topologies for two-wire copper access networks often contain several layers in the aggregation
network and rather few subscribers per AN. Today, there are also network architectures that use
BNGs with a high fan-out and directly attached DSLAMs. Nevertheless, it is not clear if this
concept is efficient if the ANs move even closer to the subscribers with G.fast or if hierarchical
access networks will rise again.

Other access technologies, notably Hybrid Fiber Coax (HFC) that uses coaxial (TV) cables for
the access link, but also Fiber To The Home (FTTH) / Fiber To The Building (FTTB) benefit
from better physical channels. Therefore, in such networks the transmission speeds have been
substantially increasing in the last years without reducing the practical reach by the same factor.
For instance, a HFC optical node, the AN translating the optical signal to the coax cable, today
can serve 25–2.000 subscribers. It typically serves several hundred subscribers (275 according
to [RFC6057], > 300 according to [9]). So, the fanout degree of ANs of these networks is high
compared to today’s DSL topologies and can be expected to remain high. For HFC networks,
DOCSIS 3.1 defines a transmission speed in the shared medium of 10 Gb/s [DOCSIS] and is
being rolled out right now. A similar situation applies to PONs: 10-Gigabit-PON (XG-PON)
was standardized in 2012 / 2016 [G.987, G.987.2], yet there is no significant deployment. Maybe
it never will achieve large deployment since its successor, 40-Gigabit-Capable PON2 (NG-
PON2) [G.989.2], might be used for future deployments.
All these developments show that for these technologies there is still room to serve many
subscribers by one AN, so there is no need to introduce further hierarchies for physical reasons.
In contrast to DSL, the technical platform of these technologies allows serving all subscribers
with the same (maximum) capacity. Nevertheless, usually different capacities are sold and
implemented to offer an appropriate service at an acceptable price to as many customers as
possible (service differentiation). Moreover, all presented access technologies share that the
upstream channel is configured with less capacity than the downstream channel.

10 Chapter 2. Background

Summarizing, today there are network architectures deployed that have just one hierarchy level
downstream of a BNG interface, as well as architectures that have several levels of distribution
beyond such a BNG interface. Moreover, it is very likely that both types of networks will
continue to exist in the foreseeable future. Generally, access links are asymmetric in terms of
bandwidth while the ISP’s inner infrastructure uses symmetric technologies.

2.1.3 Traffic Patterns and Link Dimensioning in Wired Access Networks

Since most traffic in wired access networks is triggered by human actions, there is a correlation
between the number of active users and traffic volume: The more people sleep or are not at home,
the less traffic. Therefore, wired access networks show a clear diurnal load pattern [10, 11]
with peak periods at the evening. The evening peak load even increased with the rise of VoD
service operators such as Netflix, Amazon Video or Maxdome. A diurnal load pattern is also
visible in the Internet in general [12, 13], but the extent is less strong in some regions [12].
The amount of daytime-invariant traffic may rise with the emerging Internet of Things (IoT)
triggering transmissions without human interaction. Nevertheless, the volume of transmissions
destined for a human receiver will also continue to increase, e.g. because VoD services switching
to higher resolutions, 3D or higher color depth. Therefore, this imbalanced traffic pattern can be
assumed to exist also in the near future.

Since each subscriber acts independently from its neighboring subscribers, the sum load of one
AN and therefore its feeding link can be understood as a statistical function. So, the expected
peak load of an AN is much lower than the sum of the subscribers’ capacities. This allows
the ISP to dimension his network accordingly and save costs. The concept of connecting and
selling more overall capacity than available is called oversubscription. The ratio of the potential
maximum demand, i.e. the sum capacity of all served links, to the actual bandwidth of the
feeding link is called oversubscription ratio or contention ratio. Network architectures usually
implement contention ratios higher than one at any aggregation level to save costs. At any node
with a contention ratio greater than one congestion is possible. Nevertheless, oversubscription
does not have to impair the service of any subscriber at all, if the underlying load distribution
is predicted correctly. Unfortunately, this is a difficult or impossible task: Subscribers have
different behavior and both subscribers as well as services change their behavior unpredictably
over time. Moreover, ISPs tend to use optimistic forecasts or, in other words, are reluctant to
upgrade their infrastructure when traffic grows. The reason is that companies need to provide a
cost-efficient solution to their customers’ needs at competitive prices.

So, the combination of heavily varying load and generous oversubscription results in access
networks often not being able to transport all demands during peak periods. Since today’s traffic
is elastic on the packet level due to the use of CC, this usually does not mean services being
unavailable or interrupted, but the users’ QoEs being reduced. The meaning of reduced QoE
depends on the type of service and varies e.g. from longer response times for web browsing
to reduced video quality for VoD services. While this is hard to measure on the service level,
the root cause, the reduced bandwidth available to a subscriber, can be measured easily. ISPs
do not publish such information themselves, but there is a vast amount of indirect proof that
available bandwidth is often significantly reduced during peak periods: In some rare cases there
is measurement data available, for instance on the ISP Roger [2] or as the average of several ISPs.

2.1 Wired Broadband Internet Access 11

Figure 2.3: The ratio of actual download speed to advertised download speed during weekdays
for two-hour time blocks (from [15])

In the United States of America (USA) as well as in Germany public agencies examined the
broadband performance. The latest analysis of the German Bundesnetzagentur (BNetzA) [14]
showed a significant decrease in downstream speed only for cable networks. In contrast, the
more recent measurements of the Federal Communications Commission (FCC) for 2015 [15]
show a clearer and alarming situation: As Figure 2.3 shows, the downstream transmission speeds
of all examined ISPs are deteriorated during the peak period between 7:00 pm and 11:00 pm.
A further indication that access networks cannot satisfy all demands during peak periods is the
existence of the various peak load management approaches and products, see also Section 3.5
on related work on peak- and overload management. Such solutions basically delay certain
transmissions and thus shift some load to less loaded times. Be aware that the networks of the
measurement mentioned above usually already apply such technologies and still suffer from
capacity shortages at peak periods.

Summarizing, traffic of private residential subscribers varies heavily with a diurnal pattern.
For economic reasons, ISPs factor in multiplexing gains on medium and long time scales and
therefore use oversubscription on every topology level in access networks. This frequently
impairs the service provided to the subscribers during peak periods since there is a substantial
amount of time during peak periods with higher demand for bandwidth at aggregation links than
available.

12 Chapter 2. Background

2.2 Packet Scheduling

This section gives an overview on the state of the art in packet scheduling with focus on wired
access networks. It starts with an introduction and definitions (Section 2.2.1), followed by
an summary of the evolution in packet scheduling research (Section 2.2.2). In continuation,
performance of packet schedulers is presented, in detail regarding fairness (Section 2.2.3) and
regarding complexity (Section 2.2.4). Further, schedulers meeting special requirements are
discussed: hierarchical schedulers (Section 2.2.5), rate limiting schedulers (Section 2.2.6) and
schedulers for multi-class traffic (Section 2.2.7). Lastly, this background is mapped to the focus
of this thesis, the BE packet scheduling at the edge of access networks (Section 2.2.8).

2.2.1 Introduction and Definitions

Packet scheduling is part of the link layer in the OSI Model [X.200], more precisely of the MAC
sublayer. Packet scheduling denotes the process or the function at a packet switched network
interface that

- Decides which packets are sent and when, and which are buffered.

- Aims for some performance guarantees referring to well-defined subsets of the incoming
packets.

The well-defined subsets of packets are commonly called flows in scheduling context. Usually,
any incoming packet can be mapped to exactly one of the flows. This definition does not
match the definition of flows in the context of layer 4 protocols such as TCP. The objective
of packet scheduling algorithms is usually enforcing QoS guarantees on the flows. The exact
objective varies heavily from use case to use case. For wired networks, overall QoS improvement
is achieved by prioritizing traffic classes with QoS guarantees, e.g. carrying VoIP traffic, at
BE’s cost, and by improving or enforcing fairness amongst the flows within a class [16]. For
wireless networks, there are more parameters that can be considered, most prominent the current
capacities of the channels to the different receivers (due to changing physical attributes). In this
work, we focus on packet scheduling for wired access networks, i.e. for schedulers for channels
with static properties.

It is crucial to distinguish packet schedulers from the closely related queuing disciplines. Queuing
disciplines also are MAC functions that decide which packets are sent and when, and which are
buffered. Yet, queuing disciplines aim for objectives regarding the aggregate. So, a queuing
discipline is defined by its enqueue decision function and its dequeue decision function that
manage a packet buffer.
Consequently, queuing disciplines work on packets without distinction, while packet schedulers
operate on flows.

Queuing disciplines that implement a non-trivial algorithm for buffer management are also
called Active Queue Managements (AQMs). There is a huge variety of AQMs, many of them
targeted for specific scenarios. The decision logic of most AQMs and all that are in today’s
high-speed routers and switches, is implemented in the enqueue decision function only. These
AQMs use a trivial dequeue decision function equivalent to retrieving the first element of the

2.2 Packet Scheduling 13

queue data structure (often a linked list or a ring buffer in case of an array-backed buffer). In
today’s packet switched networks it typically makes a difference, which packet is served when
on a link. This is of special importance if the traffic is composed of self-contained subsets, e.g.
of packets of different subscribers, different services or different connections. Scheduling not
only directly impacts packet delays by internally using packet buffers, it also decides on the
flows whose packets are rejected due to full buffers because it uses a separate queue for each
separately scheduled flow. So, scheduling is an important place to implement QoS. This is a
important reason among others, why queuing disciplines are not sufficient at many places in a
network [RFC970, 17].
These definitions, starting with the clear distinction between packet schedulers and queuing
disciplines, are not consistently used in neither research nor industry. For instance, packet
schedulers and queuing disciplines are called classful queuing disciplines and classless queuing
disciplines in the Linux kernel.

Technically, both packet schedulers as well as queuing disciplines can globally be described
as an Enqueue-Decision-Function deciding which packets are accepted for transmission at all,
and a Dequeue-Decision-Function deciding which of the buffered packets is transmitted next.
Queuing disciplines use just one global instance of a decision algorithm and one universal packet
buffer or queue as depicted in Figure 2.4a. In contrast, packet schedulers use per-flow queues
and work based on three components as depicted in abstract illustration in Figure 2.4b:

1. A classification function maps every incoming packet to its corresponding flow.
2. An enqueue decision function decides based on the classification context if the packet is

accepted and buffered.
3. A dequeue decision function decides when and which flow is dequeued, i.e. to which flow

bandwidth is assigned at that moment.

Occasionally, this last function is called packet scheduler. This scheduler schedules packets for
transmission on the respective link, but this selection is not based on the packets themselves but
taken on flow-level granularity and depending on the flows’ states. Therefore, we use the term
flow scheduler for this function or, when there is no risk of confusion, just scheduler.

For many packet schedulers, these three components—classification, flow-queue management
and selection of a flow for dequeue—are independent. This is beneficial since for software
implementations as this allows a modular design or even dynamic configuration of packet
scheduling and therefore applying packet schedulers tailored to the use case and the operator’s
goals. For example, the packet scheduling in a regional AN should not depend on whether the
operator assigns only an Internet Protocol version 4 (IPv4) address to a customer, or an IPv4
address and an Internet Protocol version 6 (IPv6) address (so-called dual-stack operation) or
just an IPv6 address using Dual-Stack Lite (DS-Lite) [RFC6333]. In case of modular packet
schedulers, the management of each per-flow-queue is equivalent to a queuing discipline, that
means here the flow scheduler can be combined with any queuing discipline or AQM. Similarly,
the dequeue decision function usually does not take any state of the queuing disciplines into
account, but is just a flow scheduler that selects the flow to be dequeued among the non-empty
queuing disciplines and calls its dequeue function. It must be noted that the Dequeue-Decision-
Function of queuing disciplines usually just consists of the POP() operation of a First In, First
Out (FIFO) list, a very cheap operation in terms of complexity and absolute processing cycles.
Nevertheless, there exist AQM algorithms that define complex and potentially costly operations

14 Chapter 2. Background

Packets Transmitted on Interface

Buffer as Packet Queue

Dequeue Decision Function

Enqueue Decision Function

Packets Routed via this Interface
EQ

DQ

Q
ue

ue
in

g
 D

is
ci

pl
in

e

(a) Structure of a queuing discipline

Packets Transmitted on Interface

Packets Routed via this Interface

P
ac

ke
t S

ch
e

du
le

r

...

Packet Classification to Flows
...

Separate Per-Flow Queues

Dequeue Decision Function
(usually just selects the queue)

Enqueue Decision Function
(usually just per-flow)

Enqueue Decision

Dequeue
Decision

(b) Generic structure of a packet scheduler

Figure 2.4: Comparison of the structures of queuing discipline and packet scheduler

Packets Transmitted on Interface

Packets Routed via this Interface

P
ac

ke
t S

ch
e

du
le

r

...

Packet Classification to Flows
...

Separate Per-Flow Queues

Dequeue Decision Function
(usually just selects the queue)

Enqueue Decision Function
(usually just per-flow)

Enqueue Decision

Dequeue
Decision

(a) Generic structure

Packets Transmitted on Interface

Packets Routed via this Interface

P
ac

ke
t S

ch
e

du
le

r

...

Packet Classification to Flows
...

Per-Flow Queueing Disciplines
each with Enqueue Function
& trivial Dequeue Function

EQ EQ EQ EQ EQ EQ EQ

Flow Scheduler

(b) Typical structure of classifier, queuing
disciplines and flow scheduler

Figure 2.5: Comparison of a generic packet scheduler structure and the typical structure

on the packet dequeue. The most prominent example in recent times is Controlling Queue
Delay (CoDel) [18]. To date, these AQMs are not used in packet schedulers of network operator
equipment because of the computational effort necessary at the time-critical dequeue event.

Figure 2.5 shows the difference between the generic structure (Figure 2.5a, same as Figure
2.4b) and the typical structure of deployed packet schedulers consisting of classifier, queuing
disciplines and a flow scheduler (Figure 2.5b).

Packet Classification

Usually, classification is carried out based on simple labels on low layers, e.g. (destination) IP
addresses and Differentiated Services Code Point (DSCP) values, and combinations thereof.
In many cases, the incoming traffic is already appropriately labeled, e.g. since the ISP’s video
streaming servers mark their packets accordingly. Packet classification may also base on arbitrary

2.2 Packet Scheduling 15

complex functions because the classification function can be separated and distributed to several
external nodes. If a complex classification is carried out separately, this function must insert
other, simple labels to transfer the information to the actual packet scheduler. DPI-based
overload management, see Section 3.5.4, may be viewed as implementation of such a separated
classification function: The DPI function aims to identify and mark non-urgent traffic in a
separate node and the BNG’s flow scheduler serves these flows with lowest priority only. This
example shows that external classification functions may be complex, require special hardware
and may also be managed and even replaced independently, thus rendering the whole system
more flexible.

In hierarchical schedulers, packet classification represents that hierarchy, e.g. for ANs there
are not only attributes mapping to subscribers, but also attributes mapping to privileged video
streaming or the VoIP class. Nevertheless, the combination of attributes finally identifies any
packet to be queued into one specific queue, so packet classification may also be perceived as a
flat mapping even for hierarchical schedulers. For BNG packet schedulers at BNG downstream
interfaces two levels of classification can be distinguished: identification of the subscriber and
identification of service class. Mostly, subscriber classification in BNGs is performed based on
the destination IP address since usually network operators assign one or two addresses (IPv4
and/or IPv6) to each subscriber. Some operators do not own enough addresses so they use NAT or
Network Address and Port Translation (NAPT). In that case, packet classification for subscriber
identification is performed using destination IP address and port range. The identification of
prioritized traffic, typically the ISP’s VoIP and video services, could be performed on source IP
address ranges and ports, but probably is based on labels already attached upstream of the BNG,
maybe even at the source. Candidate labels are DSCPs, Virtual LAN (VLAN) tags or Generalized
Multi-Protocol Label Switching (GMPLS) tags, depending on the deployed technology.

The concept and the algorithm presented and examined in this thesis does not touch this part
of packet scheduling. It also does not depend on packet classification specifics and thus can be
combined with any packet classification mechanism desired.

Queuing Disciplines

For every flow served by a packet scheduler, the scheduler maintains a queue of packets2. Usually,
packet schedulers use just one type of queuing discipline for all queues at a time although this is
not technically necessary. Furthermore, typically there are only simple and well-tested queuing
disciplines configured, namely either a simple bounded FIFO queue, also known as tail drop
queue, or a Random Early Detection (RED) queue [19]. The queuing discipline is the major
enforcement point for delay-related guarantees since the queuing delay can be much bigger than
the delay induced by the flow scheduler. Nevertheless, for BE traffic delay bounds are either lax
to allow full bandwidth utilization (see Section 2.4.4) or not specified at all.

As in stand-alone deployment, the goal, and therefore basis for assessment, of any queuing
discipline in packet schedulers is twofold:

2Some implementations discard empty queues and recreate queues once a packet arrives.

16 Chapter 2. Background

- The AQM should avoid a standing queue, i.e. avoid the minimum queue size being
(significantly) larger than zero. A standing queue has no advantages, but induces undesired
delays on application layer as well as in the transport layer control loops.

- The AQM should avoid wasting bandwidth by unnecessary packet drops. Specifically, it
should avoid dropping packets in a way that may trigger senders to reduce their sending
rate so that the flow’s queue is empty for a significant time share and thus less bandwidth
than possible is allocated to the flow.

In case of a packet scheduler, achieving these opposing goals of low delay and high utilization
also depends on the flow scheduler and of course on the incoming traffic. Nevertheless, many
CCAs require significant buffer to achieve high utilization (see Section 2.4.4), so the AQM
and the effective buffer size is a configuration parameter important for the packet scheduler’s
performance.

Buffer sizing as well as the choice of queuing discipline for a packet scheduler are questions to
be answered independently from honoring end hosts’ CC-based prioritization in BNG packet
scheduling. The concept and the algorithm presented and examined in this thesis do not depend on
queuing discipline specifics and thus can be combined with any queuing discipline. Nevertheless,
the presented approach requires buffer sizes to be large enough to detect if a CCA makes
aggressive use of available buffer to distinguish foreground from background traffic. As argued
in Section 2.4.4, buffer sizes on subscriber level cannot be expected to substantially decrease in
the near future.

Flow Scheduler

Having said that neither packet classification nor a packet scheduler’s queuing disciplines are in
focus of this work, obviously, the flow scheduler is. This component is also in focus of most
research and publications on packet scheduling. Many publications carrying packet scheduling
in the title cover the flow scheduler only, often the term packet scheduler is even used for only
the flow scheduler component.

In fact, many publications ignore the other components and by that culpably neglect their impact
on overall performance. Moreover, many evaluations base on theoretical traffic models or even
assume a static set of backlogged flows. This disregards that today’s Internet traffic on the
packet level does not follow stochastic models, but is mostly controlled by transport layer CCAs.
Yet especially for such traffic, the queuing discipline has significant influence on the packet
scheduler’s performance regarding both delay as well as throughput (see also Section 2.4.4).
Moreover, both packet classification and queuing disciplines contribute to the overall packet
schedulers computational and hardware requirements. If chosen poorly, their share may well
exceed the cost of the flow scheduler. A proper choice of mechanism and implementation
however allows to limit the computational effort for any incoming or outgoing packet in these
components to a fixed number of cycles which is independent of the size of the overall task,
i.e. the number of flows managed by this packet scheduler. Computer scientists denote the
complexity of these algorithms being O(1) in Bachmann-Landau notation, the lowest possible
and most desirable complexity class. For the flow scheduler, much research on flow schedulers

2.2 Packet Scheduling 17

targets exactly this topic, reducing the asymptotic computational complexity, often trading
off accuracy in the guarantees enforced. Here a note is in order: asymptotic complexity is
an important metric, the higher the number of flows, the more significant. In contrast, if the
number of flows is known for some use case in advance (or at least its order of magnitude),
the computational effort of algorithms can be compared for that specific use case. This is most
relevant for this work. For example, Deutsche Telekom are migrating their network structure
to a network architecture named TeraStream. This architecture means that one BNG interface
serves not more than 250 subscribers and distinguishes four traffic classes per subscriber [20].
This results in maximum 1.000 separate flows in the packet scheduler, so O(log N) is probably a
well acceptable complexity since it results in only ten basic operations (typically comparisons)
per scheduling event. Assuming a per-packet scheduling, an interface speed of 10 Gbit/s and an
average packet size of 1000 Bytes, this results in 1.25 M dequeue events per second and 12.5 M
operations per second. This is clearly feasible to implement.

The flow scheduler is the enforcement point for bandwidth-related policies and performance
guarantees. It also contributes to delay-related guarantees since the flow scheduling results in a
statistical delay in addition to the queuing delay. But packet delay is not of interest in case of
BE traffic, the class this thesis focuses on. The performance guarantees aimed for by the packet
scheduler may relate to all flows or just a subset, and may be relative or absolute. Practical
examples are:

- All active subscriber flows of class X shall receive the same bandwidth at any point in
time.

- The VoIP flows shall receive minimum delay.

- The flows of class Y, e.g. the business customer flows, shall receive a minimum bandwidth
of Z Mbit/s.

These examples require an appropriate classification of incomings packets along with meta
information to define the groups of flows, e.g. which flows correspond to business customers.
Second, to express absolute guarantees the available resources, i.e. the available bandwidth in
that case, obviously must be reliably sufficient to satisfy all guarantees at the same time, else
only statistical guarantees can be given. Third, often scheduling guarantees only make sense in
combination or combined with knowledge of properties of the incoming traffic, e.g. that any VoIP
flow is not more than 200 kBit/s. These properties are often enforced prior to entering the packet
scheduler, e.g. by applying rate shaping based on leaky bucket or token bucket approaches.

2.2.2 Packet Scheduling Evolution

In this section, we will give an overview on the development of scheduling algorithms, give
information on how and why schedulers are used in networks and finally shortly present the two
main scheduler families relevant today: schedulers based on Deficit Round Robin (DRR) and
based on or similar to Weighted Fair Queueing (WFQ) that use timestamps. A good overview on
algorithms can be found in Dordal’s book [21], focused on the algorithms’ properties and use
cases rather than complexity.

18 Chapter 2. Background

The need to make resource allocation decisions on a packet-basis came up with the emergence
of Virtual Circuits (VCs). A VC requires explicit setup like a circuit, but VC networks are
packet switched networks using statistical multiplexing and therefore can benefit from statistical
multiplexing gain. This means that routing decisions have to be taken not for every packet but
only once per VC. But it also meant a fundamental change in resource allocation. Traditional
circuit-switched networks use static resource allocations which were explicitly reserved during
circuit setup, e.g. time slots on any interface on the path of a circuit for Time-Division Multi-
plexing (TDM) systems. In contrast, for VCs there arises the need to take resource allocation
decisions on a per-packet basis whenever multiplexing several VCs to one network interface. So,
algorithms have been designed that served the purpose satisfactorily. For example, the TYMNET
architecture [22] used one FIFO queue for each VC and served the queues in a round robin
manner (while not using the term round robin). Already this algorithm supported weights insofar
as priority channels receive more than one turn per round. The DATAKIT system proposed by G.
Riddle, which is also based on VCs, uses per-VC FIFO queues too, but manages these queues in
two lists [23]. One list contains VCs having had no packet in its queue at arrival of the VC’s last
packet. So, it contains VCs with newly starting transmissions and VCs with a load lower than
the VC’s current possible share on that link. The other list contains VCs having had at least one
packet in its queue at that time, i.e. the VCs with ongoing transmissions of higher load. While
there are entries in the first list, these queues are served in a First-Come, First-Served (FCFS)
manner (alias to FIFO), once it is empty, the queues in the second list are served, also in FCFS
sequence.

While for VC-based networks the packet classification is predetermined, this is not the case
for packet switched networks. Usually also for packet-switched networks a packet scheduler is
desired instead of one trivial FIFO queue: The FIFO strategy is perceived being inherently unfair
since it allocates most resources to the fastest sender. Nagle therefore introduced the concept of
fairness [24], interpreted as fairness between source nodes: any source shall receive the same
bandwidth at an interface as any other source currently using this interface. This goal is achieved
by a packet scheduler maintaining one FIFO queue for every source node in the network and a
flow scheduler serving the non-empty queues in a round robin manner. So Nagle transferred the
existing concept of a packet scheduler from VC networks to packet switched networks. It should
be noted, that the goal of this packet scheduler is a purely relative one: there are no guarantees
on maximum delay or minimum throughput for any flow, i.e. any traffic source.

At about the same time network researchers started to apply existing theoretical models, insights
and algorithms from other scheduling research, in particular operations research, to packet
scheduling. The most important contribution from operations research is the Generalized
Processor Sharing (GPS) model, proposed by Kleinrock [25, 26] and analyzed by himself and
others [27, 28]. This research reduces the packet scheduler to bandwidth assignments, leaving
out potential other goals such as limited delay. So this research community reduces a packet
scheduler to a queue selection algorithm aiming for distributing bandwidth among flows as close
to predefined shares as possible. This task directly corresponds to the task of assigning jobs to be
processed by a processor, each job having a priority. So processing jobs correspond to packets,
and priorities correspond to the processing share to be received by jobs of this priority.

Assuming a job (or packet transmission) may be interrupted at any time without cost, the GPS
model defines a time-sharing system with the slot time approaching zero. So jobs are “cycling

2.2 Packet Scheduling 19

around at an infinite rate, receiving an infinitesimal quantum of service infinitely often” [25].
In this theoretical system, at every point in time every job received exactly its correct share,
i.e. GPS achieves perfect proportional fairness. Note that this fairness criterion differs from
other fairness definitions, such as max-min fairness [29], which is aimed for by some schedulers
for wireless networks (on objectives in bandwidth sharing see also [30]/[31]). Since packets
can only be transmitted as a whole, in real packet schedulers the predefined shares cannot be
exactly met at most points in time. Nevertheless, GPS defines the perfect reference for packet
schedulers with regard to bandwidth distribution. Moreover, queuing theory could be used
to derive delay distributions to be expected for several packet schedulers. E.g. Fraser derived
delay distributions [32] for the packet scheduler already presented in [23] and Lo derived delay
formulas for the packet scheduler implemented in AT&T’s Trunk Interface Module (TIM) [33].
Both, the ideal scheduling of GPS as well as proven traffic properties, are since core research
topics in packet scheduling.

When assessing scheduling algorithms, i.e. algorithms for the flow scheduler within a packet
scheduler, usually two domains are of interest: the computational complexity and the quality
of worst case schedules. This quality is mainly defined by two aspects: First, by the schedule’s
long-term fairness, thus its deviation from the ideal schedule of GPS. Second, by the schedule’s
burstiness, i.e. its short-term fairness.

More formally, schedulers are examined in three crucial metrics:

Complexity The worst-case number of computational steps needed for selecting the next flow.
It is usually given in Bachmann-Landau notation, typically dependent on the number of
flows.

GPS-relative delay The worst-case delay of a packet compared to the ideal completion time
with GPS. It also is usually given in Bachmann-Landau notation. Note that this criterion
implies aiming for proportional fairness.

Fairness Several metrics are used to capture different aspects of fairness. The most important
fairness metric is its normalized Worst-case Fair Index (nWFI).

These metrics will be introduced in detail in the next sections.

2.2.3 Delay Relative to the Perfect Schedule and Fairness of Scheduling Algorithms

Before starting with the GPS-relative deviation or delay, we introduce some terms and make
some general remarks.

When describing schedulers and their produced schedules, the transmission times of packets
are of interest, more precisely: The Finish Times of these transmissions and sometimes also the
Start Times. The Start Time S j

i denominates the point in time the first (infinitesimal) piece of the
i-th packet of the j-th flow is transmitted on the scheduled interface. Correspondingly, the Finish
Time F j

i of the i-th packet of the j-th flow denominates the point in time its transmission on the
interface is completed and the interface is ready for the next transmission. In the networking

20 Chapter 2. Background

context, a comprehensive description of a schedule is defined by the Finish Times of all packets.
Note that most theoretical analyses assume a constant set of backlogged flows, i.e. there neither
are flow queues running empty nor are queues becoming non-empty, i.e. backlogged. Moreover,
most schedulers are designed to be work-conserving, that means the managed link is only left
idle if there is no packet of any flow available. All schedulers discussed in this section belong to
that category. Therefore, Start and Finish Times may be expressed in time units as well as in
bits or bytes (for variable rate links the mapping function may be not constant but for sure is
bijective). Note also that, although preemption, i.e. canceling an ongoing transmission in favor
to start transmitting a newly arrived packet, may improve some metrics of a scheduler, this is
usually not considered since it wastes bandwidth.

When comparing a packet scheduler with GPS, it obviously cannot achieve the same schedule
in most scenarios because GPS uses infinitesimal short time shares while a real scheduler can
only schedule full packets. The Bit-by-Bit Round Robin (BBRR) scheduler is another idealized
reference scheduler, one step closer to reality but still theoretical: A scheduler that serves all
active flows in a round robin manner, transmitting one bit for each flow in each round. Compared
to GPS, this algorithm neglects that packets not only arrive when a transmission (of one bit)
ends. Thus, the error in Finish Times is less than the transmission time of 1 bit. This error can be
neglected, so often BBRR is used as reference instead of GPS.

A real-world packet scheduler can obviously neither achieve the same schedule as BBRR nor as
GPS since the units of transmission, i.e. of service of the scheduler, have to be packets. But there
are still significant differences in accuracy between schedulers, i.e. of difference between the
schedule of that scheduler and the one of GPS. For example, Nagle’s algorithm [24] described
above, would result in a source sending packets twice as big as another receiving about twice
as much bandwidth. So, here intuitively the unfairness is unlimited and so is the maximum
difference between Finish Times of this scheduler and GPS. Moreover, the maximum difference
of service between two flows of same weight is also unlimited. The main cause for this deviation
is the calculation being based on packets, not on bandwidth or transmitted bits. Other schedulers
do better, some of them explicitly aligning themselves to GPS. This is easily possible since
the Start Times and Finish Times of GPS can be calculated and may serve as guidance for a
scheduling algorithm.

Using time stamps can also be used for classifying schedulers: There is the group of timestamp-
based schedulers and there is a group applying other approaches. Among the second group,
Round Robin (RR)-based schedulers are the most relevant ones. First, we present timestamp-
based schedulers.

Demers, Keshav, and Shenker were the first to publish such an algorithm [17] which they
simply called Fair Queueing (FQ), shortly followed by Zhang [34] who called her algorithm
VirtualClock (more thoroughly examined in her PhD thesis [35]). Both are based on calculating
the Finish Time a reference system would achieve for any incoming packet and then transmitting
packets in increasing order of these so called Virtual Finish Times.

The reference for the timestamps of FQ is GPS, although the authors mostly argue using uniform
weights and only shortly mention, how to extend the scheduling to arbitrary weights. Not
focusing on different weights is owed to the motivation for this scheduler: Demers aimed for a
bandwidth allocation to achieve protective and stable networks. In FQ Demers et al. added an

2.2 Packet Scheduling 21

optional corrective factor to bring forward short packets but if set to zero as in their measurements,
the resulting schedule is very close to GPS. Although the term Weighted Fair Queueing (WFQ)
is not used in the paper itself, this term is widely used for the weighted algorithm proposed by
Demers et al. This algorithm is also equivalent to a scheduling algorithm proposed by Parekh
called Packetized Generalized Processor Sharing (PGPS) [36].

The focus of VirtualClock on the other hand is inspired by a reservation-based network such as
a TDM network and aligns its timestamps to the virtual transmission times in such a network.
Therefore, it is different in that it expects clock speeds, i.e. corresponding bandwidth assignments,
to be explicitly configured for all flows. Because of that, it inherently supports different weights.
Since it in contrast to its original inspiration is work-conserving, it could be shown that it in
fact approximates GPS. Also Zhang considered an optional prioritization of short flows, but her
approach only affects the beginning of a flow, so flows not fully utilizing their share would not
persistently benefit as in case of the original FQ.

For WFQ, PGPS and VirtualClock the maximum discrepancy to BBRR for each flow was proven
to be within Pmax, denoting the maximum packet size [17], i.e. for each flow the number of bits
already transmitted with one of these algorithms never differs more than Pmax from the number
of bits BBRR would have transmitted. This is also the minimum per-flow error for algorithms
scheduling complete packets (without preemption).

Although this is the minimum error and despite the closeness to GPS suggested by the name
PGPS, the schedule of WFQ is more unfair than necessary. Essentially, the WFQ schedule often
exploits this maximum error where it could be avoided, especially for configurations with heavily
differing weights, e.g. by one or more orders of magnitude. The resulting WFQ schedules also
show oscillation patterns in bandwidth allocated to some flows, which is generally not desirable
since oscillations cause problems e.g. for end-to-end control loops. As cause for this problematic
behavior Bennett and Zhang identified flows not being serviced for quite a long time in WFQ
while packets of other flows are serviced before they would even start receiving service with
GPS [37, 38]. Note, that in GPS a packet arriving to an empty queue is serviced immediately,
else without delay after finishing the packet before. By deciding on the schedule based on finish
times, packets may receive service from WFQ although GPS would not have finished serving the
packet before.

To capture this type of unfairness, Bennet and Zhang introduced worst case fairness and then the
nWFI as a metric. A scheduler is worst-case fair, if for any flow j there exists a time constant D j

for which holds: A packet p j
i arriving at τ will be served latest after the time the existing queue

takes to be served with j’s guaranteed rate r j plus this delay constant D j, i.e. Equation 2.1 holds.
D j is called the Worst-case Fair Index (WFI) of flow j.

S j
i ≤ τ +

Q j

r j
+D j (2.1)

For meaningful comparison between flows, the maximum delays need to be normalized. A
scheduler’s nWFI is then defined as the maximum normalized delay D j as shown in Equation
2.2. For further details, refer to [37, 38].

nWFI = max
j

(
r j ∗D j

∑i ri

)
(2.2)

22 Chapter 2. Background

Summarizing, nWFI is defined as a normalized upper bound for the time between a packet’s
start time according to GPS and its start time for the scheduler being assessed. The nWFI by that
describes the short-term fairness of a scheduling algorithm. So, a low nWFI guarantees resulting
schedules being not very bursty (for a static set of active flows). For WFQ, Bennett and Zhang
find that the nWFI scales with N/2, N being the number of flows.

Bennett and Zhang propose a new algorithm, named Worst-case Fair Weighted Fair Queueing
(WF2Q), that has the same delay bound as WFQ and a flow’s WFI corresponds to the transmission
time of a maximum sized packet at that flow’s guaranteed rate. This means that the WFI does not
depend on the number of flows but only on the share of that flow. This results in a nWFI that just
corresponds to the maximum size packet transmission time, which is the lower limit since any
non-preemptive packet scheduler must deviate from GPS by one maximum size packet in the
worst case. They achieve this smoother scheduling by limiting the flows that may receive service
to that flows whose first packet would have started to receive service in GPS at that time, too.
They call the head-of-queue packets, that in GPS would already have started to receive service —
and maybe even finished — eligible packets. Therefore, this selection strategy is called Smallest
Eligible virtual Finish time First (SEFF).

So WF2Q selects the next flow to dequeue based on both virtual start time and virtual finish
time, so data structures sorted by both indexes are necessary. Although this is not welcome,
all schedulers using only one characteristic have large WFIs as Stephens, Bennett and Zhang
pointed out [39]. They developed a follow-up scheduling algorithm called WF2Q+ [38] that uses
two characteristics but reduces algorithmic complexity to O(logN). WF2Q+ results in the same
schedule as WF2Q and by that inherits WF2Q’s tight delay bound and its optimal nWFI.

The “Leap Forward Virtual Clock (LFVC)” algorithm [40] further reduces complexity. By
coarsening the timestamps and using complicated data structures for the flows’ timestamps
it achieves an overall complexity of O(log log N). But in contrast to WF2Q+, LFVC cannot
maintain the O(1) GPS-relative delay, it achieves only O(N) GPS-relative delay. Nevertheless,
LFVC achieves an nWFI that is independent of the number of flows and only marginally bigger
than the minimum possible value achieved by WF2Q+.

All algorithms analyzed to this point explicitly select the flow to dequeue based on timestamps
stored for each flow, e.g. virtual start and finish times. There is a second important group of
scheduling algorithms that work fundamentally differently: the Round Robin (RR) schedulers.
As the scheduler in TYMNET [22] mentioned before, algorithms of that class maintain a list of
all active flows, i.e. non-empty queues, and traverse through this list. Basic RR schedulers such as
the TYMNET scheduler that just dequeue a maybe weight-dependent but fixed number of packets
from each active flow in a round robin manner are obviously not fair since flows with bigger
packets receive an undeserved larger share that may grow without limits. The most wide spread
method to compensate for different packet sizes is to manage state for each flow representing a
right to send data and increasing this value with every round by a weight-depending quantum.
Shreedhar and Varghese were the first to propose a scheduler based on this mechanism and called
their algorithm Deficit Round Robin (DRR) [41]. DRR is based on a positive quantum of at least
Pmax (necessary for the complexity guarantee) and one state variable stored for each flow, the
flow’s deficit. This deficit represents the right to send data which could not be consumed yet. In
each RR iteration DRR adds the fixed quantum to the flow’s deficit variable. Then, the deficit
counter is sufficient to send at least one packet by definition of the quantum. So, the deficit

2.2 Packet Scheduling 23

counter is reduced accordingly and the first packet in the queue is sent. This is repeated until the
available deficit is not sufficient or the queue runs empty. If the queue runs empty, the deficit
counter is reset to zero and the queue is removed from the list of active flows. It was proven that
the maximum deviation of this algorithm is 3*Pmax. DRR has a nWFI of O(N).

Summarizing, there is a limit for accuracy of packet schedulers, which is the delay bound of one
maximum sized packet. There exist several algorithms that reach this maximum accuracy.

This limit is achieved by several scheduling algorithms but also within this group, schedules may
differ significantly with respect to networking as a whole, defining a second order unfairness.
The WFI is an accepted means to capture this unfairness, and WF2Q and WF2Q+ reduce this
unfairness to the theoretical minimum, so both provide an optimal schedule by both metrics.
Nevertheless, they require virtual start and finish times being computed and evaluated for all
flows, so complexity is not trivial and deserves attention.

2.2.4 Complexity of Scheduling Algorithms

When analyzing complexity of basic scheduling algorithms, again the two large groups can be
identified: On the one hand RR algorithms (e.g. [41, 42, 43, 44, 45, 46, 47]) that require very
low and, most important, constant computational effort, i.e. complexity of O(1), for selecting
the next flow to be dequeued. These schedulers are fast but have non-perfect fairness and delay
properties as outlined before. On the other hand, there are algorithms that manage timestamps
for each flow and decide on the next flow based on this information (e.g. [17, 34, 36], [38]
& [37], [48], [49], [40]). Examples for this group are WF2Q and WF2Q+, which as most of the
algorithms of the second group aim to emulate GPS. For each dequeue event, any algorithm of
this group needs to perform two operations: First, it needs to calculate a new timestamp for the
served flow. The cost for this operation varies between O(N) for WFQ, O(log N) for WF2Q+ and
even O(log log N) for LFVC that uses sophisticated special data structures. Second, it needs
to identify the next flow to dequeue. Most efficiently this is done by maintaining a priority
queue of active flows and re-inserting the recently removed head of that queue by the updated
timestamp(s). Such ordered insertion has a complexity of O(log N) on standard hardware, but
may be implemented in O(log log N) under certain conditions as by LFVC [40]. Other algorithms
achieve a complexity independent of the number of flows N by using rounded time stamps, e.g.
[50, 51] but they pay a price by a non-optimal GPS-relative delay. Xu and Lipton proved that
GPS-relative delay of O(1) requires a minimum complexity of O(log N) [52].

In contrast to GPS-relative delay, a good nWFI, i.e. < O(N), can be achieved with lower com-
plexity.

So generally, there is a trade-off between low latency, low complexity and fairness, which also
has been looked into in the research community [53]. In consequence, some algorithms have
been developed that use a hybrid approach, i.e. time stamps on one level and a RR mechanism
on others, e.g. Fair Round Robin (FRR) [45]. Yuan and Zhenhai explicitly aimed for a low-
complexity but fair scheduler when designing FRR. They achieved their goal by combining both
classical scheduling concepts in a two-level scheduler: FRR uses a time stamp-based scheduler
for scheduling between a small number of flow classes and a DRR-based one for scheduling the
flows within these classes.

24 Chapter 2. Background

Table 2.1: Summary of scheduler properties.
N = number of flows, n = number of groups / levels / classes depending on algorithm

Scheduler Concept GPS-relative
Delay

nWFI Complexity

GPS [25] theoretical 0 0 n.a.

WFQ [17] timestamps O(N) O(N) O(N)

SCFQ [49] timestamps O(N) O(N) O(log N)

VirtualClock [34] timestamps O(1) ∞ O(log N)

DRR [41] round robin O(N) O(N) O(1)

WF2Q [37] timestamps O(1) O(1) O(logN)

WF2Q+ [48] timestamps O(1) O(1) O(logN)

LFVC [40] timestamps O(N) O(1) O(log log N)

Stratified RR [44] timestamps + RR O(N) O(N) O(n)

FRR [45] timestamps + RR O(N) O(1) O(n)

Simple KPS [50] timestamps + RR O(n) O(1) O(n)

QFQ [51] timestamps + RR O(n) O(1) O(1)

There are several runtime-optimized but approximate variants of WF2Q+ [50, 51, 54] and
enhanced hybrid schedulers using time stamps and RR mechanisms [50, 51, 54] (besides the
specific publications, a well-structured overview is given in [54]). The latter group makes use of
aggregation of flows and a two-level architecture: a WF2Q+-like root scheduler, which schedules
on aggregates, is combined with DRR schedulers scheduling individual flows. The core of these
concepts is to reduce the frequency of costly, i.e. non-O(1)-operations of the scheduler such
as adding a queue to a priority list. Table 2.1 gives an overview on fundamental scheduling
algorithms and recent runtime-optimized variants.
Unfortunately, the concept of virtual time does not allow a universal, straight forward stacking
of schedulers to implement a hierarchical scheduler, which for example is necessary at BNGs
downstream interfaces in focus of this thesis.

2.2.5 Hierarchical Schedulers

All discussed schedulers can enforce a desired bandwidth sharing of several or many flows
on one network interface, achieving different precision and fairness and requiring different
computational effort. In many use cases, especially when scheduling residential broadband
access networks, it is desirable not to have packet schedulers at all nodes’ outgoing interfaces, but
enforcing desired policies at an ingress node for all transit traffic. This is especially interesting in
tree-shaped topologies where one node feeds a subnetwork otherwise not receiving traffic. Here,
a hierarchical scheduler can be deployed at the network ingress, the scheduler configuration
representing the hierarchical network topology with the respective policies, see Figure 2.2.
In such a hierarchical scheduler, the leaf nodes also are scheduler instances, although these
nodes do not manage several flows. This is necessary since all scheduling algorithms require

2.2 Packet Scheduling 25

state at the child nodes, e.g. the deficit in case of DRR or the timestamps for timestamp-based
approaches. With hierarchical scheduling, only at one node, e.g. the BNG for wired access
networks, classification and the necessary information and performance is necessary, at all
other interfaces simple FIFO queues suffice. Despite this limited effort, there cannot be a
decrease in service quality compared to deploying single-level packet schedulers to all outgoing
interfaces at all nodes. Note that usually labels are added to the packets forwarded that reflect
the classification result to allow universal configurations at AGSs and ANs that do not depend
on the actual classification rules. The universal labeling is often based on VLAN tags [802.1q]
and DSCPs. It must be noted that not all scheduling algorithms are suitable for hierarchical
scheduling. As Bennet summarized in [38], hierarchical scheduling algorithms differ from
standalone schedulers in two aspects: First, the dequeue bit rate is not known let alone constant,
except for the root scheduler. Second, the queues a scheduler serves usually do not preserve the
packets’ order, i.e. they are no FIFO queues, except of course for the leaf queues. While many
time stamp-based schedulers therefore cannot be adopted to be used as hierarchical schedulers,
RR schedulers obviously work without knowing the dequeue bit rate and do not need to know
the sequence of next packets for their calculations. But also some time stamp-based schedulers
are capable of hierarchical scheduling, most prominently WF2Q+.

So there are sufficiently precise, fair and efficient packet schedulers capable of hierarchical
scheduling that can be chosen from dependent on the use case.

2.2.6 Rate Limiting Schedulers

Often, hierarchical schedulers also require enforcing rate limits. For instance, the main purpose of
hierarchical scheduling at BNG downstream interfaces is to be able to restrict policy enforcement
to a single point in the network. This is only possible, if there is no packet loss and only
defined queuing at AGSs’ and ANs’ downstream interfaces. Since the topologies of hierarchical
access networks usually have decreasing link speeds from inner to outer nodes as illustrated in
Section 2.1.1, the BNG must make sure for any packet it transmits that there will be bandwidth
available for this packet on all links down to the subscriber. Therefore, the BNG’s packet
handling must never send a packet that at some downstream link (at AGS or AN) neither can be
transmitted on the link nor can be buffered at that node.

This function of only sending packets that can be transmitted on a specific link is called rate
shaping. Some approaches take into account the buffer attached to the respective link, while
other approaches consider the rate only and inherently assume a buffer of one packet.

Applying rate shaping at the ingress allows to reliably achieve lower worst case packet delays,
see below. Rate shaping may be integrated with the scheduler, e.g. [55, 56],[57]/[58] or be
implemented separately [59, 55, 60]. Traffic shaping is an old and well examined (e.g. [61, 62,
63]) technique for access control in packet switched networks. The feature which we call rate
shaping appears with different names in the literature, depending on the context. Traffic shaping,
policing and regulating traffic are often used in case of independent implementations. Schedulers
incorporating rate shaping also use terms like maximum rate controlled scheduling.

If a scheduler incorporates rate shaping, it obviously is not work-conserving, i.e. the managed
link may run empty while one or more flows have non-empty queues. Generally, there is a

26 Chapter 2. Background

trade-off between work-conserving and non-work-conserving schedulers regarding buffer needs
and delays [64]. This is not applicable for hierarchical access networks, where work-conserving
schedulers are no alternative because packet losses need to be controlled to comply with QoS
requirements.

The foundation to separate traffic shaping from scheduling is the insight that a link with a buffer
attached to its ingress can be represented by a token bucket with a fill rate σ matching the link’s
capacity and the bucket depth ρ matching the buffer size. A token bucket is a simple concept
that can be efficiently implemented. Tokens are generated at the fixed rate σ and refill the token
bucket until it is full. Incoming packets are permitted to pass to the next stage, e.g. a network
interface or a scheduler, only after removing tokens equivalent to the length of the packet from
the token bucket. Note that this concept is sometimes also called leaky bucket, while other work
applies the term leaky bucket to a strict rate shaper. Cruz called the token bucket function in his
seminal work a (σ ,ρ) regulator [65, 66]. Parekh and Gallager provided extensive analysis of
GPS working on such (σ ,ρ)-regulated flows in [67, 68]. Most importantly, they showed that the
worst-case delay of such regulated traffic traversing a multi-hop path is much more tight than the
sum of single-hop worst-case delays. By this, such traffic opened the door for delay guarantees
in packet switched networks. This is another major argument for implementing rate shaping
already at the BNG and not distributing shaping functions in the access network.

2.2.7 Packet Scheduling of Multi-Class Traffic

In many cases, the flows in a scheduler are not of the same priority, e.g. the VoIP and BE
flows of a subscriber at a BNG. There are several approaches to achieve a proper scheduling
in such scenarios. Typically, the scheduling of priority traffic and BE is performed separately,
but the level of separation differs between approaches. In most cases, considering priorities is
implemented by priority queues, i.e. by a queue whose entries (often other queues) are sorted by
priority. If strict prioritization is used, traffic shaping usually is applied to prevent BE starvation.

Basically, any scheduler can be extended to support Q sub-flows of different priority within
any flow by replacing the queuing disciplines of the scheduler by a priority queue managing
Q queuing disciplines. For instance, in case subscribers shall be provided with separate QoS
management for VoIP, video and BE traffic, this means that instead of one per-subscriber queue
three queues per subscriber are used: one for VoIP, one for video and one for BE. All non-empty
queues of a subscriber are inserted into a priority queue. If a flow, i.e. a subscriber, is selected
by the global scheduler to transmit a packet, the head of the priority queue is dequeued. This
concept can be applied to all scheduling approaches but requires traffic shaping carried out before
packets enter the scheduler.

Yet there are also specific approaches that modify an existing packet scheduler to support
priorities, especially modified DRR by adding global extra queue(s) for priority traffic [69, 70,
71, 72]. Often, these approaches are just called modified DRR (mDRR) without differentiation.
Such algorithms are also known to be implemented in wide spread routers, e.g. Cisco ASR9000
and 12000 series [73] and Juniper routers [74].

Assessing the impact on BE scheduling, we find that basically the priority traffic is assigned a
varying amount of bandwidth prior to scheduling the BE traffic. In other words, the existence of

2.2 Packet Scheduling 27

priority traffic means that the available bandwidth is not the constant capacity of a scheduled
link but this capacity minus the varying bandwidth consumed by priority traffic.

2.2.8 Best Effort Packet Scheduling at the Edge of Access Networks

This section relates the scheduling topics presented in the last sections to the intended deployment
point of the contribution of this thesis, the BE scheduling at downstream interfaces of BNGs of
hierarchical access networks.

GPS-relative Delay & Fairness The recent publication of algorithms addressing the efficiency
of packet schedulers show that their authors consider efficiency more important than accuracy,
i.e. deviation from GPS. One reason for this priority may be the unbridled increase of packet
rates: While bandwidth at Internet access links increased from 56 kbit/s modems to now several
10 Mbit/s or even some 100 Mbit/s, the maximum packet size in the Internet remained 1500
bytes, the Maximum Transmission Unit (MTU) of Ethernet, the prevailing link layer technology
today. At computers, even 10 Gbit/s and 40 Gbit/s network interfaces sending packets over
the Internet are operated using 1500 bytes packets (for intra-Data Center (DC) often jumbo
frames are used). Note also that scheduling is not necessarily performed on single packets:
Any scheduling algorithm presented above allows to dequeue a minimum number of bytes (if
available in the queue). This approach can be adopted when scheduling operations become a
performance bottleneck. If scheduling is still performed based on single packets, for sure a
O(N) GPS-relative delay can be accepted, especially since N is in the range of tens or hundreds
in case of BNG downstream interfaces. The limited GPS-relative delay also means that these
schedulers are proportional fair. So, all presented scheduling algorithms are acceptable with
regard to GPS-relative delay.

Complexity The presented algorithms have no performance problems for interface speeds
currently used at BNGs and subscriber numbers served by a BNG downstream interface. A
rough estimation illustrates this: A 10 Gbit/s interface fully loaded by Ethernet MTU-sized
packets results in about 830.000 dequeue operations per second. In contrast, current processors
are clocked with 2–3 GHz and can execute most instructions in one cycle on one core. Therefore,
we may allow about 1.000 (simple) operations per dequeue event. Moreover, usually the number
of served subscribers is well below 1.000, the number of active subscribers even much lower. So,
even scheduling algorithms with O(N) complexity are feasible for BNG downstream interfaces
today and in the near future provided that constants neglected in the Bachmann-Landau notation
are small. So, all presented algorithms are also acceptable with regard to complexity for the
targeted use case.

Hierarchical Scheduling Pure DRR schedulers, most hybrid schedulers and WF2Q+ can be
operated in hierarchical configurations. So again, there is a broad range of suitable schedulers to
choose from.

Rate Limiting Schedulers Any packet scheduler can be combined with traffic shapers, and
there are some algorithms that even incorporate maximum flow rates. So, this criterion does not
limit the set of candidate schedulers, too.

28 Chapter 2. Background

Multi-Class Traffic As outlined above, multi-class scheduling can always be realized by two
separate schedulers for priority traffic and BE traffic and always scheduling priority traffic if
there is an eligible priority packet. There is no fundamental difference to the detailed proposals
explicitly supporting multi-class traffic such as the mDRR variants. Anyway, all known sched-
ulers of commercial BNG products are mDRR variants, see Section 2.2.7. The crucial aspect
of multi-class scheduling for BE scheduling at BNGs of hierarchical access networks is the
reduction in capacity available to BE traffic.
Today, usually in a wired access network the only non-BE traffic is VoIP and video traffic that
is explicitly privileged by the ISP. Today, this only applies to the ISP’s own services, i.e. only
the VoIP service and video services bundled with the high-speed Internet access (also called
“Triple Play”) receive higher priority. Note also that some operators do not include VoD services
but only static Television (TV) services. This applies to most of the HFC ISPs. Nevertheless,
all this may change in the future. VoIP services consume very low bandwidth compared to
today’s access link capacities and moreover their load is constant and sessions last long. Video
streaming services are less nice in terms of load since they consume much more bandwidth and
today typically use a Dynamic Adaptive Streaming over HTTP (DASH)-like system (see also
Section 4.5) resulting in the video being transmitted in form of periodic bursts of varying size.
Therefore, the remaining bandwidth available for BE scheduling varies accordingly. Generally,
if there are only few priority video streaming sessions, the relative deduction in capacity is low.
If there are many priority video streaming sessions in parallel, the overall consumed bandwidth
is comparably smooth, so again the changes are mostly relatively small. Nevertheless, the more
subscribers are served by a BNG downstream link, the smoother is the overall priority load, so
the smoother is the capacity available for BE traffic.

Conclusion

Concluding, there is a broad choice of scheduling algorithms suitable for BE scheduling at
downstream interfaces of BNGs. Many of these algorithms are expected not to push today’s
processors to their limits. If BE traffic considered separately, the available capacity is likely to
vary due to bandwidth consumed by higher priority traffic.

2.3 Congestion in the Internet 29

2.3 Congestion in the Internet

This section introduces congestion and details its role in today’s Internet to provide the foundation
of the next section that details CC Algorithms (CCAs).

2.3.1 Introduction to Congestion

Congestion is a central term in this thesis as for the whole congestion control and congestion
management community. Nevertheless, even many publications of that field of research do not
define the term. This is dangerous since the definition or understanding of the term congestion
differs fundamentally between publications. In the following, we provide a definition that this
document is based upon. It is aligned to the definition used in modern CC research, i.e. [75].
Older research and even some of today’s publications are based on a narrower understanding of
congestion.

Definition of Congestion

The term congestion can be defined from two perspectives. On the one hand, we define a transmit
interface in a packet switched network as congested, whenever a packet on that interface cannot
be sent immediately because the interface is busy sending other packets. On the other hand, the
term congestion is linked to end-to-end rate control, most prominently TCP CC. With that respect,
the term congestion refers to all signs detectable by an end host that indicate an overload of any
link on the path from sender to receiver. Regarding paths, both definitions are equivalent since
any packet that cannot be sent immediately results in symptoms of congestion (see below) that
can be detected by an end host. Nevertheless, end hosts are only able to assess the transmission
path as a whole, while sometimes it makes sense to look into congestion at a specific location,
i.e. at a specific interface.

Places of Congestion

Congestion may happen at any interface that transmits packets coming from one or several packet
switched interfaces of the same network node that in total have higher capacity than this interface.
Despite its universality, this condition is not met by many places in today’s Internet. The main
reason is that core networks mostly switch large traffic aggregates based on labels, often even
without touching them directly on the optical layer, i.e. without demodulating the signal or
parsing packets. So, BE traffic mostly experiences congestion at the network borders, i.e. in the
aggregation network on the sender’s side, notably at exchange points (direct ISP peering points
or Internet Exchange Points (IXPs)) and in the regional access network on the receiver’s side.
As detailed in Section 2.1.1, the BNG is designed to concentrate all congestion in the regional
access network, so in residential access networks by design all congestion occurs in the BNG
packet scheduler. Note that the bottleneck may also lie within the subscriber’s network, e.g. if
the end host is connected by a slow WiFi link to the home gateway which is served by a faster
access link.

30 Chapter 2. Background

Symptoms of Congestion

If packets cannot be transmitted immediately, these excess packets may either be dropped or be
queued for later transmission. Usually, there is some buffer assigned to any packet switched
network interface that may be congested. If a packet cannot be forwarded immediately—and
the buffer management allows—it will be buffered, else it is discarded. This buffer may be
located directly at that interface, but may also be located remotely. With respect to our topic,
remote queuing is carried out in particular at the per-subscriber queues in the BNG’s hierarchical
scheduler, whenever an aggregation link or, at normal load, the access link receives more packets
than it can transmit and therefore is congested. Both queuing and dropping packets can usually
be detected and measured by the receiver and so increased delay and packet loss are the major
signs of congestion. A third category of signs of congestion is explicit signaling by the bottleneck
router. For today’s Internet, there is only one signaling standardized for this purpose called
Explicit Congestion Notification, defined in [RFC3168]. [RFC3168] defines that the sender
should react to a congestion indication by Explicit Congestion Notification (ECN) just as to a
packet loss. There are several reasons why ECN never reached significant deployment [76]. For
our research, ECN does make a relevant difference compared to loss, so we will cover these two
cases in one and mostly just speak of loss.

So congestion leads to

- additional delay and therefore usually increased Round-Trip Time (RTT),

- maybe packet loss and

- maybe ECN-marked packets.

It is important that these congestion symptoms form a kind of continuous range from light to
heavy congestion: It ranges from very little delay, over delays of up to several RTTs to packet
losses. Moreover, the packet loss rate may be used to assess severity of congestion in more detail.

Detection and Measurement of Congestion

The term Congestion Control refers to mechanisms which aim to control or limit congestion
in the network and to avoid congestion collapse. A vital foundation for the success of CC and
the diversity of CCs is that for longer flows both packet drops and packet buffering, i.e. the
resulting increase in delay, can be detected and measured by a flow’s receiver. Note that some
systems measure RTT while others measure One-Way Delay (OWD). Unfortunately, both packet
drops and delay variation, may also be caused by other reasons, e.g. packet loss by bit errors or
additional delay by retransmissions on link layer or route changes.

While ECN marks are a reliable symptom of congestion, ECN usage is negligible in today’s
Internet (well below 1% of TCP sources [76]) for several reasons. First, although many endpoints
are ECN-capable, ECN-enabled endpoints are still a minority. Second, ECN-enabled routers are
rare. Third, ECN usage with TCP requires active negotiation by the client during connection
setup. This rarely happens today, but this could be changed rapidly if major operating system
vendors such as Microsoft and Google decided to change this behavior by an update. Finally, the
ECN signals are quite frequently mangled by middle boxes in the Internet [76], rendering ECN

2.3 Congestion in the Internet 31

signaling unreliable. Recently, there have been proposals on how to deal with packet-modifying
middle-boxes [77] but there is no deployment yet. All in all, ECN up to now is negligible
as congestion indication. Anyway, per its standardization in [RFC3168] the semantic of an
ECN-marked packet equals a packet loss, so in terms of rate calculations by the CCAs ECN
makes no significant difference. Of course, ECN allows to save retransmissions, but these are
rare for today’s typical Bandwidth Delay Products (BDPs) anyway.

Note that the congestion level on a path or of an interface is not only of interest to the sender but
also to other nodes in a network. The simplest example are AQM algorithms that aim to signal
congestion appropriately so that certain goals are met. Other examples are Congestion Policing
and Congestion Policing Queues (CPQs), see Sections 3.5.5 and 3.5.6.

Both loss and ECN only provide a binary signal with every packet: congestion or no congestion.
This information is sufficient for many purposes, e.g. Additive Increase, Multiplicative Decrease
(AIMD) CCAs (see Section 2.4.3). But for other purposes, neither such binary information
nor just the instantaneous state provides appropriate information on the current congestion
level. Often it is desirable to also measure (and react upon) lower levels of congestion, i.e. to
measure the queue size or the corresponding delay increase. Here it is important to consider
that light congestion, i.e. a small queue, may occur at multiplexing packet switched interfaces
frequently even if there is no medium-term overload and the average arrival rate is less or equal
to the interface’s capacity. This most importantly implies that end hosts should not necessarily
react to such short-term queues by substantially reducing their sending rate. Therefore, many
mechanisms internally use smoothed values to characterize the relevant congestion level of an
interface or path, such as RED uses an Exponentially Weighted Moving Average (EWMA) of
the queue length. Moreover, it is important that all CCAs control congestion but to do so they at
intervals provoke congestion, depending on the algorithm more or less aggressively and more or
less frequently (see Section 2.4).

The Term Congestion in other Work

Other publications, even publications in CC research, use different definitions of congestion.
Often, the term congestion is limited to loss and ECN-Congestion Encountered (ECN-CE) marks,
e.g. [RFC7713], which makes sense when focusing on BE CCs which make use of just these
two signs of congestion, see Section 2.4.2 for details. In some contexts, the term congestion is
even used to describe a medium-term network state with repeatedly higher bandwidth demand
than capacity available, e.g. [RFC6057], see Section 3.5.3, which we would call peak load. For
this thesis however, such restrictive definitions do not make sense. We use congestion as defined
above: As term for any information on overload a receiver may possibly gather, in particular
including delay variations.

2.3.2 General Congestion Control

CC mechanisms set up distributed systems consisting of sender and receiver(s) since the sender,
which must adapt his rate to achieve these goals, cannot measure congestion experienced by his
flows himself. Today, most of the Internet traffic is elastic, i.e. it adapts to available bandwidth,

32 Chapter 2. Background

typically in a huge range. The reason for this handy behavior is that for most services there is a
proper reaction to congestion and their rate is adapted by at least one mechanism.

When looking at video streaming for instance, one can find rate adaption by up to four control
loops:

The human audience Users will stop viewing a video when playback is repeatedly interrupted
for buffering. This highest layer control loop is often forgotten, but is a non-negligible
factor today, especially since most high-volume traffic is multimedia traffic directly
consumed by human audience. Nevertheless, the reaction time is often in the range
of seconds, although a reaction as fast as possible is desired. One reason for this slow
reaction is that the user technically does not react to congestion itself but the service quality
impairment induced by congestion. With more and more Machine-to-Machine (M2M)
communication, this control loop may lose relevance.

Service adaptation When the video player detects imminent buffer underrun, i.e. there is a
high probability that playback must be paused for buffering if no action is taken, modern
scalable video services seamlessly switch to lower resolutions or lower quality versions of
the same video which require less bandwidth [78, 79]. Nevertheless, such mechanism is
only available for a limited set of services, typically multimedia services.

Switching service source In case of today’s big video streaming providers, the streaming
service is provided by multiple Content Delivery Networks (CDNs). If the achievable
QoS and therefore QoE is not sufficient, the streaming client may switch from one CDN
to another [80] and by that effectively relieve the network path from the old CDN to the
client. Again, such option does only exist for few services and only works if the bottleneck
is not also part of the new path.

Transport layer congestion control Today’s ISP-independent video streaming providers use
TCP (defined by [RFC793], updated by [RFC1122, RFC3168, RFC6093, RFC6528]) as
transport layer protocol. One important feature of TCP is its robust rate control function,
usually simply called Congestion Control (CC). Such functions have been subject to
comprehensive research and many CCAs have been proposed. All relevant proposals are
united in

- cautious rate increase

- fast and vigorous rate reduction in case of severe congestion

Transport layer congestion control can react to detected congestion as soon as the sender
becomes aware of this information. This is up to one RTT later than the actual event. For
many connections in the Internet, the actual delay is not significantly smaller than the RTT
since the delay on both directions is usually dominated by the access link. So, reacting
immediately after the congestion information reaches the sender is the fastest possible
control loop and often is much faster than possible by the other mechanisms listed above.

Summarizing, rate control may be executed by the transport layer as well as at the service and
the user level, if applicable. Amongst these, the transport layer provides the fastest reaction
and the broadest availability, and works for all types of services and for M2M communication.
Therefore, transport layer congestion control is a crucial mainstay of today’s Internet’s stability.

2.3 Congestion in the Internet 33

Figure 2.6: Traffic shares by protocol during four weeks in 2009 (from [81])

2.3.3 Prevalence of Protocol-based Congestion Control in the Internet

Almost all traffic in today’s Internet is subject to automated load-adapting end host CC imple-
mented by standardized protocols on transport but also on application layer, the most important
and most prominent protocol being TCP. From the network operator’s perspective, the share of
adaptive and non-adaptive traffic is crucial because only the adaptive traffic prevents the network
from congestion collapse. In this section, we will first discuss the prevalence of CC for unicast
but will also summarize the situation for multicast.

Unicast

When assessing published traffic measurements, it is crucial to consider the chosen method of
differentiation and at which networks or locations the measurements have been taken during
which time. There are publications working solely on protocol fields, e.g. the IP protocol field,
which is reliable information. Others derive from such information basic service types, e.g. map
TCP port 80 to web traffic. Such approaches are obliged to show some false positives and false
negatives. Other classification is based on DPI, which is of course error-prone but the error is
hard to impossible to estimate. Obviously, generally holds that the more specific is the deducted
information, the higher is the uncertainty.

Per published measurements, about 70–95 % of the traffic volume in the Internet is TCP traf-
fic [81], which is rate controlled by design of the protocol. The remaining traffic is mostly User
Datagram Protocol (UDP) traffic [81, 82]. See also Figure 2.6 taken from [81], showing traffic
shares by layer 4 protocol, i.e. the IP header field “protocol”. The available numbers vary over
time and depend on location and ISP. See for instance Figure 2.7 taken from [81], showing the
evolution of the UDP to TCP ratio over several years. It shows an increase in UDP traffic from
early 2002 to mid-2004 and a decrease from late 2006 to mid-2007. The authors attribute these

34 Chapter 2. Background

83

Figure 2.7: UDP to TCP ratio during the years 2002 to 2010 (from [81])

changes to local reasons at the measured network. Nevertheless, also this figure shows that TCP
is the by far predominant protocol in terms of volume.

But even packets that do not carry a TCP header on top of their outermost IP header are often
subject to higher-layer rate control. Relevant examples in terms of bandwidth share are even
subject to TCP’s rate control, namely packets of tunneled network connections, mostly Generic
Routing Encapsulation (GRE) tunnels or Virtual Private Networks (VPNs). Both types of flows
carry traffic aggregates that are like the overall traffic, i.e. mostly TCP traffic. Therefore, also
the rate of such aggregate flows is regulated by TCP’s rate control algorithms. The volume of
tunneled traffic in private residential Internet access networks increased in the last years, partly
due to people working at home but using their company’s infrastructure remotely, partly due to
people using VPNs to sidestep geoblocking implemented based on IP addresses. But using UDP
as transport layer protocol does also not mean that there is no rate control in charge, just that
there is no rate control implemented by the Operating System (OS). The two in terms of volume
biggest traffic groups among UDP traffic implement rate control on application layer: BitTorrent
and related P2P traffic and Real-time Transport Protocol (RTP)-based multimedia streaming.

In 2013, BitTorrent P2P traffic was probably accountable for about 20% (10 % safe classification,
10 % by heuristic) of traffic volume on a large European IXP [82], but the ratio varies heavily
from country to country. More recent data show BitTorrent shares between 2 % and 18 %
of the overall downstream volume [83, 84, 85], see also Section 2.4.3.1 and Figure 2.10 for
details. BitTorrent and derived P2P applications implement an own rate control protocol called
uTorrent Transport Protocol (uTP) [86]. Before February 2010, BitTorrent had used TCP. The
switch to uTP caused a significant increase in UDP traffic in several ISPs’ residential broadband
traffic [13]. The uTP protocol is widely used and today accounts in some regions for big amounts
of traffic, e.g. Sandvine reports 58% of wired access upstream peak period traffic in Asia-Pacific
for 2015 [83] and much less, but still 23% of downstream. Nevertheless, BitTorrent and P2P
traffic is decreasing in the last years in many areas of the world, e.g. it only makes up 2.7% of
wired access downstream traffic in North America at the same time and measured with the same
methodology [87].

Then there is multimedia streaming traffic using RTP (defined by [RFC3550], since then updated
in minor aspects) and the RTP protocol family. RTP is usually run on top of UDP and adds, among
other capabilities, the capability for reactive rate control with RTP Control Protocol (RTCP)
providing receiver feedback to the sender. There have been efforts to implement RTP flows

2.3 Congestion in the Internet 35

supporting TCP-like behavior [88]. Recently, the Internet Engineering Task Force (IETF)
working group RTP Media Congestion Avoidance Techniques (rmcat) [89] brought forward
new proposals for RTCP signaling [90, 91] as well as for a CCA [92]. So, also RTP / RTCP
multimedia streaming can be expected to react to heavy or permanent congestion by adapting its
sending rate to the network’s current capacity. Nevertheless, the existence of the IETF working
group shows, that RTP congestion avoidance is still a topic in research and standardization.
Nevertheless, inter-domain RTP-based video streaming is rarely used. Today’s well-known video
streaming services, such as Netflix, Youtube, Amazon Video etc., use DASH or DASH-like
technology, i.e. TCP as adaptive transport layer protocol.

There are two groups of traffic relevant for wired access networks that typically do not adapt their
rates: non-adaptive multicast UDP video streaming and most types of VoIP traffic. Notably, non-
adaptive UDP-based video streaming is close to non-existent in the BE traffic class. Regarding
VoIP traffic, there are three important properties: First, VoIP traffic is not a lot of bandwidth in
networks serving residential private customers. Mind that the traffic belonging to the ISP’s VoIP
service usually receives priority QoS, so it is not BE traffic. So there just remain services such
as Sipgate, Skype and Viber, which are not widely used since the plans of today’s ISPs usually
include telephony without extra cost. Second, many VoIP services base on Session Initiation
Protocol (SIP) and RTP, so service degradation could be signaled. Nevertheless, when detecting
congestion there is hardly another option than canceling the call for most VoIP transmissions
since there often is no option to reduce the sending rate. But, third and most importantly: VoIP
service is consumed by human audience. A human user usually will cancel the call even at rather
low loss rates since perceived quality of telephony is heavily degraded if any packet loss occurs.

Summarizing, in today’s networks and especially in residential broadband access networks there
is only negligible unicast traffic volume present that is not rate-adapted. By far most of the
traffic is TCP, in most networks followed by UDP traffic that is rate-controlled by uTP or similar
approaches.

Multicast, Broadcast and Anycast

IP defines more addressing schemes than unicast, namely also multicast, broadcast and anycast,
which we cover in this section. Regarding UDP-based video streaming, most such services use
RTP along with RTCP for control. RTP / RTCP provide support for feedback from multicast
receivers [RFC5760, RFC6128] and there is a standard [RFC4654] for using this feedback for
CC of the multicast transmission. In that setup, feedback from any single receiver is received
less frequently and the sender shall adapt to the smallest capacity available at his receivers.
Anyway, this results in serving a large set of clients with less than possible bandwidth and by
that, quality. Therefore, such systems are rarely found in BE traffic. Some ISPs, which also offer
video streaming services as part of their triple play plans, use RTP multicast for distribution of
live TV programs, e.g. Deutsche Telekom, Hansenet and Arcor in Germany [93]. These services
usually are prioritized, i.e. their traffic is not in the BE class.
Moreover, multicast within BE Internet traffic is usually not exchanged between ISPs. An
important reason for this is complexity of multicast accounting: Unicast transit and peering
contracts between ISPs can simply base on bandwidth or volume, since the receiving ISP’s cost
mostly scales with incoming volume and this metric can be easily measured by both parties.

36 Chapter 2. Background

In contrast, multicast traffic may or may not be duplicated many times in the receiving ISP’s
network, so the cost of incoming traffic cannot be easily estimated but would require detailed
monitoring and accounting.

For broadcast transmissions, congestion control often does not make sense and is not applied
although concepts for multicast CC could be adopted. Broadcast transmissions address only
the hosts sharing one physical broadcast link, e.g. a satellite link, or a limited domain such as
an Ethernet broadcast domain. Today, such transmissions are either unidirectional, i.e. there is
just one sender and an arbitrary number of receivers as used in several wireless technologies,
or broadcast is only used for few and short transmissions such as Address Resolution Protocol
(ARP) [RFC826] in IPv4 Ethernet domains. Note that broadcast transmissions are increasingly
replaced by multicast transmissions, see for instance the IPv6 Neighbor Discovery Protocol
(NDP) [RFC4861] compared to ARP [RFC826].

Anycast traffic from the transport layer’s perspective effectively equals unicast traffic. Anyway,
anycast addressing is rarely used for stateful communication such as any connection-based
communication which is the basis for a feedback-based CC.

Summarizing, today there is close to no non-unicast traffic in public BE traffic, also in broadband
access networks. Therefore, we will focus on CCs for unicast traffic in the following.

2.4 Transport Layer Congestion Control

In this section, we give an overview on transport layer CC Algorithm (CCA). Specifically, we
explain general principles, how prioritization can be achieved by CCAs and which requirements
need to be met. Moreover, we introduce selected CCAs that are most relevant in today’s Internet
and present their classification into foreground, i.e. BE, CCs and background, or Lower than
Best Effort (LBE), CCs.

If reliable transmission is implemented by retransmitting lost packets without proper rate control,
congestion may lead to a stable state [RFC896] where a huge fraction of the packets transmitted
are unnecessary retransmissions. In the 1980’s that happened frequently in the Internet. These
incidents were called congestion collapse [RFC896]. This state is well beyond the knee load,
referring to Chiu and Jain’s state classification in their seminal publication on congestion
avoidance algorithms [94].

From this, the protocol designers learned that congestion is the consequence of the network
being not in equilibrium, i.e. the number of packets in the network changes [95]. Nagle derived
“packet conservation” as the goal of congestion control.

While congestion collapse for sure must be prevented, congestion practically cannot be avoided
in packet switched networks if only because the capacity of a path is not known in advance and
typically changes over time. So for an end host, the only way to detect the current capacity of
a path in the Internet is to drive resources to their limit, but this obviously means generating
congestion carefully and only up to a certain extent. This is what happens every moment in

2.4 Transport Layer Congestion Control 37

Receiver

TCP feedback

Congestion
signal

Sender

Congested
interface

Flow of data packets
Implicit or explicit congestion signaling in flow of packets
TCP feedback on loss & ECN and optional timestamps in ACKs

Figure 2.8: Flow of information in the TCP control loop (symbolic figure)

innumerable hosts in today’s Internet, which obviously does not suffer from a congestion collapse.
So, in general congestion only is evil if it is not dealt with properly.

Controlling or managing congestion always comes with the challenge that the receiver of a
transmission is the end host able to detect congestion, but the sender needs to act, i.e. re-act to
the latest congestion measurements. Luckily, most transmissions are desired to work reliably, so
there is some bidirectional communication set up between the communicating end hosts. This
obviously is the case for TCP, the most wide-spread transport layer protocol.

Nevertheless, there are more protocols providing rate control that can be seen as transport layer
congestion control since these protocols are based on UDP that itself does not provide such
functionality. The most prominent and most relevant example is the already mentioned uTP used
by BitTorrent. uTP is sometimes also referred to as “micro Transport Protocol”, highlighting
even more that this protocol may be seen as transport protocol or part of a transport protocol.
uTP provides functions that the underlying UDP does not provide: it provides connection
management, reliable transmission, ordered delivery and, most important from our perspective, a
rate control implementing CC.

2.4.1 General Principles of Transport Layer Congestion Control Algorithms

Every CCA has several partly conflicting goals and the balance among common goals differs from
algorithm to algorithm. Nevertheless, all CCAs share the goals of on the one hand successfully
transmitting data from sender to receiver and on the other hand controlling the congestion created
in the attempt to do so.

Figure 2.8 shows the flow of information in the control loop of a TCP connection. The sender
sends packets according to its CCA. These packets may suffer from congestion anywhere on
the path. This congestion is perceived by the receiver, which signals back this information to
the sender, which then reacts appropriately according to its CCA based on the updated state.
Obviously, there is always one effective RTT between a change in congestion at a certain
bottleneck and the reaction of the sender becoming effective at this very place. This feedback
delay in the closed control loop consists not only of the transmission delays of the links on the
path but also of the queuing delays at all interfaces on the path.

38 Chapter 2. Background

A good CCA should be scalable, i.e. should perform well according to its specific goals for
a wide range of link speeds and RTTs in arbitrary combinations. Moreover, a CCA should
also be robust regarding network behavior, especially regarding packet reordering and packet
loss not caused by congestion but for instance bit errors. Unfortunately, many TCP CCAs,
including wide-spread ones like TCP Cubic (see Section 2.4.3.3), do not work well in presence
of non-congestion packet losses. This fact and that wireless transmissions do have non-negligible
bit error rates when using high efficiency modulations, lead to an interesting—some people say
weird—development: Since the wide-spread TCP CCAs do not cope well with losses but ignore
delay variations, most wireless standards such as WiFi [96] or cellular networks standardized
by the 3rd Generation Partnership Project (3GPP) use link-local retransmissions. It underlines
the outstanding importance of TCP’s CCs in today’s Internet that these mechanisms violate the
end-to-end principle [97] the Internet is supposed to be based on.

A CCA generally aims to reliably transmit a stream of data to a counterpart instance on another
host over a potentially error-prone packet switched channel of unknown and time variant capacity.
It therefore has several tasks.

1. At startup, it has to acquire bandwidth appropriately fast.
2. During transmission and if there is no congestion, it must probe appropriately for newly

available bandwidth.
3. If there is congestion, it must react appropriately.

Obviously, there are two phases that can be distinguished, startup and ongoing transmission, and
there is a lot of freedom in defining what the word appropriately leaves open. We will provide
an overview on potential choices and rationales, and introduce core technical terms.

All relevant CCAs are based on the sender managing a so-called Congestion Window (cwnd),
a specific type of sliding window that can grow and shrink. Focusing on the CCA and thus
leaving aside receiver limitations, this concept describes a sending algorithm that maintains three
pointers in the buffer of data to be transmitted:

1. A pointer to the newest unit that the CCA allows to transmit, i.e. the upper limit of the cwnd.
2. A pointer to the oldest unit that has not been acknowledged by the counterpart instance, i.e.

the lower limit of the cwnd.
3. A pointer to the newest unit that has been transmitted, usually within that limits.

For the startup-phase, the different types of CCAs have different goals:
Foreground CCAs aim to grab a significant bandwidth share reasonably fast. Moreover, such
algorithm accepts causing congestion in that phase, causing potential other flows to step back
and to free up bandwidth, allowing to reach an appropriately fair allocation fast. As of now, all
foreground CCAs implement the same behavior during start-up. During this so-called slow start,
the receiver sends one Acknowledgment (ACK) for each received packet, i.e. the delayed-ACKs
mechanism defined in [RFC1122] is disabled, and the sender sends out two packets for each
received ACK. By this the cwnd is doubled every RTT, resulting in an exponential growth of the
sending rate while there is no queue and the RTT is constant.
Background CCAs in contrast aim to not disturb potential foreground traffic, so they start less
aggressive, and aim to detect resource shortage before foreground flows react to their presence.
The CCA of uTP for instance increases linearly by adding two segments per RTT to the cwnd.

2.4 Transport Layer Congestion Control 39

Therefore, such flow will take a long time to utilize a path with a big BDP, but the impact on the
congestion level, that is caused by such sender but not yet detected by it, is small.

Standard TCP uses a state variable called slow start threshold (ssthresh) to decide on when to
leave slow start and enter the so-called congestion avoidance phase. The slow start phase is also
ended when the CCA detects congestion (based on specific algorithm’s detection algorithm). The
slow start algorithm is used when cwnd < ssthresh, while the congestion avoidance algorithm is
used when cwnd > ssthresh [RFC5681]. The following phase is controlled by a different part
of the CCA, the congestion avoidance algorithm. Congestion avoidance is where foreground
CCAs differ but this is also the part of the CCA that has the biggest impact on important metrics,
e.g. the throughput that can be achieved in certain scenarios or the bandwidth sharing with other
flows. Any congestion avoidance algorithm basically serves two purposes:

1. to probe for higher bandwidth by increasing the sending rate if no congestion is detected
2. to reduce congestion by reducing the sending rate if congestion is detected

For loss-controlled CCA, which base on a binary feedback, potential congestion avoidance
algorithms can be roughly classified by the class of function they use to increase and decrease the
cwnd in these two cases. If then a binary function c(t) represents having detected no congestion
(“0”) or congestion (“1”) since packet transmission t, then all possible linear functions to adopt
the cwnd follow the formula shown in Equation 2.3.

cwnd(t +1) =

{
αi +βi · cwnd(t) if c(t) = 0
αd +βd · cwnd(t) if c(t) = 1

(2.3)

Depending on which parameters in this notation are not neutral, the CC functions can be classified
into four classes:

- Additive Increase, Additive Decrease (AIAD),
i.e. αi > 0; αd < 0; βi = 1; βd = 1

- Additive Increase, Multiplicative Decrease (AIMD),
i.e. αi > 0; αd = 0; βi = 1; 0 < βd < 1

- Multiplicative Increase, Additive Decrease (MIAD),
i.e. αi = 0; αd < 0; βi > 1; βd = 1

- Multiplicative Increase, Multiplicative Decrease (MIMD),
i.e. αi = 0; αd = 0; βi > 1; 0 < βd < 1

The basic goal of a congestion avoidance algorithm is to achieve both efficiency and fairness at
the same time, i.e. in the long run rates or at least volumes of competing flows should converge.
Fundamental research [94] on these algorithm classes showed that both AIAD and MIMD do
not change a resource allocation over time in any direction, neither to a fairer nor to a less
fair allocation. MIAD algorithms even increase unfairness and result in starving flows. So, all
successful congestion avoidance algorithms based on binary feedback use the AIMD principle.
Some use a straight forward implementation, but for big BDPs strict linear growth results in very
slow acquisition of bandwidth. Therefore, many congestion avoidance algorithms have been
proposed that grow faster than linear. We describe different approaches for congestion avoidance
of selected relevant CCAs in Section 2.4.3.

40 Chapter 2. Background

Here we want to give some remarks that are independent of the actual CCA:

Unit of Operation A CCA’s unit of operation may be bytes as well as packets. Operation in
bytes, also known as Appropriate Byte Count (ABC), has been standardized in [RFC3465]
and there used to exist a Linux implementation. This implementation has been removed
already in 2013 [98] and we know of no other byte-based implementation. So all relevant
CCAs and all CCAs presented hereafter operate on packets.

Unavailability of Data In real implementations the amount of available data must be managed
too, typically using a fourth pointer. The upper limit may grow beyond that pointer, i.e.
some data between the current pointer and the upper limit may not be available yet. If the
current pointer reaches the limit of available data, sending is interrupted until data becomes
available. Two cases can be distinguished, which both result in loss of self-clocking.
Case 1: No data is available for a duration longer than the Retransmission TimeOut (RTO)
(which is at least one second [RFC6298]). In that case, the cwnd shall be reduced to its
initial size of ten packets as standardized in [RFC2581]. This usually is less than the
ssthresh, so slow start will be carried out, inducing the typical overshoot and its large
packet loss of about one BDP.
Case 2: The delay is less than the RTO. Then the intermission in sending packets inherently
means that the self-clocking mechanism cannot be used for the respective range. So, it is
crucial how fast data are sent, once they become available. If the data are sent in one burst,
self-clocking is thwarted also for the near future. Another problem is that the bottleneck is
often much slower than the sender’s interface speed, so if the sender sends the data—up
to a full cwnd—at interface speed, many packets are dropped at the bottleneck’s buffer.
Pacing, i.e. inserting packets into the network in intervals, e.g. of RT T

cwnd , supports smooth
functioning of the self-clocking despite the intermission.
This topic is important for bursty traffic, e.g. it is a known issue for VoD traffic [99].
Although there have been several proposals to limit the rate of packets entering the
network in TCP, e.g. [100], it seems the better solution to make use of a fair queuing
discipline, effectively achieving the same goal [101].

2.4.2 Bandwidth Allocation: Fairness Challenge and Opportunity for Prioritization

Since the CCA determines the sending rate of an end host, it has a huge impact on bandwidth
allocation. This has many interesting aspects: On the one hand, this poses security and fairness
concerns, but on the other hand this also provides an opportunity for end hosts to affect priorities
in bandwidth allocation without explicit signaling. We will discuss both aspects.

2.4.2.1 Fairness in Bandwidth Allocation by CCAs

When it comes to fairness, the granularity of considered entities is fundamental: Fairness can be
examined between subscribers, between hosts (of the same or different subscribers), between
services or between flows, e.g. TCP connections. When talking about CC and fairness, it is
always about fairness among flows. Nevertheless, in many cases this is not the relevant metric
from the user’s perspective. But this is the level a CCA works on and moreover, fairness and

2.4 Transport Layer Congestion Control 41

unfairness on this level are the foundation for higher level fairness and therefore fairness on
this level has substantial impact on such metrics. Therefore, some consensus established in the
networking, particularly in the transport layer community, about how fair a flow should behave
when competing with other flows for resources, i.e. bandwidth and buffer space.

This minimum fairness expected from a CCA is often termed TCP friendliness and referred
to even in standards [RFC5166, RFC5348]. TCP friendliness requires a CCA to not acquire
on average significantly more bandwidth than standard TCP does in the same situation. This
is equivalent to one flow of the examined CCA sharing a bottleneck about fairly with one
standard TCP flow if competing at a bottleneck. So although everybody talks about fairness,
this requirement is more about an upper limit for aggressiveness in seizing bandwidth rather
than a target behavior. Note also that the basic goal behind TCP friendliness is not unquestioned
in the research community, see e.g. [102, 103]. But there are even more difficulties regarding
fairness in bandwidth allocation by CCAs. Many CCAs are not necessarily fair even among
flows of the same CCA if the circumstances differ. Such difference may be different RTTs or
the queue size at a flow’s start time. Regarding fairness, RTT-unfairness is the most important
issue in the Internet today. The core reason is that the actions of CCAs depend on the congestion
experienced by their lately transmitted packets but they can only learn about that one RTT later.
Nevertheless, available and deployed CCAs differ in the impact of the RTT on their operation.

In many publications [104, 105] TCP, i.e. Reno or NewReno, is also said to be convergent,
i.e. that the rates of flows of the same type would get closer and closer until an equilibrium is
reached. This indeed happens if all flows participate in every congestion event (definition given
in Section 2.4.3.2), i.e. in case that if one flow experiences a loss, all competing flows also receive
a loss within one RTT. This results in all flows synchronously increasing and decreasing their
rates, that’s why this state is called global synchronization. Global synchronization usually does
not occur in reality due to the packets being sent in bursts over the bottleneck that is faster than
the sending rate [106]. The initial window of ten packets (see [RFC6928]) as well as the pairs of
packets caused by using delayed acknowledgments (see [RFC1122]) are sent back-to-back. The
bottleneck spaces these packets, i.e. it induces self-clocking (also called ACK-clocking). But this
self-clocking is aligned to the actual bottleneck speed, and neither to the current sending rate nor
to the fair share aimed for. So, the packets of the cwnd of a flow do not get evenly spaced over
the RTT, but remain partly in bottleneck-speed bursts. These bursts result in not all flows being
hit by a packet loss when the buffer reaches its limit, but just a random subset. In consequence, a
flow’s rate deviates significantly from its fair share (the rate’s expectation value) for extended
periods of time that are longer than the time between congestion events (called congestion epoch,
see Section 2.4.3.2 for a detailed definition). For standard TCP, TCP NewReno, a flow’s rate
deviates at least by a factor of three.
Nevertheless, for competing flows of the same type the overall transmitted volume is normally
distributed and the variance approaches zero for the time approaching infinity due to the central
limit theorem. For details on that topic see Lautenschläger’s analysis and experimental evaluation
in [106].
So, if several flows with same conditions and controlled by a loss-controlled CCA share a
bottleneck there is fairness among the flows in the long-term average, but there usually is
significant unfairness in short and medium terms. This is an important argument to use schedulers
rather than shared queues where possible.

42 Chapter 2. Background

2.4.2.2 Opportunities for Prioritization by the End Host

The picture of fairness gets more diverse and complicated when not only binary feedback, i.e. not
only loss and ECN, is considered. Soon after Jacobson identified the required properties to be
met by CCAs to avoid congestion collapse and proposed the initial Tahoe CCA [95], researchers
aimed at developing CCAs that do not induce that many packet losses as Tahoe. For this purpose,
delay-controlled CCAs like DUAL [107] have been invented that react already on increasing
delay and do not wait until packet loss is detected. Nevertheless, packet switched interfaces are
usually equipped with significant buffers to cope with small peaks in load, e.g. as caused by
several packets arriving at different input links of a router or switch at the same time. Delay-
controlled CCAs detect an increasing queue by the caused increase in delay and reduce their
cwnds substantially earlier than loss-controlled CCAs, which instead further increase their rate
until packet loss is detected. Therefore, loss-controlled flows competing with delay-controlled
flows for a bottleneck effectively results in unfair bandwidth allocation up to starvation of the
delay-controlled flows. Since TCP’s standard [RFC5681, RFC6582] CCA NewReno requires
one BDP of buffer at the bottleneck to allow a single flow fully utilizing the bottleneck’s capacity
(see Section 2.4.4), buffers are usually sized rather big, i.e. according to that requirement applied
to some pessimistic RTT estimation. Because of these large buffers, the effect described above
typically strikes hard in today’s networks, i.e. delay-controlled CCAs receive much less capacity
when competing with standard TCP flows. In contrast, delay-controlled flows typically react
fast enough so that a starting loss-controlled flow is not significantly impacted even if delay-
controlled flows fully utilize a shared bottleneck at its start time. In consequence of the described
interaction between foreground and background traffic, foreground traffic dominates not only the
bandwidth allocation, but also the behavior regarding buffer allocation: As soon as there is one
sufficiently large foreground transfer, the queue periodically grows until at least one packet is
dropped and then shrinks fast only to repeat the growth phase. Due to standard TCP’s slow start
behavior, rather little volume, few BDPs, is required for a foreground transmission to achieve
this effect.

This relationship can be used by end hosts to implement prioritization by using a loss-controlled
CCA for normal and more urgent traffic and a delay-controlled CCA for non-urgent traffic (for a
good overview we recommend the survey by Ros and Welzl [75]). From the user’s perspective,
this represents a differentiation between on the one hand foreground traffic and on the other hand
background traffic that is only transported if resources suffice after serving all foreground needs.
We therefore also use the terms foreground and background with respect to CC, CCA and flows.

From the ISP’s perspective, all the traffic, foreground and background, belongs to the BE class.
Since background flows nevertheless receive worse service than could be expected from BE, the
term LBE is used in the literature, too [75]. Protocols using background CCAs are also termed
scavenger protocols in the literature ([108, 109, 110]), or low priority CC ([111], republished
as [112], [113]).

Such traffic prioritization by CCA is effective between all flows passing the same bottleneck,
especially such control is not restricted to work among the flows of one host. This may be a
beneficial property as well as severe drawback, depending on the location of the bottleneck.
On the one hand, for the residential subscribers in focus of this thesis the bottleneck in most cases
is their own access link which results in a very desirable system behavior: Within the subscriber’s

2.4 Transport Layer Congestion Control 43

household, background traffic fills bandwidth left by foreground traffic and foreground traffic does
not receive significantly less bandwidth than without that background traffic. More important,
this means that the users’ QoE is not impaired by the background transmissions taking place.
For example, if a subscriber’s device A, e.g. the desktop computer, receives huge downloads
controlled by a background CCA, e.g. software updates, this traffic will make room for foreground
traffic, e.g. the VoD streaming traffic for a TV set-top box. If both transmissions use standard
TCP instead, i.e. the update transmissions also use a foreground CCA, the resulting bandwidth
allocation might leave not the bandwidth necessary for the VoD streaming. This in turn results
in either stalls or reduced quality, depending on the used technology, but in any case, in a QoE
deterioration. So, if the bottleneck is the access link, the subscriber receives direct benefit.
On the other hand, if the bottleneck is not the access link, e.g. at a peering point or at an
aggregation link, the background transfers make room for any other foreground traffic, i.e.
there is no immediate advantage for the subscriber. If congestion is sustained, e.g. due to a
poorly dimensioned peering point, the background transfer receives low bandwidth over a long
time. This may at some time result in dissatisfaction even for non-urgent background transfers.
This momentary drawback could be compensated if the subscriber would benefit from other
users’ background traffic yielding to his foreground traffic at that bottleneck in the future. The
probability of yielding paying off depends on where the bottleneck is. While it is high for
bottlenecks in the regional access network, it is probably lower for more distant bottlenecks at
peering points. Fortunately, bottlenecks outside of the access network occur rarely, so Apple
decided to use a background CCA for its update distribution [114]. Also the OS designers at
Microsoft implement a background transmission technology for their software updates [115]
but there is no information on how Microsoft achieves that goal, probably not by just using a
background CC. Keep in mind that the actual deployment of the background CCA is needed at
the sender’s side, not at the subscriber’s host.

The relation between a traffic’s priority or QoE relevance and its CCA is asymmetric: If traffic
is controlled by a background CCA, it is of low priority at this time. That means it does not
matter if this traffic is transported, i.e. it does not impact QoE for three reasons: First, using a
background CCA may result in close to zero throughput when there is competing foreground
traffic. Second, there are many transfers that have no importance until some point in time, e.g.
the software update that is only needed until the next reboot. Third, importantly, if the resulting
throughput rate is not satisfactory, the sender can switch to a foreground CCA at any time. If
traffic is controlled by a foreground CCA, it may be QoE relevant or it may not. Background
traffic may be using a foreground CCA for many reasons, e.g. since the service provider did not
know about traffic differentiation by CC and used the standard reliable transport layer protocol.

Summarizing, a delay-controlled CCA can achieve lower packet delay and jitter as well as low
loss rates if there is no competing loss-controlled traffic. If delay-controlled traffic competes with
loss-controlled traffic, it will receive only a small capacity share, so the choice of the CCA can
be used to implement end host prioritization. Moreover, as soon as there is a single, sufficiently
large foreground connection in a bottleneck aggregate, it pushes back any existing background
connections and dominates the bandwidth and buffer allocation at the bottleneck. Lastly, traffic
controlled by a background CCA does not contribute to QoE.

44 Chapter 2. Background

2.4.3 Selected Congestion Control Algorithms

Over the last 35 years, since the initial standardization of TCP [RFC793], many algorithm
proposals have been published for TCP’s core CCA. The vast diversity of CCAs has been
developed for very different motivations. That proves that the performance of the existing
algorithms did not satisfy the requirements of all scenarios or users at that time. Despite the
huge number of published algorithms, there are only few that gained significant relevance in the
public Internet. While use in the public Internet was the declared goal for many proposals, some
CCAs also have never been intended to be used in the public but have been designed for certain,
separated domains. Examples are TCP Hybla [116] intended for use on links with large RTTs,
notably satellite links, and Data Center TCP (DCTCP) [117, 118] intended for use in DCs with a
special AQM configuration at all switches.

For an overview on TCP CCA proposals, we commend the survey of Afanasyev et al. [105]. To
show the fundamental groups among CCAs, we include a figure from it, Figure 2.9. It shows that
the two fundamental approaches to detect congestion, loss-controlled and delay-controlled, have
both been proposed very early after the congestion collapse experiences in the 1980s: the early
representatives Tahoe [95] and DUAL [107] emerged 1988 and 1992. Each was shortly followed
by a more elaborated version, namely Reno in 1990 (described in [119] although standardized
not until 1999 [RFC2581, RFC3782]) and Vegas [120] in 1995. These two algorithms are
still very important as benchmarks although both are not in large use in the Internet, see the
Section 2.4.3.1.

There were repeated initiatives to develop background CCAs. The most prominent representatives
are TCP Nice from 2002 [113], TCP LP (TCP Low Priority) from 2003 [111] (republished in
2006 [112]) and uTP [86] (initial version from 2009, last update in 2015). Nevertheless, the
only background CCA that gained importance is uTP in BitTorrent and the equivalent Low
Extra Delay Background Transport (LEDBAT) at Apple. We analyze the prevalence of CCAs in
today’s Internet in the following section.

2.4.3.1 Prevalence of CCAs in the Internet

Recent research on prevalence of CCAs in the Internet shows, that 17–26% servers use plain
AIMD CCAs and 45% use TCP Cubic and related CCAs [121] (see Section 2.4.3.3). Some
10–19% of the evaluated servers use TCP Compound as CC (see Section 2.4.3.6). These
numbers do not represent the traffic share in the Internet of the respective servers, just the
sheer number of hosts using it. For example, the amount of traffic sent by a video streaming
service such as youtube.com can be safely assumed to be manifold that of a text-based web
site, e.g. wikipedia.org, but in these figures both have same weight. Unfortunately, there are
no figures available regarding traffic volume classified by the used CCA. Nevertheless, some
services responsible for huge volumes, e.g. the video streaming services Youtube [122, 123] and
Netflix [124], are known to use the Linux OS on their servers. So, the traffic share of TCP Cubic,
the default CC of Linux, can be assumed being much higher than its share in hosts.

For TCP Compound the picture is different. TCP Compound is patent protected and only
available at the Microsoft Windows OS. On the one hand, there are no big services running

2.4 Transport Layer Congestion Control 45

Figure 2.9: Evolutionary graph of variants of TCP congestion control (from [105])

on Windows platforms known to the author. On the other hand, Microsoft Azure supports
provisioning of Windows Virtual Machines (VMs) as well as Linux VMs, all likely to cause high
Internet traffic. The crucial and open question regarding this work is which role these services
play and will play for residential Internet subscribers. Moreover, there is a third point: Microsoft
software updates. It uses Microsoft’s Background Intelligent Transfer Service (BITS) [115]
which from its description does not seem to use simple TCP Compound transmissions.

46 Chapter 2. Background

(a) Europe, 2015
(latest available data,

from [83])

(b) North America, 2016
(from [85])

(c) Asia-Pacific, 2016
(from [84])

Figure 2.10: Top 10 peak period applications in wired access networks’ downstream of different
regions according to Sandvine

Besides the uncertainty about volume shares, the cited research only covers TCP traffic, neglect-
ing all other congestion-controlled traffic, most importantly BitTorrent traffic that still accounts
for a significant volume. Nevertheless, there is data available on prevalence of distinct services,
for example from Sandvine Inc., a manufacturer of traffic management solutions mostly based
on DPI (see also Section 3.5.4). Figure 2.10 shows data published by Sandvine Inc. on the
shares of applications in fixed networks’ downstream traffic during peak periods. These figures
provide two important insights: There is a significant share of BitTorrent traffic and there is
traffic mapped to the iTunes application.

The share of BitTorrent traffic, i.e. of uTP-controlled traffic, during peak periods varies heavily
from region to region, from below 6 % in Europe, see Figure 2.10a, and 2 % in North America,
see Figure 2.10b, up to 18 % in Asia-Pacific, see Figure 2.10c. This data is probably exclusively
based on networks deploying Sandvine solutions that by design impact the shares of different
types of traffic (see Section 3.5.4). Sandvine solutions aim to reduce traffic of applications
undesired by the deploying operator, most prominently P2P traffic. So, BitTorrent might be
underestimated in their figures. As already mentioned, BitTorrent P2P traffic was reported
being accountable for about 20 % of traffic volume on a large European IXP in 2015 [82], while
Sandvine reported for the peak hours only about 6 % share for wired access downstream and not
even 2 % for mobile access downstream for the same period [83]. Such figures differ heavily not
only from region to region but also from operator to operator. Among other factors, it depends if
and how peak load management is carried out by the operator. Generally, the share of P2P traffic
in the last years in Europe and North America is not as high as it was 2010 and before, probably
due to intensified prosecution of illegal file sharing using this technology.

In the Sandvine figures, a rather new type of traffic is listed: iTunes traffic. Apple’s iTunes
application in terms of traffic mostly downloads rather big files, be it software updates, mu-
sic downloads or movie downloads, yet there is no more information on which traffic exactly
Sandvine accounts for by the type iTunes. Apple uses their implementation [125] of LED-
BAT [RFC6817] for software update distribution [114]. Note that similar downloads of Windows

2.4 Transport Layer Congestion Control 47

devices (from computers to smartphones) and Android devices are not explicitly listed and will
probably be captured in the HTTP and SSL fractions. To our knowledge, Android does not make
use of a special CCA for such downloads but due to Google being the only provider of this
service, Google can change that at any instant if it sees benefit.
Summarizing, uTP (BitTorrent) and LEDBAT (Apple) make up a significant share of today’s
Internet traffic.

Therefore, we identify TCP NewReno, TCP Cubic, TCP Compound and uTP / LEDBAT as
most prevalent CCAs. In the following, we will briefly present these algorithms, augmented
by TCP Vegas, focusing on their behavior, i.e. their congestion detection and cwnd adaptation
algorithms.

2.4.3.2 TCP NewReno

The NewReno CCA uses slow start, a linear increase of one packet per RTT in congestion
avoidance and halves the cwnd when detecting congestion. It is standardized in [RFC6582] and
its foundation, [RFC5681]. It is a loss-controlled algorithm and detects packet loss by either a
timeout, the so-called Retransmission TimeOut (RTO), or by receiving three duplicate ACKs.
These two mechanisms result in different reactions, so NewReno differentiates between rather
light and rather heavy congestion.

The RTO is computed based on the smoothed RTT (calculated as EWMA), the smoothed RTT
variation (also an EWMA) and a minimum of one second [RFC6298]. If a timeout occurs,
ssthresh is set to halve the cwnd, cwnd is reduced to one segment, slow start phase is entered and
the apparently lost packet is retransmitted. But detecting congestion by timeout is the rare case
and happens mostly when there are no three packets following the lost packet (sufficiently fast),
so the receiver cannot send three duplicate ACKs. Importantly, this does not only happen at the
end of a connection but also if the application sends data in blocks and provides the next block
of data only after the RTO expired. This for instance may happen for the burst transmissions of
DASH-like VoD flows.

The second loss detection mechanism based on duplicate ACKs is part of a mechanism called
fast retransmit since it includes immediately retransmitting the apparently lost segment without
waiting for the RTO to expire. Fast retransmit is followed by the fast recovery phase. In this
phase, NewReno assumes that there is only light congestion on the path and therefore only halves
the cwnd. The cwnd is halved in contrast to set to one segment as in case of timeout, since every
received ACK, being it duplicate or not, indicates that packets have successfully reached the
receiver. So, the congestion is rather light and moreover, these packets left the network and can
be partly replaced without increasing congestion.

NewReno, in contrast to the original Reno algorithm, moreover does not allow the cwnd to be
halved more than once for packets within one cwnd, i.e. packets sent within one RTT. Depending
on the situation, a congestion event often results in several packets lost before the sender can
reduce his sending rate, i.e. within one RTT. Nevertheless, it was found that halving the cwnd
for every lost packet, as the original Reno does, is not necessary and results in poor performance.
So NewReno uses a pointer to the last segment transmitted before the loss and does not react to

48 Chapter 2. Background

any losses of segments before this pointer. This observation and the success of the described
algorithm extension resulted in new terms having been coined:

- A congestion event means a time where losses occur which is not longer than one RTT.

- A congestion epoch means the time between two successive congestion events.

Obviously both terms are based on a congestion definition based on loss (or ECN).

Nevertheless, this original algorithm has disadvantageous properties which have been approached
by several slight algorithmic changes. Due to the one-step cwnd reduction in original NewReno,
the sender will not send out any packets for the next half RTT, and will send packets with the old
frequency for the second half, thus impairing self-clocking. This is not desirable and may induce
unnecessary congestion at the bottleneck. An equal pacing of packets would be more desirable.
Rate-Halving [126] as well as Proportional Rate Reduction (PRR) [RFC6937] are changes to
NewReno that spread the packets after a loss over the whole RTT. All these algorithm variants
are usually just called NewReno. Linux even still uses the name reno, although it implements
NewReno since version 3.2 (January 2012) with PRR, before that with rate halving.

A separate issue is that the sender cannot distinguish duplicate ACKs caused by unnecessary
retransmissions, e.g. due to reordering, from duplicate ACKs that are caused by a packet loss.
With standard TCP, the receiver just cannot provide the crucial information which packet has
been missing. Therefore, the Selective Acknowledgment (SACK) extension [RFC2018] was
introduced and standardized that allows the receiver to provide additional information about
which missing segment(s) triggered a duplicate ACK. Along with algorithms for loss detection
using SACK [RFC6675], the situation regarding ambiguous ACKs was improved but not fully
solved due to the very limited amount of information a SACK option can transport.

Summarizing, the name NewReno stands for a family of CCAs that increase their cwnd by one
segment per RTT during congestion avoidance and halve their cwnd on congestion events. It
therefore is slow to seize bandwidth in congestion avoidance and the increase speed depends on
the RTT.

2.4.3.3 TCP Cubic

Cubic [127] was designed to avoid NewReno’s shortcomings, i.e. it aimed to scale well at
big BDPs and to be fair when competing with flows of another RTT or the standard CCA, i.e.
NewReno. TCP Cubic uses slow start, a multiplicative decrease of 0.8 according to [127] (but
about 0.7 in the Linux implementation), fast retransmit and fast recovery and a TCP Cubic
congestion avoidance algorithm that is calculated in time, not in RTTs. It basically enhances
the Binary Increase Congestion Control (BIC) algorithm [128] by the approach of Hamilton
TCP (H-TCP) [129, 130] that proposed to use the time elapsed since the last congestion event
as basis instead of counting RTTs. The cwnd is computed as shown in Equation 2.4, where
C is the predefined constant 0.4, tloss is the time of detecting the last congestion event, β is

2.4 Transport Layer Congestion Control 49

the multiplicative decrease factor of 0.8 or 0.7 and cwndloss is the cwnd just before the last
congestion event.

cwndcubic(t) =C

(
(t − tloss)−

3

√
β

C
∗ cwndloss

)3

+ cwndloss (2.4)

This growth formula achieves that growth does not depend on the RTT and the last maximum
cwnd cwndloss serves as reference for the growth in the next congestion epoch. While the cwnd
is far from this reference, it grows fast, while it is close to the reference, it grows slowly and may
even not grow at all for several RTTs. Moreover, TCP Cubic guarantees not to perform worse
than NewReno since it explicitly calculates the cwnd NewReno would have at that time since the
last congestion event and uses the maximum of both. Nevertheless, for RTTs and link capacities
of today’s networks, this mechanism does not make a difference since for such large BDPs the
cubic function grows much faster than the linear one of NewReno.

Summarizing, by its RTT-independent congestion avoidance algorithm TCP Cubic provides
better fairness and faster utilization of newly available bandwidth for large BDPs. In all other
respects, it inherits the well-working properties of NewReno, e.g. slow start and the mechanisms
for congestion detection.

2.4.3.4 TCP Vegas

TCP Vegas [120] is the most prominent delay-controlled CCA. It was developed to improve the
periodic behavior of TCP DUAL and TCP Reno / NewReno that results in oscillations in sending
rate, RTT, queue size and periodic packet loss. Therefore, TCP Vegas tries to estimate the queue
size at the bottleneck by comparing RTT measurements with the lowest RTT seen. It then adopts
the sending rate to keep the queue size in a narrow range close to no queue. The original Vegas
algorithm also changes the startup phase to allow RTT increases to be detected and to be reacted
upon timely also during startup.

In detail, during congestion avoidance Vegas computes once every RTT the estimated number of
packets Q in the queue at the bottleneck and reacts to this detailed congestion input according to
an AIAD scheme: If Q is less than a threshold α = 2, then cwnd is increased by one. If Q is
greater than a threshold β = 4, then cwnd is decreased by one. Obviously there exists a steady
state zone: If the queue estimation is in the range of two to four packets, no modification is
applied.

For the startup phase, [120] proposes to use normal slow start only every other RTT to allow
applying the delay estimation also in this phase. Actual implementations, notably the Linux
kernel implementation, use normal, unmodified slow start.

Summarizing, the proposed Vegas algorithm results in a very low maximum queue size and a
true steady system state.

50 Chapter 2. Background

2.4.3.5 uTP and LEDBAT

uTP [86] defines headers and behavior of the protocol that BitTorrent uses. uTP runs on top of
UDP. LEDBAT [RFC6817] is the experimental standard created at the IETF that describes uTP’s
congestion avoidance behavior without specifying header formats. So with regard to behavior,
uTP and LEDBAT are interchangeable protocols. The behavior of LEDBAT has been extensively
examined, mostly by D. Rossi at TELECOM ParisTech [131, 108, 132, 133, 134], yet there is
more research on LEDBAT also by other groups [135, 136, 137].

For the startup phase, uTP uses the same algorithm to calculate the cwnd as in the congestion
avoidance phase. The LEDBAT Request For Comment (RFC) leaves open if slow start should
be used or if the cwnd should be grown in a more moderate way. When used for background
transmissions, slow start should not be used as argued before. The core congestion avoidance
algorithm is based on OWD measurements, which eliminates the uncertainty regarding the crucial
downstream delay that RTT-based algorithms such as TCP Vegas are facing. As TCP Vegas,
uTP also defines a target queue size that in contrast to TCP Vegas is not measured in packets but
in time, i.e. milliseconds. Moreover, this target queue size is configurable and does not need to
be aligned between communicating hosts. The cwnd is then computed for each ACK received
as also shown in Equation 2.5: The new cwnd is calculated by adding the relative difference
between the target queue size τ and the measured queuing delay multiplied by a gain factor γ ,
divided by the cwnd.

cwnd = cnwd + γ ∗ τ − (OWDlast −OWDmin)

τ ∗ cwnd
(2.5)

The queuing delay measurement is computed as the minimum measured OWD substracted from
the last measured OWD and γ is required to be between zero and one. Moreover, cwnd is never
allowed to grow more than a fixed threshold of ALLOWED_INCREASE during one RTT which
is usually set to one or two packets. So, this algorithm increases the transmission rate until the
target delay τ is met, and decreases if the measured delay is higher than τ . While this target
delay is met, the cwnd is not changed.

If uTP / LEDBAT detects a packet loss, the algorithm acts like standard TCP, i.e. it halves its
cwnd. This immediately implies that if the bottleneck’s buffer cannot hold packets for at least
the target delay τ , the protocol behaves just like NewReno.

Nevertheless, the available uTP implementation in libutp [138] as well as the RFC use 100 ms
as default target delay (older drafts of LEDBAT proposed 25 ms, but the final RFC proposes
“100 ms or less”). This means that such traffic induces a standing queue equivalent to 100 ms,
which does not seem desirable since it results in operating like TCP NewReno for all buffers
equivalent to less than 100 ms. Other research publications also suggest that it is necessary
to use much lower targets for uTP or LEDBAT to properly work as background CCA and
propose [137, 136, 139, 140] using a much lower target value. [137, 136, 139] propose to use
5 ms, but none of them evaluated LEDBAT’s behavior for even lower values.

uTP allows to reduce the cwnd to zero. In that case, the sender ceases sending packets for one
second, and then sends only one small packet (150 byte). We use the term “hibernation” to
describe this freezing behavior. On the one hand, this behavior allows uTP to pose almost no load

2.4 Transport Layer Congestion Control 51

on the network. On the other hand, the long delay of one second leaves bandwidth unnecessarily
unused in many situations. Nevertheless, this is a proper design choice for a background CCA.

Summarizing, the uTP / LEDBAT CCA results in a very low maximum queue size and a true
steady system state as TCP Vegas, uses more robust delay measurements and additionally
implements a careful startup behavior and the hibernation behavior.

2.4.3.6 Compound TCP

Compound TCP [141] (now also being standardized in the IETF [142]), is a CCA developed
and used by Microsoft. It aims at providing the synergy of delay-controlled and loss-controlled
approaches. It uses slow start and halves its cwnd on packet loss as NewReno. To achieve synergy
of delay- and loss-controlled CC, Compound uses a cwnd composed of the normal NewReno
cwnd (here indicated by cwndNewReno and a so-called delay window dwnd, see Equation 2.6.

cwndCompound(t) = cwndNewReno(t)+dwnd(t) (2.6)

dwnd grows rapidly if the queuing delay is zero, i.e. the link is underutilized. If the link is
fully utilized and a queue builds up, dwnd is reduced to zero, so then Compound behaves like
NewReno. The delay-controlled fast increase makes Compound tolerating non-congestion packet
loss much better than NewReno which is an important property for so-called “long fat pipes”, i.e.
connections with large BDPs. Specifically, Compound computes an estimation of the queue size
Qest(t) and depending on its value defines dwnd as shown in Equation 2.7.

dwnd(t +RT T) =

dwnd(t)+

(
α ∗ cwndCompound(t)k −1

)
if Qest(t)< λ

max(0,dwnd(t)−ζ ∗Qest(t)) if Qest(t)>= λ(
cwndCompound(t)∗ (1−β)− cwndNewReno

2

)
if loss is detected

(2.7)

For the evaluation in [141] α is set to 1/8 and k to 3/4. The authors argue the need to use a
threshold γ large enough to provide robust detection of the existence of a queue and choose a
value of 30 packets. β is of course set to 1/2 to achieve the same rate halving as NewReno. The
authors do not publish the value of ζ they used for the evaluation but from the figures it should
define a linear decrease to compensate the linear growth of cwndNewReno, resulting in an about
constant cwnd for a queue size between γ and 2γ .

Summarizing, the resulting behavior achieves the goals of TCP Compound: TCP Compound
flows provide good efficiency for large BDPs due to the aggressive increase while no queue has
built up in congestion avoidance. This behavior also improves RTT fairness. The assumed linear
growth beyond 2γ guarantees TCP fairness and avoids being pushed back by loss-controlled
CCAs. The rather large threshold of 30 packets queue size indicates that Compound is rather
designed for fast connections. For instance, at a 20 Mbit/s access link 30 full-sized 1500 byte
packets represent 18 ms of queuing delay which is far more than needed for a robust detection if
some queue exists.

52 Chapter 2. Background

2.4.4 Relation to Buffer Sizing

This section is about buffers able to hold several or many packets, which are managed by a
queuing discipline or packet scheduler. Such buffers are a necessary function in any packet
switched communication to compensate for short-term packet bursts, so they are needed at any
interface that shall forward packets from more than one interface or from a faster interface.
Moreover, buffers are also linked to transport layer congestion control. Due to the (necessary as
has been proved [94]) massive reaction to congestion in AIMD CC schemes, such congestion-
controlled traffic is vulnerable to cause underutilization of the bottleneck link after a decrease.
Buffers help mitigating this issue by two aspects: First, if the buffer is rather large, the buffer
helps to fill the bandwidth gap potentially left unused by the now reduced sending rate after a
congestion event. The second effect if of higher importance: A rather big queue size at the time
of a congestion event also means a correspondingly increased BDP and cwnd, so after halving
the cwnd starts from a bigger value. The difference in impact of these two aspects is in the very
nature of the AIMD principle: The first is just an additive compensation, while the second effect
is a change in the multiplicative part of the rate adaptation. In consequence, without any buffers
a single connection controlled by a pure AIMD CCA such as NewReno only achieves a 75 %
bottleneck utilization because the typical sawtooth is fully effective on the bottleneck link. In
contrast, if a buffer of one BDP is available at the bottleneck, the sawtooth pattern effects the
buffer utilization only and does not affect the bottleneck link at all, resulting in 100 % utilization.
Note that for CCAs with a greater β , such as TCP Cubic, the buffer required for full utilization
is less than one BDP.

If a bottleneck is shared by N TCP flows, the buffer size required for full utilization depends on
the synchronization of these flows. If there is perfect global synchronization, the frequency of
the sawtooth pattern is increased but its height is not changed, so again one BDP of buffer is
required. If all flows are perfectly minimally synchronized, the buffer required may be as low as

1√
N

as Appenzeller et al. showed [143].

Unfortunately, ISPs usually neither know the number of flows a link carries, nor their average
BDP and most AQMs do not achieve minimal synchronization. Therefore, networks are mostly
configured based on pessimistic assumptions. Already in 1994 a buffer size of one BDP was
recommended [144]. And still today, there is the rule of thumb to provide one BDP of buffer
based on a rather pessimistic RTT estimation, e.g. [145] suggests calculating with an RTT of
even 250 ms. In this context, it is important to consider that for each flow, i.e. also for each TCP
connection, there is only one effective bottleneck at a time in static scenarios. So, a flow may
pass several interfaces where multiplexing results in small queues being built up from time to
time, but the growing queue provoked by the rate increase of TCP occurs at only one place in the
network, the (first) link with the lowest capacity on the path. Due to the architecture of networks,
see Section 2.1.1, this usually is the access link or during peak periods maybe some aggregation
link in the regional access network. In both cases the decisive queue is the per-subscriber queue
in the Hierarchical Fair Scheduler (HFS). Since bandwidth is still the major selling point for
broadband access services, the ISPs usually take no risk of complaints and dimension the buffers
based on rather large RTT estimates.

Recent measurements show that the average buffer size in the Internet is below 100 ms, at about
70–80 ms [146, 147]. Nevertheless, they also show that a significant number of buffers is well

2.4 Transport Layer Congestion Control 53

larger than 100 ms. There even is the term “bufferbloat” used in the community for far too
large buffers [148]. So, there are buffers sized more optimistically than the wide-spread rules of
thumb, but nevertheless buffers are still dimensioned for delays of long distance connections,
some rather for intercontinental connections than for regional connections.

Concluding, purely loss-controlled AIMD CCAs need buffer at the bottleneck to fully utilize
that bottleneck. Today, ISPs configure rather large buffers allowing full utilization also for
unfortunate conditions such as large RTTs. This also applies to the per-subscriber buffers of the
packet schedulers at BNG downstream interfaces. Since bandwidth is the main selling point for
broadband Internet access, the ISPs are not expected to significantly lower the configured buffers
of the average subscriber in the near future.

54 Chapter 2. Background

3 Rate Adaptation Considering Traffic
Differentiation by Congestion Control
during Overload

This chapter is dedicated to Rate Adaptation Considering Traffic Differentiation by Congestion
Control during Overload (RADICCO), the algorithm developed and evaluated in this thesis. First,
it explains the motivation of this thesis and outlines the technical problem statement. Based
on this, qualitative design objectives and quantitative performance objectives are derived. With
this background, we present the high-level concept of RADICCO. In continuation, Chapter 3
presents related work that aims for similar goals. As a foundation of RADICCO, we detail the
assumptions and prerequisites RADICCO is based on and discuss their future validity. Then,
we present the algorithm of RADICCO and introduce the calculations for internal states and the
effectively allocated rates. Finally, core design decisions and potential alternatives are discussed.

3.1 Motivation

The core motivation for RADICCO is founded on five facts about today’s regional access
networks:

- Aggregation links in hierarchical access networks constitute bottlenecks at times of peak
and overload. In many access networks, such overload occurs daily.

- The load of access networks varies heavily during a day and peak load applies to just a
few hours at most.

- At any time, the downstream traffic in access networks contains a significant amount of
deferrable traffic, which does not contribute to immediate QoE and is called background
traffic.

- A large share of this background traffic uses special CCAs and thus behaves differently
than foreground traffic.

- The bottleneck for most of the downstream traffic is located in the access network, i.e. in
its BNG’s packet scheduler.

The challenge is to develop an efficient resource allocation system exploiting these facts to reduce
resource allocation of background traffic during times of overload in order to favor the foreground

55

56 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

traffic. First, this requires recognizing the background traffic as such. Traffic differentiation by
CC results in different behaviors at the bottleneck. Therefore, traffic differentiation by CC can be
detected and considered at the BNG’s packet scheduler. Second, resource allocation at the BNG
downstream interfaces is carried out by the packet scheduler, so this is component to enforce the
adaptation in resource allocation.

The requirement that traffic behavior shall be used for traffic differentiation is crucial. First, this
signaling origins from the subscribers’ communication partners, i.e. any explicit signaling could
not be trusted. Second, there are strong incentives to use a background CCA for background
traffic: Since most of the time the only competing traffic is the subscriber’s own traffic since the
bottleneck is the access link, not using a yielding background CCA could result in substantial
drawbacks (see Section 3.6).

The effect aimed for by the developed resource allocation system compared to a non-adapting,
neutral hierarchical scheduler, i.e. a HFS, can be described from three perspectives:

- From the ISP’s perspective, the traffic composition at times of overload is shifted towards
foreground traffic. Consequently, the traffic composition after times of overload is shifted
towards background traffic.

- From a foreground receiver’s perspective, there is more capacity available during overload
which on average allows to achieve a better user experience.

- From a background receiver’s perspective, there is less capacity available during overload
which on average delays transmissions but at maximum by the duration of overload. Due
to the nature of background traffic, this does not result in a disadvantage in terms of QoE.

So, compared to a HFS, a scheduler adapting resource allocation in the described way results
in advantages for both the ISPs as well as the users, i.e. the subscribers, which are listed in the
following.

Resulting benefits for ISPs:

- Smoother utilization of infrastructure.

- Higher average utilization of infrastructure.

- Deferred and reduced pressure for investments in infrastructure.

Resulting benefits for subscribers:

- Increased QoE during peak and overload periods.

- Diminished impact of events of exceptionally high resource demand on QoE.

- A (slightly) increased traffic volume since more interactive traffic such as VoD is delivered
with higher quality and, consequently, traffic volume.

For subscribers, the first benefit is the by far most important.

A system for adapting resource allocation based on distinguishing foreground and background
traffic achieves these effects for the usual daily peak load as well as for exceptional peak loads
such as caused by events of high public interest, e.g. a sports event but also a natural disaster.

3.2 Problem Statement 57

3.2 Problem Statement

Any proposal for a system implementing such adaption of resource allocation based on distin-
guishing foreground and background traffic must provide:

1. A mechanism for recognizing the traffic type.
2. A means to adjust the resource allocation.

The mechanism for recognizing the traffic type should recognize the traffic type reliably and
fast. In particular, it must react fast to traffic changing from background behavior to foreground
behavior.

The mechanism for adaptation of resource allocation must work on all aggregation levels, this
means its must be able to adapt allocation among the access links fed by an AN and among the
aggregation links fed by an AGS. The adaption must consider the different ways foreground
and background CCAs work in its actions. Moreover, it should minimize interference with the
traffic type recognition algorithm. Since resource allocation at the BNG downstream interfaces is
carried out by a hierarchical packet scheduler, this mechanism either defines a new hierarchical
packet scheduler or extends existing ones.

The combined system must allow implementation, i.e. it must either allow implementation in a
single device or define appropriate signaling to allow distributed implementation. In particular,
for an integrated implementation it is required to consume sufficiently little computational
resources.

3.3 Concept of Rate Adaptation Considering Traffic Differentiation by
Congestion Control during Overload

The core concept of RADICCO combines two functionalities: First, it recognizes foreground
and background traffic on subscriber level. Second, it adapts the scheduling weights of the
hierarchical scheduler during peak load so that the foreground traffic receives more bandwidth
and the background traffic less.

For recognition of foreground and background traffic, RADICCO does not introduce any explicit
signaling but relies on recognizing the different behaviors of foreground and background CCAs.
RADICCO operates on subscriber, i.e. access link level. This is possible since a foreground CCA
is known to dominate an aggregates behavior at the bottleneck (see Section 2.4.2). Therefore, we
also use the terms foreground subscriber and background subscriber for a subscriber receiving
traffic of the respective type.

Relying on the senders’ dynamic behavior forces RADICCO to dynamically operate in both
traffic type recognition and weight adaptation: The behavior of subscriber’s traffic may change at
any instant and such change should be recognized and honored by RADICCO as fast as possible.
Rate adaptation must take into account the senders’ control loops as well as RADICCO traffic
type recognition. To avoid wasting bandwidth and oscillations, the rate adaptation must be
carried out smoothly.

58 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

By controlling the scheduler’s weights depending on the traffic behavior, RADICCO adds another
control loop to the overall system of rate control: The senders execute a control loop on their
sending behavior according to their CCAs and RADICCO at the hierarchical scheduler executes
a control loop on the subscribers’ weights, i.e. their allocated rates. RADICCO’s control loop
does not operate on transport layer connections, as do CCAs implemented by TCP and uTP, but
operates on per-subscriber traffic aggregates.

The interaction of these control loops and the involved feedback delay result in a conflict of
objectives for RADICCO:
On the one hand, the traffic type detection benefits from more static bandwidth allocations.
The input for RADICCO’s traffic type recognition is limited to observing capacity and buffer
utilization. This allows distinguishing foreground traffic from background traffic well for a static
system, especially for a static bottleneck capacity. If the bottleneck capacity is reduced, the
recognition becomes less reliable. The reason is that, since RADICCO does not know the RTT,
i.e. the delay in the CCA’s control loop, every reduction of the bottleneck capacity is followed
by a period in which it is not clear how to interpret an increasing queue size: Either the sender
still uses a background CCA but could not yet react due to the RTT delay in its control loop or a
foreground CCA took over control and ignores the increasing delay. The faster the reduction
is, the greater this uncertainty in traffic type recognition becomes, so the less reliable it can be.
So, from traffic type recognition perspective, a connection’s bottleneck capacity should only be
changed slowly and carefully to provide good traffic type recognition.
On the other hand, the benefit of RADICCO depends on reducing capacities allocated to
background subscribers. So, the larger this reduction of capacity and the faster it is applied,
the more capacity is freed for foreground subscribers. Moreover, background transfers may
have arbitrary sizes and the traffic type recognition algorithm may result in temporary false
recognition of background subscribers. Therefore, it is even more important to rapidly reach a
low capacity allocation for a background subscriber after its recognition as such. So, from this
perspective, a background subscriber’s capacity should be reduced fast to achieve shifting more
bandwidth from background to foreground traffic.

RADICCO reduces the weight of a background subscriber by a constant amount per served
packet and maintains a minimum weight. By the per-packet weight reduction, RADICCO only
carries out weight reduction if it is possible for the sender(s) to become aware of it, even if
indirectly via the receiver. The minimum weight prevents starvation and should protect services
of low data rate such as a VoIP call from being hit by increased delays.

Another principle in RADICCO is to fill up rates: If reducing the weights of background
traffic resulted in underutilization of the shared aggregation interface, RADICCO distributes this
headroom among the background subscribers in a proportionally fair manner.

3.4 Objectives of Rate Adaptation Considering Traffic Differentiation by
Congestion Control during Overload

In order to be deployed, or attract further research in the first place, RADICCO should meet
absolute requirements, i.e. qualitative objectives, as well as perform well in terms of specific

3.4 Objectives of Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload 59

quantitative objectives. We will provide an overview of relevant objectives for both categories,
followed by short definitions and reasoning for each objective.

3.4.1 Qualitative Objectives

The qualitative requirements are:

- Network neutrality

- Sufficient efficiency

- Smooth Rate Allocations for Foreground Traffic

3.4.1.1 Network Neutrality

RADICCO is based on distinguishing background and foreground traffic and treating them
differently, what raises the question of network neutrality. Network neutrality describes the
principle that the network treats all traffic equally. Depending on context, this principle is
interpreted differently. Largely, the term implies that the network shall not decide on which
traffic shall receive better or worse service. Many countries regulate their ISP market dictating
network neutrality in that interpretation. For instance, the FCC demands ISPs to perform
no blocking and no throttling based on “legal content, applications, services, or non-harmful
devices” [149]. Moreover, they demand that any mechanism in today’s Internet should be
non-discriminating, i.e. there should be no type of service generally treated better than another
on account of the ISP’s decision. We use the term in this sense.

We think that a solution to the problem described in Section 3.2 does not have to and should not
depend on the network, i.e. the ISP, deciding on priorities. Therefore, we claim that proposed
solutions should not violate network neutrality based on this definition.

3.4.1.2 Sufficient Efficiency

The efficiency of any mechanism developed for a certain purpose must allow to be implemented
in real equipment and deployed for the intended purpose in real networks. Since RADICCO
is an algorithmic extension to a scheduler, its computational complexity adds to the one of the
scheduler and the total complexity must still allow implementation. We assume the efficiency
of RADICCO being sufficient if it has the same or lower asymptotic computational complexity
than potential schedulers to be extended.

3.4.1.3 Smooth Rate Allocations for Foreground Traffic

As argued in 2.3.3, end-to-end rate control is prevalent in today’s Internet. The underlying
control loops work better and more efficiently the more static the properties of the connecting
network are, especially the bandwidth available and the RTT. RADICCO does introduce new

60 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

dynamics in the system in that it dynamically changes the bandwidth of subscribers at peak
load, primarily of background subscribers and in consequence also of foreground subscribers.
Nevertheless, these induced changes may be steeper or smoother and may have local impact
only or concern the whole system. In particular, a change may affect small parts of the system,
e.g. only single subscribers, or affect the BNG interface as a whole. Moreover, the end-to-end
control loops of the senders’ CCs may amplify the effects of a change event. This may even
result in oscillations that should be avoided.

Steep changes, i.e. changes of substantial extent within a short period, cannot be handled well by
the sender’s CCA. Therefore, any such change may result in either an excessive rate reduction
or in the queue running empty and thus underutilization of the allocated capacity. A rapidly
changing throughput on transport layer may even trigger undesired reactions of higher layer
control loops, e.g. of the control function of a DASH VoD streaming session. So, volatility in
the allocated capacity of foreground subscribers comes with a risk of QoE degradation. For
background subscribers, this does not apply since background traffic is assumed to not contribute
in short-term QoE (see Section 3.6.3).

We consider this a qualitative objective since this objective can be considered in the design, but
is hard to measure quantitatively. Moreover, the changes occurring during execution heavily
depend on the used CCAs whose control loops unavoidably interact with the control loop of
RADICCO.

Therefore, RADICCO shall be designed to avoid steep changes in the allocated rates, primarily
for rates of foreground subscribers.

3.4.2 Quantitative Objectives

Due to the very nature of RADICCO as a system implementing service differentiation, the
quantifiable performance goals have a strict order of priorities. In the following they are listed in
order of decreasing importance.

1. QoE improvement.

2. High bottleneck utilization, i.e. high bandwidth for background traffic.

3. Fairness among foreground subscribers.

4. Fairness among background subscribers.

We discuss each goal in the following.

3.4.2.1 Improved QoE

The paramount goal of RADICCO is to increase QoE. QoE is a user-centric metric and therefore
cannot be measured universally. Nevertheless, the impact an ISP has on a user’s QoE directly
depends on the QoS the ISP delivers and the QoS requirements of the respective service.

3.4 Objectives of Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload 61

Regarding QoS, increased bandwidth and reduced delay are generally considered having non-
negative impact on QoE. Nevertheless, a QoE improvement caused by increased bandwidth
or reduced delay can only be assessed specifically for a service. The better a service and its
requirements are known or understood, the better a receiver’s QoE can be estimated. But often
even the service provider does not know the exact utility function of his services, i.e. the function
that maps provided QoS to QoE. Nevertheless, such a function theoretically exists: For instance,
for a VoD service that uses DASH (or similar technology), it maps the available bandwidth to a
resolution and quality, which in turn map to a QoE level.

Nevertheless, also without utility functions there are distinct types of services for which we know
the general relationship between QoE and single QoS parameters as well as the most important
QoS requirements. In this thesis, we estimate RADICCO’s impact on QoE for four service types
represented by statistical traffic models.

Note that background traffic by definition does not contribute to short-term QoE since the sender
can switch to a foreground CCA at any time. So, background traffic is neglected in terms of this
objective.

3.4.2.2 High bottleneck utilization

The basic motivation to develop and to deploy RADICCO is temporary overload on aggregation
links in the regional access network on a daily basis, i.e. the temporary existence of bottlenecks
at these links. These bottlenecks limit the possible data rate for the active subscribers to less
than their nominal rate. If RADICCO results in lowered utilization, it extends these times of
overload. This may be acceptable to some extent if the achieved QoE is improved, but generally
a maximum utilization should be aimed for.

Since RADICCO approach to increase the QoE of foreground traffic is increasing the bandwidth
assigned to foreground traffic, a high bottleneck utilization also means filling the remaining
bottleneck capacity with background traffic.

3.4.2.3 Fairness among Foreground Subscribers

Today’s HFSs enforce a relative guarantee among all active subscribers, namely that any one
of them receives a share proportional to his weight. While we aim at allocating more than this
fair share to a foreground subscriber, we aim to not relinquish this relative guarantee within the
group of foreground subscribers.

Since RADICCO does not alter the weights of recognized foreground subscribers, this goal
effectively requires in checking, first, the background traffic recognition for bias and, second, the
whole system for potential synchronization between RADICCO control loop and the background
CCA control loop.
If the background recognition algorithm treats all subscribers equally at all times, all subscribers
receiving similar traffic, e.g. per the same traffic model, will suffer from being falsely recognized
as background traffic to about the same extent.

62 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

12.5 of 25

12.5 of 25
25 of 25

0 of 25

25 of 30

25 of 30

50 of 50

AN

BNG

Subscriber

50 of 50

AGS

Link with denoted load and capacity
Foreground share in red

Figure 3.1: Illustration of a locally fair foreground allocation that is not globally fair

0 of 25

20 of 25
25 of 25

5 of 25

30 of 30

20 of 30

50 of 50

AN

BNG

Subscriber

50 of 50

AGS

Link with denoted load and capacity
Background share in green,
foreground share in red

Figure 3.2: Illustration of a desirable allocation with highly unfair rate allocation among back-
ground subscribers

We aim for the same fairness as achieved by a HFS, i.e. a local fairness at each bottleneck only.
In contrast, the following situation does not violate achieving this goal: Consider a three-level
topology with the BNG interface as well as one AGS interface being overloaded. In that case, a
foreground subscriber served by a non-overloaded AGS interface receives higher bandwidth than
a comparable foreground subscriber served by the overloaded AGS interface. See Figure 3.1 for
an illustration of a locally fair rate allocation in such scenario. Enforcing fairness among all leaf
nodes of one type in such situations would violate the first and the second objective. Clearly, in
such situations we accept limiting fairness among subscribers in favor of higher foreground rates
and higher bottleneck utilization.

3.4.2.4 Fairness among Background Subscribers

We would also welcome fairness among background subscribers, although this goal is of lowest
priority for several reasons. First, background traffic is not contributing to short-term QoE, so
the allocated bandwidth does not matter to the user. Second, background CCAs are much less
predictable than foreground CCAs. Foreground CCAs always keep the queue non-empty if we do
not increase the effective rate very fast. Thus, foreground subscribers are permanently active from
the scheduler’s perspective. This cannot be expected for background subscribers: Especially,
the low increase speed of all background CCAs in congestion avoidance and uTP’s hibernation
behavior may cause a subscriber’s queue run empty frequently. Third, in topologies with at
least three hierarchy levels this secondary objective often contradicts the primary objective of
increasing foreground QoE by increasing rates of foreground subscribers. In these networks, in a
subtree with a high fraction of foreground subscribers the bandwidth allocated to a background
subscriber must be lower than in a subtree with a lower fraction of foreground subscribers.
Figure 3.2 shows an illustration of a scenario, in which the priority for foreground traffic
increases unfairness among background subscribers. Both the first and second quantitative
objectives are perfectly met by the depicted allocation. Note that we again aim for local fairness

3.5 Related Work on Peak- and Overload Management 63

at every bottleneck only.
Summarizing, this goal is of least importance but it would be nice to achieve it.

3.5 Related Work on Peak- and Overload Management

In this section, first, fundamental terms are defined and the context of overload management
systems is discussed. In the following, we shortly present two approaches to that challenge that
are widely used by today’s ISPs and two approaches recently discussed and published in the
research community.

3.5.1 Definitions

RADICCO aims at allocating less bandwidth to background traffic when there is not sufficient
bandwidth to supply every subscriber with its access link bandwidth. In this context, the terms
congestion, overload and peak load are often used, but the definitions used in the network
community unfortunately vary, often overlap and sometimes even contradict each other.

In the following we will give short definitions for these three terms. Note that although these
terms mostly refer to the state of a transmit interface, they are often transferred to the respective
links, e.g. “overloaded link”. Obviously, a link can just be loaded with as many bits as it can
transmit, but for point-to-point links as used in hierarchical access networks each directed link
corresponds to a one-to-one counterpart transmit interface, so there is no room for ambiguity.

Definition of Congested

The term congestion is linked to end-to-end rate control, typically CCAs, so we use this term to
emphasize the feedback given to an end host. For a definition, see Section 2.3.1.

Definition of Overload

For interfaces serving several subscribers, such as BNGs’ and aggregation switches’ downstream
interfaces, we use the term overload, emphasizing the (undesired) network state rather than its
meaning for the end hosts. Overload is defined as a state where there is more load than the
interface can handle, i.e. more packets available for transmission than the interface can transmit.
This means that a queue builds up, either directly at the interface or in the (potentially remote)
scheduler.
Although the overload definition differs only in a detail from the congestion definition, its role
and its meaning is fundamentally different: When an access link is congested, this typically
means that CC is at work, probing for bandwidth limits. So, congestion is a normal and somehow
desired state detected by an end host. In contrast, when an aggregation link is overloaded,
subscribers do not receive their full contracted capacity, but their bandwidth is limited by a
concealed bottleneck within the ISP’s network. So, overload is an undesired, hopefully unusual

64 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

state. Usually, only the ISP can safely detect overload in its access networks and distinguish it
from overload at a peering point or at the sender. So the term overload is linked to an network
operator point of view. Overload is a state difficult to detect since due to the dynamics in offered
load and the elastic nature of today’s Internet traffic, queues at aggregation links often run empty
for short periods even at very high loads. So, often less strict state definition of critical load is
desired. The term peak load is such a term.

Definition of Peak Load

Peak load means critical, undesired high load at an interface serving many subscribers, i.e. it is a
term from ISP perspective, too. There is no universal definition of peak load, but all technical
definitions base on medium-term averages. These average load values may be based on strict,
disjunct intervals, as for Comcast’s approach (see Section 3.5.3), or calculated as EWMAs. By
definition, peak load includes overload and usually also covers the periods before and after
overload phases. Therefore, peak load detection is often used to trigger counter-measures against
overload. This allows acting pro-actively and early, often preventing longer overload phases. For
RADICCO, we only use peak load to trigger different modes of operation. In our implementation
we use the EWMA of the interface’s load and two predefined thresholds for peak load detection
with hysteresis: If the EWMA of the interface’s load is above the high threshold, we consider
this interface being under peak load, if it falls below the low one, we consider it not under peak
load.

3.5.2 Context of Overload Management

Managing peak- and overload has been approached for various motivations and thus in funda-
mentally different ways.

All four systems presented in the following have been designed to solve a challenge that
many ISPs are facing: A small fraction of subscribers, sometimes called heavy users [102],
continuously place much higher demands on network resources than most subscribers. This
becomes an issue to ISPs during peak periods, when resources are driven to their limits. When
the first proposals came up, these heavy users mostly used P2P services for file sharing, often
receiving and transmitting data all day. Standard HFS are perfectly fair at every instant, but do
not take into account past allocations. Therefore, such heavy users receive their instantaneous fair
shares at any time, also during times of peak load. Because of this, other subscribers, although
using their Internet access only sporadically, may not receive maximum capacity, i.e. the capacity
they pay for, during times of peak load. This situation is not deemed fair and results in dissatisfied
(light user) customers. So, all the presented approaches aim for a fairness different from the
instant fairness a fair scheduler aims for. These approaches take into account past behavior of a
subscriber and thus may reach a better medium-term fairness than a HFS.

A general issue is the relation between managing overload well, i.e. minimizing its impact on
the users’ QoE, and upgrading network elements, i.e. adding capacity. Repeatedly, comments
are read that managing overload should not be examined at all but the ISPs should just upgrade

3.5 Related Work on Peak- and Overload Management 65

their network infrastructure appropriately. Yet, there are good reasons for overload to occur in
communication networks:

1. Transported traffic is ever increasing and at some point eventually some peak loads are beyond
the capacity of the respective infrastructure.

2. There are unpredictable events that cause a drastic increase in load, for instance a natural
disaster.

3. The service offer of any ISP must be affordable for the customers and competitive.

So, as long as there is no significant impairment for the users (or there are no other ISPs offering
better service), there are economic reasons not to invest into infrastructure. Finally, fourth: It is
possible to manage load so that no user is negatively affected in terms of QoE. This is possible
because overload usually concerns only a short time of the day, so there is a lot of headroom
during other times of the day. Then there is traffic, e.g. P2P file sharing and software update
downloads that may be deferred or regulated down without perceptible consequences.
So, the capability for managing overload is necessary even in not undersized networks and there
are good reasons not to add capacity as long as overload is only temporary and can be effectively
managed.

3.5.3 Comcast’s Protocol-Agnostic Congestion Management System

Description

Comcast’s congestion management system [RFC6057] is a network resource management system
aiming at implementing a resource allocation in peak periods that is perceived as a fair allocation.
In contrast to our definition, in [RFC6057] the term congestion is used to describe a medium-term
network state that corresponds rather to our definition of peak load than to that of congestion
(see Section 3.7.1).
Comcast’s Protocol-Agnostic Congestion Management System is based on, first, continuous
monitoring of capacity usage on subscriber and aggregation links in the network and, second,
adapting priorities of some subscribers’ traffic. Therefore, all functions must be located at or near
to the BNG (called regional network router in [RFC6057]). All monitoring is carried out based
on fifteen minute intervals, which is huge compared to changes in congestion. If the measured
load reaches a threshold level (70 % in upstream, 80 % in downstream) for some aggregate link,
all subscribers served by that link, i.e. whose traffic contributes to that load, are examined more
closely. If a subscriber has used more than 70 % of his contracted capacity in the respective
transmission direction during the last measurement interval, its traffic is assigned to a lower
priority. Comcast uses the terms Priority Best Effort and Best Effort, but these classes effectively
correspond to the BE traffic class and a class of even lower priority. A subscriber assigned to
the lower priority class is re-assigned to normal BE as soon as the subscriber’s consumption
has declined below a lower threshold of 50 % of their contracted bandwidth during a whole
measurement interval. This system uses strict priority between the two classes: Packets of the
lower priority class are only transported if there is no packet of higher priority available.

66 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

Discussion

Comcast’s approach is named Congestion Management, but is rather a peak load management,
which is purely based on rate measurements and does not take into account any congestion by
any meaning used by the transport layer community. Nevertheless, it aims at providing a solution
to a problem similar to the problem identified by us. There are crucial differences regarding
the problem definition and the Comcast approach has fundamental shortcomings. For one, this
approach does not take into account any priorities possibly implicitly signaled by the end hosts.
It basically assumes that large transmissions are less relevant for user experience than lower
bandwidth transmissions. Second, this system reacts very slowly, its loop works on fifteen minute
intervals. Moreover, it is based on averages only. While this might have been appropriate for
the P2P scenario mainly targeted at by the authors of [RFC6057], this is not sufficient for many
other scenarios. For example, a node receiving and installing software updates often produces
load that is below the mentioned thresholds, but is receiving bursts of heavy load that could be
allocated less bandwidth without deteriorating QoE. Third, this system takes no measures to
prevent starving single subscribers, i.e. it might allocate not bandwidth at all to some subscribers
for significant periods. We consider this being generally not desirable.

Generally, this approach is slower and more coarse-grained in time than desirable, resulting in
potentially big false positive intervals as well as false negative intervals. On the one hand, if a
subscriber made use of its access link above the thresholds, all its traffic in the next interval will
receive low priority regardless of volume or type. On the other hand, a subscriber may use heavy
bursts of traffic for the bigger part of the time without being classified to low priority if he on
average consumes less bandwidth than the threshold.

So, while the proposed rate management may work well for some scenarios such as the targeted
P2P users, it neglects other potentials for reducing bandwidth of low priority traffic. It also
ignores useful information provided by senders such as the implicit priority signaling by using
different CCs.

3.5.4 Traffic Management based on Deep Packet Inspection

In this section, we do not discuss a single and well documented traffic management system, but
we will sum up core properties of systems that are widely used but usually poorly documented.

Description

Traffic management systems based on DPI, e.g. Sandvine’s “Quality Guard” [150], are all based
on classifying every packet by inspecting packets. Every incoming packet is parsed to identify
the transport layer connection it belongs to. Usually a deep inspection also of application layer
content is carried out for every new connection detected, i.e. the first packets of any newly
established connection. Based on the findings of this deep inspection the connection is assigned
to a service type. Due to this fundamental step, we summarize all systems using this technique
as traffic management systems based on DPI. For each service type the deploying ISP configures
a priority. For instance, Sandvine recommends to configure service priorities based on tolerance

3.5 Related Work on Peak- and Overload Management 67

for latency. The derived service priority of a flow is then used for enforcing traffic management
policies, which may take many forms and may be enforced at a separate node. Usually, policy
enforcement is only applied if the network’s load is deemed critically high. One example for
traffic management policies is to use service priorities to assign a scheduling priority lower than
the BE priority to a set of services, the set being adapted to the current level of overload.

The core step in such systems is the packet inspection. It requires keeping state per transport
layer connection. The inspection is a so-called DPI: That means parsing some first packets (the
actual number often varies from service to service) of every new connection down to the details
of the application layer, e.g. not only IP, TCP and Hyper Text Transport Protocol (HTTP) may
be parsed and evaluated, but also the type or names of the transported objects.

Discussion

Compared to Comcast’s approach, DPI-based traffic management is much more fine-grained in
several dimensions: It is not based on fixed (long) intervals but changes state when a connection is
set up. Moreover, working on the level of transport layer connections rather than subscriber level
allows some traffic receiving normal priority while another connection of the same subscriber,
be it to the same end device or not, receives reduced priority.

The DPI-based classification is very expensive in terms of implementation complexity, compu-
tational effort, and consequently also in terms of Capital Expenditure (CAPEX). Nevertheless,
no DPI is flawless, these mechanisms have non-zero false-positives and false-negatives. False
recognitions of foreground traffic may have severe impact on QoE since the inspection is carried
out only once per connection. Moreover, such system cannot prevent being evaded: services
widely being assigned low-priority such as traffic of P2P applications can switch the used TCP
ports and use encryption to effectively prevent reliable identification.

This approach does also not seek cooperation with end hosts and does not consider any explicit
or implicit signaling from senders or receivers. DPI-based traffic management systems depend
on the subscribers communicating rather openly (at least sufficiently open to allow guessing
used services) but do not implement any incentives to do so. In contrast, the behavior of such
systems is completely defined by the ISP’s configuration of service priorities and policies. This
configuration and even the fact of deployment of such technology is usually not made public, so
public debate is muffled. Nevertheless, pushing back traffic selected by such an operator-defined
list of service priorities fundamentally violates the network neutrality principle. Moreover, such
system may always be evaded, which invites starting a cat-and-mouse game between developers
of services assigned low priority by the ISPs and the developers of the DPI traffic management
solutions.

Summarizing, DPI-based Traffic Management is a more fine-grained and much more expensive
tool to manage traffic than Comcast’s Congestion Management System. It depends on subscribers
behaving cooperatively, e.g. not using encryption and using standard ports, but neither gives
them a say in priorities nor does it honor the subscribers’ priority signaling in terms of choice
of CCA. Moreover, it is generally prone to recognition errors and its core idea fundamentally
violates network neutrality.

68 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

Receiver

TCP feedback

Congestion
signal

ConEx signal

Sender

Congested
interface

Flow of data packets
Implicit or explicit congestion signaling in flow of packets
TCP feedback on loss & ECN and optional timestamps in ACKs
ConEx signal

Figure 3.3: Signaling of a ConEx-enabled TCP connection relevant for the ConEx system

3.5.5 Congestion Policing based on Congestion Exposure

Another proposal for congestion management is Congestion Policing based on ConEx (CPC).
This concept has been proposed by Bob Briscoe [151] and several researchers, including the
author, have implemented and evaluated policing architectures based on congestion information
made available by Congestion Exposure (ConEx). Unfortunately, these evaluations did not show
the results hoped for [152], and in several cases have not even been published as we learned
through private communication. Nevertheless, we shortly present the concept since the ideas
behind that concept are worth noting and inspired the development of CPQs (see Section 3.5.6).

Description

Basically, the proposed system is based on per-subscriber policers that monitor the congestion
a subscriber causes over time and penalize subscribers when causing excessive congestion. In
the context of this system, congestion is understood as packet loss and ECN marks only. These
signs of congestion are only detectable downstream of the bottleneck, i.e. only the receiver of a
flow knows for sure the whole extent of congestion along the path of that flow. This information
is meant to be published to every other node on the path, among them the policing entity, by a
mechanism called Congestion Exposure (ConEx). ConEx is a mechanism allowing a receiver in a
bidirectional communication to insert information on the downstream congestion to the upstream
packets, and the sender to re-insert information on recent congestion into new downstream
packets. The signaling important in a ConEx-enabled TCP connection is shown in Figure 3.3
. This congestion information is more detailed than TCP’s duplicate ACKs that result in a full
cwnd of duplicate ACKs regardless of the number of packets lost in the last RTT.

In consequence, all nodes on the downstream path, which may differ from the upstream path, learn
about recent congestion on the whole path. Since they already see congestion upstream of their
position, they now can deduct the amount of congestion downstream of their position on that path.
ConEx was discussed and designed in a now concluded designated IETF working group [153],
which produced some informational RFCs on concepts and use cases [RFC6789, RFC7713,
RFC7778] and two experimental RFCs. The latter describe a modification to TCP [RFC7786]
and an extension to IPv6 [RFC7837], allowing a fully working system for TCP traffic.

3.5 Related Work on Peak- and Overload Management 69

Discussion

When examining CPC it is important to keep in mind that congestion, i.e. losses, depend on the
available bandwidth at the bottleneck for most TCP CCAs. The lower the available capacity, the
shorter congestion epochs become, so the higher the absolute loss rate becomes. Moreover, for
relevant BDPs the number of losses per congestion epoch, the loss rate, is very low: Consider
a link of 24 Mbit/s capacity, 100 ms RTT and 100 ms worth of buffer at the bottleneck. For
1500 Byte packets, this means that the base BDP is 300 kB or 200 packets, and at full buffer
the BDP is 600 kB and 400 packets. If one TCP NewReno connection utilizes this link, it needs
200 RTTs to increase the cwnd from base BDP to maximum BDP, transmitting 201 BDPs of
packets during that time. This results in one packet loss every 40200 packets, or, considering
the linear growth of the RTT, every 200 ·150 ms, i.e. every half minute. For a 2.4 Mbit/s link
and same other parameters, we get one loss every three seconds. Another example highlights
the weakness of ConEx with today’s congestion semantic: At startup, due to the exponential
slow start phase, the flow on the 24 Mbit/s link will cause about 400 packets to be dropped, more
than would be dropped in six hours of continuous transmission. So, measuring a subscriber’s
contribution to overall load by measuring congestion is impossible with the current congestion
semantics. This is expected to be different for more fine-grained congestion signaling with higher
signaling rates. An inspiring example is DCTCP [117] that uses ECN signaling with adapted
semantic. We examined this protocol and found that with some changes to Internet routers it
could also be used in the Internet [154]. If such approach would become the dominant CC in the
Internet, CPC might become an interesting overload management mechanism.

Another challenge with CPC is penalizing subscribers that shall reduce their rate. A pure policing
element, i.e. which does not modify the scheduling, may only penalize a subscriber by delaying
or dropping packets, which equals emulating congestion. Here again the congestion semantic
poses a problem since any packet drop usually results in a drastic decrease in the sending rate, so
the policer is likely to cause an undesired over-reaction.

Aside from open challenges in system design, there are also fundamental issues regarding
the concept of CPC. First, ConEx does not work for unidirectional transmissions. This is a
fundamental shortcoming which in reality is not of big importance since there is close to no
true unidirectional traffic in today’s Internet (see Section 2.3.3), in particular in the targeted
residential access networks. Second, ConEx is a global signaling. It fully works only if all
senders and receivers implement the protocols. This cannot be expected to happen in the near
future. Nevertheless, CPC would work quite well and could be beneficial if receivers and senders
of most of the traffic implement the protocol. But even that must be doubted.

On the positive side, CPC honors priority signaling of end hosts by using foreground or back-
ground CCs, even if indirectly: Since background CCs use only little buffer and aim to avoid
provoking packet drops at all, such transmissions do not cause congestion in the definition used
by ConEx. So, they might be transported even when a subscriber is to be penalized, depending
on the design of the penalty function.

CPC reveals specific weaknesses if deployed at the root of a hierarchical access network and
evaluated against the objectives defined in Section 3.4. In that use case, it makes a crucial
difference that ConEx does not monitor the place of congestion. With some effort, a ConEx
policer can calculate (or estimate well), which amount of congestion was experienced within

70 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

the regional access network and which outside. This is possible since the congestion occurred
within the access network equals to the congestion signaled by ConEx minus the congestion seen
one RTT ago (applies to both upstream and downstream). Nevertheless, a ConEx policer cannot
distinguish if the congestion two subscribers experienced occurred at a shared link or at their
respective access links. So, it also accounts for irrelevant congestion, produces false positives
and in consequence unnecessarily penalizes subscribers, possibly inducing an unnecessarily low
utilization.

In the use case of access network overload management, CPC shows another fundamental
shortcoming: CPC does not carry out resource allocation itself, so it must be deployed combined
with a queuing discipline or a scheduler. While for meshed networks a simple shared queue with
an AQM is often a good choice, for gateways to hierarchical networks such as the regional access
networks ISPs usually cannot give up all the guarantees a per-subscriber scheduling provides.
Nevertheless, when combined with a standard HFS, ConEx adds a medium-term fairness between
foreground subscribers, but the HFS still allocates a full fair share to all background subscribers
and prevents background users from detecting the overall congestion on shared links. Therefore,
such a combination cannot reduce background traffic during overload or peak hours. So, CPC is
not capable of compensating the drawbacks of HFS and achieve better performance measured
against our goals.

Summarizing, monitoring the congestion a subscriber’s traffic causes allows to distinguish
aggressive heavy users from more cooperative ones. This may provide a good basis for defining
priorities or penalties aiming for some kind of medium-term fairness. However, the CPC approach
has fundamental drawbacks and, moreover, must be combined with a resource allocation scheme.
For the use case in focus, this probably must be some HFS. Unfortunately, such combination
inherits drawbacks from CPC, e.g. overshoots and slow reaction, and from HFS. Here, in
particular, subscriber isolation is not removed that prevents background subscribers from yielding
during overload.

3.5.6 Congestion Policing Queues

Description

The Congestion Policing Queue (CPQ) concept [155] is an academic proposal by the author
of this thesis for implementing a resource allocation that is fair on a broader time scale. It can
be seen as an advancement of CPC that broadens the meaning of congestion from the binary
loss-focused understanding to an understanding using a continuous range based on queue size,
i.e. which also captures queuing delays not resulting in a packet drop. In contrast to CPC, it
combines resource allocation and policing in one element. CPQs only use local congestion
information, i.e. the queue size of the internal queue, so a CPQ can only work if placed at the
bottleneck. This also means that in contrast to CPC, CPQs reduce the congestion considered
in making policing decisions from potentially all bottlenecks to the one bottleneck the CPQ is
deployed at.

3.5 Related Work on Peak- and Overload Management 71

Discussion

The CPQ approach eliminates several drawbacks of CPC. CPQs use the internal queue size as
congestion information, so there are no dependencies on end host support or auditing of external
signaling. The queue size is also a more fine-grained and more frequent input information than
the congestion information ConEx can provide: A meaningful value can be retrieved for every
incoming packet. We showed that CPQs achieve the targeted displacement of heavy users’ traffic
during overload situations [155]. Nevertheless, CPQs are hard to tune properly.

Applying CPQs to the targeted use case requires deploying a CPQ instance at every interface
carrying aggregated traffic, i.e. not only at every BNG downstream interface, but also at the
downstream interfaces of the AGSs. CPQs perform better than CPC for the targeted use case
with respect to several of our goals. The most important fact is that the shared queue immediately
implies that background traffic can detect when bandwidth becomes scarce and therefore yields
during overload.

Regarding some of the performance metrics, CPQs benefit from the properties of the hierarchical
topology of our use case. This especially applies to queuing delay. Generally, due to the fixed
buffer configuration of a CPQ, the average queuing delay of a user’s traffic increases the fewer
other users are active. Specifically, if the number of active users changes by a factor 1/N, the
average delay for the remaining users changes by the factor N. This does not create an issue
since it only holds if the respective link is the bottleneck at that time. Due to the decreasing
link speeds in the topology’s hierarchy and the prevalence of CC, an aggregation interface in
hierarchical access networks can only constitute the bottleneck if so many subscribers are active
that their total capacity exceeds the aggregations link’s capacity. The role of CC is crucial since
CC ensures that the incoming traffic bandwidth does not significantly exceed the bottleneck
capacity. So, when, e.g. during the night, only few subscribers are served by an aggregation
link that can serve many more subscribers at full rate, no queue can build up at the aggregation
interface. The same argument applies to the issue of increasing delay caused by putting several
CPQ instances in sequence: if there is a significant queue at one level, the hierarchical topology
makes sure that there is no significant queue at the other hierarchy levels. “Not significant” in
this context means that traffic bursts may very well result in some packets buffered. But the
queue will not grow to its limit, on the contrary, it will vanish within at maximum few RTTs.

There is the risk of TCP possibly causing a medium-term unfair rate allocation due to the shared
queue and TCP-dominated traffic. As detailed in Section 2.4.2, Lautenschläger showed [106]
that the throughput of TCP Cubic connections sharing a bottleneck with a shared queue varies
by about a factor of three. Nevertheless, this only becomes an issue if the subscribers’ access
links do not serve as upper limit to the varying throughput, i.e. if the overload at the aggregation
interface is huge. If the aggregation links are only slightly overloaded during peak periods, e.g.
so that the subscribers receive 90 % of their maximum capacity, this also poses a limit on the
possible unfairness. Therefore, the throughput of a single subscriber is expected to vary in the
medium-term with this approach, but the extent of variation correlates with the extent of overload
of aggregation links.

So, the approach of deploying CPQs at every interface on every aggregation level in a hierarchical
access network may work sufficiently well for BE traffic in many scenarios. Yet, there are some
issues. First, deployment of CPQ in an regional access network requires replacing all nodes in

72 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

one step, which is expensive and difficult in real networks. Second, in access networks there is
not only BE but also priority traffic. To implement prioritization, a scheduler is necessary. So if
CPQs were deployed at every node in the access network, a scheduler would also be required at
every node. Moreover, each scheduler would need access to the policy repository.
We do not expect ISPs to be willing to fulfill these requirements because they contradict the ISPs’
current architecture.

Summarizing, while CPQs could substantially improve the peak load situation with respect to
our objectives, they have minor deficiencies. More important, due to their requirements, they are
unlikely to be deployed.

3.6 Assumptions and Prerequisites

Some of the properties of the situation described in Section 3.2 are necessary for RADICCO
to function properly or to achieve its objectives. Here, we list these properties and concisely
discuss their role for RADICCO and their probability to change in the near future. This applies
to technical properties as well as non-technical properties that relate to the human users. The
technical properties regard the regional access network architecture (see Section 3.6.1), the
hierarchical packet scheduler to be extended by RADICCO (see Section 3.6.2) and the way
CCAs are used to differentiate foreground traffic from background traffic (see Section 3.6.3).
Moreover, we discuss the relation to the users, i.e. their incentives to use background CCAs
today and when RADICCO is deployed (see Section 3.6.4) and if subscribers should be informed
about deployment of RADICCO (see Section 3.6.5).

3.6.1 Regional Access Network Properties

Bottleneck Mostly in the Access Network

As detailed in Section 2.1.2, in today’s ISP networks the bottleneck is located in the regional
access network for most of the traffic. A main reason for that is that current network design
and planning is based on a fast but rather simple core network that particularly does not provide
packet-level QoS. Allowing bottlenecks also in these parts of an ISP’s network would require
a fundamental redesign and expensive new devices. Moreover, there is no need for such
functionality for a big share of traffic, e.g. all transit traffic that is switched through the network
on physical layer.
Therefore, we assume ISPs’ overall network architectures to focus bottlenecks to the access
network also in the near future.

Oversubscription in Dimensioning Aggregation Links

RADICCO is only beneficial if aggregation links in hierarchical access networks are bottlenecks
during peak periods, which can only happen if they are oversubscribed. As detailed in Sec-
tion 2.1.1, oversubscription is part of any planning of packet switched networks for economic

3.6 Assumptions and Prerequisites 73

reasons.
So, we expect this prerequisite being also met in the near future.

Hierarchical Scheduling and QoS Enforcement at the Edge

As detailed in Section 2.1.1, there are very good reasons to carry out scheduling and QoS
enforcement not at all nodes in an access network but to define a service edge and execute these
functions at the respective edge routers, i.e. BNGs. As long as the dimensioning of a hierarchical
topology uses oversubscription, it makes no sense not to apply hierarchical scheduling, and
thereby QoS enforcement, at the edge of that oversubscribed, hierarchical topology.
Since we expect that aggregation links will be oversubscribed, we expect that this prerequisite is
also met in the near future.

Large Share of BE Traffic

The share of BE traffic is relevant for RADICCO for two reasons: First, since RADICCO
operates on the BE traffic only, the less BE traffic there is, the less improvement RADICCO can
achieve. Second, if shared links are used to transport all traffic classes of a subscriber, as it is
today (and there is no reason for change), a smaller share of BE traffic means an increased share
of priority traffic. This probably would result in higher volatility of the capacity available for BE
traffic, i.e. available to RADICCO. Higher volatility in rates results in both background CCAs
and RADICCO to function less reliably, so both the usage of background CCAs by the users and
a deployment of RADICCO becomes less attractive.
Up to now, there are no signs that the share of priority traffic in residential broadband Internet
traffic increases or that the set of prioritized services is extended. So, we expect that this
prerequisite is also met in the near future.

Static Capacities of Aggregation Links

Today, capacities of aggregation links of wired access networks are static. Nevertheless, it may
make sense to operate fiber-optical high speed links on lower than maximum transmission speeds,
e.g. to save energy due to less complex modulation and Forward Error Correction (FEC) schemes.
Though, the maximum speed, which is likely applied during peak load periods, is expected to be
constant since the properties of the physical channel of the used fiber-optical links are static.
So, we expect that this prerequisite is also met in the near future.

Large Per-Subscriber Buffers

As we detailed in Section 2.4.4, foreground CCAs require rather large buffers at the bottleneck
in order to fully utilize it. Due to the large existing deployment of hosts with such CCAs, ISP’s
are expected to continue configuring large buffers at interfaces and schedulers.
So, this prerequisite is expected to be also met in the near future.

74 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

Overload for Only Short Periods

As detailed in Section 2.1.3, aggregation links of today’s residential access networks face
overload only for short periods per day since most of the traffic for residential access networks
belongs to services consumed by human users. We expect more traffic of non-interactive services
in the future and thus an increasing amount of traffic that is rather independent of the time of
day. Nevertheless, also interactive services will increase in traffic volume, e.g. due to higher
resolutions used in VoD streaming.
In consequence, there is no reason to expect that non-interactive traffic will be the dominating
share of traffic and thus we expect this prerequisite also being met in the near future.

3.6.2 Packet Scheduler

RADICCO does not depend on a particular scheduler, but the packet scheduler to be enhanced
by RADICCO must meet some conditions in order to build a well performing system. A first set
of properties is required for any scheduler at a downstream interface of a BNG of a hierarchical
access network:

- Multiple hierarchies.

- Rate shaping.

- Prioritization (typically three or four classes).

- Adapting weights during operation.

The fourth requirement, support for weight adaptation, is not necessary for many access technolo-
gies. It must however be met for BNGs serving ADSL since ADSL allows for rate adaptation
using Access Node Control Protocol (ANCP) signaling [RFC6320] due to changing channel
conditions. Other access technologies such as VDSL usually do not support adapting the link
capacity to changing physical conditions. Nevertheless, products intended for BNG deployment
usually cover the whole range of potential scenarios to allow ISPs deploying a homogeneous
architecture over heterogeneous access technologies. Therefore, today’s routers with BNG
functionality allow adapting the weights and maximum rates during ongoing operation, so their
schedulers support adapting weights, too. For RADICCO, we do not require adapting maximum
rates but only the weights. Nevertheless, both may be adapted. Our prototype implementation
adapts both since weights and maximum rates are managed in one.

To be enhanced by RADICCO, the scheduler must additionally support

- Accessing a flow’s current buffer usage.

- Sufficient performance to leave computation resource to execute RADICCO’s calculations.

We will discuss both requirements in the following.

3.6 Assumptions and Prerequisites 75

Accessing a Flow’s Buffer Usage

The scheduler must access a data structure holding several variables of a flow during operation,
e.g. the flow’s weight but also the size of the head packet and if there is a packet in the
queue. Moreover, the queue size, i.e. the number of bytes occupied in a flow’s buffer, must be
maintained as a state variable by the queuing discipline. We do not know commercial scheduler
implementations but we assume that existing data structures accessible for the scheduler can be
rather easily extended to include the existing state variable of the queue size.
So, we expect this requirement is met or can be met by all relevant scheduler implementations.

Performance

The design of RADICCO is based on the assumption that a scheduler is extended by RADICCO
by integrating its algorithm into the scheduling algorithm rather than running it as a separate
process. Therefore, we assume to require the necessary computational resources on the same
Central Processing Unit (CPU) that the scheduler runs on. To estimate if a scheduler can be
expected to leave sufficient computation resource to execute RADICCO’s calculations, we, first,
estimate the number of scheduling operations per time unit on a BNG downstream interface and
their computational cost. Then, we estimate which complexity of RADICCO’s operations is
acceptable to be executed between two scheduling operations.

The number of scheduling operations per time unit depends on:

- The capacity of the BNG downstream interface.

- The average packet size.

- The minimum number of packets dequeued after each scheduling operation.

The interface’s line rate typically is 1 Gbit/s or 10 Gbit/s today and in the near future can be
expected to reach 40 Gbit/s or 100 Gbit/s. Regarding packet size distribution in the Internet there
is only rather old data available [156], showing an average packet size of about 1000 byte. There
is good reason to assume that average packet sizes in downstream have since increased because
the bigger transmitted objects are, the more full-sized packets can be transmitted. The minimum
number of packets dequeued after each scheduling operation is often assumed to be one, but this
is not mandatory.
As an upper bound, we assume an average packet size of 1000 bytes, a 40 Gbit/s interface and
single-packet dequeuing, i.e. 5 million scheduling operations per second.

The cost of a scheduling operation often depends on the number of flows, i.e. the product of

- The number of subscribers served by a BNG downstream interface.

- The number of QoS classes managed per subscriber.

As detailed in Section 2.1.1, we may assume several hundreds of subscribers and four QoS
classes to be used, resulting in the number of flows being in the range of few thousands. This
means, log N can be safely bounded by 13 = log2(8192). Since some algorithms such as WF2Q+

76 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

require double-indexed data structures (see Section 2.2.4), such algorithms may be implemented
with about thirty CPU operations per scheduling operation.
Here a remark on O(1)-DRR schedulers is necessary. To achieve O(1) complexity, the quantum
for the smallest flow must be at least one maximum sized packet. Applying the RADICCO
concept usually will result in an increased spread of flow weights since it reduces the weight of
background flows to a value bgmin that is smaller than the smallest unmodified weight. If this
increased spread of flow weights is to be handled with O(1), the burstiness and therefore jitter
will increase, and may reach unacceptable values. For example, assume the minimum weight
corresponding to 1 Mbit/s, and the quantum being 1500 bytes. Consider a 100 Mbit/s subscriber,
his flow will have a quantum of 150 KB or 1.2 Mbit. This is equivalent to 12 ms of continuous
transmission at the access link’s bandwidth. In contrast, at a 40 Gbit/s BNG interface this amount
of data is transmitted within 0.03 ms. Therefore, a O(1)-DRR scheduler results in up to almost
12 ms of jitter for this 100 Mbit/s subscriber. So also for DRR scheduling, some additional effort
may be recommended to provide better QoS in terms of jitter, e.g. by using Nested-DRR [157].
Nested-DRR has asymptotic constant complexity O(1), but with a large constant.
Due to this behavior of true DRR schedulers and since N is not too large at BNG schedulers,
we consider the computational effort of O(logN) schedulers to be a reasonable upper bound
estimate.

Regarding the processing units used in equipment deployed as BNGs there is no information
publicly available. We assume their cores to perform a few thousand Million Instructions Per
Second (MIPS), comparable to a slow general purpose CPU.

In consequence, schedulers with constant (O(1)) as well as logarithmic (O(log N)) complexity
are expected to leave much of the computational resources of a one-core CPU unused, provided
that the factors neglected in asymptotic analysis are not too big. If these resources are not used
for other tasks in today’s products, RADICCO could even be deployed to routers in the field
via a software update. These resources might also be spent on tasks not related to scheduling,
which therefore do not need to be executed on the same CPU as the scheduler. In that case, a
next generation product could be equipped with RADICCO by adding more CPU cores without
need to develop a faster CPU architecture.

So, we expect this requirement being met by many O(1) and O(log N) schedulers, and probably
by the ones implemented in commercial products for BNG deployment.

3.6.3 Traffic Differentiation by Congestion Control

As described in Chapter 2.4, background CCAs react to delay while prevalent standard, i.e.
foreground, CCAs react to loss / ECN only or they switch to such modes of operation if competing
foreground traffic is detected. The approach of RADICCO assumes that this association of
“background CCA” and “exclusively delay-controlled CCA” is bijective and stable.

There are good reasons for this assumption: First, any delay controlled connection will yield to a
loss controlled one as long as the bottleneck buffer is sufficiently large, so traffic controlled by
purely delay-controlled CCAs will be pushed to the background as soon as there is significant
loss-controlled traffic. Small buffers could be an incentive for using delay controlled CCs for non-
background traffic, but we expect large buffers to be configured in the near future as explained

3.6 Assumptions and Prerequisites 77

above. Therefore, using a delay-controlled CCA must be interpreted as the source intending
this traffic to yield to loss-controlled BE traffic, i.e. it must be considered as background traffic.
Second, any delay-controlled connection will also yield to an ECN-controlled connection as long
as the semantic of the ECN signaling remains as defined in [RFC3168] since then the reasoning
given above applies to ECN, too. Third, even if recent activities in the research community to
support low delay services by changing the semantic of ECN-CE and deploying dual AQMs in
routers [154] will succeed, this low-delay foreground traffic still needs to be distinguished from
legacy traffic, e.g. by re-interpreting the ECT1 signal. Thus, there will also exist a traffic class
that does not implement the new ECN semantic but is handled as today’s BE traffic class.
All in all, legacy loss-controlled (and ECN-controlled according to today’s standards) traffic
will continue to exist and will have to be treated like today. In this traffic class, delay-controlled
CCAs can be used for identifying background traffic, so it is a stable association.

3.6.4 Incentives for Using Background Congestion Control Algorithms

Using background CCAs results in a disadvantage by their nature, namely receiving less than the
fair share when competing with foreground traffic at a bottleneck. RADICCO further increases
this drawback since it partly extends this behavior to bottlenecks in the aggregation network that
today, with the deployed BNGs applying HFSs, are excepted from competition. Therefore, it is
crucial to ensure sufficient incentives for the deciding parties to continue using such CCAs for
non-urgent transmissions. This section will outline who shall be the addressee of such incentives,
which incentives exist today and which options exist to provide further incentives for using
background CCAs for transmitting non-urgent content.

Addressees of Incentives

At the downstream scheduler, only the sender’s CCA is decisive for the traffic’s behavior, not
the subscriber’s. Nevertheless, the receiver of a service usually has a big say in how a service
is delivered, e.g. by how he requests that service. For example, many services can be retrieved
by several ways, e.g. the ubuntu Linux distribution images can be retrieved either using a
standard HTTP download, i.e. using a foreground CCA, or via BitTorrent, i.e. using uTP, a
background CCA. This particular approach leaves the decision on how urgent that download
is to the human user. For some other services, there is no human user in the loop, e.g. most
OSs, depending on configuration, automatically download updates for themselves as well as for
installed applications. This applies to current Windows, Linux, Android or Apple iOS OSs. For
some applications and platforms, the application keeps itself up to date. For instance, software of
the Mozilla foundation, such as the Firefox browser or the Thunderbird email client, manage the
updating process on Windows OSs themselves. So, relevant addressees of incentives are users,
OS designers and application programmers.

Of these three groups, end users are not the main target of incentives for BE differentiation
for two reasons: First, the average user cannot be expected to understand and be aware of the
technical consequences of his choices. Second, in many cases when a human user himself
triggers a transmission, background priority is not the right choice since the user’s QoE depends

78 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

on the achieved throughput, especially when the user in some way waits for completion of the
transfer.

In contrast, for application and OS designers we can expect expertise and considerate design.
This statement is proved by today’s OSs: both Apple and Microsoft OSs use some kind of
background or low priority rate control for their software update downloads. For Microsoft,
there is BITS, which supports one foreground as well as several background priorities and aims
to only use “idle network bandwidth” for background transfers [115]. Nevertheless, there is
not much information on how BITS works to achieve this goal. Apple OSs use LEDBAT for
software updates [114], probably including application updates. Unfortunately, there are strong
indications, especially the public sources [125], that Apple uses the target delay recommended
in the standard [RFC6817], which in many scenarios does not result in properly yielding to
foreground traffic (see Section 2.4.3.5). Anyway, both examples show that OS designers are
aware of the possibility of traffic differentiation by transport layer CC, their impact, and their
responsibility. Moreover, OS designers have greater impact than application designers since
today OSs are responsible for the by far largest amount of traffic for software updates.
Summarizing, OS designers and implementers are the most important players to be addressed by
incentives to use CC for traffic differentiation.

Today’s Incentive Situation

With today’s classical hierarchical scheduler at the BNG, using CC traffic differentiation results
in potential benefits only for users using the same access link.
CC traffic differentiation only makes a difference, when there are foreground and background
transmissions competing for a shared bottleneck. This is only the case if the following conditions
are met:

1. Both types of connections are active at the same time.
2. There is no other effective bottleneck for the foreground traffic.
3. They share a bottleneck that allows the background CCs to detect an increase in buffer usage

caused by the foreground traffic.

This shared bottleneck typically is the access link or its corresponding scheduler node in the
BNG’s HFS. So, when applying an HFS at the BNG’s downstream interface, increased throughput
of foreground traffic is achieved at cost of the same subscriber’s background traffic regardless
of whether the BNG’s scheduler limits the scheduled rate to the access link’s capacity or to the
subscriber’s fair share of an congested aggregation link. Especially, no subscriber receiving
foreground traffic can benefit at the cost of another subscriber receiving background traffic.
Obviously, the potentially reduced throughput of background traffic is immediately compensated
by the increased throughput of the concurrent foreground traffic. Since the increased foreground
traffic bandwidth usually increases QoE, in today’s situation there is a reasonable incentive for
CC traffic differentiation as the wide-spread implementations proof.

3.6 Assumptions and Prerequisites 79

RADICCO Impact on the Incentives System and Potential Adaptations

When applying RADICCO, the situation changes. Whenever the access link is the limiting
bottleneck, the result is the same, there are no weights adapted. But if the bottleneck is an
aggregation link, weights are adapted so that the throughput of background subscribers is reduced
in favor of foreground subscribers. So, while CC-based traffic differentiation is only effective
within the traffic of a subscriber today, i.e. with classical HFS, when applying RADICCO at the
BNG, CC traffic differentiation becomes effective also among traffic of different subscribers.
Inter-subscriber CC-based traffic differentiation shifts incentives, since now a subscriber can
potentially benefit from other subscribers using background CCs, even without ever using
background CCs.

There are several approaches to this challenge. The first option is to add counters to the scheduler
implementation to enforce reciprocity: By checking these counters, RADICCO could allow
a subscriber to benefit from other subscribers’ background traffic only if and as much as this
subscriber has received traffic detected as background traffic. Nevertheless, this approach further
adds complexity and computational effort to the BNG’s packet scheduler.
The second option is to use separate congestion policers as used in the CPQ approach (see
Section 3.5.6). Both approaches provide long term incentives but might also result in short-term
interference, impairing the subscriber’s QoE.
The third approach is the simplest: do nothing. This approach is based on the assumption that
the existing incentives will even gain importance in the future and will also be sufficient for the
situation changed by deployment of RADICCO. Already today, most subscribers use several
networked devices, including desktop computers, notebooks, tablet computers and smart phones,
smart TVs, set-top-boxes and Internet radios. The variety as well as the number can safely be
expected to continue to grow in the future, e.g. due recent trends like home automation or IoT.
For the QoE of the human users, only few transmissions are relevant at a time. So, a higher
number of active devices within one subscriber’s domain increases theprobability of mutual
interference if no measures are taken to prioritize the QoE relevant traffic. The only established
option that does not require introducing additional signaling is traffic differentiation by CC.
So, the incentive to yield to foreground traffic grows with increasing number of devices in the
subscribers’ networks. Moreover, as argued above most CC decisions are taken by OS designers,
so are defined just once for many devices. The OS designers take decisions aiming to cope
well with as many as possible scenarios, for instance with the access link being a bottleneck
sometimes. Moreover, an end host usually cannot detect if there is a HFS in place or a RADICCO
scheduler, and using background CC for background traffic does not inflict any drawbacks in
case of HFS but comes with potential advantages.
So, there are many reasons that the existing incentive system is sufficient to work well also for
RADICCO deployments and there are options to further increase incentives if necessary.

Summary on Incentive Situation

Although RADICCO fundamentally changes the incentive situation, we assume that probably
there is no need for additional incentives besides the existing ones. If this assumption turns
out to be wrong, there are still two options outlined above to adapt new deployments or even
complement or upgrade existing ones.

80 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

3.6.5 Information of Subscribers

The question arises if and in which detail subscribers must or should be informed about the
deployment of RADICCO. On the one hand, there are fields using other, less fair schedulers
without informing the subscriber. For example, schedulers in cellular networks are very different
from HFSs but there are also technical reasons for not treating all users the same in terms of
bandwidth, especially the varying capacity of the device-specific channel. On the other hand,
the vivid discussion on network neutrality may indicate that informing the subscribers could be
advisable. Nevertheless, this is a non-technical question than may be answered differently from
deployment to deployment. It is out of the scope of this work.

3.7 Algorithm Description

This section describes the algorithm of RADICCO, so it focuses on the hierarchical scheduler for
regional access networks, i.e. the tree of schedulers at a BNG’s downstream interface. Therefore,
the following text refers to the graph of schedulers, not the network’s graph. So, by “node” we
refer to a scheduler instance in that tree representing an downstream interface in the hierarchical
access network topology, but not to the network node as a whole, see also Figure 2.2.

In the following, the algorithm’s core functions and attributes are presented, structured in six
subsections: First, some necessary definitions and notations are introduced (see Section 3.7.1).
Then an overview on how the algorithm executes the presented function blocks is given (see
Section 3.7.2). Third, the algorithm for recognizing background traffic is described (see Sec-
tion 3.7.4). Then the algorithm for calculating the leaf nodes’ target rate for background traffic
is presented (see Section 3.7.5). Fifth, the necessary state calculations of inner nodes, i.e. edge
nodes and core nodes, are described (see Section 3.7.6) and finally, the algorithm for calculation
of a node’s effective rate is presented (see Section 3.7.7).

3.7.1 Definitions

For the description of the RADICCO algorithm, several terms and definitions are required.

Without loss of generality, we use rates instead of weights in all calculations. This is useful
since the finally calculated effective rates may immediately serve as weights for schedulers that
incorporate rate shaping as well as for schedulers that are used in combination with external
rate shapers. External rate shapers do not need to be adapted: Their main purpose is preventing
packet loss at the nodes of the access network and this goal is perfectly achieved even if a specific
link cannot be fully utilized because of a bottleneck before that link. Nevertheless, the queue
size at the rate shaper must be considered in traffic type recognition.

We must distinguish three significant types of hierarchy levels, i.e. types of nodes, in the
hierarchical adaptation algorithm presented, yet there may be more levels in the hierarchy. The
first type are the leaf nodes, representing schedulers for access links. The traffic of a leaf node
is recognized as either foreground or background at a time. The second type are edge nodes,
representing interfaces that aggregate traffic of multiple access links. So, edge nodes correspond

3.7 Algorithm Description 81

0,2

0,1

0,0

1,2

1,1

1,0

0

R

C
lassification

1

"schedules" Relation

R Flow Scheduler Instance
within Hierarchical Scheduler

Scheduling Decision

Figure 3.4: Corresponding hierarchical scheduler

to a feeding interface for an AN, thus carrying a mix of background and foreground traffic. The
third type are core nodes that further aggregate aggregated traffic. In general, core nodes are all
nodes but the ones on the two lowest levels in a hierarchical RADICCO scheduler. For a three-
level hierarchy, e.g. as depicted in Figure 3.4, the only core node is the root node corresponding
to the BNG’s downstream interface.
We denote the root node by R, a core node by c, an edge node by e, an arbitrary inner node, i.e.
any node except leaf nodes, by i and a leaf node by a tuple i, j where i identifies its parent and j
its index at this edge node.

Generally, the algorithm works on different types of rates:

Capacity Rates Cx
A capacity rate directly represents the capacity of node x, the maximum rate of the
corresponding interface in the hierarchical network topology. Today’s HFS statically uses
these rates for the respective nodes.

Target Rates wx(t) or wFG
x (t)/wBG

x (t)
A target rate of a node x defines a target, a guideline, for RADICCO. Often target rates
are defined for the traffic share recognized as foreground traffic, indicated by superscript
FG, or background traffic, indicated by superscript BG. The role of a target rate differs
between background and foreground traffic due to the very goal of RADICCO, which is
treating traffic differently depending on its traffic type.
Target rates of inactive nodes, i.e. nodes that do not have a packet ready to transmit, equal
zero.
For foreground traffic, a target rate reflects the maximum possible rate that can be trans-
ported to the respective active receiver(s). RADICCO aims to finally assign that rate but
during overload, this is not possible. So, a foreground target rate defines a maximum that
often is not achieved.
In contrast, for background traffic, the target rates are usually below the maximum possible
rate. For background traffic, the finally assigned rate may be greater or smaller than the
target rate.
Except for foreground leaf nodes, a target rate is not constant over time.

82 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

Effective Rates rx(t)
The effective rate of a node x represents the rate that the scheduling algorithm effectively
uses for node x from now on until the next packet is dequeued from node x. The effective
rate may be greater or smaller than the target rate but not bigger than the capacity rate.

The following notations will be used:

CR The capacity of the scheduler’s root node R, i.e. of the BNG’s downstream link.

Ce The capacity of edge node e, i.e. of the downstream link from the aggregation switch to
AN e.

Ci, j The capacity of leaf node i, j, i.e. of the downstream link of the j’s subscriber attached
to AN i, subscriber i, j.

wT T
i (t) The target rate for the traffic type T T of inner node i at time t.

wFG
i, j The target rate of leaf node i, j if recognized as carrying foreground traffic.

For all foreground leaf nodes holds at any time: wFG
i, j = Ci, j.

wBG
i, j (t) the target rate of leaf node i, j at time t if recognized as carrying background traffic at

time t.

rFG
i, j (t) The effective rate of leaf node i, j at time t if recognized as carrying foreground traffic at

time t.

rBG
i, j (t) The effective rate of leaf node i, j at time t if recognized as carrying background traffic

at that time t.

3.7.2 Execution Overview

A scheduler implementing RADICCO differs from a standard HFS in several ways. It keeps
additional state at all nodes and the updates of these states are solely triggered by the execution of
the leaf nodes’ pop() and enqueue() functions. This section provides an overview on how
the algorithms and functional modules presented in the following sections interact to achieve the
goals aimed for.

First, RADICCO requires additional traffic monitoring to support traffic type recognition and
to support the decision on where rates are adapted, but the necessary functions are simple and
efficient. RADICCO keeps track of the load of any inner node, i.e. any aggregating interface.
Moreover, RADICCO derives a binary load state, distinguishing peak load (PeakLoadState)
from normal load (NormalLoadState). RADICCO does not depend on a specific detection
mechanism. Finally, but most important, whenever RADICCO schedules a leaf node, i.e. a
packet of its queue is dequeued, RADICCO derives the traffic type of this leaf based on its
buffer usage (see Section 3.7.4). The recognized current type of traffic is maintained at each leaf
node. To ease reading, we use the terms “background leaf node” and “foreground leaf node”
referring to a leaf node whose traffic is recognized as the respective traffic type at that time. In

3.7 Algorithm Description 83

Algorithm 3.1: The adapted pop() function
1 P a c k e t pop () {
2 i f (i sLea fNode) {
3 i f (c u r P a c k e t s () == 1 | | (inAdap tedOpera t ionMode &&
4 (c h e c k F o r T r a f f i c T y p e C h a n g e () | | i s B a c k g r o u n d)))
5 u p d a t e A d a p t a t i o n (n u l l) ;
6 }
7 r e t u r n super . pop () ;
8 }

Algorithm 3.2: The adapted enqueue() function
1 v o i d enqueue (P a c k e t p) {
2 i f (i sLea fNode && isEmpty) {
3 u p d a t e A d a p t a t i o n (n u l l) ;
4 }
5 super . enqueue (p) ;
6 r e t u r n ;
7 }

addition, RADICCO knows two operation modes for a node, and every node in a hierarchical
RADICCO scheduler is either in standard mode (StandardOperationMode) or rate adapting
mode (AdaptingOperationMode). Only in the second mode of operation RADICCO potentially
adapts rates of nodes also carrying background traffic.

Second, RADICCO adapts rates. The rate adaptation is only triggered by leaf nodes in Adapting-
OperationMode on three occasions:

1. When a change in traffic type is detected
by the call of checkForTrafficTypeChange() (see Algorithm 3.1).

2. When a background leaf node is scheduled, i.e. a packet is dequeued from its queue (see
Algorithm 3.1).

3. When a leaf node of any traffic type changes its active state, i.e. a previously inactive leaf
node receives a packet and becomes active or a previously active node dequeues its last
packet and becomes inactive (see Algorithm 3.1 for dequeuing a leaf node’s last packet
and Algorithm 3.2 for enqueuing to an inactive leaf node).

To implement cases one and two, the pop() function is overwritten as shown in Java-like pseudo
code in Algorithm 3.1. To implement case three, the enqueue() function is overwritten as
shown in Algorithm 3.2.

The adaptation process itself is executed recursively as shown in Algorithm 3.3: First, necessary
rate state variables are updated starting from the leaf, proceeding up to the root node. By carrying
the resulting state change to the one parent node on the next level, the computational effort is
independent of the number of nodes on that level. So, every rate adaptation only concerns the

84 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

Algorithm 3.3: The updateAdaptation() function
1 v o i d u p d a t e A d a p t a t i o n (S t a t e C h a n g e d = n u l l) {
2 S t a t e C h a n g e d e l t a = u p d a t e S t a t e (d) ;
3 i f (! i s R o o t && inAdap tedOpera t ionMode) {
4 g e t P a r e n t () . u p d a t e A d a p t a t i o n (d e l t a) ;
5 }
6 u p d a t e E f f e c t i v e R a t e () ;
7 }

affected leaf node and all its ancestor nodes in AdaptingOperationMode up to the root node. So,
at maximum exactly that many nodes are updated as the hierarchy has levels, typically three
nodes. As shown in Algorithm 3.1, the rate adaptation is performed before calling the pop()
function of the base scheduler. This ensures that the update of the scheduler’s internal data
structures (which depend on the scheduler in use) after dequeuing the packet from the leaf node’s
queue will already use the updated rates.

The calculations applied for both the state update and the update of the effective rate vary
depending on the node type. For leaf nodes, only the target rate of background leaf nodes is
updated (see Section 3.7.5). The algorithms for state update of inner nodes are presented in
Section 3.7.6. Once the root is reached and thus the state update is completed, the assigned
effective rates are re-calculated, this process starting at the root and proceeding down to the leaf.
These calculations always follow a common concept and are described in Section 3.7.7 in a
uniform representation.

3.7.3 Definition of Load States and Operating Modes

For any node in a hierarchical scheduler, RADICCO tracks via a binary variable if the respective
interface is currently facing normal load or peak load. We refer to the two states as Normal-
LoadState and PeakLoadState, respectively. Due to its design, RADICCO is independent of the
precise definition or detection algorithm. For the evaluated implementation, we identified peak
load by the EWMA of the utilization being greater than 0.9.

RADICCO shall only alter the rate of links that are located behind a bottleneck at that time.
Thus, RADICCO supports two modes of operation for all non-root nodes: AdaptingOperation-
Mode and StandardOperationMode. Only in AdaptingOperationMode, RADICCO (potentially)
modifies the rate of the respective node. This mode is only active, if a higher-level link possibly
constitutes the bottleneck instead of the access link at that time. Consequently, a node is
in AdaptingOperationMode if one of its ancestor nodes is in PeakLoadState, otherwise it is
in StandardOperationMode. For a node in StandardOperationMode, as the name suggests,
RADICCO does not alter the scheduler’s operation. Since the root node has no parent, there
cannot be any higher-level bottleneck. Therefore, at all times RADICCO aims to utilize its
capacity to the maximum, which corresponds to the root node being in StandardOperationMode.

Accordingly, the detection and dependencies between these two modes are defined as follows:

3.7 Algorithm Description 85

- Any inner node’s load is constantly monitored,
independently of its load state or operation mode.

- Any child of a node in PeakLoadState is in AdaptingOperationMode.

- Any child of a node in AdaptingOperationMode is in AdaptingOperationMode.

- Any child of a node in NormalLoadState and StandardOperationMode is in
StandardOperationMode.

Therefore, a change of operation mode often concerns only partial subtrees, minimizing the
number of operation mode switches. We highlight this by an example: Assume the whole
scheduler tree being in NormalLoadState. This directly implies that all nodes are in Standard-
OperationMode. When the root node R enters PeakLoadState, all its child nodes with their
subtrees switch to AdaptingOperationMode. While R is in PeakLoadState, the load of the
inner nodes in the subtrees is still monitored, so e.g. if a child i detects peak load, i enters
PeakLoadState. Therefore, when node R leaves PeakLoadState, all nodes in its subtree switch to
StandardOperationMode except the child nodes of node i and their subtrees, which remain in
AdaptingOperationMode.

3.7.4 Traffic Type Recognition

In order to identify the dominating behavior of a subscriber’s aggregate, i.e. of a flow in terms of
packet scheduling, the CCAs’ behaviors and assumed topological properties are exploited.
For foreground CCAs, we know that they fill the buffer at the bottleneck and frequently cause
packet losses there. For background CCAs, we know that they do not use a significant amount of
buffer space at the bottleneck. Both types of CCAs may use the full bandwidth of the bottleneck.
For residential Internet traffic, the bottleneck is usually located within the delivering regional
access network, i.e. within the HFS. In that case, monitoring the development of a flow’s queue
size or the flow’s packet drops is sufficient to recognize the dominating traffic type of that flow, i.e.
the respective traffic aggregate. Although this holds for all hierarchy levels, the potential gain is
obviously the bigger the lower the hierarchy level RADICCO operates on. Therefore, RADICCO
only carries out traffic type recognition on per-subscriber level, the smallest granularity scheduled
at BNGs.

For the technical realization, we need to observe the respective per-subscriber queues for some
time. When designing our recognition algorithm, we only considered options that require, first,
only low overhead and, second, a rather short observation time. With these constraints, we
found that the most reliable approach to recognize the traffic type is to check if the buffer usage
has been below a threshold for at least some defined time interval. Details on reasoning and
alternatives are given in Section 3.8.5.

Due to the AIMD behavior of foreground CCAs, the threshold must be scaled with the BDP for
nodes of different rates, i.e. with the node’s rate. So, although the monitoring is performed using
a specific absolute threshold tt_recogabsQT hresh

i, j for every leaf node i, j, RADICCO provides
a global configuration parameter that defines a relative threshold tt_recogrelQT hresh giving the
threshold as a fraction of the leaf node’s buffer size.

86 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

In calibration simulations, we found that a relative threshold tt_recogrelQT hresh = 0.35 requires
only an observation time of tt_recogobsDuration = 2s in order to achieve close to zero false posi-
tives. Nevertheless, the reliability of any traffic type recognition algorithm also depends on the
variability of the overall system. For instance, many simulations presented in Chapter 4 resulted
in worse traffic type recognition than seen in our calibration simulations. Developing a product
from RADICCO would require further tuning of tt_recogrelQT hresh and tt_recogobsDuration and
calibrating them with real traffic.

3.7.4.1 Initial Traffic Type

At some point in time, a subscriber connects to its access node for the first time, or this access
node or even the BNG is restarted or replaced. Whatever the default traffic type in RADICCO
after startup is, its impact is negligible: after a short period, any foreground traffic should have
been recognized as such, and same applies for background. So, this is not the concern of this
section. Today, with flat rates being the by far prevalent plan for Internet services, subscribers are
usually not active all the time they are connected to their ISP, so we can decide with which traffic
type a subscriber shall be recognized initially after such idle period. The best choice heavily
depends on the transported traffic, especially the probability of traffic type changes. So, the
initial traffic type for products implementing RADICCO should be left for configuration (other
options are discussed in Section 3.8.6).

For our implementation, we chose to ignore idle times. This in consequence means that an idle
subscriber will be recognized as background subscriber latest after tt_recogobsDuration minus the
time for depleting a queue of tt_recogabsQT hresh

i, j as described in Equation 3.1.

idleToBackgroundMAX = tt_recogobsDuration − tt_recogabsQT hresh
i, j

rFG
i, j (t)

· (3.1)

So, idleToBackgroundMAX is just some tens of milliseconds less than the observation duration
used by the traffic type detection, i.e. just a bit less than two seconds.

We argue that often the traffic type does not change during short idle intervals and that in general
there is little harm caused by recognizing traffic as background by default. The reason is that
the slow start performed by foreground CCAs fills the buffer fast, causes the buffer usage to
exceed the threshold and by that the traffic to be correctly recognized as foreground traffic. This
low impact does not only apply to newly starting foreground connections but also to foreground
connections having been idle for more than their RTO, which is for today’s common RTTs
often the one second minimum value. The duration of this type change of course depends on
the minimum background target rate bgmin

i, j and the absolute size of the buffer usage threshold

tt_recogabsQT hresh
i, j . We also expect the importance of idle times for RADICCO’s traffic type

recognition to decrease in the near future. We expect that with the increasing number of always-
on networked devices and with IoT being used also by the average subscriber, the number of
low rate but persistent connections, e.g. for status updates, will increase substantially. Such
connections often use TCP and transmit small keep-alive messages in medium intervals, typically
in the range of one to two minutes. For instance, connections of email push services using
Internet Message Access Protocol (IMAP) IDLE (defined in [RFC2177]) are kept open for a
long time but are often idle for many minutes except short keep-alive messages at intervals

3.7 Algorithm Description 87

(Linux default is 75 seconds) that carry no data. With the number of such connections increasing
substantially, absolute idle periods become shorter and do not provide information on user-
relevant, i.e. QoE-relevant, transfers any more.
Summarizing, we consider the initial traffic type being a configuration parameter and ignored
idle durations in our implementation.

3.7.5 State Calculation for Leaf Nodes, i.e. Calculation of Background Target Rates

For leaf nodes, updating the target rate of a leaf node currently recognized as background and in
AdaptingOperationMode is the only calculation that is performed in updateState() function.
A phase of target rate adaptation starts as soon as both criteria are met. This phase ends and
the background target rate is reset to the node’s capacity Ci, j when one of the two conditions is
found to be not met anymore. This is only checked when the leaf node is scheduled. When a
background leaf node in AdaptingOperationMode becomes inactive because its last packet is
dequeued, the target rate is stored in a temporary variable and the background target rate is set to
zero. When a background leaf node in AdaptingOperationMode becomes active again, the old
background target rate is restored.

While the target rate of a subscriber i, j recognized as receiving foreground traffic is always
equivalent to its access link’s capacity, i.e. wFG

i, j =Ci, j, when recognized as receiving background
traffic and in AdaptingOperationMode the subscriber’s target rate is reduced, so wBG

i, j (t)≤Ci, j.

The target rate wBG
i, j (t) must be slowly reduced to avoid false foreground recognition and under-

utilization due to overreaction by the sender’s CCA.
The root cause for a false foreground recognition is that the sender cannot become aware of a
rate reduction earlier than one RTT after the change became effective at scheduler. Therefore,
the sender continues to send packets according to the state before the change for one RTT.
During this RTT, packets will usually arrive faster at the BNG than they are dequeued, i.e. the
subscriber’s queue grows. If a background subscriber’s rate is reduced too fast, the queue size
exceeds the threshold tt_recogabsQT hresh

i, j , the subscriber is recognized as foreground traffic and
therefore his target rate is set to Ci, j. The background CCA will not keep the buffer usage that
high, so after a while, this subscriber is again recognized as background subscriber, restarting
the cycle.
Moreover, a too fast rate reduction of background subscribers may result in the respective CCA
to overly reduce its cwnd, possibly to the lowest possible value, which is a zero cwnd for some
background CCA, e.g. uTP. So, also the sender’s CCA may introduce a unstable, oscillating
behavior.
Any such oscillating patterns should be avoided since in the worst-case they might escalate and
result in also fast changing capacities available to the foreground traffic. This would provoke an
unacceptable service for the foreground traffic.

Therefore, RADICCO is designed to reduce the target rate of a background leaf node on every
dequeue event just by a constant, rather small amount βreduce, but not below a predefined

88 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

minimum bgmin
i, j . Equation 3.2 shows the calculation for the target rate when the n-th packet since

the begin of this phase of target rate adaptation, pn, is scheduled.

wBG
i, j (pn) = max(bgmin

i, j ,Ci, j −n∗βreduce) (3.2)

= max(bgmin
i, j ,w

BG
i, j (pn−1)−βreduce) (3.3)

The calculation executed on each call of updateState() is shown in Equation 3.3. This
target rate adaptation scheme results in a decreasing speed of rate reduction over time, if the
effective rate equals the target rate. This is not necessarily the case since RADICCO fills up
background rates if the capacity cannot be utilized by foreground traffic (see Section 3.7.7).
If the effective rate depends on the target rate, the advantage of this mechanism is that each
potential input sample of the sender’s control loop reflects the same change in the bandwidth
domain. We argue that a subscriber should always receive a minimum service to avoid starving
background connections and moreover, to protect certain rate-limited services such as VoIP (see
Section 3.8.5.3).

Both parameters, βreduce and bgmin
i, j , can be adapted to the deployment scenario. While βreduce

depends on the traffic’s background CCA and thus should be globally adapted to the deployment
scenario, the minimum target rate bgmin

i, j can be a per-subscriber configuration parameter.
For the choice of bgmin

i, j , the deployment scenario is crucial: On the one hand, if RADICCO shall
be used to gain a large amount of bandwidth from background traffic to tolerate substantially
higher offered load than the aggregation bottlenecks can handle, low bgmin

i, j should be configured
to allow a rather large gain by RADICCO. On the other hand, if RADICCO is only meant to
absorb peaks of load hardly exceeding the capacities of the aggregation links, rather high values
bgmin

i, j should be configured to reduce the impact of foreground traffic falsely recognized as
background traffic. The expected share of background traffic must also be taken into account.
Similar considerations apply to βreduce: If there is only little gain necessary and background
transmissions are known to mostly last long, a lower value should be configured to improve
smoothness of operation.

In our calibration simulations using uTP and TCP Vegas as background CCAs and RTTs of
up to 100 ms, we found a nominal decrease of βreduce = 37.5 kbit

s∗packet to ensure stable operation
and fast rate reduction at the same time. In the evaluation simulations, we use bgmin

i, j = 1Mbit/s
for all leaf nodes, equaling 1⁄20 of the access link speed Ci, j = 20Mbit/s. We choose this rather
low value to evaluate the stability of the overall system and to show the extent of potential
disadvantages on otherwise rate-limited traffic. For deployment, we rather expect bgmin

i, j to be set
higher, maybe to relative values of the subscriber’s capacity Ci, j, e.g. 50 % of Ci, j.

3.7.6 State Calculations for Inner Nodes

This section describes the state maintained by the updateState(StateChange d) func-
tion for inner nodes. For easier reading, we describe all state variables by closed formulas in the
following, although the implementation works based on the state change at the lower level node
that called this function.

Every inner node in general carries foreground as well as background traffic, and due to smaller
capacities at nodes further down the tree there also exist upper limits for both types of traffic.

3.7 Algorithm Description 89

When describing the algorithm, we will need further definitions. First we will define the notations
that will be used, then we will provide the detailed definitions.

swFG
i (t) The sum of target rates for foreground traffic of all child nodes of inner node i.

swBG
i (t) The sum of target rates for background traffic of all child nodes of inner node i.

oi(t) The local load factor of inner node i.

wFG
i (t) The target rate of foreground traffic at inner node i.

wBG
i (t) The target rate of background traffic at inner node i.

rMAX
BG
i (t) The maximum possible rate of background traffic at inner node i due to restrictions

of links transporting the background traffic further down the hierarchy.

srMAX
BG
i (t) Tthe sum of maximum possible rates of background traffic of all child nodes at

inner node i.

h̄BG
i (t) The best-case headroom for background traffic at inner node i.

rFG
i (t) The effective rate of foreground traffic at inner node i.

rBG
i (t) The effective rate of background traffic at inner node i.

ri(t) The effective rate of inner node i. Calculated as ri(t) = rFG
i (t)+ rBG

i (t).

Sum of Target Rates for Foreground Traffic of All Child Nodes at Inner Nodes

Regarding the sum of target rates for foreground traffic of all child nodes of an inner node, we
must distinguish between edge and core nodes.
In Equation 3.4 the formula for an edge nodes e is given. In that case only child nodes recognized
as foreground leaves are considered in the sum.

swFG
e (t) = ∑

e’s FG child nodes j
wFG

e, j (3.4)

Equation 3.5 shows the formula for a core node c, where all child nodes are inner nodes and in
general carry both types of traffic.

swFG
c (t) = ∑

c’s child nodes j
wFG

j (3.5)

90 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

Sum of Target Rates for Background Traffic of All Child Nodes at Inner Nodes

Analog to the foreground rates, there are also two formulas for the sum of target rates for
background traffic of all child nodes at inner nodes. Equation 3.6 gives the formula for an edge
node e, Equation 3.7 for a core node c.

swBG
e (t) = ∑

e’s BG child nodes j
wBG

e, j (3.6)

swBG
c (t) = ∑

c’s child nodes j
wBG

j (3.7)

Local Load Factor of an Inner Node

The local load factor oi(t) of an inner node i captures the ratio between the target rates of its
child nodes and its own nominal capacity Ci as shown in Equation 3.8.

oi(t) =
swFG

i (t)+ swBG
i (t)

Ci
(3.8)

Note that the nominal capacity is not necessarily available at that time. At the same time, if i is
a core node this load factor already considers limitations in the subtrees of the child nodes by
referring to swFG

i (t) and swBG
i (t).

So, this load factor does not reflect the overall view but the local view taking into account the
whole subtree below i. In consequence, if oi(t)> 1, node i is definitively overloaded. If oi(t)≤ 1,
it may be not overloaded or may be overloaded because it receives a lower effective rate ri(t)
than its capacity Ci.

Target rate of Foreground and Background Traffic at Inner Nodes

The target rates of foreground traffic at an inner node i, wFG
i (t), and of background traffic at an

inner node i, wBG
i (t), are calculated analogously, so we do not make a further difference here.

wFG
i (t) is either the sum of foreground target rates of all child nodes of node i, if there is no

local overload at i, i.e. oi(t) ≤ 1. Or, if there is local overload at node i, the target rate is the
sum described above divided by node i’s local overload factor oi(t). Equation 3.9 shows that
definition.

wFG
i (t) =

{
swFG

i (t) if oi(t)≤ 1
swFG

i (t)
oi(t)

if oi(t)> 1
(3.9)

wBG
i (t), is defined analogously to wFG

i (t) as shown in Equation 3.10.

wBG
i (t) =

{
swBG

i (t) if oi(t)≤ 1
swBG

i (t)
oi(t)

if oi(t)> 1
(3.10)

3.7 Algorithm Description 91

Maximum Rate of Background Traffic at Inner Nodes

The maximum possible rate of background traffic at an inner node i, rMAX
BG
i (t), is defined as the

minimum of, first, the maximum background traffic the child nodes could accept and, second,
the maximum bandwidth available for background traffic at that inner node i. The maximum
bandwidth available for background traffic at an inner node i is given by the node’s capacity Ci
less the bandwidth that shall be allocated to foreground traffic, wFG

i (t). Regarding the maximum
background traffic the child nodes could accept, we again have to distinguish between edge
nodes and core nodes since there is no common variable we can resort to. Equation 3.11 shows
the formula for an edge node e, and the formula for a core node c is given in Equation 3.12.

rMAX
BG
e (t) = min

(
∑

e’s BG child nodes j
Ce, j , Ce −wFG

e (t)

)
(3.11)

rMAX
BG
c (t) = min

(
∑

c’s child nodes i
rMAX

BG
i (t) , Cc −wFG

c (t)

)
(3.12)

Sum of Maximum Rates of Background Traffic of All Child Nodes at Inner Nodes

To calculate the sum of maximum rates of background traffic of all child nodes at an inner node i
we again have to distinguish between edge nodes and core nodes. In Equation 3.13 the formula
for an edge node e is given. Here all background child nodes e, j are considered with their
capacity Ce, j. Equation 3.14 shows the formula for a core node c.

srMAX
BG
e (t) = ∑

e’s BG child nodes j
Ce, j (3.13)

srMAX
BG
c (t) = ∑

c’s child nodes j
rMAX

BG
j (t) (3.14)

Best-Case Headroom for Background Traffic at Inner Nodes

The best-case headroom for background traffic at a node n, h̄BG
n (t), describes the amount of

bandwidth that could be allocated to background traffic additionally to its target rate wBG
n (t) if

node n was assigned its full capacity, i.e. rn(t) =Cn which is the best-case effective rate.

We define the calculation first for a leaf node i, j, where the calculation is trivial as seen in
Equation 3.15.

h̄BG
i, j (t) =Ci, j −wBG

i, j (t) (3.15)

For an inner node i, the maximum rate of possibly transported background traffic is rMAX
BG
i (t).

This allows to precisely define h̄BG
n (t) as the minimum of i’s capacity less the sum of all target

rates of its child nodes and the maximum rate of background traffic at i less the sum of target
rates for background traffic of all child nodes of i, but no less than zero. Using the already
defined variables, we give a common equation for edge and core nodes in Equation 3.16.

92 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

h̄BG
i (t) = max

(
0 , min

(
(Ci − swFG

i (t)− swBG
i (t) , rMAX

BG
i (t)− swBG

i (t)
))

(3.16)

3.7.7 Calculation of Effective Rates

When calculating effective rates from target rates, there are basically two models possible: The
strict approach is to simply assign the calculated target rates as effective rate, if available capacity
allows, and trim all rates fairly if not. The utilization-maximizing approach is to always aim at
utilizing available bandwidth to the maximum and therefore fill up rates if and where possible.
There are good reasons for the utilization-maximizing approach and therefore to use background
target rates as a guidance only (see Section 3.8.3). Therefore, we chose this approach when
designing RADICCO.

Updating the effective rates is the second phase of the updateAdaptation() function and
starts at the root node. Whenever the following calculations are executed, the state variables,
which characterize the demand of child nodes for the two traffic types, have just been updated.
In addition, the available rate at the node we start with is known since the root node always can
make use of its full capacity. The algorithm starts with calculating the effective rate of the root
node and then the recursive call calculates all effective rates to the leaf node that triggered the
state update.
We describe this algorithm by first providing the formula for the effective rate at the root node.
We then provide the calculations for the effective rates of background and foreground traffic of
all child nodes for an inner node given its effective rate. This allows to recursively calculate the
effective rates of all nodes.

Calculating the Effective Rate of the Root Node

The effective rate of the root node R is only less than its capacity CR if the child nodes cannot
handle that much traffic. This is the case exactly if the sum of maximum rates of foreground
and background traffic of all child nodes is less than the capacity CR, in which case this sum
also is the effective rate of R. For foreground traffic, the sum of target rates of all child nodes
corresponds to the maximum rate. Therefore, rR(t) is calculated as given in Equation 3.17.

rR(t) = min
(

CR , swFG
R (t)+ rMAX

BG
R (t)

)
(3.17)

Calculating the Effective Rates of Child Nodes

For the calculation of effective rates of the child nodes of an inner node i, we distinguish three
load levels of that inner node i: underload, light overload and heavy overload. These load levels
just represent the three possible cases in the utilization-maximizing approach: Either we can give
maximum top-up for all child nodes, or we can at least assign more than requested although not
the maximum, or there even is need to trim, see also Figure 3.5. For each load level, two steps of
calculation are needed:

3.7 Algorithm Description 93

Load level Heavy Overload

Load level Light Overload

Load level Underload

0 ri

Sum of target rates of i’s child nodes, i.e. swFG
i (t)+ swBG

i (t)

Sum of maximum rates of i’s child nodes, i.e. swFG
i (t)+ srMAX

BG
i (t)

0 ri

0 ri

Figure 3.5: Visualization of load levels by relation between decisive state variables (not to scale)

1. Calculate the effective rate to be allocated to foreground and background traffic at node i.

2. Calculate for each child node j its respective share in both foreground and background.

Strictly, step one is only needed for the root node since for all other hierarchy levels the respective
value have already been calculated by the parent node.

Underload, i.e. swFG
i (t)+ srMAX

BG
i (t)≤≤≤ ri(t)

This load level is characterized by inner node i being able to transport the full rates that
the lower nodes can handle, i.e. the sum of maximum rates of foreground and background
traffic is smaller than the node’s capacity. This case exists in AdaptingOperationMode
only because RADICCO enters AdaptingOperationMode based on peak load detection,
i.e. there is not necessarily overload.
As result, for node i effective background and foreground rates are equivalent to their
maximum rates as shown in Equations 3.18 and 3.19.

rFG
i (t) = swFG

i (t) (3.18)

rBG
i (t) = rMAX

BG
i (t) (3.19)

For all child nodes, the effective rate is equivalent to the maximum foreground and
background traffic it can accept. The calculation depends on the type of child node due to
the difference between inner nodes and leaf nodes. If node i is a core node, child node j
is an inner node, too. For that case, the maximum foreground and background traffic is
equivalent to the already calculated target rate of foreground traffic and maximum rate of
background traffic as shown in Equations 3.20 and 3.21.

rFG
j (t) = wFG

j (t) (3.20)

rBG
j (t) = rMAX

BG
j (t) (3.21)

94 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

If node i is an edge node, its child nodes (i, j) are leaf nodes. In that case, the maximum
bandwidth is equivalent to the capacity Ci, j and is completely assigned to the current traffic
type of that node. This is illustrated in Equations 3.22 and 3.23.

rFG
i, j (t) =

{
Ci, j if (i, j) is recognized as foreground at time t
0 if (i, j) is recognized as background at time t

(3.22)

rBG
i, j (t) =

{
0 if (i, j) is recognized as foreground at time t
Ci, j if (i, j) is recognized as background at time t

(3.23)

Light Overload, i.e. swFG
i (t)+ swBG

i (t)< ri(t)< swFG
i (t)+ srMAX

BG
i (t)

This load level is characterized by the inner node being able to serve all active child nodes
with at least their target rate, but not with their maximum rates. This concerns background
traffic only since for foreground the maximum rates are equal to their target rates by
definition.
Therefore, effective foreground rate of an inner node i is equal to the sum of target rates
for foreground traffic of all its child nodes, i.e. swFG

i (t) as shown in Equation 3.24 .

rFG
i (t) = swFG

i (t) (3.24)

Regarding background traffic at this inner node there is some headroom allowing to assign
some child nodes’ background traffic higher effective rates than their target background
rates. Here we need to calculate the effective background headroom, which is quite similar
to the best case background headroom but is based on the now available effective rate ri(t)
instead of the capacity Ci. We formally define the effective background headroom hBG

i (t)
of an inner node i in Equation 3.25.

hBG
i (t) = max

(
0 , min

(
ri(t)− swFG

i (t)− swBG
i (t) , rMAX

BG
i (t)− swBG

i (t)
))

(3.25)

This available headroom is fairly distributed among all potential recipients. When dis-
tributing this headroom available at i among the child nodes, we take into account the
limits applicable at each child node, i.e. its best-case headroom for background traffic. We
chose to distribute the headroom proportionally fair (relative to the headroom) amongst
all child nodes, i.e. RADICCO increases the effective rate of background traffic of every
child node by adding the same fraction of the respective child node’s best-case headroom
to the child node’s target rate. Therefore, we calculate i’s fill up fraction fi(t) as depicted
in Equation 3.26

fi(t) =
hBG

i (t)

∑i’s child nodes j h̄BG
j (t)

(3.26)

The effective rates of inner node i’s child nodes j are calculated as follows:
The effective foreground rate rFG

j (t) is equivalent to j’s target rate for foreground traffic,
as depicted in Equation 3.27.
The effective background rate rBG

j (t) is equivalent to j’s background target rate plus i’s
fill up fraction fi(t) times j’s best-case headroom for background traffic h̄ j(t) as shown in
Equation 3.28.

rFG
j (t) = wFG

j (t) (3.27)

rBG
j (t) = wBG

j (t)+ fi(t)∗ h̄ j(t) (3.28)

3.8 Rationales for Core Design Decisions 95

Heavy Overload, i.e. ri(t)≤≤≤ swFG
i (t)+ swBG

i (t)
This load level is characterized by the sum of the child nodes’ target rates exceeding the
considered inner node i’s effective rate, therefore all child node rates are shortened by
i’s effective load factor Oi(t). In contrast to the local load factor oi(t), the effective load
factor Oi(t) is based on i’s effective rate ri(t) instead of its constant capacity Ci. Oi(t) is
consequently defined as shown in Equation 3.29.

Oi(t) =
swFG

i (t)+ swBG
i (t)

ri(t)
(3.29)

So, the effective rates of background and foreground traffic at node i are equivalent to the
respective sum of target rates of all child nodes shortened by the overload factor as shown
in Equation 3.30 and 3.31.

rFG
i (t) =

swFG
i (t)

Oi(t)
(3.30)

rBG
i (t) =

swBG
i (t)

Oi(t)
(3.31)

The respective rates for a child node j are equivalent to its respective target rate shortened
by node i’s load factor. Again, due to the difference in the child nodes’ behavior, we give
two sets of definitions. Equations 3.32 and 3.33 present the formulas for a leaf node (e, j),
child of edge node e, and Equations 3.34 and 3.35 show the calculations for an inner node
k, child of a core node c, each for foreground and background traffic respectively.

rFG
e, j (t) =

wFG

e, j (t)
Oe(t)

if (e, j) is recognized as foreground at time t

0 if (e, j) is recognized as background at time t
(3.32)

rBG
e, j (t) =

0 if (e, j) is recognized as foreground at time t
wBG

e, j (t)
Oe(t)

if (e, j) is recognized as background at time t
(3.33)

rFG
k (t) =

wFG
k (t)

Oc(t)
(3.34)

rBG
k (t) =

wBG
k (t)

Oc(t)
(3.35)

3.8 Rationales for Core Design Decisions

In this section, we present the core rationales for important design decisions. The first two
subsections on the granularity of operation (Section 3.8.1) and on our strategy for state updates
(Section 3.8.2) cover topics that are, first, rather independent of all other design decisions and,
second, are rather straight forward. In the third subsection, we discuss our decision to fill up
background rates (Section 3.8.3), which also is a fundamental design decision but the decision is
less obvious. The last three subsections are about how RADICCO identifies background traffic

96 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

(Section 3.8.5), how RADICCO calculates target rates for background leaf nodes (Section 3.8.4)
and which traffic type is assumed after idle phases (see Section 3.8.6). These three topics are
closely related and each respective reasoning is related to the decisions taken in the two other
areas.

3.8.1 Granularity of Operation

We decided to design RADICCO to completely operate on subscriber or access link level, i.e. to
detect the traffic type for the aggregate of a subscriber’s access link and to adapt weights starting
on access link level. As we will explain, a design operating on transport layer connections would
be more expensive and does not make sense, and a design operating on AN level would perform
much worse.

A transport layer connection is the next smaller easily detectable unit of communication compared
to the traffic aggregate of a subscriber. Operating on transport layer connections may seem natural
since each connection is controlled by one CCA instance at the respective sender, while an access
link carries a mix with regard to CC. Nevertheless, the behavior of a CCA can only be observed
if it receives congestion feedback, so this approach requires to schedule either each connection
or at least background and foreground traffic separately. In turn, this requires the scheduler to
determine how the current flows or the two traffic types share the subscriber’s access link capacity.
This means disabling the prioritization capability of using different CCAs and replacing it by
an ISP policy defining rate allocations on connection level. First, this violates the end-to-end
principle unnecessarily and maybe even affect network neutrality. Second, recognizing the traffic
type of every single connection is more difficult than recognizing the traffic type of an aggregate
and thus will result in more false recognitions. Third, the necessary allocation policies cannot
correctly reflect the intentions of the subscriber or the senders.
Moreover, as we detailed in Section 2.4.2, a connection controlled by foreground CCA usually
dominates the behavior of the access link aggregate since the connection’s bottleneck is at this
access link, i.e. at the HFS. Thus, working on transport layer connection level does not provide a
significant advantage.
So, operating on transport layer connections would come at an increased computational cost and
would unnecessarily limit the impact of end host prioritization by CC, while not achieving a
significant advantage.

The operation on AN level, i.e. recognizing the traffic type of aggregates destined to an AN,
does not make sense. We give two reasons: First, for two-level topologies this level is the BNG
downstream interface, so there is nothing to adapt. Second, the CCA do not compete freely
within this aggregate, since the connections’ bottlenecks are defined by the lowest level in the
hierarchical scheduler, which is the access link. Therefore, a single connection cannot dominate
the aggregate, neither on regarding bandwidth nor buffer utilization. This means that the traffic
differentiation, the implicit signaling RADICCO shall exploit, cannot work on this aggregation
level.

In consequence, operating on access link aggregates, i.e. on a per-subscriber basis, is the only
reasonable option.

3.8 Rationales for Core Design Decisions 97

3.8.2 Extent of State Updates

In the RADICCO algorithm, the states and the effective rates are only updated for the leaf node
triggering the update and all its ancestor nodes. In most cases, these changes in theory result
in rate changes for all other nodes, too. For instance, when a leaf node becomes active, the
target rates of its sibling nodes are not updated, although during overload this event results in
all siblings’ effective rates being reduced. The same applies to its parent: Due to the new leaf,
the parent obtains a higher effective rate at cost of the effective rates of all its siblings and their
subtrees. Therefore, in an overloaded topology, one update may cause changes to the effective
rates of all nodes.
We deliberately designed RADICCO to not immediately reflect these changes. As we will show
in the following, the computational effort is substantially reduced, and the drawback in schedule
fairness is negligible.

As we will discuss in the evaluation (Section 4.1.2), the theoretical asymptotic worst-case
complexity of RADICCO is O(N) (N being the total number of nodes), and it can be expected
to be constant, i.e. O(1) in practice. This allows deployment in practice. If the state update
involves all affected nodes, the theoretical asymptotic worst-case complexity increases to O(N2),
but also in practice the computational effort would be scaled by N, resulting in O(N). For the
typical numbers of nodes and packet rates in today’s access networks, this is not feasible for
implementation.

Nevertheless, all DRR schedulers only consider a flow’s weight when serving it, and their list of
flows has no specific order with respect to weights. Thus, our approach of the reduced update
set does not make any difference in schedule for DRR-based schedulers. This is different for
timestamp-based schedulers, which reorder their priority list after a dequeue operation, so if
RADICCO updated the state of the whole scheduler tree, it might result in a difference in
schedule.
So, if RADICCO is applied to a DRR scheduler, there is no drawback at all. If RADICCO is
applied to a timestamp-based scheduler such as WF2Q+, as we do for the evaluation presented
in Chapter 4, the deterioration is no worse than using a DRR scheduler. Moreover, ISPs and
equipment manufacturers seem to consider the precision achieved by a DRR scheduler as
being sufficient since many devices designed for BNG deployment use DRR schedulers (see
Section 2.2.6). As we show in Chapter 4, the evaluation shows no hints that this compromise
caused deterioration of fairness.

Summarizing, limiting the state updates of RADICCO to the triggering leaf node and its ancestor
nodes substantially reduces the computational effort while the drawback in schedule fairness is
negligible.

3.8.3 Filling Up the Rates of Background Traffic

In RADICCO, reduced target rates for background traffic are calculated. There are two strategies
possible for handling these target rates in the scheduler:

a. The target rates are strictly enforced, even if in consequence bandwidth remains unused. The
final target rates equal the initial target rates.

98 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

b. To maximize utilization, the target rates are filled up to the maximum that the current situation
allows to transport respecting the allocations for foreground traffic. So, the final rates may be
higher than the initial target rates.

When assessing the two strategies, it is important to consider the consequences for the two
different types of schedulers that may be extended by RADICCO:

1. Inherently rate-limiting schedulers for which the rate limit and the weight are represented by
one variable. Our evaluation is based on a scheduler of this type.

2. Work-conserving schedulers that are deployed in combination with a corresponding hierarchi-
cal rate traffic shaper. In this case, the weight is applied to the scheduler and the rate limit to
the corresponding rate shaper. DRR-based schedulers are often used in such combination.

For a scheduler of the first type, there is only one way of implementation and it is the same
for both strategies: RADICCO calculates and configures the rates, the inherently rate-limiting
scheduler enforces the effective rate in terms of both the weight and the rate limit.

In contrast, for a scheduler of the second type with a separate rate shaper the apt implementation
differs for the two strategies:
The strict strategy must be implemented by applying the rates to both the scheduler and the
rate shaper. The rates in the rate shaper must be adapted to enforce the rates when additional
bandwidth is available, while the adaption of the weights in the scheduler is required to enforce
appropriate cuts when the available bandwidth is less than the sum of the configured shaper rates.
Although this approach would also work for the fill-up strategy, this strategy is best implemented
by only adapting the scheduler’s configuration of weights while leaving the configuration of
rate limits of the rate shaper untouched. With such configuration, the effective rate will fill up
otherwise unused bandwidth. This works because in such situation the sum of all target rates
is lower than the available bandwidth, the scheduler is work-conserving and only background
traffic can arrive at the scheduler with higher rates than the target rate. So, there are points in time
when only background packets are available for scheduling, which then are scheduled by the
work-conserving scheduler independently of any weights. Therefore, when only the scheduler
weights are adapted by RADICCO, background traffic automatically fills up remaining capacity.
This approach works for both edge and core nodes.

In the following, we discuss the two options in filling up rates of background traffic separately.

Option 1: Strict Enforcement of Background Rates

We first inspect the approach of accepting underutilization and setting rBG
i, j (t) ≤ wBG

i, j (t). This
approach works for all schedulers and the rate decrease for the background leaf nodes is as
smooth as the actual adaptation algorithm. Nevertheless, this approach has substantial drawbacks.
First, if the HFS is implemented as a combination of a work-conserving scheduler and rate
shapers, this approach requires to not only adapt the scheduling weights, but also the maximum
rates of the respective rate shapers. Nevertheless, we consider this feasible. Second, it leaves
scarce bottleneck capacity unused and thus by design does not achieve our second goal. Moreover,
reducing utilization results in extending the duration of the peak load situation, further increasing
the impact of this deficiency. Third, the impact of foreground subscribers falsely recognized

3.8 Rationales for Core Design Decisions 99

as background subscribers is unnecessarily increased, i.e. by applying RADICCO the QoE is
unnecessarily deteriorated.

Option 2: Filling Up the Rates of Background Traffic

For RADICCO, we opt to not strictly apply reduced target rates of background traffic. To the
contrary, as long as there is bandwidth left, background traffic receives more bandwidth than the
reduced target rate, during Underload (according to Section 3.7.7) even the maximum possible
rate.

This design results in a smooth transition between StandardOperationMode and Adapting-
OperationMode. So with this design, it does not matter when exactly a parent node enters
PeakLoadState, so RADICCO is independent of the specifics of the definition and detection of
peak load. Thus, RADICCO’s dependencies on the system to be extended by RADICCO are
restricted.

Filling up background traffic rates supports achieving our second goal, i.e. high bottleneck
utilization, without putting any risk on achieving our primary goal of improving the overall QoE
for two reasons

- If recognized foreground traffic increases, the fill-up capacity is immediately allocated to
it. So, there is no deterioration of traffic recognized as foreground traffic.

- If there is foreground traffic falsely recognized as background traffic, the consequences for
the respective subscriber’s QoE are mitigated.

This mechanism of instantaneous reallocation of fill-up capacity has an important drawback:
Any event of instantaneous removal of fill-up capacity induces a risk of substantially disturbing
the control loops of the background traffic CCAs. The CCAs detect a significant increase
in congestion and may react undesirably vigorously. Depending on the background traffic’s
CCAs, rapid decreases of the effective rate due to the removal of fill-up bandwidth may result
in throughput inferior to the target bandwidth. Nevertheless, this happens only for true, i.e.
correctly recognized, background traffic and therefore does not impact the potential benefits
for QoE. Moreover, such overly vigorous reactions are only likely if the change by removing
the fill-up capacity is substantial. The average amount of removed fill-up capacity decreases
with increasing number of active subscribers at an AN and with the number of background
subscribers, so small topologies are more likely to be affected than larger ones. Filling up target
rates also has the implementation advantage of only scheduling weights needing to be adapted,
also in case maximum rates are enforced by separate rate shapers.
Summarizing, filling up the rates of background traffic where possible increases the bottleneck
utilization in most scenarios and if it affects QoE, its effect is positive.

3.8.4 Calculation of Target Rates of Background Leaf Nodes

By the target rate calculation for background leaf nodes we aim to achieve three goals:

- No background connection shall be starved.

100 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

- Sensitive low-bitrate services, e.g. standard VoIP or gaming traffic, shall not be impacted
by RADICCO.

- To keep utilization high, the reduction is carried out slowly.

Therefore, the rate calculation consists of two components:

1. A minimum background target rate.
2. A function to derive the target rate to be considered when scheduling the next dequeue event.

We will further motivate and discuss both components in the following.

3.8.4.1 The Minimum Target Rate for Background Traffic

We aim to design RADICCO so that no background connections are starved for two reasons:
First, we assume that a user or a mechanism at the end host may change the CCA whenever the
performance of a flow becomes QoE relevant. This obviously does not work if a connection
was disrupted due to receiving no capacity from the scheduler. Second, when a connection is
reset due to a timeout, there may be a QoE impact even for background traffic, e.g. because a
warning message pops up. Preventing connections from starving can be achieved by introducing
a minimum rate.
The second reason for introducing a minimum target rate for background traffic is a deficiency
of the used traffic type recognition algorithm (see Section 3.8.5). While both foreground and
background traffic can be reliable recognized if the bottleneck is in the scheduler, the rare third
type of traffic, i.e. traffic that is rate-limited at another place, cannot be recognized as such. Yet,
there are services such as VoIP and video conferencing, that create such traffic. Introducing a
minimum rate protects a subset of this group, namely the subscribers consuming sufficiently
little bandwidth, from negative impact by RADICCO. Since the target rate for background traffic
is not enforced directly, this minimum target rate must be greater than the minimum rate to be
achieved multiplied by the expected maximum overall overload. The overall load corresponds to
the product of all expected local load factors Oi of the ancestor nodes of the respective leaf node
(see Section 3.7.7).

The minimum target rate for background traffic can be configured per leaf, relative to the
respective access link’s capacity, or globally for all leaf nodes. For our simulations, we choose to
configure a global parameter bgmin.

The value of bgmin or, in case of individual parameterization, the values of bgmin
i, j of subscribers i, j

recognized as background subscribers, impact the amount of capacity RADICCO can reallocate
from background to foreground traffic. Therefore, low values may allow RADICCO to improve
QoE also for high overload and / or a low fraction of background traffic. It therefore is a
configuration option that needs to be adapted to the expected traffic at deployment.

3.8 Rationales for Core Design Decisions 101

3.8.4.2 The Adaptation Function for Background Target Rates

The adaptation function for background target rates must ensure a smooth transition from a
previously assigned foreground rate since any rapid reduction of the assigned rate would often
result in undesired substantial load changes or even oscillating behavior.

Such behavior can be caused by background CCs varying their reaction to increased delay based
on the extent of the change: Slow changes are compensated by reducing the rate as necessary for
fair link sharing with other background flows. In contrast, fast changes are interpreted as starting
foreground traffic, so the background CCs yields. This second reaction is for some background
CCAs very drastic, resulting in an abrupt reduction of the sending rate to a value close to zero,
e.g. the hibernation behavior of uTP (see Section 2.4.3.5).

So, the target rate of a background subscriber should be gradually adapted at every dequeue
event during AdaptingOperationMode. To not excessively increase the complexity of the overall
algorithm, the calculation should require constant computational effort. We shortly discuss the
degrees of freedom in designing the adaptation function:

- Begin of adaptation, i.e. definition of zero of the function.

- Input domain of the function, e.g. time, transmitted packets, or transmitted bytes.

- Shape / formula of the function.

To allow smooth transition from the foreground target rate, the rate adaption must start when the
node enters AdaptingOperationMode and is recognized as background subscriber at the same
time. This means that the domain of the target rate adaptation function is specific to that node,
i.e. we manage a function

wBG
i, j (ti, j)

for every background node in AdaptingOperationMode. ti, j is a node-local time domain that
starts with the begin of the current phase rate adaption at this node. To ease reading, we will use
the simpler notion wBG

i, j (t) instead of wBG
i, j (ti, j).

The domain of the rate adaptation function must be chosen considering that this rate reduction
also is a signaling to the sender(s). Therefore, the number of transmitted bytes is not a good
choice since this value is not significant for known background CCAs. The decision between
time and packets as measure of distance is not obvious since background CCs, on the one hand,
are based on measuring delay and its changes in time, but on the other hand the sender CC gets a
new measurement only if a packet is served by the scheduler (after some delay). Our calibration
simulations showed that the packets domain is the more robust choice and finally allows stable
operation with faster decreases than functions using time domain inputs.

Regarding the formula of the function, we achieved good results with a linear decrease. This is
not surprising since this corresponds to an approximately constant relative target rate reduction
in time, which again corresponds to an about approximately multiplicative reduction factor per
RTT for the sender’ CCA.

The effect of a reduce factor βreduce of course depends on type and parameterization of the CCA
applied by the sender, which cannot be expected to be known and, moreover, may evolve in the

102 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

future. Assuming that a background CC tolerates some relative change in available bandwidth
during one RTT seems to be reasonable and straight-forward. Moreover, to be successful, any
background CCs must allow sharing a link with newly starting as well as already existing
background connections. With that respect, today’s wide-spread background CCs such as uTP
can be expected to serve as guidance for the design of potential new algorithms. Therefore, we
feel confident that in particular the type of reduce function but also the order of magnitude of
the reduce factor will effectively work for many scenarios and probably even for other, new
background CCs.

3.8.5 Traffic Type Recognition

To recognize the dominating behavior of a subscriber’s aggregate, the CCs’ behavior and the
assumed topological properties are exploited. Foreground CCAs fill the buffer at the bottleneck
and frequently cause packet losses there. Background CCAs, i.e. LBE CCAs, do not use a
significant amount of buffer space at the bottleneck and do not cause packet loss at a bottleneck
of constant capacity. Moreover, a foreground connection therefore dominates the behavior of an
aggregate regardless of the number of background connections (see Section 2.4.2). For traffic in
residential broadband access networks, the BNG’s hierarchical scheduler usually represents the
bottleneck of incoming traffic (see Section 2.1.1). Therefore, observing the traffic on a scheduler
leaf node corresponding to a subscriber’s access link suffices to recognize the traffic type of any
traffic that is limited by this link.

Nevertheless, there is a third, rare group of transmissions. If the sum rate of all transport layer
connections of a subscriber is significantly less than his current effective rate, the access network
does not constitute a bottleneck for any of these connections and their CCAs do not matter at all.
This mainly concerns

- Short transmissions that cannot reach sufficiently big congestion windows to fill the link’s
capacity and build up a queue.

- Transmissions that are limited at another place, e.g. at a peering point or by the sender
itself.

Technically, distinguishing foreground from background traffic is possible by observing the
queue’s behavior for some time. This observation shall achieve several, partly contradicting
goals:

Low Runtime Effort Since all leaf nodes must be continuously observed, the algorithm must
cause little computational effort.

Fast Decision The delay in recognition should be small since the speed of the recognition of a
subscriber’s traffic type heavily impacts

- The potential bandwidth reallocated by RADICCO from background traffic to fore-
ground traffic.

- Unwanted QoS, and thus QoE impairments for foreground traffic due to continued
false recognition as background traffic.

3.8 Rationales for Core Design Decisions 103

Low False Positives The impact of foreground traffic recognized as background traffic differs
depending the traffic and on the duration of the false recognition. In some cases, e.g.
for short transmissions, it causes no significant QoS or QoE degradation for the affected
connections, but if long lasting connections were wrongly and persistently recognized
as background, this would result in severe QoS and QoE deterioration compared to the
standard HFS.

Low False Negatives If background traffic is recognized as foreground traffic, there is no
disadvantage compared to the standard HFS, but the gain of RADICCO is diminished
compared to a theoretical optimal traffic type recognition algorithm.

There are two basic mechanisms that fulfill the low effort criterion, and which we examined
for their performance regarding false negatives and false positives: The first candidate just
observes if there is a packet drop during a time interval tt_recogobsDrop

i, j . The second candidate

observes if the buffer usage is above a defined threshold tt_recogabsQT hresh
i, j during a time interval

tt_recogobsDuration
i, j . In the following, both approaches are shortly presented and discussed

(Sections 3.8.5.1 and 3.8.5.2). Finally, the fundamental drawback of approaches based on buffer
observation only is described and analyzed (Section 3.8.5.3).

3.8.5.1 Drop-based Traffic Type Recognition

The lack of packet drops may be considered the most decisive criterion for identifying traffic
being background, i.e. not loss-controlled. This is true for a wide range of scenarios: Usually,
background CCAs keep the buffer usage very low. Assuming a background connection in
congestion avoidance, a packet loss can only happen if the available bandwidth at the bottleneck,
i.e. the scheduler, is reduced that heavily that the buffer flows over before the sender’s CCA can
react. So, usually there are no packet drops at the leaf node’s queue unless a new aggressive
connection starts, i.e. the traffic type of that flow changes. Moreover, the approach to monitor
packet drops requires setting just one parameter per subscriber, tt_recogobsDrop

i, j .

The parameter tt_recogobsDrop
i, j also defines the detection delay, so it should be configured as low

as possible. However, to reliably avoid false positives, this parameter must be set to a value bigger
than the interval between two drops for foreground traffic. Loss distances are expected to be up to
15 seconds for TCP Cubic and scale linearly with the BDP for TCP NewReno (see Section 2.4.3),
which is still used by a relevant fraction of Internet servers (see Section 2.4.3.1). For 20 Mbit/s,
100 ms RTT and perfect buffer sizing, TCP NewReno provokes a packet loss only about every
60 seconds. Even if taking the risk to frequently falsely recognize TCP NewReno traffic as
background traffic, 15 seconds are a long delay for detecting background. This especially reduces
RADICCO’s potential in scenarios where the background traffic does not consist of long-lasting
connections of few heavy users, e.g. P2P traffic, but short transfers of many different subscribers,
e.g. software update downloads.

104 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

3.8.5.2 Buffer-Usage-based Traffic Type Recognition

Background traffic can be recognized with low computational cost by checking if the buffer usage
exceeded a threshold tt_recogabsQT hresh

i, j within the last interval tt_recogobsDuration
i, j . This approach

requires two parameters to be tuned but it can be expected to work well, i.e. to not result in false
positives, at a much lower delay. For this approach, the delay is defined by tt_recogobsDuration

i, j .

Although the monitoring is performed using a specific absolute threshold tt_recogabsQT hresh
i, j for

every leaf node i, it is more useful for configuration to use a relative threshold tt_recogrelQT hresh

that defines the threshold as fraction of the buffer size. Consequently, the observation interval can
be defined globally as tt_recogobsDuration Current best practice for buffer sizing is configuring
the buffers size to bandwidth∗RT TestimatedMax (see Section 2.4.4). The factor β , which is used
by traditional AIMD CCAs for cwnd reduction on congestion, defines the buffer usage after
the cwnd reduction (see Section 2.4.1). So, with correct buffer sizing and for TCP Cubic, the
buffer usage after cwnd reduction is still 0.4 ·BDP, i.e. corresponding to 40 % of the buffer
and 40 % RTT queuing delay. A lower RTT than assumed for buffer-sizing results in an even
higher standing queue, e.g. if the RTT is only half as big, the standing queue is 55 % of the
buffer, corresponding to 110 % RTT queuing delay. So, for steady state TCP Cubic connections,
a tt_recogrelQT hresh

i, j = 0.4 should result in no false negatives regardless of tt_recogobsDuration
i, j .

Nevertheless, the dynamics in the scheduling system, e.g. leaf nodes becoming active and
inactive, result in varying bandwidth allocations.
TCP NewReno uses a β of 0.5, so it exactly empties the queue when the buffer size matches
the BDP. Since it moreover increases its cwnd by only one segment per RTT, congestion
epochs of TCP NewReno last long (see Section 2.4.3.2). This results on the one hand in
probably false recognition shortly after every congestion event but on the other hand in stable
foreground recognition during the second part of each congestion epoch. A TCP NewReno
connection is recognized as background traffic at tt_recogobsDuration after its last cwnd decrease
if the RTT corresponds to the RTT assumed in buffer sizing. If the effective rate is reduced
due to overload, this results in this flow exceeding the recognition threshold tt_recogabsQT hresh

i, j
rather fast. Nevertheless, after the first phase of false background recognition, the buffer usage
exceeds tt_recogabsQT hresh

i, j , therefore the subscriber is constantly recognized as foreground
subscriber. For a RTT of 100 ms, a rate of 20 Mbit/s, buffer size equivalent to the RTT and a
tt_recogrelQT hresh = 0.35, this period of constant recognition is about 40 seconds.
Although the system behavior is not perfect for TCP NewReno, we accept this because TCP
NewReno is of limited importance for high volume transfers due to its slow reaction to changed
conditions.

In our calibration simulations, we found

tt_recogobsDuration = 2s and tt_recogrelQT hresh = 0.35

necessary to reliably recognize foreground traffic as such.
So, the buffer-usage-based traffic type recognition also provides low runtime effort and a much
faster decision than the drop-based traffic type recognition. For traffic having its bottleneck at
the scheduler, it falsely recognizes foreground traffic as background traffic almost only due to
preceding idle times (due to our choice of traffic type recognition, see following Section 3.8.6)
but not during ongoing transmissions. The number of false negatives, i.e. recognizing background
traffic as foreground traffic is higher than for the drop-based approach, especially for TCP Vegas

3.8 Rationales for Core Design Decisions 105

traffic, but we accept this as a minor disadvantage.
In case an AQM is configured for the leaf queues, the threshold tt_recogrelQT hresh must be
adapted to the operation of the AQM.

Static Buffer Usage Threshold

Although the target rate of background leaf nodes is reduced, we do not adapt the recognition
threshold tt_recogrelQT hresh correspondingly. This is a design decision more important than it
seems at first sight. If the effective rate decreases with the target rate, the sender’s CCA can only
react to the change carried out one RTT ago, so the buffer usage is higher than in steady state.
So, in that phase, a stable, not immediately reduced recognition threshold helps preventing false
negatives, i.e. recognizing background traffic as foreground traffic.
Yet, we also do not adapt tt_recogrelQT hresh to the target rate after the target rate reduction phase
has been completed because target rates are filled up to utilize available capacity. So, effective
rates of background leaf nodes are often substantially higher than the target rates. In that case,
background CCAs aiming at keeping the queuing delay constant (rather than the queue size), i.e.
uTP, use more buffer space. Moreover, in contrast to effective rates of foreground leaf nodes, the
effective rates of background leaf nodes vary more heavily, so, depending on the traffic dynamics,
frequently packets temporarily queue up at background leaf nodes.
So, also in the phase of wBG

i, j = bgmin
i, j , we avoid false foreground recognition of background

traffic by not decreasing the recognition threshold.
Moreover, adapting the threshold to the reduced target rate would not solve the problem of all
approaches exclusively based on buffer observation (see next section).

3.8.5.3 Deficiency of Approaches exclusively based on Buffer Observation

The fundamental deficiency of traffic type recognition exclusively based on buffer observation is
that traffic that is otherwise rate-limited cannot be detected as such and therefore is not handled
appropriately.

Besides the majority of traffic that has its bottleneck in the access network, there also is traffic
that either is not limited by a network bottleneck but by the source, or is limited by bottlenecks
at other locations in the network, e.g. peering points, the source aggregation network, or within
the subscriber’s network, e.g. by a slow WiFi link. This type of traffic is rare, but exists, so we
detail the consequences of RADICCO for such traffic.

A problem in terms of QoE deterioration arises for traffic meeting the following criteria:

- The rate limit is permanently lower than the subscriber’s current effective foreground rate.
If it would not, the BNG’s scheduler were the bottleneck and the traffic were correctly
recognized.

- The rate limit is (frequently) higher than the currently effective minimum background rate.
If it would not, the traffic received the rate it requires.

- Traffic is foreground traffic. If it would not, the process described below would apply but
would not result in QoE deterioration.

106 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

One example for such traffic is true Constant Bit Rate (CBR) traffic with a rate between the
subscriber’s effective foreground rate and the subscriber’s effective minimum background rate.
As described in Section 2.3.3, CBR traffic is rare in today’s Internet. Moreover, even with
RADICCO in the proposed configuration any subscriber will get a rate of bgmin

overloadFactor . This
mechanism can be used to protect low bandwidth CBR traffic such as VoIP.

The effects of RADICCO on traffic meeting the criteria described above are summarized in the
abstract Figure 3.6, depicting internal states and bandwidths for a node i, j receiving traffic that
is rate-limited to a constant maximum rate r. For simplicity, the figure assumes the effective rate
to correspond to the target rate at all times.

Otherwise rate-limited traffic does not build up a queue for effective rates higher than their
external rate limit, so by all approaches based on buffer observation, e.g. the ones we presented
above, such traffic will be recognized as background traffic after some time, indicated as t0 in
Figure 3.6. While the assigned effective rate is higher than the external rate limit, so until point
t1 in Figure 3.6, the respective leaf node is not continuously active, i.e. its queue will be empty
again and again.

Nevertheless, if the lowest effective rate allocated to background leaf nodes is lower than the
external rate limit at some time, a queue starts building up once the effective rate decreases below
the external rate limit, i.e. after point t1 in Figure 3.6. In detail, the queue size grows faster than
linear between t1 and t2 due to the fixed incoming rate and the decreasing effective rate. In this
phase, the queuing delay grows even faster than the queue size since both, the queue size grows
and additionally the dequeue rate decreases.

After some time, the minimum target rate bgmin
i, j may be reached if the queue does not build up

too fast. This is shown as point t2 in Figure 3.6. In the following phase, the queue is served at
the minimum target rate bgmin

i, j and the incoming rate corresponds to the rate limit of the traffic,
so both queue size and queuing delay increase linearly.

At some time, the queue size exceeds tt_recogabsQT hresh
i, j , shown as t3 in Figure 3.6. Then, the

leaf node is again recognized as foreground leaf node, thus the effective rate returns to Ci, j. Until
this happens, the low effective rate and the, in relation to the effective rate, high buffer usage
threshold tt_recogabsQT hresh

i, j result in high waiting times, i.e. queuing delay. For a leaf node
i, j, the resulting maximum delay τmax depends on the relation of the recognition buffer usage
threshold tt_recogabsQT hresh

i, j to its minimum background target rate bgmin
i, j , and the overall load

factor, i.e. the product of Oi and OR in case of three-level hierarchy. The formula is given in
Equation 3.36.

τmax =
tt_recogabsQT hresh

i, j

bgmin
i, j · 1

Oi·OR

(3.36)

=
Ci, j

bgmin
i, j

· RT Tbu f f Est · tt_recogrelQT hresh
i, j · Oi ·OR (3.37)

If the threshold is defined relatively, the access link’s capacity Ci, j and the RTT estimation
applied at buffer sizing, RT Tbu f f Est are needed, see Equation 3.37. The presented formula is a
simplification for an theoretical steady state. In real systems, many parameters vary over time, in
particular oi(t) and Oi(t), so also τmax is a function in time. Nevertheless, this formula allows to
estimate the maximum delay to be expected for a scenario.

3.8 Rationales for Core Design Decisions 107

time

1

0.35

R
el

at
iv

e
qu

eu
e

si
ze

0

t1 t2 t3 t4

Q
ue

ui
ng

de
la

y

t0
0

t5

fg

bg

Tr
af

fic
ty

pe

Relative queue size

Queuing delay

Ci, j

r

B
an

dw
id

th
[M

bi
t/s

]

bgmin
i, j
0

Throughput rate

incoming rate
Maximum

rate (when active)
Calculated effective

Recognized
traffic type

τmax

Figure 3.6: Schematic of the evolution of states of a leaf node receiving otherwise rate-limited
traffic only

108 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

After the node is recognized as foreground leaf node, the queue drains fast and linearly, thus
reducing queuing delay at the same speed. At some point in time, t5 in Figure 3.6, the queue is
emptied again. Since, again, the assigned effective rate is higher than the maximum incoming
rate, node i, j is not continuously active any more. So, after some time the node is again
recognized as background leaf node, depicted as point t5 in Figure 3.6, and the process started at
t0 repeats.

So, traffic that is rate-limited at another location is not recognized by RADICCO traffic type
recognition as a third traffic type. For a certain range of incoming rates, recognized traffic
type oscillates between background and foreground. While the average queuing delay may be
acceptable, the oscillation results in huge queuing delay for a short period within each oscillation
cycle.

This issue can only be solved by a more sophisticated traffic type recognition algorithm that
captures and considers the consumed rate. Nevertheless, we consider the capability to detect
rate-limited traffic desirable for any deployment. To that respect, several approaches can be
examined. First, it might be sufficient to detect phases of inactivity, i.e. when the queue is empty,
during rate reduction. If the traffic were limited by the access network’s scheduler, the queue
would not run empty when the effective rate is reduced. Second, maybe existing counters in
products for BNG deployment can be used to determine the actual throughput during foreground
phases. If the throughput is significantly lower than the effective rate during that interval, the
subscriber’s traffic is also not limited by this scheduler. Both approaches generally suffice to
reliably detect otherwise rate-limited traffic.

In this thesis, we will evaluate prevalence and extent of this issue, but we consider developing
such a sophisticated traffic type recognition algorithm for this rare traffic type out of the scope of
this thesis.

3.8.6 Initial Traffic Type

For the design of RADICCO, we must define when a subscriber is recognized as idle and a policy
for the initial traffic type when a subscriber becomes active again. While a general, globally
accurate technical definition of idle or active is hard or impossible to give, from a scheduler’s
perspective the only obvious, simple and cheap (in terms of effort) solution is to define idle by
link inactivity exceeding a time threshold.

When a subscriber becomes active after an idle phase according to that definition, there are four
basic options for the initial traffic type:

- Foreground.

- Background.

- Unchanged, i.e. the same as during the last active phase.

- Ignore, i.e. do not handle idle time specially.

While the best choice mainly depends on the transported traffic, some mechanism-dependent
advantages and disadvantages exist, which we shortly discuss.

3.8 Rationales for Core Design Decisions 109

Always starting with traffic type foreground will, on the one hand, waste a lot of bandwidth
for every starting background transmission because it would receive a foreground fair share
for tt_recogobsDuration and, after that, would receive for another non-negligible time still more
bandwidth than the background minimum bgmin

i, j . So, overall there is significantly less bandwidth
available to RADICCO to be shifted from background to foreground traffic than could be
expected. On the other hand, this approach makes sure to not disadvantage starting foreground
traffic, especially single short transmissions.

Always starting with traffic type background poses the question of the initial target rate. If
starting with maximum target rate, short foreground transmissions will receive maximum service
but background transmission will be allowed to occupy a rather large fraction of bandwidth at
the beginning. If starting with the minimum background target rate bgmin

i, j , starting foreground

transmissions will have to fill the buffer over tt_recogabsQT hresh
i, j , before they are detected as

foreground traffic. This is achieved rather fast in slow start, limiting the disadvantage. Often, the
effective rate is higher than the target rate, speeding up the process. Still, for typical buffer sizes
and our proposed parameters, this may take several RTTs.

The third option is to leave the subscriber traffic type untouched after phases of inactivity.
Generally, this option is preferable if there is a high probability that the new activity is of the
same traffic type as the last one. Today, this if often the case because most traffic is caused
by human activity and humans tend to pursue activities rather for hours than for seconds. For
example, for DASH video streaming, each burst should and probably will be recognized as
foreground traffic and a session typically comprises thousands of bursts.
Again, for the background case there is the choice to keep the assigned target rate or to reset
it to the maximum target rate. Since subsequent objects may be transmitted using an existing
transport layer connection with an already adapted congestion window, it may make sense to
reuse the formerly assigned target rate. In contrast, resetting the target rate to the maximum after
each idle period would again unnecessarily restrict RADICCO’s rate adaptation scope, assuming
that the probability that the traffic type does not change is high.
With a significant number of low rate but persistent connections (see Section 3.7.4.1), this method
tends to recognize traffic as background traffic.

The option of not handling idle times special was discussed in Section 3.7.4.1.

Summarizing, the choice of the initial traffic type must depend on the probability of traffic
type changes, i.e. on the transported traffic. Therefore, the choice itself cannot be verified by
simulation without knowing (or estimating) the probability of a subscriber changing his traffic
type.

110 Chapter 3. Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload

4 Evaluation

In this chapter, we will evaluate RADICCO as a solution to the problem stated in Section 3.2. In
the following, we will first analyze the RADICCO algorithm to show that it meets the qualitative
objectives identified in Section 3.4.1. The remainder of this chapter is dedicated to the evaluation
of the quantifiable performance of RADICCO regarding the objectives defines in Section 3.4.2.
We present the approach used in simulative evaluation, the performance metrics, which are
aligned to the objectives, and then examine RADICCO’s behavior regarding four selected traffic
types.

4.1 Evaluation of Qualitative Objectives

4.1.1 Network Neutrality

It is important to emphasize that RADICCO does not impact network neutrality. We want to
highlight the main arguments here.

- RADICCO only reacts to the senders’ obvious, i.e. easily detectable behavior. RADICCO
interprets the lack of aggressive rate increase as identifying background traffic. This is no
misinterpretation as we argued in Section 3.6.3.

- RADICCO does neither cause data discrimination nor service discrimination, it is only
based on the sender’s behavior. Any service, any data can be transmitted as background
or foreground, this decision is up to the sender. This is a crucial distinction compared to
DPI-based BE priority differentiation as partly deployed today.

- The bandwidth reduction for background traffic is not enforced if a sender does not
cooperate as expected. In more detail, if a sender does not react to the reduced service
rate by swiftly reducing its sending rate, the sender will experience no loss and will be
recognized as foreground subscriber and accordingly served with full rate.
Assume a subscriber receiving traffic at low buffer usage, so RADICCO will recognize it
as background subscriber and when in overload, start reducing the assigned bandwidth.
This results in some queue building up for this customer. If the sender does not react to
the resulting queuing delay and continues to send with the same data rate, the subscriber
will be recognized as foreground subscriber without even one packet being dropped.

111

112 Chapter 4. Evaluation

- All control is up to the sender, and by that indirectly to the subscriber in many cases.
A sender may change its behavior at any time and RADICCO will adapt immediately.
Consider a sender applying TCP with a background CCA. If it intends to increase priority,
e.g. because it got informed by the receiver that the user brought the corresponding
application to foreground, it may change this connection’s TCP behavior. For wide-spread
OSs such as Linux, this is easily possible.

4.1.2 Sufficient Efficiency

To estimate if RADICCO is sufficiently effective, we derive its computational complexity and
compare it with the complexity that we assume being acceptable, i.e. O(logN) or better (see
Section 3.6.2).

To estimate the worst-case computational complexity, we analyze the effort necessary for each
adaptation event and the worst-case frequency of adaptation events. We provide a theoretical
analysis on the resulting additional worst-case complexity per dequeue-event, as well as a
practical analysis taking into account external limitations.

Due to RADICCO’s design shown in Algorithm 3.3, each rate adaptation event, i.e. each call
of the updateAdaptation() function, results in L calls to the updateState() function
and L calls to the updateEffectiveRate() function with L being the number of hierarchy
levels of the scheduler. Each of the state update calculations can be executed using a constant
number of calculations if state changes are propagated. The calculation of the effective rate of
one node also requires only a constant number of calculations.
Therefore, the computational effort caused by an adaptation event does not depend on the number
of nodes in the hierarchical scheduler but on the number of hierarchy levels only. So, the
worst-case complexity of one adaptation event is O(L).

Adaptation events are triggered by dequeuing a leaf node, i.e. frequency O(1), but also by a
packet arrival at an inactive leaf node, i.e. whose queue is empty at that time. Theoretically, all
O(N) leaf nodes can become active between dequeuing two packets from the root scheduler,
resulting in an overall worst-case additional complexity per dequeue event of O(L ·N).
This theoretical complexity is not feasible for implementation in real equipment.

Nevertheless, this is not the complexity relevant for implementation and deployment. For
implementation, three aspects substantially limit the number of potential rate adaption events
between two dequeue events:

1. Rate control of transport layer CC.
2. Self-clocking of transport layer CC.
3. Rate-limited ingress interfaces.

First, the CCAs prevalent in today’s Internet increase packet rates carefully, so on average the
incoming bandwidth is not significantly higher than the bandwidth of the outgoing downstream
interface. Second, the deviation of the incoming packet rate from its average is small since
the packets of every transport layer connection arrive about evenly spaced due to the self-
clocking mechanism of prevalent CCAs, e.g. standard TCP. Self-clocking works very well

4.1 Evaluation of Qualitative Objectives 113

at the BNG because there is no shared queue, which would result in burst arrivals, but the
hierarchical scheduler that schedules each access link capacity separately. Third, any network
device deployed as BNG is attached to the provider core or aggregation network with limited
bandwidth only. Moreover, the single line card operating the respective downstream interface and
executing the packet scheduling is attached to the device’s backplane with a specific bandwidth,
too. At least the line card’s backplane interface typically is not much faster than the outgoing
interface speed, i.e. there is a small constant that describes the relation between ingress and
egress capacity. Therefore, in practice the number of rate adaptation events between two dequeue
events is limited by a small constant, i.e. it is O(1).
So, the practical worst-case complexity per dequeue-event is O(L), with L typically being two or
three. This complexity is expected to be feasible for implementation, maybe even for updating
existing and deployed devices.

Summarizing, while in theory the worst-case complexity of RADICCO is O(N · L), which
prohibits implementation in real equipment, the practical worst-case complexity is O(L), which
allows for implementation. Since the number of hierarchy levels in hierarchical access networks
is small, typically smaller than four, it could even be argued that RADICCO’s complexity is
constant for schedulers at BNGs.

4.1.3 Smooth Rate Allocations for Foreground Traffic

Since RADICCO changes the rates during operation, rate allocations for foreground traffic
defined by RADICCO may include faster or more abrupt changes than the rates allocated by a
standard HFS. The events that could potentially cause differences in smoothness compared to a
HFS’s schedule are listed below:

1. An additional subscriber becomes active.
2. Another subscriber’s rate is reduced due to a background leaf node’s target rate reduction.
3. Another subscriber’s recognized traffic type changes.

We will discuss these three cases in the following.

With a HFS, when a subscriber becomes active during overload, the effective rates of its sibling
nodes are reduced.
With RADICCO, this is the same if all respective subscribers are recognized as foreground
subscribers. If some of them are recognized as background subscribers and their target rates are
smaller than their capacity, RADICCO behavior depends on the parent node’s level of overload
according to RADICCO’s internal load levels. Without loss of generality, we assume that the
parent node is not in AdaptingOperationMode, so its current effective rate equals its nominal
capacity. If the parent node is in Underload, there is no change compared to the HFS. If the parent
node is under Light Overload, the effective rates of background sibling nodes is heavier reduced
than the effective rates of foreground siblings. In consequence, the change for the foreground
siblings is smaller than if applying a HFS. The effective rates of all foreground subscribers
may even remain at their respective access links’ capacities, the maximum possible rates. If the
parent node is under Heavy Overload, the effective rates of all its child nodes are reduced. Since
the share of foreground traffic is higher than it would be with a HFS’s fair allocation, also the
proportional fair reduction of a foreground sibling node is higher than by a HFS. Nevertheless,

114 Chapter 4. Evaluation

for RADICCO, the resulting effective rate of a foreground sibling node is still higher than its
effective rate allocated by a HFS. So, in most cases a subscriber becoming active results in
smaller changes in rate allocations of foreground traffic than caused by a HFS. If the change
is larger than the change of a HFS, still a higher rate is allocated, which probably results in an
improved QoE, the primary objective of RADICCO.

Reducing the target rates of background subscribers is a feature of RADICCO only, so a
comparison with HFS is not possible. The reduction of the target rate of a background leaf node
is carried out in small steps, but these small steps become irrelevant at load level Underload
and have less importance at load level Light Overload. Thus, the target rates of background
subscribers are of importance to foreground rate allocations only at load level Heavy Overload.
So, if foreground rate allocations are changed due to a target rate reduction of background, they
first, currently receive more bandwidth than with HFS so it always is a beneficial change. Second,
RADICCO target rate reduction for background leaf nodes is carried out in small steps, thus the
rate allocation is smooth.

If RADICCO changes the effective rate of a foreground leaf node because it detects a traffic type
change for another node, this type change must be from background to foreground. In that case,
the effective rate of the considered node is reduced, but this is necessary to assign the appropriate
rate to the new foreground leaf node to achieve appropriate QoE. Moreover, the effective rates of
all foreground leaf nodes are not lower than if rates were allocated by a HFS. The change from
foreground to background has no immediate effect on the node’s target rate, so no sibling nodes
are affected.
So, a traffic type change from background to foreground results in abrupt changes in effective
rates of foreground leaf nodes, but these are necessary to rapidly provide the new foreground
node with its due bandwidth. In that case, the secondary objective cannot be achieved because
the primary objective of improving QoE has conflicting requirements.

Concluding, RADICCO in most cases achieves this objective. In some cases achieving the
primary objective of QoE improvement requires violating this objective.

4.2 Performance Evaluation Approach

The performance evaluation was accomplished by event-driven simulations. In the simulations,
we use a HFS implementation (WF2Q+ extended by an integrated rate-limiting) implemented by
ourselves and this algorithm extended by RADICCO. The simulations covered a targeted set of
four traffic models, two distinct topologies and two background CCAs. We use a wide range of
overload configurations in terms of offered elastic load and share of background traffic since the
offered load defines the necessity for bandwidth reallocation and the share of background traffic
defines the RADICCO’s room for maneuver.

Since RADICCO’s approach of exploiting an understanding on transport layer traffic differentia-
tion in packet scheduling is a novel approach, there is no reference mechanism aiming for the
same objectives. This evaluation measures the changes in performance that RADICCO causes
compared to a HFS to prove the benefit of RADICCO.

4.2 Performance Evaluation Approach 115

In RADICCO, the traffic type recognition and the rate adaptation interact indirectly via the
senders’ reactions to the rate adaption. Therefore, its design is a trade-off between stable and
reliable traffic type recognition and speed and extent of rate reduction of background traffic. So,
any evaluation must consider the system as a whole, e.g. it makes no sense to assume perfect
recognition to estimate the maximum benefit that can be achieved by a specific rate adaptation
algorithm.

4.2.1 Simulation Utilizing Wide-spread Congestion Control Implementations

One core concept of RADICCO is to consider the subscribers’ traffic behavior for allocating
scarce aggregation link bandwidths. So, the performance of RADICCO heavily depends on the
actual behavior of the traffic sources, i.e. their CCA. Therefore, for performance evaluation of
RADICCO, any modified or abstracted implementation of a CC bears a risk to impair the quality
and transferability of the simulation results. We use unmodified wide-spread CC implementations
as “black box” modules in our simulations. In consequence, we model traffic on application
level, i.e. these models define the points in time at which demands arrive and the object sizes, i.e.
the number of bytes to be transferred.

For this purpose, we use the IKR simulation library (IKR SimLib) [158] with the VMSimInt
enhancement to integrate virtual machines (available at [159]) running unmodified OSs, which
we, IKR colleagues and the author, first presented in [160]. This simulation framework has
been used for various research, e.g. our works on CPQs [155] and DCTCP [154] made use of it.
This framework provides a precise packet-level simulation: It uses unmodified Linux kernels to
provide black box CC implementations translating transmission requests on application level
to packets of bidirectional connections traveling through the simulated network topology. This
precise packet-based approach means that the simulation effort, i.e. the run time needed to
complete a simulation, scales with the number of packets transmitted. This number depends
mostly on two factors: the simulated time and the average load. Since for the presented
simulations all packets pass the simulated BNG interface and this interface is fully loaded most
of the time, run time scales roughly with the BNG interface’s capacity. We do not use a fixed
BNG interface capacity but capacities calculated according to the targeted overload as described
in Section 4.2.3.

The VMSimInt simulation framework supported only TCP sockets as provided by the OS within
the virtual machine. For our research on CC-based prioritization we extended this framework by
support for uTP since it is the most wide-spread background CCA (see Section 2.4.3.1). uTP is
based on pseudo-sockets, i.e. a socket-like interface provided by the libutp library [138] instead
of the OS’s kernel. Our extension allows uTP pseudo-sockets to be managed and accessed, most
importantly written to and read from, within the simulation.

By that approach we use existing, wide-spread CC implementations without any modification
from both user and kernel space as black box algorithms for packet generation. We use three
unmodified CCs in the simulative evaluation:

- TCP Cubic from Linux Kernel release 4.4.6 [161]

- BitTorrent’s uTP provided by libUTP as of Feb 27, 2015 [138]

116 Chapter 4. Evaluation

- TCP Vegas from Linux Kernel release 4.4.6 [161]

We chose Linux kernel 4.4.6 since it was the most recent long term support kernel at the begin of
evaluation. It will be maintained by the kernel developers at least until early 2018.

In the following sections, we argue why we chose these algorithms and excluded others.

CCs for Foreground Traffic

TCP Cubic is the default congestion control in Linux. As presented in Section 2.4.3.3, TCP Cubic
accounts for a large share of Internet traffic. Moreover, this share mostly origins from Linux
servers, so the Linux kernel implementation is by far the most used foreground CC and therefore
the most interesting candidate for foreground CC in our simulations.

Traditional AIMD or TCP NewReno is also used by many Internet hosts, see Section 2.4.3.2.
Nevertheless, TCP NewReno is not suitable for faster links, or more precisely larger BDPs,
since it allocates new bandwidth in congestion avoidance phase unacceptably slowly, again see
Section 2.4.3.2. Therefore, we do not expect TCP NewReno to be responsible for large fractions
in terms of traffic and do not consider TCP NewReno in our simulations.

The TCP Compound implementation of the Windows OS would also be an interesting candidate
since Microsoft Windows hosts use it by default and it is reported to be used by a significant
number of Internet hosts (see Section 2.4.3.6). Unfortunately, up to now there is no simulation
framework available that allows integrating TCP Compound as implemented in the Windows
OS in simulations. Our VMSimInt framework does not support integrating Microsoft Windows
instances into the simulation. There exists a Linux implementation of the respective draft [142],
but this implementation may vary arbitrarily from the implementation used in the Windows OS.
Moreover, Therefore, we refrain from using Compound TCP in our simulations.

Summarizing, we use TCP Cubic as the only foreground CC in our simulations, as it represents
by far most of today’s foreground traffic volume and maybe even a higher share of traffic of the
near future.

CC for Background Traffic

Regarding background traffic, we supervised a Bachelor thesis [139] that dived into the perfor-
mance of available CCA implementations, making use of our extended VMSimInt framework as
described above. In [139], nine CCs were evaluated by their respective available implementations:

- uTP [86]]

- LEDBAT [RFC6817]

- TCP Vegas [162]

- TCP-CDG [163]

4.2 Performance Evaluation Approach 117

- TCP-LP [111, 164]

- TCP Nice [113]

- TCP Veno [165]

- TCP Westwood [166]

- TCP YeAH [167]

Amongst these, BitTorrent’s uTP is the best known and likely most wide-spread background
CC algorithm. Moreover, in our examination, uTP proved to be the best suitable background
CC implementations regarding all applicable metrics, such as speed of yielding or bandwidth
utilization when competing with foreground traffic. Note that we found uTP allocating new
bandwidth slower and more carefully than other investigated CCs. We do not consider such
behavior a drawback for a background CC if the priority goals of fast yielding and low remaining
bandwidth consumption are met. This is the case for uTP. Nevertheless, this statement mainly
holds for an appropriately low target delay value, see Section 2.4.3.5 for details. We successfully
used target values of 10 ms, 5 ms, 3 ms and even 500 µs in our simulations. Generally, we
observed that the lower the target value is chosen, the more sensitive the CC behaves. The
sensitivity of the system behavior for a given target value depends on the path’s jitter and on the
capacity of the bottleneck link: The faster the bottleneck, the smaller the delay a packet of a
certain size induces. While we used 5 ms in [139], in this work we use 3 ms since we found this
value resulting in a robust behavior and low delay, important e.g. for concurrent VoIP traffic, but
in a fast detection of foreground traffic by uTP connections.
This uTP implementation implements the zero-cwnd feature we call hibernation (see Sec-
tion 2.4.3.5), which will affect the system behavior in our simulations.

Among the evaluated CCAs, the second candidate with good background behavior is TCP Vegas,
which is a very old and well investigated CC (see Section 2.4.3.4). Other CCs either did not
yield as fast or as far as these two candidates. In the evaluation of RADICCO we use a newer
Linux kernel than in [139] (4.4.6 instead of 4.2rc8) but there were no substantial changes in the
respective kernel code so we do not expect any significant change in the behavior of TCP Vegas.

We therefore decided to not only use uTP with a target value of 3 ms but also TCP Vegas as
background CCs in our simulative evaluation of RADICCO.

4.2.2 Simulation Topologies

Although in today’s regional access networks there is a broad variety of technologies deployed,
see Section 2.1.2, all topologies share some characteristics. They all base on hierarchies and in
fact also on oversubscription. One remaining distinguishing feature is the number of hierarchy
levels. There are networks that consist only of two levels, i.e. the BNG’s outgoing downstream
interface directly connects an AN that itself serves several subscribers. But there also are other
networks that implement the typical three-level hierarchy.

We therefore model both types of regional access networks:

- Flat, two level topologies, see also Figure 4.1.

118 Chapter 4. Evaluation

AN

AGS

BNG

Deployment Point of
Hierarchical Scheduler

Access Link
20 Mbit/s down, 5 Mbit/s up
Aggregation Link
symmetric, parameterized overload
BNG output link
symmetric, parameterized overload

Subscriber

Figure 4.1: Access network topology BROAD used in simulations

AN

AGS

BNG

Deployment Point of
Hierarchical Scheduler

Access Link
20 Mbit/s down, 5 Mbit/s up
Aggregation Link
symmetric, parameterized overload
BNG output link
symmetric, parameterized overload

Subscriber

Figure 4.2: Access network topology DEEP used in simulations

- Deeper, three level topologies, see also Figure 4.2.

Technically, all simulations use a common configurable simulation model using a parameterized
topology as depicted in Figure 4.3 which allows to model both types of topologies. This model
represents the hierarchical network topology fed by one BNG downstream interface, depicted
on the left side, and a minimalistic sender side topology, on the right. The upstream topology
corresponds to the downstream topology except two aspects:

- There is a simple FIFO queue at the BNG interface output interface.

- The access link is asymmetric and has lower upstream capacity than downstream.

The choice of parameters such as access link capacities is discussed in Section 4.2.5.

With these two types of topologies we evaluate the effectiveness of RADICCO shifting resources
from background to foreground on two different levels: For flat access networks, RADICCO is
required to operate at the AN scheduler level, i.e. to work on flows corresponding to subscribers,
each subscriber being recognized as either background or foreground at a time. So, RADICCO
may redistribute resources among sibling subscribers, i.e. from background subscribers to

4.2 Performance Evaluation Approach 119

foreground subscribers attached to the same AN. For deep access network topologies with
unbalanced distribution of foreground and background subscribers among ANs, RADICCO is
required to operate at the BNG interface level, i.e. to work on flows corresponding to links to
ANs carrying mixed aggregates. So, RADICCO may redistribute resources among ANs, i.e.
from ANs with a lower foreground share to ANs with a higher foreground share. Moreover,
also in this topology RADICCO shall operate on AN level and assign higher rates to foreground
subscribers than to background subscribers within ANs serving both background and foreground
subscribers.

120
C

hapter4.
E

valuation

Receiver0

Delay: $OWD ms
Bandwidth: 20 Mbit/s

Delay: $OWD ms
Bandwidth: 20 Mbit/s

Delay: 0 ms
Bandwidth: $aggrBw

ReceiverN−1
Delay: 0 ms
Bandwidth: $aggrBw

Delay: 0 ms
Bandwidth: $bngBw

BngDownstreamLink

Packet Scheduler

... ...

Delay: 0 ms
Bandwidth: 8 Gbit/s

SenderPacingLink0

Delay: 0 ms
Bandwidth: 8 Gbit/s

SenderPacingLinkM−1

Sender0

SenderM−1

Delay: $OWD ms
Bandwidth: 20 Mbit/s

Delay: $OWD ms
Bandwidth: 20 Mbit/s

(m*n)

with full network stack of denoted role
Simulation-integrated Linux VM

Delay: 0 ms
Bandwidth: $aggrBw

Delay: 0 ms
Bandwidth: $bngBw

BNG output link without extra queue

Receiver0

Link with denoted delay & bandwidth
with non-dropping queue of max. BDP size

Per-subscriber meter of throughput

Per-subcriber meter for packet one-way delay

Per-subcriber meter for object transmission duration
Multiplexer

Unidirectional joint between simulation modules

Demultiplexer

(m*n)

AccessDownstream
Link0,M−1

AccessDownstream
LinkN−1,0

AccessDownstream
LinkN−1.,M−1

AccessDownstream
Link0,0

AggregationDownstream
Link0

AggregationDownstream
LinkN−1

Figure 4.3: Simulation topology (only downstream depicted)

4.2 Performance Evaluation Approach 121

This model only allows for symmetric topologies, i.e. every AN serves the same number of
subscribers. While the model allows arbitrary numbers of ANs and subscribers, we only model
three instances for the presented simulations: A BROAD access network topology with all
subscribers served by one AN and either twenty, shown in Figure 4.1, or one hundred subscribers.
A DEEP access network topology shown in Figure 4.2 with a total of twenty subscribers served
by four ANs, each serving five access links.

In most cases, we configure both topologies to contain twenty subscribers. There is one exception
which is the web scenario, in which we use one hundred subscribers due to the low average load
created by the web browsing traffic model. Note that we do not assume ANs to only serve five to
twenty subscribers. But, first, we only need to model active subscribers which in general are
far less than the connected subscribers. Second, these topologies are big enough to examine
the defined metrics, but also allow to run many simulations, i.e. to evaluate many parameter
sets. Third, by using rather few subscribers, we evaluate a lower boundary of performance: A
control mechanism as RADICCO functions the better the more fine-grained its control options
are. So, by choosing such rather small numbers of subscribers we model a case worse than
typical deployment scenarios.

We use symmetric, load-adapted capacities at aggregation links, i.e. for BNG and AGS interfaces
since such interfaces typically use standardized fiber-optical technologies that provide symmetric
speeds, e.g. Ethernet. Regarding the access links, we decided to configure all subscribers with
the same static access link capacity and constant delay.

The uniform capacity differs from real networks where usually a range of capacities is used, be it
for technical reasons as for DSL access links or for business reasons as e.g. for HFC or optical
access networks (see Section 2.1.2). Nevertheless, for the evaluation of RADICCO there is no
significant difference between an AN serving N subscriber links of different capacities or N links
all with the average capacity. More importantly, in our model every AN serves the same total
subscriber capacity. We assume this also being the goal of real network architects to equally
utilize the aggregation links that use standard technology. Therefore, we expect actual topologies
to only slightly vary from that ideal of equal sum capacities at each aggregation level.

The static bandwidth is another simplification since the capacity available to BE traffic is the
remainder bandwidth after higher priority services, i.e. the ISP’s VoIP and VoD services, received
their share (see also Section 2.2.7). Nevertheless, we chose to focus on static BE bandwidth
in this study since the impact of the CBR VoIP is negligible and the prevalence of ISP-offered
VoD services is low compared to other VoD providers such as Netflix, YouTube or Amazon
Video. Moreover, a static capacity makes it easier to understand the often complex interaction of
RADICCO multi-level control loops and the CCAs’ control loops.

Applying constant delay is a third simplification. Although there are close to zero queues in
today’s transport and core networks and routes usually are static during a transmission, the
absolute delay typically varies anyway. One cause of this delay variation, also called jitter, is
found at the senders themselves: Although the CC design assumes OSs sending each packet
independently, this is not necessarily the case for modern computer architectures anymore. To
save computational cost caused by today’s high packet rates, offloading mechanisms [168, 169],
e.g. Generic Receive Offload (GRO), TCP Segmentation Offload (TSO) and checksumming,
as well as interrupt saving mechanisms [170, 171], often called interrupt coalescing, have been

122 Chapter 4. Evaluation

developed and deployed. The effects off the offloading mechanisms, often generally referred
to by TCP Offload Engine (TOE), on TCP performance have been evaluated [170, 172, 173] as
well as the effects of interrupt coalescing [174, 171]. It was found that both mechanisms may
affect the operation of TCP negatively but for most scenarios these drawbacks seem to be more
than compensated by the benefits since both mechanisms are widely in use today.
Nevertheless, modeling their effects is far from trivial and error prone. To our knowledge, there
is no evaluation of an algorithmic proposal regarding TCP or CC incorporating the effects of
offloading or interrupt coalescing. This also applies to research on delay-controlled CCAs where
the impact is expected to be more significant than for loss-controlled CCAs. In case of our
evaluation of RADICCO, the static delays remove dispensable variation in our measurements
and therefore makes interpreting the measurements easier and keeps this thesis focused. On the
one hand, configuring constant delays implies a risk for synchronization of the different control
loops of RADICCO and the senders’ CCAs. On the other hand, using constant delays means that
our results are immediately comparable with other results published in the TCP and CC research
community.
Based on these arguments, we decided to apply constant delays without jitter to our simulated
links.

4.2.3 Scaling Load

Since RADICCO changes the scheduler’s operation only during overload, our simulations focus
on overload situations. Overload in this context means a situation in which there is a higher
offer of elastic load than can be transported. Nevertheless, the load is elastic, i.e. controlled by
transport layer CCAs, so it adapts to the capacity shortage.

To evaluate the effectiveness of RADICCO we need to scale the extent of overload while main-
taining an otherwise equivalent simulation scenario. This overload should roughly correspond to
the depth of the dip in performance today’s subscribers often see when measuring their Internet
access speed during peak periods (see Section 2.1.3 and Figure 2.3). This extend of under-
performance, i.e. the difference between access link capacity and allocated bandwidth directly
corresponds to the maximum benefit that can be achieved by RADICCO since this headroom is
the maximum that it can additionally allocate to that subscriber.

Scaling overload in simulations is a non-trivial task however. The crucial point is that the
statistical evaluation of simulation results is valid only when evaluating steady state systems.
This steady state may refer to different levels of evaluation: On the one hand packet level, or
on the other hand application level. On packet level, overload risks functioning of the overall
system and therefore in today’s networks is completely avoided by the fact that most traffic is
congestion controlled (see Section 2.3.3). Regarding our simulations, every simulation according
to the presented model results in a steady state on packet level since we use CCs and elements of
limited sizes only, in particular buffers and links. So, any measurements on packet level have
stable stochastic properties.
In contrast, application level overload in real networks can be easily tolerated since the CC
active at the end hosts prevent this overload from bringing harm to the overall system. Therefore,
overload on that level means demands piling up, i.e. transfer requests cannot be completed until
the next demand arrives. In reality, typically there is a higher-level control, e.g. a human user, that

4.2 Performance Evaluation Approach 123

intervenes and reduces application level demands, e.g. by canceling a session. In our simulations,
in particular statically defined traffic models, e.g. based on Inter-Arrival Times (IATs), may
result in stable as well as unstable systems on demand level: The system is stable if on average
demands can be transported, and unstable if the demands exceed the average capacity available
to the respective sender. In simulation, such unstable systems show a longer mean transfer time
than the mean IAT. We use this fact to identify configurations that result in unstable systems, see
also Section 4.5. If the traffic model is elastic, e.g. arrivals are based on delay from completion
of the last transmission, the system cannot be unstable on the application level.

When designing our simulation parameterizations for RADICCO’s evaluation, we aim to provide
global control for quantifiable overload on packet level as outlined above, i.e. in terms of offered
stochastic load. In general, there are several options to achieve such global control:

- By scaling the number of subscribers.

- By scaling the access link capacity.

- By scaling the traffic model, i.e. the size and/or arrival of transmitted objects.

- By scaling the bottleneck links, i.e. capacity of the BNG interface and/or of the aggregation
switch. interfaces

We decided to scale the bottleneck links. There are good reasons not to choose one of the other
options as argued in the following.

If we would change the number of subscribers, both the number of arrival processes and the
number of CC control loops are changed. So, we introduce a change both on packet level as
well as on demand level. For the possible numbers of subscribers in our simulations, both
changes typically heavily impact the overall system behavior. Moreover, adapting the number of
subscribers allows only few steps, thus with very different relative changes.

Scaling the capacity of the access links would only be desirable if the offered load scales
proportional with the access link speed. This is obviously not true for all static traffic models.
Regarding elastic models, there are models that scale load about linearly with access link capacity,
e.g. the load offered by greedy connections scales about linearly with the access link capacity.
But this is not true for most other elastic traffic models: For instance, for delay-based traffic
models the offered load scales somehow with the access link speed, but far from linearly. For
this work, we only consider distribution-based traffic models, which means we do not consider
traffic models using dynamic calculations. Such model would also modeling the dynamics of
DASH-like VoD, but we consider such complex traffic models out of the scope of this thesis.
So, scaling the access link capacity would require to also adapt the definitions of traffic models,
which is not the desired simple control parameter. Moreover, even if this adaptation would be
perfect, it results in different behaviors of the CCAs since the cwnds grow to different maximums
(assuming the maximum rate allocated by the scheduler is relative to the access link bandwidth).
But smaller congestion windows mean lesser control loop updates and therefore slower reaction
to changing environments.

Scaling the load by scaling the size and arrival of transmitted objects again rises concerns
since it leaves the ratio between feeding capacity and maximum receiving capacity the same.

124 Chapter 4. Evaluation

Nevertheless, we consider this relation crucial to vary since it also defines the possibilities of
reallocating bandwidth.

Therefore, we consider scaling bottleneck links the best option. Nevertheless, the operation of
CCAs is always based on discrete events, e.g. packet arrivals. When scaling load in such systems,
effects typically are not strictly linear, e.g. with less bandwidth available to a foreground TCP
connection the transmission of the same amount of data causes higher absolute packet loss and
retransmissions.

For the simulations presented in this chapter, we varied the bandwidth of both the BNG interface
and the aggregation switch interfaces, i.e. the capacities of both the scheduler’s root node, CR, and
of its edge nodes, Ce. To provide a basis for comparing the load on these bottleneck links between
simulations using different traffic models, we used a two-level scaling of these capacities:

1. We calculate the overall stochastic load as sum of mean stochastic loads of all subscribers.
2. We overload each aggregation level by configurable factor. For that, we define overload

factors for the BNG interface, OLFBNG, and for the AGS interfaces, OLFAGS.

For the first step, we independently measured for each traffic model T M the long-term average
link layer load L(T M), that occurs if the subscriber’s access link is the bottleneck. It considers
the layer two, three and four protocol headers overhead (for TCP over IPv4 over Ethernet 66
Byte per 1448 payload, so 4.558 %) but also overhead caused by unnecessary retransmissions.
The load L(T M) therefore not only depends on the traffic model, but also on the capacity of
the link, the RTT and the buffer at the bottleneck and, if applicable, its AQM. Therefore, we
left these parameters unchanged for all presented simulations to provide comparable results.
Nevertheless, it is crucial that first, the evaluated overload periods result in reduced and varying
available bandwidth, so the actual effective link layer load will probably increase due to additional
retransmissions. Second, L(T M) is just an average of in most cases a distribution-defined pattern
of transmission and idle phases. Applying these stochastic patterns to several subscribers in an
access network causes loads at aggregation links to vary and sometimes even the location of the
bottleneck to vary over time: There are phases of heavier overload at aggregation interfaces than
the calculated average but also phases of the aggregation interfaces not being fully loaded so that
the access links constitute the bottlenecks.
When configuring a specific traffic model T M for a subscriber i, j in a simulation scenario, we
also assign the respective average load Li, j = L(T M) to that subscriber. Based on these subscriber
loads we calculate the capacity of the AGS interfaces and then the BNG interface capacity.

For the second step, we use the overload factors OLFAGS and OLFBNG. The AGS interface
capacity Ce is defined as given in Equation 4.1.

Ce =
∑all leaf nodes i,j Li, j

#accessnodes∗OLFAGS
(4.1)

This definition means that the expected average load of all subscribers is divided by the number of
ANs and by the configured overload factor for AGS interfaces. It configures the same bandwidth
for all AGS interfaces since this probably reflects reality in hierarchical access networks. This
calculation does not take into account any unbalanced load distribution among the ANs caused
by subscribers receiving traffic according to different traffic models. Again, this reflects the

4.2 Performance Evaluation Approach 125

situation in real networks: The operator just knows the number of subscribers but cannot foresee
their behavior.

The BNG interface capacity CR is defined as the sum of all AGS interface capacities, i.e. Ce
times the number of ANs, divided by its configured overload factor OLFBNG. The calculation is
also given in Equation 4.2.

CR =
#accessnodes∗Ce

OLFBNG
(4.2)

In the presented simulations, we only adapt the stochastic overload of either BNG or AGS
level: According to the targeted evaluation of the different load shifting mechanisms, we induce
statistical overload at the AGS interfaces only in case of the BROAD topology and at the BNG
interface only in case of the DEEP topology.

Therefore, we define the overload factor OLF as the product of the two level specific overload
factors as depicted in Equation 4.3.

OLF = OLFBNG ·OLFAGS (4.3)

The overload factor OLF therefore provides the desired single parameter to scale the overload.
More precisely, the OLF defines the relation between offered load and available bottleneck
capacity.

A final remark:
Since the SimLib [158, 159] and more importantly the Linux-internal time management work
with nanosecond resolution, we are often not able to use the exact calculated capacities, i.e.
we do not model exactly the desired overload. If the total load changes by parameter variation
during one set of simulations, this leads to slightly differing sets of simulated load levels as for
instance in the simulations with rate-limited traffic as can be seen in Figures 4.27 to 4.32.

4.2.4 Traffic Models

Internet traffic is continuously changing in general, both because the users change their behavior
as well as because service providers create new services and update and re-design existing ones
frequently. In consequence, there is no value in aiming to capture today’s traffic in detail since
it will be a different composition of different services tomorrow. Nevertheless, it is possible
to define fundamental classes of services, derive their fundamental behavior and type of QoS
requirements.

With regard to RADICCO’s goals and the traffic evolution until today, we consider the following
traffic types being of special interest:

- Greedy transmissions
since this is the most basic model and may model permanent background transmissions

- Otherwise rate-limited long-term traffic
since it is the traffic we expect RADICCO to perform worst

126 Chapter 4. Evaluation

- Downloads of software updates
since this traffic is typical background traffic and more challenging than greedy transmis-
sions.

- DASH-like VoD Streaming
since such traffic makes up for ~60 % of peak period traffic

- Web Browsing
since it is crucial for the users’ perception of service quality

The motivation for using these models defines two groups of traffic models: The first two traffic
models are artificial models, they are not aligned to specific services. The second group of three
traffic models aim to model services that we consider important.

In a simulation, each subscriber is assigned a traffic model, and all transfers defined by the
traffic model are transferred using a single transport layer connection. For each traffic model, we
will provide background information and, if applicable, the parameters of our respective traffic
model.

4.2.4.1 Greedy Transmissions

Greedy transmissions are transmissions that are never limited by the sender application, resulting
in a transmission governed only by the CCA and the network performance (as perceived by the
CC). Although real transmissions do have some specific size, i.e. stop after a specific volume,
not only very large transmissions may be approximated by this concept. They are suited to
represent traffic consisting of a varying number of overlapping TCP connections of limited
life time (possibly even of several subscribers) that in total consume all available bandwidth.
Greedy transmissions may therefore be used to model P2P traffic. But also in general greedy
traffic should mostly be background traffic due to its elasticity and hence obvious tolerance in
completion times. We do not show results of simulations with greedy background transmissions
and rather show results on more challenging and critical traffic models.

4.2.4.2 Otherwise Rate-limited Long-term Traffic

Background

The traffic examined in this scenario does not represent a specific service present in today’s
Internet. We include this traffic model since this traffic is the most critical type of traffic for our
approach. As explained in Section 3.8.5.3, using RADICCO is expected to result in oscillating
traffic type recognition for such traffic.

Every false recognition as background subscriber results in a reduced bandwidth assignment
compared to the correct foreground recognition. If at some point of time the respective incoming
rate is higher than the assigned reduced rate, a queue starts building up at the BNG, resulting in
additional and usually undesired delay and delay variation. For newly starting foreground flows
with the bottleneck at the BNG scheduler a false recognition as background has no strong impact

4.2 Performance Evaluation Approach 127

for three reasons. First, this usually happens just once at the start of a transmission. Second, the
rate reduction is minor. Third, the false state, and thus the rate disadvantage, lasts only for a short
time and usually is even left within the slow start phase, which allows seizing bandwidth that
becomes available after correct recognition very fast. However, for transmissions that are limited
at another place before the access network, these statements do not necessarily hold. Therefore,
for this type of traffic we expect large packet delays.

The place of limitation may be located somewhere in the network between sender and BNG,
but also in the sender, which most prominently applies to real-time streaming services such as
third-party VoIP or real-time video conferencing. Nevertheless, all this only applies to traffic that
is not prioritized by the ISP. Typical examples are Skype or Web Meeting conferences at private
subscriber lines. For such traffic, low packet delay is crucial for QoE. While such rate limits
may affect any type of traffic, we examine the impact of RADICCO only for greedy rate-limited
traffic since we just aim at providing a first glance on the severity of the expected deficiency.

Traffic Model Definition

To model long-term rate-limited traffic we use a greedy TCP Cubic connection and configure the
respective SenderPacingLink with the lower capacity of the rate limit. The SenderPacingLink
represents the network interface that connects the sender Linux stack to the simulated network
as shown in Figure 4.3. Note that the SenderPacingLink is equipped with 100 ms of buffer.

4.2.4.3 Software Updates

Background

The prevalence of so-called app stores on many platforms, e.g. Apple iOS, Google Android,
Microsoft Windows and Apple MacOS, facilitates and fosters frequent software downloads for a
wide range of purposes, not only for fresh installations but most prominently for security and
function updates. Such software updates are often downloaded and installed automatically when
becoming available without user interaction. Similar mechanisms are also available for and
applied to OS updates, e.g. for iOS, Windows, MacOS and Linux distributions. Most software
downloads are not linked to user interaction, but are downloaded and installed by automated
procedures. Such transfers should therefore be background traffic and Microsoft as well as
Apple report to implement measures to achieve such behavior, Apple indeed using the LEDBAT
CC [114].

The size of software updates is constantly increasing, and covers a wide range from few
megabytes to several gigabytes (recent examples from late 2016: Microsoft’s “Windows 10
Anniversary Update” is about 3 GB, Apple’s iOS update to 10.0.2 is about 2.2 GB). Nevertheless,
regarding performance evaluation, these huge downloads provide no further insights since they
resemble a greedy transmission most of the time. Nevertheless, most software updates are
significantly smaller. We are not aware of data on the download sizes, but they are changing
fast anyway so we use a reasonable, but arbitrary and simple traffic model. For the evaluation
of RADICCO, the overall behavior is more important than the size distribution: In many cases

128 Chapter 4. Evaluation

software updates are downloaded and installed in turns, resulting in a long download phase,
followed by a phase of inactivity from the network’s perspective.

Summarizing, automated software updates are a predestined candidate for CC managed back-
ground traffic and are responsible for large and increasing amounts of traffic. Due to their
behavior, they are a more interesting traffic model than trivial greedy background transmissions.

Traffic Model Definition

We use a delay-based traffic model that uses uniformly distributed waiting times and object sizes.
In detail, the waiting times are uniformly distributed between 8.5 and 11.5 seconds and object
sizes are uniformly distributed between 30 MB (30 ·106 Byte) and 300 MB. Since RADICCO
benefits from more stable load situations on any aggregation level, the object sizes are chosen
rather too small than too large to provide realistic and not overly optimistic results.

4.2.4.4 Video-on-Demand Streaming

Background

Today, VoD streaming service use DASH or similar techniques. This type of traffic accounts for
the biggest share of peak period traffic, e.g. in total more than 60 % in North America [85] and
at least about 40 % in Europe [83], see also Figures 2.10a and 2.10b. A VoD streaming session
consists of one or few TCP connections that transmit video data in bursts to keep the playback
buffer at the playback device sufficiently filled. When the playback buffer runs low, the VoD
receiver signals the sender to reduce bandwidth consumption. The sender can then step down
on a so-called “bitrate ladder” [79], i.e. switch to transmitting the video in a lower resolution or
lower quality encoding. Any step down in bitrate results in a decrease in QoE but usually the
switch can be handled without stalls, so the worst case QoE impairment is avoided.

There are several publications on the properties of DASH video streaming [99, 175, 176], and
we also conducted measurements for the Netflix, Amazon video and YouTube services ourselves.
We analyzed four streaming sessions in detail and found three being streamed from data centers
near Frankfurt, one from the USA near New York. All streams used several—most of the time
three—concurrent TCP connections. The findings of our analysis differ significantly from the
ones given in [99] and [176] and other non-academic analyses. This underlines the high volatility
of traffic characteristics for this particular traffic. Obviously VoD streaming traffic varies both
from service provider to service provider as well as over time, therefore we only aim at correctly
modeling the fundamental properties.

We performed a quick analysis, which we do not include here because of its minor importance
and space reasons. The results showed that for three streaming sessions the IATs of traffic bursts
follow a rather narrow distribution around two seconds. Our simple analysis (based on a fixed
idle-time threshold of 250 ms) also resulted in some outliers, most of them at about four and
some at six seconds IAT. For a fourth session, we found a very narrow IAT distribution with
the sharp peak at ten seconds. For all sessions, the burst sizes are much bigger than the burst

4.2 Performance Evaluation Approach 129

sizes reported in other papers. Probably the reason is an increased resolution, all our streaming
sessions used the Full High Definition (FullHD) resolution. The distributions of the burst sizes
were very different, some showing rather uniform distribution between 1 MB and 3.5 MB while
others show a significant peak at about 2.5 MB, both combined with the short (about two seconds)
inter arrival intervals. These measurements make clear how volatile the exact properties of VoD
streaming traffic are. Nevertheless, we identify several stable properties of today’s DASH-like
VoD streaming:

- Data is sent in bursts.

- The bursts are sent in rather fixed intervals.

- The volume per burst depends on video properties such as resolution, frame rate, quality
and video content.

- If several bursts are not received in time, the playback buffer decreases.

- If the playback buffer falls below a certain threshold, the server reduces the video bitrate,
i.e. QoE decreases.

Traffic Model Definition

For our analysis, we do not aim at modeling the control mechanism for the bitrate selection. In
contrast, we aim to examine which conditions suffice to successfully deliver the best quality
service and therefore model maximum quality video streaming traffic as non-adaptive streaming
traffic. In these models, the objects to be transferred correspond to the traffic bursts in the
measurements.

More precisely, we use two models for DASH-like VoD streaming traffic inspired by the
two patterns we saw in our own measurements. Both traffic models are based on a narrow
normal-distributed IAT and a rather wide-spread uniform distribution of object sizes, i.e. of the
independent data bursts transmitted during a VoD streaming session. These IAT models are
guided by our impression that technically, bursts are triggered in fixed intervals but random
delays at the sender, e.g. at its storage back-end, cause the actual intervals to vary a little. We
choose rather large object distributions we saw only for an older movie which shows much noise.
Nevertheless, we aim at modeling a rather challenging situation and such model might even fit
for streaming higher resolution but low noise material.
The first model called short interval model uses short intervals and small objects. It is defined
by a normal-distributed IAT with a mean of two seconds and a standard deviation of only 0.1
seconds. We do not allow IATs to be lower than 0.5 or bigger than 3.5 seconds. The object
sizes are uniformly distributed between 1 MB and 3.5 MB. The second traffic model called large
interval model is based on longer IATs and bigger objects. The normally distributed IATs have a
mean of ten seconds and again a standard deviation of 0.1 seconds. We clip the distribution at
8.5 and 11.5 seconds. The object sizes are uniformly distributed between 5 MB and 17.5 MB.

130 Chapter 4. Evaluation

4.2.4.5 Web Browsing

Background

Web browsing by now does not account for a large share anymore but is used by virtually all
users and typically a human user waits for the result. Therefore, from the user perspective it
provides an instant information on service quality. From the ISP’s perspective, delivering a
bad service quality for web browsing poses the risk that the user generally associates a bad
performance with that ISP. Today’s typical web pages consist of many objects, often retrieved
from different servers. If a web browser does not use a proxy, it therefore sets up many TCP
connections to request and receive the content. We use a simplistic model here: We do not model
the request and model a web browsing transfer as one download representing the total of all the
object transmissions. Moreover, we use only one TCP connection to receive all web browsing
transfers. Due to the long reading time in a web browsing model, this connection resets the cwnd
to the initial window and carries out slow start for each object transfer. Nevertheless, it does
not require a new three-way-handshake for a new transfer. Modeling web traffic is challenging
and there exist many publications on that topic (from [177, 178, 179] to [180, 13, 181]). In
general, web traffic is modeled by a (very) heavy tailed distribution for the object sizes and
another distribution for the reading time that follows each transfer.

Traffic Model Definition

For the object size distribution, we chose to scale the model of Hernandez-Campos [180] to a
mean object size of 1 MB which is often reported to be today’s typical website size and about
matches the findings of Pries et al. in [181] (833 kB mean total size in 2012). Since we are not
interested in the large transmissions already covered by the software updates traffic model, we
cut the object sizes at 30 MB, the minimum object size of the software updates traffic model. For
the reading time distribution, we adopted the log-normal distribution proposed by [182, 181]
(µ =−0.495204, σ = 2.7731, cut off at 10.000 seconds).

4.2.5 Model Parameterization and General Simulation Parameters

There are several basic parameters such as buffer sizes, AQMs or link delays that can be tuned in
the described simulation model. We use a uniform setup for all simulations to achieve comparable
results. We use a simple tail drop queue since AQM tuning is a delicate task and its effects
may blur the view on RADICCO behavior. We use buffer sizes worth 100 ms of continuous
transmission of the respective link, following the argumentation given in Section 2.4.4.

We also use an RTT of 100 ms—by setting the delays of the access links only to 50 ms, parameter
$OWD in Figure 4.3—although many of today’s connections show shorter RTTs. Lower RTTs
result in faster control loops of the involved CCAs, so a large RTT represents a worse case for
RADICCO. In fact, simulations with lower RTTs show higher utilization since the involved CCs
can seize freed bandwidth faster. Since there are no other effects of special interest to be seen in
these simulations, we do not show these results.

4.3 Performance Metrics 131

We use 20 Mbit/s downstream capacity and 5 Mbit/s upstream capacity for all access links, a
bit more than the 14.1 Mbit/s average downstream speed reported by Akamai for Germany in
2016 [6].

We carried out all simulations for at least 2.000 s simulated time after a transient phase of
15 s allowing the system to reach steady state. For statistical evaluation, we partitioned every
simulation into ten batches if not stated differently.

4.2.6 Algorithmic Parameters

For the results presented we did not change any internal algorithmic parameter of RADICCO but
used the values presented and argued in Chapter 3, Sections 3.7 and 3.8.

We use

- A relative background buffer usage threshold of 0.35, i.e. tt_recogrelQT hresh = 0.35

- A buffer observation period of 2 s, , i.e. tt_recogobsDuration = 2s

- A minimum background target rate of 1 Mbit/s, i.e. bgmin = 1Mbit/s.

- A per-packet target rate decrease of 37.5 kbit/s/packet , i.e. βreduce = 37.5 kbit
s∗packet

4.2.7 Reference Scheduler Implementation

We implemented the WF2Q+ packet scheduler and enhanced it by rate shaping functionality.
We use this implementation as reference scheduler since it provides a O(1) GPS-relative delay,
proportional fairness and an O(1) nWFI, so the best-possible scheduling according to all standard
scheduling metrics except computational complexity. For simulations, the complexity is not of
primary importance since we aim to show the potential of the approach. Moreover, for the small
topologies in our simulations, WF2Q+’s complexity of O(log n) would even be well acceptable
in real implementations (dlog220e= 5).
For all simulations, we configure all per-subscriber queues as drop-tail queuing disciplines of
250 kB of buffer, equivalent to a maximum queuing delay matching the configured RTT of
100 ms.

4.3 Performance Metrics

We evaluate performance regarding the four domains listed as goals and moreover, we present
core data on RADICCO’s internal state.
First, we examine if the user in the examined scenarios benefits from RADICCO (Quantitative
Objective 1), i.e. if RADICCO is likely to induce an increased QoE of the service the foreground
traffic belongs to. With that regard, we do not aim to produce specific QoE measurements; this is
out of the scope of this work. Nevertheless, for each traffic type examined in our simulations the
QoE primarily depends on one or two specific QoS properties such as object transfer time. We

132 Chapter 4. Evaluation

will discuss these dependencies in Section 4.3.1 and accordingly present selected measurements
for every scenario. Second, we evaluate the bottleneck utilization (Quantitative Objective 2).
This measurement indicates a possible price for any gains in QoE in terms of wasted resources.
Third, we examine achieved fairness among the foreground subscribers (Quantitative Objective
3) and among the background subscribers (Quantitative Objective 4). Moreover, we will present
data on correctness of RADICCO subscriber recognition where suitable.

4.3.1 Improved Quality of Service for Foreground Traffic

We assume that only the foreground traffic contributes to immediate QoE, so we only evaluate
the QoS of foreground traffic. Generally, by design of the algorithm any subscriber consistently
recognized as foreground cannot be adversely affected by the proposed algorithm. But such
consistent foreground recognition cannot be guaranteed and is even unlikely due to the design of
the background detection algorithm for many traffic types in the real Internet and our respec-
tive models. Therefore, we present the crucial QoS criteria for all traffic models used in the
simulations.

Greedy transmissions only aim at transmitting as much data as possible, so this represents the
only criterion for QoE in that case.
Otherwise rate-limited long-term traffic is different compared to all other traffic types since we
do not make a specific assumption on the service. VoIP traffic, and with restrictions also video
conferencing traffic, may serve as example for demanding traffic with such properties. At least
for VoIP, the QoE-relevant unit is the single packet. For the transmissions of single packets the
mean delay as well as the jitter are crucial properties since they define the overall playback delay
that should be below the International Telecommunication Union (ITU)’s threshold of 150 ms
for one way delay [G.114]. So, for otherwise rate-limited traffic we present mean packet delay
as well as maximum packet delay.
Software updates are useful only after completion, so the crucial measurement to assess QoE is
the mean transfer time.
For our static model of DASH-like VoD streaming any impairment of QoE would be caused by
the playback buffer running empty. This happens if an object’s transfer is longer delayed than
the playback buffer can compensate. Since playback buffer management is out of the scope of
this work, we assume a large playback buffer. This allows to judge on QoE by measuring the
mean object transfer time only: If the mean object transfer time is smaller than the mean object
IAT, we can assume the large buffer to compensate any temporary delays.
For web browsing, the same reasoning as for software downloads applies.

4.3.2 Bottleneck Utilization

The managed scarce resource should not be wasted, so a high utilization of the managed BNG
link is desirable. In all simulations, the bottleneck BNG link is overloaded on average, i.e. on
average there is more traffic offered than can be transported. Nevertheless, there are several
reasons for idle times of bottleneck link.

4.3 Performance Metrics 133

All scenarios base on stochastic traffic models, so the number of active subscribers is a random
variable. If this number is small at some point in time, e.g. after one or several transfers have
been completed and the respective subscribers became inactive, there are several reasons for the
remaining transfers not being able to fully utilize the BNG downstream interface.
First, the number of remaining active subscribers may be so small that the access links become the
bottlenecks and limit the throughput of the BNG interface. This only happens at low stochastic
overload, i.e. for low overload factors.
Second, even if the number of remaining active subscribers is sufficient, the reduction in load
results in an increase of rates allocated to the remaining active subscribers. The CCA control
loops may be too slow in increasing their cwnds to keep their access link queues from running
empty and thus the respective subscriber becomes inactive for some time. At this point the
existence of buffers at AGS and AN interfaces and their usage by the packet scheduler plays
a role: If these interfaces are equipped with buffers, the scheduler may bring forward other,
non-empty queues that would be not yet eligible in terms of strict maximum rate control since
their respective links are still busy transmitting the last (or even an earlier) packet. Our WF2Q+
scheduler implementation only uses a buffer of one packet at these interfaces. Thus, it may
induce idle times in situations, in which a DRR scheduler would just rotate on and fill buffers at
these interfaces. It is not obvious if such a system would result in improved utilization or just
delay the idle times. Anyway, since the reference HFS implementation is the base scheduler of
our RADICCO implementation, measured differences in utilization base on the same behavior
and thus indicate an impact of RADICCO.

The reduced target rates of subscribers recognized as background subscribers by design cannot
directly cause underutilization since the effective rates always utilize any bandwidth that would
be wasted otherwise. Nevertheless, the CCAs of subscribers having recently been served with
reduced rates may have even more difficulties to increase their cwnds fast enough. Moreover, the
general approach of RADICCO of adapting rates results in more rate changes than inflicted by
the changing load and may amplify these. Any of these additional rate changes comes with the
risk to cause underutilization as detailed above.

All the reasons for underutilization during stochastic overload discussed above may be seen as
results of stochastic processes. Obviously, the probability of all these reasons decreases with
increasing number of flows. So, for scenarios with more subscribers, the described reasons for
underutilization will less likely become effective, i.e. the mean utilization at the same overload
factor increases. Consequently, regarding utilization our topologies represent a rather bad case
for RADICCO.

Independently, high utilization is only a secondary goal. A lower bottleneck utilization may very
well be acceptable if the QoE of the foreground traffic is increased.

4.3.3 Fairness of Bandwidth Allocation

As stated in our goals, see Section 3.4, there is a significant difference in importance between
fairness among foreground subscribers and among background subscribers. Nevertheless, the
metric used to measure this fairness is the same, therefore we discuss both in this section. With
today’s CCAs, fairness can only be demanded from a scheduling algorithm for same external

134 Chapter 4. Evaluation

parameters such as used CC, RTT and of course offered load. For our simulations, this is the case
except for the load: We use stochastic load. Nevertheless, we need to compare medium-term
averages anyway since CCAs such as TCP Cubic do not converge but achieve long-term fairness
(see Section 2.4.2 and [106]). The durations simulated for this evaluation should be sufficient to
provide realistic fairness measures for the stochastic traffic models used.

To evaluate the intra-class fairness of bandwidth allocation, we use Jain’s fairness index [183],
a fairness metric widely used in TCP-related research. Regarding this metric, a value of 1.0
indicates perfect fairness. The worst-case fairness depends on the number of competing entities,
i.e. subscribers in our case. For N competing entities the value 1

N indicates worst case fairness,
i.e. one subscriber receives all bandwidth.

By design, RADICCO does not manipulate weights of subscribers recognized as foreground
subscribers, thus in case of perfect foreground recognition, RADICCO results in the same fairness
as the base HFS. Nevertheless, all non-continuously active subscribers will be recognized as
background subscribers when a new transfer begins after a sufficiently long idle time. Such
temporary false recognitions can be the source of unfairness if they, i.e. their durations, are not
equally distributed among subscribers.

In contrast, there are several sources for unfairness among background subscribers: First,
as for foreground subscribers, the durations of the respective recognitions may be unequally
distributed. Second, the dynamic rate adaptations of RADICCO may amplify short-term random
unfairness. And third, the control loop of RADICCO and the delay-controlled control loops
of the background CCAs may interact unfavorably and further amplify unfairness: An initial
unfairly low rate induces delay, to which the CCA reacts by reducing the sending rate, which
makes RADICCO continue to recognize the subscriber as background and further reduce its
target rate.
Therefore, a lower level of fairness is expected among background subscriber than among
foreground subscribers. Nevertheless, fairness among background subscribers is of lowest
importance since the respective traffic does not contribute to QoE.

Since in unbalanced multi-level topologies fairness as a secondary goal is traded off for a more
desirable bandwidth allocation (see also Section 3.4), we do not evaluate fairness in the DEEP
topology.

4.3.4 Correct Subscriber Recognition

To understand performance results, or why RADICCO results in certain effects, it is helpful to
gather statistics on its internal states. For RADICCO, there are two crucial internal states: First,
the effective rate assigned to a subscriber or to a set of subscribers. This is already indirectly
reflected by the QoE measurements. Second, the recognition of subscribers. We will show the
data on subscriber recognition as the only data on internal states, since it supports understanding
the reasons for RADICCO performance.

Regarding the correct identification of traffic there are several dimensions to be considered when
assessing the impact on RADICCO performance. First, it is more important that foreground
traffic is recognized as such than that background traffic is correctly identified: Failing the first

4.4 Performance for Software Updates Traffic 135

may result in RADICCO negatively impacting the crucial foreground QoE while failing the
second only diminishes the benefit gained by RADICCO. Second, the distribution of the duration
of false recognition is crucial since the effect of a subscriber being recognized as background is
negligible at the start of the rate adaptation and grows over time to some maximum extent (within
the first few seconds, depending on the effective rate). This again applies to both, foreground
and background, but again the severity differs. For foreground subscribers, short periods of false
recognition results in a barely reduced bandwidth for that period only. So, any number of short
periods of false recognition is acceptable for foreground, while a longer time of false recognition
results in a severe reduction of allocated bandwidth and, depending on the service transported,
QoE degradation. In contrast, if false recognition time of background subscribers is distributed
in many short periods of time, every such event will reset the target rate to the maximum rate, so
RADICCO will effectively not retrieve significant bandwidth from such background subscribers.

Nevertheless, even duration and number of phases of false recognition are not sufficient to
estimate the extent of the impact on QoE: If there is low overload, even recognizing foreground
traffic falsely as background may cause no substantial harm: RADICCO does not simply apply
the calculated reduced target rates for background subscribers but tries to exploit remaining
bandwidth instead. Therefore, a background subscriber’s effective rate may be much higher than
his target rate.

In the following, the terms “background subscriber” and “foreground subscriber” refer to a
subscriber’s configured traffic type, not the traffic type recognized by RADICCO.

4.4 Performance for Software Updates Traffic

In this scenario, we examine the effectiveness of prioritization by RADICCO when downloading
sequences of rather big objects, e.g. software updates. Such transmissions may be triggered by
automatic processes but also by explicit request of a user. So, in the first case, the process runs in
background and there usually is no decrease in QoE in case of delayed completion times. In the
latter case in contrast, the process runs in foreground and the user may wait for completion, so a
delayd completion may result in a decline in QoE. Accordingly, the first group should be—and
partly is already today—using a background CC and the second a foreground CC. We model
such situations in this set of simulations.

In this scenario, we simulate twenty subscribers, among these one to ten background subscribers.
These subscribers are equivalent to an average background share of 5 % to 50 % in offered load
since both types of subscribers receive traffic according to the same traffic model. Nevertheless,
this simple equation only holds for the long-term average and moreover is not applicable to
all other scenarios. Therefore, we state the number of background subscribers rather than the
average share in offered load in the following.

We decided to show rather all values for the presented evaluations, e.g. for all simulated numbers
of background subscriber, than only selected subsets since many results show non-continuous
effects. So, showing results for selected values implies a risk to distort the overall impression.

136 Chapter 4. Evaluation

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

70

80

90

100

110

120

130

140
M

ea
n

ob
je

ct
tr

an
sf

er
tim

e
[s

]

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(a) Applying RADICCO

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

70

80

90

100

110

120

130

140

M
ea

n
ob

je
ct

tr
an

sf
er

tim
e

[s
]

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(b) Applying the reference HFS

Figure 4.4: Foreground object transfer times for the BROAD topology, the traffic model of
software updates and TCP Vegas-controlled background traffic

4.4.1 Transfer Times of Foreground Traffic

Object transfer times consist of the transmission time of the data of that object and a waiting
time until the transmission is started. The transmission time is always greater than zero, and the
waiting time is zero or greater than zero. For this scenario, we evaluate the mean transfer time
since every transmission results in a distinct QoE, so the overall QoE is directly correlated with
the mean transfer time.

We evaluated the foreground object transfer times for the BROAD topology as well as for the
DEEP topology. For the latter, we only show results for the clustered distribution of background
subscribers. The clustered distribution is characterized by the fact that there is at maximum one
access node serving background and foreground subscribers, while all other access nodes serve
only one type of subscriber. This forces RADICCO to adapt rates on the AGS level, i.e. to adapt
the allocations for mixed aggregates served by the root node scheduler. Moreover, the clustered
distribution is the worst-case of a distribution of subscribers for RADICCO, since it as far as
possible prevents adapting rates on AN level, i.e. at the edge node scheduler.

BROAD Topology

For the BROAD topology, Figure 4.4 shows the mean foreground transfer times in case of
TCP Vegas-controlled background traffic, while Figure 4.5 shows the mean foreground transfer
times in case of uTP-controlled background traffic. Regarding the transfer times achieved by the
reference HFS, there almost is the expected linear relation between load and transfer times as

4.4 Performance for Software Updates Traffic 137

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

70

80

90

100

110

120

130

140
M

ea
n

ob
je

ct
tr

an
sf

er
tim

e
[s

]

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(a) Applying RADICCO

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

70

80

90

100

110

120

130

140

M
ea

n
ob

je
ct

tr
an

sf
er

tim
e

[s
]

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(b) Applying the reference HFS

Figure 4.5: Foreground object transfer times for the BROAD topology, the traffic model of
software updates and uTP-controlled background traffic

visible in the Figures 4.4b for TCP Vegas-controlled background traffic and in Figure 4.5b for
uTP-controlled background traffic. In both cases, there is slight improvement, i.e. a reduction
of transfer times, with increasing fraction of background subscribers. This is caused by these
protocols seizing bandwidth more carefully and slower than TCP Cubic, the CCA replacing
the respective background CCA. In consequence, if the bandwidth available to a transport layer
connection is not constant, as in our simulations, on average the rate of a background transmission
is slightly lower than that of a foreground transmission of the same object size.
When assessing the transfer times achieved by RADICCO, shown for TCP Vegas-controlled
background traffic in Figure 4.4a and for uTP-controlled background traffic in Figure 4.5a, there
is a benefit of RADICCO detectable for almost all cases. The extent of this benefit, i.e. the
reduction in foreground transfer times, and its evolution depending on the amount of background
subscribers differs heavily depending if the background traffic is controlled by TCP Vegas or
uTP. For TCP Vegas-controlled background traffic there is a remarkable irregularity for nine
background subscribers and overload factors 1.56 and 1.69: The mean object transfer time
decreases despite increased load. The mean foreground object transfer time for overload factor
1.69 has a significantly larger confidence interval than for any other parameterization. This
is an indication that the system behaved significantly differently over longer periods of time.
We assume that there has been a synchronization between RADICCO’s and the sender CCA’s
control loops.
For uTP-controlled background traffic, there are two about linear correlations recognizable: On
the one hand, the higher the fraction of background subscribers, the higher the load that can be
accepted without QoE impairment for the foreground traffic. And on the other hand, beyond the
limit of this penalty-free overload, the increase in added transfer time also grows about linearly
with the load. Remarkably, the mean transfer time even decreases a bit with increasing load for

138 Chapter 4. Evaluation

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

70

80

90

100

110

120

130

140
M

ea
n

ob
je

ct
tr

an
sf

er
tim

e
[s

]

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(a) Applying RADICCO

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

70

80

90

100

110

120

130

140

M
ea

n
ob

je
ct

tr
an

sf
er

tim
e

[s
]

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(b) Applying the reference HFS

Figure 4.6: Foreground object transfer times for the DEEP topology with clustered background
subscriber distribution, the traffic model of software updates and TCP Vegas-controlled back-
ground traffic

high numbers of background subscribers, for ten background subscribers. As we will see in the
next section, this advantage is paid for by a slightly lower utilization. We will explain the reasons
for that effect when discussing utilization.

DEEP Topology

For the DEEP topology, Figure 4.6 shows the mean foreground transfer times in case of
TCP Vegas-controlled background traffic, while Figure 4.7 shows the mean foreground transfer
times in case of uTP-controlled background traffic. For this topology and subscriber distribution
the reference HFS does not result in clean linear mean object transfer times as visible in Fig-
ures 4.6b and 4.7b. The reason is that for low overload, the random arrival pattern combined
with the strict fair rate distribution of the scheduler result in times of high competition on the one
hand, resulting in these rather high transfer times, and on the other hand in idle times, resulting
in a rather low utilization as will be shown in Section 4.4.2. The results are very similar to the
ones of the BROAD topology, that means that RADICCO achieves its goals for both resource
reallocation levels, the AGS interface as well as the BNG interface. As for TCP Vegas-controlled
background traffic, we see a significant irregularity for high numbers of background subscribers
for TCP-Vegas-controlled background traffic, here for ten background subscribers at overload
factor 1.59. We cannot identify the root cause. The confidence interval is significantly larger than
for the other parameterizations, so this might be the result of synchronization during significant
periods of time. Another remarkable aspect of the results for uTP-controlled background traffic
is that a higher number of background subscribers in some cases results in an increase of mean

4.4 Performance for Software Updates Traffic 139

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

70

80

90

100

110

120

130

140
M

ea
n

ob
je

ct
tr

an
sf

er
tim

e
[s

]

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(a) Applying RADICCO

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

70

80

90

100

110

120

130

140

M
ea

n
ob

je
ct

tr
an

sf
er

tim
e

[s
]

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(b) Applying the reference HFS

Figure 4.7: Foreground object transfer times for the DEEP topology with clustered background
subscriber distribution, the traffic model of software updates and uTP-controlled background
traffic

transfer time for foreground subscribers. In particular, nine or ten background subscribers result
in slightly higher foreground transfer times compared to fewer background subscribers, which
is also not the case for the BROAD topology. This may be caused by the senders’ uTP CCAs
entering hibernation mode less frequently than for the BROAD topology, and thus in average
consuming more bandwidth. It is not clear what causes this change in behavior of the CCAs.
However, the improvement regarding transfer times, the QoE-determining metric for the modeled
service, is substantial also for these measurements, so the objective is met.

Summary

Summarizing, RADICCO results in significant benefit in terms of QoE for foreground transfers
according to the software updates traffic model, regardless on which level the weight adaptation
is necessary. This benefit is more clear if background traffic is controlled by uTP rather than if it
is controlled by TCP Vegas.

4.4.2 Bottleneck Utilization

In this section, we analyze if the price for the foreground traffic’s prioritization is higher than
necessary, i.e. to which extent RADICCO allocates the remaining bandwidth to background
traffic or leaves it unallocated, thus wasted. First, we evaluate the performance of RADICCO
facing background traffic controlled by TCP Vegas for the BROAD topology. Figure 4.8 shows

140 Chapter 4. Evaluation

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.94

0.95

0.96

0.97

0.98

0.99

1.00

U
til

iz
at

io
n

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(a) Applying RADICCO

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.94

0.95

0.96

0.97

0.98

0.99

1.00

U
til

iz
at

io
n

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(b) Applying the reference HFS

Figure 4.8: BNG interface utilization for the BROAD topology, the traffic model of software
updates and TCP Vegas-controlled background traffic

the utilization of the BNG interface, the relevant bottleneck. Figure 4.8a shows the utilization
when applying RADICCO, Figure 4.8b shows the utilization when applying the reference HFS.
It can be clearly seen that applying RADICCO—and by this constantly changing weights and
maximum rates—comes to a price of a slightly reduced bottleneck utilization. Nevertheless,
the utilization is always above 98.5 % which is an acceptable value if there are other benefits
achieved by deploying RADICCO.

Note that although on average all plotted scenarios offer higher load than the BNG interface can
handle, due to the stochastic nature of the arrivals both schedulers do not achieve full utilization
for overload factor 1.1.

There is significant decrease in utilization for overload factor 1.44 for nine or ten background
subscribers. Interestingly, for ten background subscribers all confidence intervals are small. This
indicates that the irregularity is not a consequence of too few measurements, but is a steady
system state. Probably, the cause for these differing utilizations are synchronizations between
the CCA of some senders and RADICCO. Due to the random arrivals and thus changing load,
the synchronization cannot be stable as such. Yet, since the confidence intervals are small, the
time share of synchronization is stable over the evaluated simulation batches. So probably, some
constellations that occur frequently for ten background subscribers and less frequently for nine
background subscribers (see the confidence interval) result in a synchronization that results in
reduced utilization.
Nevertheless, the achieved utilization is satisfactory.

We show results for analog simulations, i.e. BROAD topology and software updates traffic
model, using uTP-controlled background traffic in Figure 4.9. Figure 4.9a shows the load of

4.4 Performance for Software Updates Traffic 141

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.94

0.95

0.96

0.97

0.98

0.99

1.00

U
til

iz
at

io
n

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(a) Applying RADICCO

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.94

0.95

0.96

0.97

0.98

0.99

1.00

U
til

iz
at

io
n

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(b) Applying the reference HFS

Figure 4.9: BNG interface utilization for the BROAD topology, the traffic model of software
updates and uTP-controlled background traffic

the BNG interface when applying RADICCO, Figure 4.9b shows the load when applying the
reference HFS. Again, the utilization is affected by applying RADICCO. Utilization is still on an
acceptable level, at any time higher than 94 %, but significantly lower than in case of TCP Vegas.
Again, we see no full utilization for low stochastic overloads for both schedulers, but already at a
load of 1.21 the HFS is able to nearly fully utilize the link. This indicates that uTP can seize
freed bandwidth faster than TCP Vegas in that scenario.

When examining high loads with high numbers of uTP-controlled background subscribers, we
see a substantially lower utilization compared to HFS but also compared to RADICCO when
managing TCP Vegas-controlled background traffic. Obviously, RADICCO’s rate reduction
scheme and uTP’s congestion detection scheme tend to collide from time to time, resulting in
background subscribers not utilizing their assigned bandwidth. Here the hibernation feature
of uTP plays an important role. At the same time, this freed bandwidth (compared to lower
overload) allows foreground subscribers to be served ahead of time and in consequence on
average receiving slightly more than their calculated share. This explains the effect of even
slightly decreasing mean transfer times with increasing load for high numbers of background
subscribers.

Again, we see several load levels with a dip at an overload factor 1.44. The narrow confidence
intervals indicate that these dips are not the result of single coincident completion times. Due to
the black box CC implementations used in this evaluation, such effects evade detailed analysis.

We also evaluate the utilization for the DEEP topology with the clustered distribution of back-
ground subscribers. Figure 4.10 shows the utilization of the BNG interface, the relevant bot-
tleneck. Figure 4.10a shows the utilization when applying RADICCO, Figure 4.10b shows the

142 Chapter 4. Evaluation

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.92

0.94

0.96

0.98

1.00

U
til

iz
at

io
n

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(a) Applying RADICCO

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.92

0.94

0.96

0.98

1.00

U
til

iz
at

io
n

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(b) Applying the reference HFS

Figure 4.10: BNG interface utilization for the DEEP topology with clustered background sub-
scriber distribution, the traffic model of software updates and TCP Vegas-controlled background
traffic

utilization when applying the reference HFS. For RADICCO, we see very similar values as
for the BROAD topology, although there is a general shift to slightly smaller utilization values.
Furthermore, there two interesting aspects in these results: First, RADICCO achieves a higher
utilization at overload factors 1.1 and 1.21 than the reference HFS. This is caused by RADICCO
reducing the rates of background subscribers and thus stretching their transfers in time. For the
software updates traffic model with its delay-based definition, this also means that the fraction of
time with active transfers increases. Therefore, these stretched background transfers form a more
continuous load and thus reduce the impact of randomly overlapping durations of inactivity of
different subscribers.
Second, the utilization for the simulations with nine and ten subscribers both show a similar
pattern with lower utilization for overload factors 1.21 and 1.44. We therefore assume that in
these cases synchronization between RADICCO’s control loop and the control loops of the
TCP Vegas senders occurs for some time. This synchronization might be amplified by the small
number (five) of leaf nodes per edge node in the DEEP scenario.

The evaluation of utilization for the DEEP topology with the clustered distribution of background
subscribers and uTP-controlled background traffic is shown in Figure 4.11. Figure 4.11a shows
the results when applying RADICCO, Figure 4.11b the results for the reference HFS. As for
TCP Vegas-controlled background traffic, RADICCO achieves a higher utilization for the same
reasons. Again, the results for overload factor 1.21 and 1.44 are noticeable: For most traffic
compositions, they result in significantly lower utilization than neighboring results. We consider
the small number of leaf nodes per edge node being the cause for this effect. More interestingly,
the comparison between the two topologies, i.e. of Figures 4.9a and 4.11a, shows that RADICCO

4.4 Performance for Software Updates Traffic 143

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.92

0.94

0.96

0.98

1.00

U
til

iz
at

io
n

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(a) Applying RADICCO

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.92

0.94

0.96

0.98

1.00

U
til

iz
at

io
n

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(b) Applying the reference HFS

Figure 4.11: BNG interface utilization for the DEEP topology with clustered background
subscriber distribution, the traffic model of software updates and uTP-controlled background
traffic

achieves similar results for both topologies and even slightly better utilization for the DEEP
topology.

4.4.3 Fairness among Foreground Subscribers

Figure 4.12 shows Jain’s fairness index for the foreground subscribers for the BROAD topology
and uTP-controlled background traffic, in detail Figure 4.12a for RADICCO, Figure 4.12b for
the reference HFS. Note that there are no confidence intervals available for this metric.

The level of fairness is close to perfect fairness, all calculated fairness values are less than 0.2 h
from perfect fairness. Considering that these are results not of constant greedy transmissions but
of transmissions of random objects, this level by far exceeds the required or desired fairness.

For TCP Vegas-controlled background traffic the figures look very similar and there are more
interesting results for other metrics, so we refrain from including the TCP Vegas results.

4.4.4 Fairness among Background Subscribers

Figure 4.13 shows Jain’s fairness index among the background subscribers for the BROAD
topology and uTP-controlled background traffic. Figure 4.13a on the left shows the results when
applying RADICCO. There are two major observations regarding RADICCO’s results: First,

144 Chapter 4. Evaluation

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.99985

0.99990

0.99995

1.00000

Ja
in

’s
fa

ir
ne

ss
in

de
x

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(a) Applying RADICCO

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.99985

0.99990

0.99995

1.00000

Ja
in

’s
fa

ir
ne

ss
in

de
x

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(b) Applying the reference HFS

Figure 4.12: Jain’s fairness index of the foreground traffic for the BROAD topology, the traffic
model of software updates and uTP-controlled background traffic

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.990

0.992

0.994

0.996

0.998

1.000

Ja
in

’s
fa

ir
ne

ss
in

de
x

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(a) Applying RADICCO

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.99985

0.99990

0.99995

1.00000

Ja
in

’s
fa

ir
ne

ss
in

de
x

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(b) Applying the reference HFS

Figure 4.13: Jain’s fairness index of the background traffic for the BROAD topology, the traffic
model of software updates and uTP-controlled background traffic

4.4 Performance for Software Updates Traffic 145

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.80

0.85

0.90

0.95

1.00
Ja

in
’s

fa
ir

ne
ss

in
de

x

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(a) Applying RADICCO

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.99985

0.99990

0.99995

1.00000

Ja
in

’s
fa

ir
ne

ss
in

de
x

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(b) Applying the reference HFS

Figure 4.14: Jain’s fairness index of the background traffic for the BROAD topology, the traffic
model of software updates and TCP Vegas-controlled background traffic

the range of fairness is much broader, consider the different scale of Figure 4.13a compared to
Figures 4.12b, 4.12a and 4.12b. Second, there is more volatility and less a clear order among the
different lines. This is probably caused by the increased dynamics introduced by RADICCO.
Assessing these results, the performance is still more than acceptable, Jain’s fairness is less than
1 % off the perfect value for all experiments.

As expected, the reference scheduler does not show a significant difference between foreground
and background regarding fairness, as also the comparison of Figures 4.12b and 4.13b shows
(same scale).

The evaluation of RADICCO’s fairness when facing TCP Vegas-controlled background traffic
shows surprising differences. Figure 4.14 shows Jain’s fairness index for the background
subscribers’ shares for the BROAD topology and TCP Vegas-controlled background traffic,
Figure 4.14a shows results for application of RADICCO, Figure 4.14b the results for the
reference scheduler. Again, there are no unexpected effects for the reference scheduler, the
achieved fairness is close to perfect fairness. Yet the result for RADICCO are by far not as
good as in case of uTP-controlled traffic. While some subscribers receive bandwidth close to
that of the foreground subscribers, others receive very little bandwidth only. For example, a
detailed analysis of the lowest fairness index for four background subscribers and a configured
stochastic load of 1.69 shows that there are three subscribers that achieve an average throughput
of 10.48–10.58 Mbit/s while the fourth receives an average throughput of 1.46 Mbit/s. This effect
is probably caused by a negatively reinforcing synchronization between the control loops of
RADICCO and the TCP Vegas CCA. Yet, this is a rare case as we see from the overall results for
TCP Vegas-controlled background traffic. Nevertheless, this last figure alone is not considered

146 Chapter 4. Evaluation

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00
Ti

m
e

sh
ar

e
of

co
rr

ec
tr

ec
og

ni
tio

n

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(a) For TCP Vegas-controlled background traffic

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ti
m

e
sh

ar
e

of
co

rr
ec

tr
ec

og
ni

tio
n

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(b) For uTP-controlled background traffic

Figure 4.15: Time share of correct recognition of foreground traffic for the BROAD topology
and software updates

too low. When applying RADICCO, we explicitly aim at reducing the bandwidth background
subscribers receive under such heavy overload. For instance, we are satisfied with the results of
RADICCO handling uTP background subscribers, but in the same scenario it means that all four
background subscribers receive on average 20.0 – 22.7 kbit/s only.

So, these results, along with the object transfer times for this scenario (shown in Figure 4.4a),
indicate that RADICCO does not function well in some cases when facing TCP Vegas traffic.
We will provide conclusions in the conclusion for the software updates scenario in Section 4.4.7.
Indeed, the chosen parameterization of RADICCO in combination with these scenarios causes
RADICCO to often recognize TCP Vegas-controlled background traffic as foreground traffic, as
the analysis of the foreground recognition durations in the next Section shows.

4.4.5 Correct Recognition of Foreground Traffic

Figure 4.15 shows the time share of correct foreground identification of RADICCO, in Fig-
ure 4.15a for TCP Vegas-controlled, in Figure 4.15b for uTP-controlled background traffic.
Interestingly, although we only show the recognition of foreground subscribers using TCP Cubic,
it makes a significant difference whether TCP Vegas or uTP is used by the background sub-
scribers. In both cases, we see non-negligible time shares of false recognition. Therefore, we also
analyze the duration of phases of false recognition. In Figure 4.16 we show the duration of the
phases of false recognition of foreground subscribers, in Figure 4.16a for TCP Vegas-controlled,
in Figure 4.16b for uTP-controlled background traffic. Clearly, the phases of false recognition
are smaller when competing with TCP Vegas-controlled background traffic. Nevertheless, uTP’s

4.4 Performance for Software Updates Traffic 147

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.0

0.5

1.0

1.5

2.0

D
ur

at
io

n
of

ph
as

es
of

fa
ls

e
re

co
gn

iti
on

[s
]

˜̃
˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(a) For TCP Vegas-controlled background traffic

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.0

0.5

1.0

1.5

2.0

D
ur

at
io

n
of

ph
as

es
of

fa
ls

e
re

co
gn

iti
on

[s
]

˜̃
˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(b) For uTP-controlled background traffic

Figure 4.16: Duration of phases of false recognition of foreground traffic for the BROAD
topology and software updates

very defensive CCA leaves some bandwidth unused as we saw in Figure 4.9. Moreover, as we
will show next, uTP-controlled traffic is much more reliably recognized as background traffic
by RADICCO’s recognition algorithm. All in all, despite longer phases of false recognition
of foreground traffic uTP-controlled background traffic even results in lower transfer times for
foreground traffic than TCP Vegas-controlled background traffic as we showed in Figures 4.5a
and 4.4a.

Therefore, we conclude that the detection of foreground subscribers works well when competing
with any of the two background CC.

4.4.6 Correct Recognition of Background Traffic

In Figure 4.17 we show the time share of correct recognition of background traffic, in Figure 4.17a
of TCP Vegas-controlled and in Figure 4.17b of uTP-controlled background traffic. Clearly,
TCP Vegas traffic is not correctly recognized most of the time. This is probably caused mostly
by the unsteady load: The more slowly-reacting and therefore load-stabilizing TCP Vegas
flows exist, the better the background recognition works. So, a scenario with higher BNG
interface capacity and more active subscribers probably would result in significantly more correct
background recognition also for TCP Vegas traffic. A potential remedy for this behavior is
to use a substantially higher buffer utilization threshold for foreground detection but there are
substantial drawbacks, see the discussion in Section 3.8.5.
These results on background recognition also help to explain that the foreground recognition
works better for TCP Vegas-controlled background traffic than for uTP-controlled background

148 Chapter 4. Evaluation

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Stochastic load

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
sh

ar
e

of
co

rr
ec

tr
ec

og
ni

tio
n

˜̃
˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(a) For TCP Vegas-controlled background traffic

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Stochastic load

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Ti
m

e
sh

ar
e

of
co

rr
ec

tr
ec

og
ni

tio
n

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(b) For uTP-controlled background traffic

Figure 4.17: Time share of correct recognition of background traffic for the BROAD topology
and software updates

traffic: Since TCP-Vegas subscribers are recognized as foreground subscribers most of time,
RADICCO executes less rate adaptations, thus the rate of each foreground subscriber is more
stable. Yet, we know for TCP Cubic, the foreground CCA, to never reduce the queue below
the used relative buffer usage detection threshold tt_recogrelQT hresh = 0.35 in steady state. So,
the bad recognition performance for TCP Vegas makes the system steadier from the foreground
subscribers’ CCAs, which in turn avoids low buffer utilization of foreground subscribers. This
corresponds to reducing the false recognition durations for foreground subscribers.

Concluding, background recognition works well for uTP-controlled traffic, but not as well
for TCP Vegas-controlled traffic. This also limits the achieved QoE improvement, as shown
in Section 4.4.1, so an improvement of the recognition is desirable. The results indicate that
RADICCO’s reactions to rapid changes in load are the root cause for the unreliable background
recognition. Therefore, RADICCO’s recognition of TCP-Vegas-controlled background traffic is
expected to work substantially better for ANs that aggregate more access links, since in that case
the overall load is smoother.

For space reasons, we will not show results on traffic recognition for other scenarios.

4.4.7 Scenario Conclusion

The evaluation of the update distribution scenario shows that RADICCO basically works. We
show that the crucial metric for foreground software update downloads, the object transfer
times, is significantly improved when using RADICCO compared to using the reference HFS.

4.5 Performance for Video on Demand Streaming Traffic 149

Moreover, we show that other important metrics, bottleneck utilization, and fairness among
foreground subscribers, are not significantly impaired. In contrast, the fairness among background
subscribers is far less than perfect, although we do not regard this metric being important for
the performance evaluation of RADICCO. It merely indicates a potential field of research when
aiming for improvement. We also show that the recognition of subscribers works very well for
foreground traffic and uTP-controlled background traffic. For TCP Vegas-controlled background
traffic though, the recognition does not reliably work correctly. Yet, background recognition for
TCP Vegas is expected to work substantially better for ANs that aggregate more access links.
Moreover, in contrast to uTP, TCP Vegas is not in use as background CCA in the Internet.

Summarizing, RADICCO achieves a significant improvement for the QoE-relevant metric for
the traffic type of software updates.

4.5 Performance for Video on Demand Streaming Traffic

This scenario focuses on the impact of RADICCO on subscribers receiving a VoD streaming
service while other subscribers served by the same BNG downstream interface receive software
updates using a background transport protocol. So, the most important measurement are the
transfer times of the video model objects which represent the single chunks of data transmitted in
a DASH-like VoD service. In every simulation, there is a group of ten subscribers receiving traffic
according to the respective VoD model, and a second group of ten subscribers receiving traffic
according to the software updates model. Among the second group, the number of subscribers
using a background CC is varied from one to ten subscribers. We use the software updates traffic
rather than greedy traffic to show that RADICCO achieves benefits also if background traffic is
non-continuous and therefore jumps in load and assigned rates occur frequently.

We performed simulations for the two traffic models for DASH-like VoD streaming services for
both the BROAD and the DEEP topologies. The results for the DEEP topology confirm that
RADICCO also works for multi-level topologies but provide no further insights, so we will show
only results for the BROAD topology. We will first look into the transfer times of the objects of
VoD traffic. Second, we will also examine the bottleneck utilization.

4.5.1 Transfer Times of Foreground Traffic

In this scenario and for this metric, we pursue a second, fundamentally different evaluation
approach compared to the other scenarios: Here we use simulation also to assess the limits of
stable operation, not only to evaluate performance in steady state configurations. These limits
exist since the traffic in this scenario consists not only of elastic traffic, the updates, but also of
non-elastic traffic, the VoD traffic.

Since we model VoD traffic as non-elastic with IATs, in theory there exist two areas of system
parameterization:
First, a stable area, in which the scheduler can allocate sufficient resources for VoD traffic. This
means that on average the last object’s transmission is finished when its successor’s transmission
begins. This does not mean that all transfer times consist of transmission time only, there may

150 Chapter 4. Evaluation

exist a waiting time needed for the predecessor transmission to complete. Nevertheless, on
average the sum of both is smaller or equal to the expectation value of the IAT. More precisely,
the expectation value of the transfer time of an object is smaller or equal than the expectation
value of the IAT, which is determined by the known traffic model. Nevertheless, the expectation
value of the transfer time for this dynamic system with the traffic controlled by complex CCAs is
not known and we are only able to simulate a limited number of transmissions to estimate the
expectation value. Thus, the calculated estimate comes with some uncertainty.
Second, the area of saturation, in which the application layer system is overloaded, i.e. transfer
demands queue up. So, the expectation value of the transmission time (i.e. without waiting time)
is greater than the expectation value of the IAT. This immediately results in the expectation value
for the transfer time (including waiting time) being infinite.

With our simulations, we face two issues here: First, we cannot measure infinite transfer times
for saturated systems due to our finite simulation time. Instead, we will measure high, and mostly
increasing transfer times for such systems. The calculated averages do not represent estimated
expectation values in that case since these simulations violate the fundamental assumption of
simulating a steady state system. Second, since we only simulate a finite number of transmissions
in a complex system, calculated average transfer times come with some uncertainty. Therefore,
the probability of false recognition (stable / saturated) is rather high for calculated average
transfer times near the expectation value of the IAT. This obviously applies to all measurements
with calculated confidence intervals ranging from below the threshold to above the threshold.
Note that these intervals shrink with increasing simulation time but it neither was feasible nor
worth the effort—the areas of uncertainty do not vanish—to run simulations longer. Because
of similar reasons we also did not use a finer parameterization which would have allowed to
better estimate the stable area of our artificial traffic model. We rather aim to generally show that
RADICCO results in sufficient resources being allocated for this arbitrary VoD traffic model in
more states of operation than by the reference scheduler. At any such point of operation applying
RADICCO results in better QoE for the users consuming the VoD service than if applying the
reference HFS.
In Figures 4.18 and 4.19 we indicate these aspects as follows.

- A red line indicates the expectation value of the IAT.

- A gradient gray background ranging from about some interval (100 ms for the short interval
VoD traffic model) below to the same distance above this expectation value. This area is
the area of uncertainty. This gradient indicates the probability that a calculated average in
that range indicates a steady system state.

- A gray background above that area indicates that if the calculated arithmetic mean is in
that area the used system parameterization leads to an unstable system on application level
with respect to the non-elastic VoD traffic.

Figure 4.18 shows the mean transfer time of the short interval VoD traffic model when competing
with TCP Vegas-controlled background traffic. Figure 4.18a on the left side shows the results
when applying RADICCO, Figure 4.18b on the right side shows the results when applying the
reference HFS. It is obvious that applying RADICCO reduces the object transfer times and,
moreover, extends the range of network states allowing to transport this traffic.

4.5 Performance for Video on Demand Streaming Traffic 151

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

M
ea

n
ob

je
ct

tr
an

sf
er

tim
e

[s
]

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(a) Applying RADICCO

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

M
ea

n
ob

je
ct

tr
an

sf
er

tim
e

[s
]

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(b) Applying the reference HFS

Figure 4.18: Foreground object transfer times for the BROAD topology, short interval VoD
traffic model and TCP Vegas-controlled background traffic

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

M
ea

n
ob

je
ct

tr
an

sf
er

tim
e

[s
]

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(a) Applying RADICCO

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

M
ea

n
ob

je
ct

tr
an

sf
er

tim
e

[s
]

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(b) Applying the reference HFS

Figure 4.19: Foreground object transfer times for the BROAD topology, short interval VoD
traffic model and uTP-controlled background traffic

152 Chapter 4. Evaluation

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.70

0.75

0.80

0.85

0.90

0.95

1.00
U

til
iz

at
io

n

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(a) Applying RADICCO

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.70

0.75

0.80

0.85

0.90

0.95

1.00

U
til

iz
at

io
n

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(b) Applying the reference HFS

Figure 4.20: Utilization for the BROAD topology, short interval VoD traffic model and
TCP Vegas-controlled background traffic

The reference HFS is only able to successfully transport the non-elastic VoD demand up to a
load offer of 1.32 as Figure 4.18b shows. So, in these cases the VoD traffic is transported despite
higher load offered than can possibly be carried. This is only possible since the elastic traffic
share (the updates with their relative start time definition) receives much less bandwidth than
it could make use of if the access link would be the only bottleneck. Thus, the VoD receives a
significantly higher share in throughput than it has in offered load.
With RADICCO, the mean transfer times are substantially lower than when applying the reference
HFS for most traffic compositions for these overload factors. As for the software updates traffic,
we see that the higher the share of background traffic, the higher the gain. These reduced transfer
times indicate headroom for even higher bitrate VoD transmissions at these points of operation.
Nevertheless, this headroom cannot be quantified with our simulation approach.

Moreover, we see that several traffic compositions even allow safely transporting the VoD traffic
for a load offer of 1.44, for which the reference HFS does not allow the VoD traffic to be
transported for any traffic composition. The measurement for five background subscribers lies in
the middle of the area of uncertainty. But for six and more background subscribers the means
are well below the expectation value of the IAT of two seconds, so the VoD traffic is safely
transported.

4.5.2 Bottleneck Utilization

The only other metric we show for this scenario is the bottleneck utilization. Since it is a packet
level metric, there are no unstable systems. Figure 4.20 shows the utilization for the short interval

4.5 Performance for Video on Demand Streaming Traffic 153

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.70

0.75

0.80

0.85

0.90

0.95

1.00
U

til
iz

at
io

n

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(a) Applying RADICCO

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.70

0.75

0.80

0.85

0.90

0.95

1.00

U
til

iz
at

io
n

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(b) Applying the reference HFS

Figure 4.21: Utilization for the BROAD topology, short interval VoD traffic model and
uTP-controlled background traffic

VoD traffic model and background traffic controlled by TCP Vegas, Figure 4.20a when applying
RADICCO, Figure 4.20b when applying the reference HFS. It shows that there is some price to
be paid for the benefit in low transfer times and extended area of operation states allowing stable
VoD delivery, nevertheless this price is rather low since utilization is well above 95 % for all
measurements. Note that in order to ease comparison we deliberately show the same range in all
figures on utilization in this section (Figures 4.20, 4.21 and 4.22).

The results for uTP-controlled background traffic are shown in Figure 4.21. Again, we show the
results for RADICCO in Figure 4.21a and for the reference HFS in Figure 4.21b. Obviously, in
case of uTP-controlled background traffic there is a rather high price to pay for the admittedly
much bigger benefit that is achieved for the foreground VoD traffic when RADICCO adapts the
scheduler’s weights. The extent of underutilization is much bigger than for the software updates
traffic shown in Figure 4.9a. It seems, that VoD streaming traffic results in a load so unsteady
that the uTP CCA, known to yield generously to foreground traffic, falls back to a very low cwnd
or even its hibernation mode. We see in the logs that the allocated bandwidth varies substantially,
and frequently includes about one second without any packet being sent. Nevertheless, we also
see in these throughput logs that the first probe is always successful, i.e. after such a first probe
the throughput increases to several Mbit/s. This makes sense since the probe will find an empty
queue at the scheduler and therefore detect no significantly increased OWD.

We already saw that this behavior did play a prominent role for the steadier software updates
traffic model. It is of interest, whether the large interval VoD model results in sufficiently more
steady load so that uTP’s reaction is less extreme. The utilization achieved by the reference
HFS for the large interval VoD traffic is like the one achieved for the short interval VoD traffic

154 Chapter 4. Evaluation

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.70

0.75

0.80

0.85

0.90

0.95

1.00
U

til
iz

at
io

n

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(a) For TCP Vegas-controlled background traffic

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.70

0.75

0.80

0.85

0.90

0.95

1.00

U
til

iz
at

io
n

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(b) For uTP-controlled background traffic

Figure 4.22: Utilization for the BROAD topology, large interval VoD traffic model and
RADICCO

model so we omit the respective figures. Figure 4.22 shows the utilization for the large interval
VoD traffic when applying RADICCO. The results for TCP Vegas-controlled background traffic,
shown in Figure 4.22a, do not surprise. Regarding uTP-controlled background traffic, shown in
Figure 4.22b, clearly also this traffic is too unsteady to allow uTP to maintain a non-zero cwnd
for longer times. Therefore, the achieved utilization is even lower than for the short interval VoD
traffic model.

The results for VoD traffic competing with uTP-controlled background traffic deserve several
remarks. First, we deliberately model a rather bad case for RADICCO with few subscribers
served by one BNG downstream interface. In real networks, most topologies result in many more
subscribers served by such an interface, see Section 2.1.1 and 2.1.2. Second, in this scenario our
optimistic choice of uTP’s target delay of 3 milliseconds may have a negative impact. In other
scenarios, such low target delay pays off, but for highly volatile traffic such as VoD streaming a
simulation study with higher targets is desirable. Yet, we did not carry out such study. Third
and maybe most important: Although the bottleneck bandwidth is the scarce resource, QoE is
still the primary goal. In these scenarios with uTP-controlled background traffic for small as
well as large interval VoD, RADICCO achieves significantly lower transfer times for VoD than
the reference HFS, although leaving up to 30 % of the bottlenecks capacity unused. Moreover,
today’s broadband access networks suffer from peak or overload just for a short period per day
(see Section 2.1.3). So probably in today’s access network context even such performance is
more desirable than the performance of the reference HFS.

4.6 Performance for Web Browsing Traffic 155

4.5.3 Scenario conclusion

Summarizing, VoD is a challenging traffic type for RADICCO, in particular in combination
with uTP-controlled background traffic. RADICCO substantially extends the area of operation
states that allows to successfully transport a certain DASH-like VoD traffic model. Moreover, it
significantly reduces the object transfer times for lower overload, i.e. it increases the reliability
of a maximum QoE service delivery and extends the headroom for more demanding VoD traffic.
A drawback is that for uTP-controlled background traffic the application of RADICCO results in
low utilization of the bottleneck in this scenario.

4.6 Performance for Web Browsing Traffic

In this scenario, we evaluate the effect of RADICCO on transfers of small objects. For these
transfers, typically the transfer delay is decisive for QoE.

Since web browsing traffic contains large idle durations, the overall offered load by one web
subscriber is very low. We therefore scaled the topology to ninety subscribers receiving traffic
according to our web traffic model competing with ten subscribers receiving traffic according to
our software updates traffic model. Again, among these, the number of background subscribers
is varied.
Note that even though with this increased number of subscribers the offered load of web browsing
accumulates to 27.2 Mbit/s only, while the offered load by the update downloads is 183.3 Mbit/s.
This low share in offered load of about 15 % is a desired configuration since we aim to capture
the sporadic nature of load caused by such traffic.

4.6.1 Transfer Times of Foreground Traffic

In the following, we show both absolute and relative results, i.e. absolute measurements for both
RADICCO and the reference HFS as well as evaluate the relative change introduced by replacing
the reference HFS by RADICCO.

Figure 4.23 shows the results for TCP Vegas-controlled background traffic, Figure 4.23a when
applying RADICCO, Figure 4.23b when applying the reference HFS. Although less clearly, we
again can recognize the double dependency already seen for the updates traffic model evaluated
in Section 4.4: The more background traffic is available, the more overload can even be tolerated
without significant impact and the more RADICCO can reduce the transfer times during overload.

This effect is more distinct for uTP-controlled background, here the dependencies are again
approximately linear. Figure 4.24 shows the respective results, Figure 4.24a when applying
RADICCO, Figure 4.24b when applying the reference HFS. Here, RADICCO achieves a lower
transfer time than the reference HFS for all measurements. Unfortunately, the broad unbalanced
object size distribution of web traffic results in rather big confidence intervals even though the
presented figures base on simulations we ran five times as long (10.000 s) as the other simulations.
Because of the large confidence intervals, it appears that there is statistical uncertainty if there
is a benefit of applying RADICCO if there are only few (1–3) background subscriber active.

156 Chapter 4. Evaluation

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.8

1.0

1.2

1.4

1.6

1.8

2.0

M
ea

n
tr

an
sf

er
tim

e
[s

]

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(a) Applying RADICCO

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.8

1.0

1.2

1.4

1.6

1.8

2.0

M
ea

n
tr

an
sf

er
tim

e
[s

]

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(b) Applying the reference HFS

Figure 4.23: Foreground object transfer times for the BROAD topology, web traffic model and
TCP Vegas-controlled background traffic

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.8

1.0

1.2

1.4

1.6

1.8

2.0

M
ea

n
tr

an
sf

er
tim

e
[s

]

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(a) Applying RADICCO

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.8

1.0

1.2

1.4

1.6

1.8

2.0

M
ea

n
tr

an
sf

er
tim

e
[s

]

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(b) Applying the reference HFS

Figure 4.24: Foreground object transfer times for the BROAD topology, web traffic model and
uTP-controlled background traffic

4.6 Performance for Web Browsing Traffic 157

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

R
el

at
iv

e
ch

an
ge

in
tr

an
sf

er
tim

e

˜̃
˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(a) For TCP Vegas-controlled background traffic

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

R
el

at
iv

e
ch

an
ge

in
tr

an
sf

er
tim

e

˜̃
˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(b) For uTP-controlled background traffic

Figure 4.25: Relative change in foreground object transfer times introduced by applying
RADICCO instead of the reference HFS for the BROAD topology and the web traffic model

Nevertheless, this is not the case as we show in the following. We additionally performed another
evaluation of our results that evaluates the differences of the batch means. The approach for
comparing expected responses of two systems is accepted in the community and the statistics
theory provides a sound foundation [184]. In our case this approach allows to exploit the fact
that both simulations have been carried out with the same sequence of pseudo random numbers,
i.e. both simulations conduct the same sequence of object transfers (except that due to the delay-
based traffic definition the more efficient approach, i.e. RADICCO, handles more transfers). We
show the relative change of the batch means that is caused by applying RADICCO, i.e. any
number smaller than zero means applying RADICCO causes the transfer times to decrease, i.e. a
QoE improvement. Figure 4.25 shows the results of this evaluation approach, in Figure 4.25a
for TCP Vegas-controlled background traffic, in Figure 4.25b for uTP-controlled traffic. These
figures show that for foreground web transfers a benefit in terms of reduced transfer times is
almost guaranteed if the reference HFS is replaced by a RADICCO scheduler. Only for a single
background subscriber and low overload a negligible disadvantage may occur. Moreover, these
figures clearly show the about linear dependency of gain on both the share of background traffic
as well as the amount of overload.

4.6.2 Bottleneck Utilization

We also examine the bottleneck utilization for this scenario. While we find no significant differ-
ence between RADICCO and the reference HFS in case of TCP Vegas-controlled background
traffic, we again find significant underutilization in case of uTP-controlled background traffic.
We therefore show only the results for uTP-controlled background traffic in Figure 4.26, in

158 Chapter 4. Evaluation

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.80

0.85

0.90

0.95

1.00
U

til
iz

at
io

n

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(a) Applying RADICCO

1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.80

0.85

0.90

0.95

1.00

U
til

iz
at

io
n

˜̃
˜̃

˜̃ ˜̃

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(b) Applying the reference HFS

Figure 4.26: Utilization for the BROAD topology, web traffic model and uTP-controlled back-
ground traffic

Figure 4.26a if applying RADICCO and in Figure 4.26b if applying the reference HFS. Again,
we see already known patterns. For low background traffic shares, the utilization increases with
increasing offered load, but for high background shares (seven and eight background subscribers)
the utilization first decreases and then rises again. For the highest evaluated background shares,
i.e. nine and ten background subscribers, we mostly see a decrease in utilization with increasing
load. The explanation is the same: On the one hand, with these highly bursty loads uTP connec-
tions frequently fall into their hibernation mode and therefore do not exploit available bandwidth
during that time. This happens more often the higher the overload is and its effect on the overall
utilization is the higher the more background subscribers exist. On the other hand, subscribers
transmitting the updates traffic model using a foreground CCA, i.e. ten minus the background
subscribers in this scenario, have a smoothing effect on the system since they have a non-empty
buffer at least most of the time. Therefore, they use any bandwidth allocated to them and result
in an increased utilization.

4.6.3 Scenario Conclusion

Also for web traffic applying RADICCO results in a significant benefit as clearly visible in
Figure 4.25. Again, especially for uTP-controlled background traffic there is a price payed in
terms of underutilization of the bottleneck, although not as large as for VoD traffic.

4.7 Performance for Otherwise Rate-limited Greedy Traffic 159

4.7 Performance for Otherwise Rate-limited Greedy Traffic

For the evaluation of otherwise rate-limited greedy traffic, we use the simulation model presented
in Section 4.2.2 with the BROAD topology. We model nineteen subscribers to receive traffic
according to the software updates traffic model, among these one to ten background subscribers.
We configure the twentieth subscriber with a lower delivery speed by reducing the capacity of
the respective SenderPacingLink (see Figure 4.3). Therefore, the traffic passing this link may be
affected by queuing at two locations: At the buffer at the ingress of the SenderPacingLink and at
the BNG scheduler. If the effective bandwidths at these two places differ significantly, e.g. in
this scenario the rate limit is much lower than the assigned bandwidth at the scheduler, a queue
virtually never builds up at the faster link, i.e. in the example at the BNG scheduler. In contrast,
if both speeds are about the same on average (the scheduler’s rate varies), queues may build up
at both places at times, resulting in large packet delays.

RADICCO is expected to result in big queuing delays for this type of traffic (see Section 3.8.5.3).
RADICCO is designed to not scale the buffer with the target rate, as argued in Section 3.8.5.2.
Since the buffer equals 100 ms at the access link’s speed of 20 Mbit/s, it equals 1.000 ms at
2 Mbit/s and 2.000 ms at 1 Mbit/s. More relevant than the delay equivalent to the total buffer is
the delay equivalent to the configured foreground detection threshold of 35 % buffer usage. It
corresponds to 700 ms for 1 Mbit/s, the minimum background target rate. However, the effective
rate during overload mostly consisting of foreground traffic may be significantly lower than the
target rate. If the configured overload factor directly applies to the formula given in Equation
3.37, the maximum queuing delay for the highest overload of 1.69 is to be expected to reach
1.183 s.

These simulations depict the worst-case in terms of the arriving traffic since the model results in
the incoming traffic at the BNG not only arriving with rates persistently lower than the access
link capacity, but at precisely constant rates. This is true for any duration during which the
SenderPacingLink is the bottleneck. Since the SenderPacingLink is also equipped with 100 ms
worth of drop-tail buffer, the foreground CCA keeps a queue in that buffer as long as this link
is the bottleneck. So, after the slow start phase, this link’s queue should only run empty if
the scheduler serves this subscriber with a lower rate than the capacity of that link. At all
other times, the SenderPacingLink acts as a traffic shaper, ensuring equidistant arrivals at the
BNG. We are aware that this is a far stricter traffic model than e.g. applicable to today’s video
conferencing traffic. Today’s video conferencing systems use Variable Bit Rate (VBR) encoders,
and often send bursts of data. So, an actual video conference service is most likely recognized as
foreground subscriber for a substantially higher time share than measured in these simulations.
Nevertheless, the used configuration captures the worst case in that respect, so our results provide
a lower boundary for potential performance.

For the examined traffic, several metrics are of interest: First, there is packet waiting time at
the scheduler that impacts the packet one-way delay which is the crucial metric from service
perspective if the greedy traffic is assumed representing a streaming session. We will look into
the mean as well as the measured maximum waiting time although the latter has no statistical
significance. Second, we examine the allocated bandwidth. For most cases, it should be equal
to the limit rate. Only if the average allocated foreground subscriber rate at high overload is
below the rate limit, the allocated rate may be lower than the limit rate. Before we present the

160 Chapter 4. Evaluation

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

10−1

100

101

D
ur

at
io

n
of

re
co

gn
iti

on
as

ba
ck

gr
ou

nd
[s

]

˜̃
˜̃

˜̃ ˜̃

Rate limit of SenderPacingLink [Mbit/s]
1
2

4
6

10
14

18

(a) Duration of background recognition

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

100

101

102

D
ur

at
io

n
of

re
co

gn
iti

on
as

fo
re

gr
ou

nd
[s

]

˜̃
˜̃

˜̃ ˜̃

Rate limit of SenderPacingLink [Mbit/s]
1
2

4
6

10
14

18

(b) Duration of foreground recognition

Figure 4.27: Duration of stable recognition of rate-limited traffic for the BROAD topology and
one uTP-controlled background subscriber

results on traffic metrics, we evaluate our assumption of oscillating behavior (see Figure 3.6) by
evaluating the durations during which RADICCO recognizes the rate-limited traffic as foreground
or background traffic.

4.7.1 Phases of Constant Recognition

We evaluated the behavior of RADICCO regarding one rate-limited greedy flow for different
loads at an overload factor of 1.69 and different rate limits. Since a high amount of background
traffic may only diminish the (negative) effect we expect, we only configure one background
subscriber and eighteen not limited foreground subscribers, all receiving traffic according to the
updates traffic model.

We show the durations between recognition changes for the rate-limited traffic in Figure 4.27, in
Figure 4.27a the mean durations of phases of background recognition, Figure 4.27b the mean
durations of phases of foreground recognition. In not one simulation the rate-limited traffic is
consistently recognized as foreground, there are even three parameterizations with consistent
recognition as background, namely 1 Mbit/s rate-limited traffic at load levels 1.0 and 1.1 and
2 Mbit/s rate-limited traffic at load level 1.0. Moreover, simulations with 0.5 Mbit/s rate-limited
traffic are also recognized as background traffic as expected. Several insights are gained from
these figures: First, most parameterizations result in foreground durations of almost exactly
two seconds, the configured background detection threshold. Only the rather high rate limits
18 Mbit/s and 14 Mbit/s manage to fill the buffer sufficiently for a longer time than this threshold.
For the 14 Mbit/s rate-limited traffic this only applies for rather high levels of overload. Second,

4.7 Performance for Otherwise Rate-limited Greedy Traffic 161

0 5 10 15
Bandwidth of rate-limiting link [Mbit/s]

0.00

0.05

0.10

0.15

0.20
M

ea
n

pa
ck

et
w

ai
tin

g
tim

e
[s

]

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(a) Applying RADICCO

0 5 10 15
Bandwidth of rate-limiting link [Mbit/s]

0.00

0.05

0.10

0.15

0.20

M
ea

n
pa

ck
et

w
ai

tin
g

tim
e

[s
]

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(b) Applying the reference HFS

Figure 4.28: Packet waiting times in the scheduler’s queue for rate-limited traffic in the BROAD
topology, uTP-controlled background traffic and a overload factor of 1.69

all measurements show small to close to zero confidence intervals, indicating a very strict and
static oscillation pattern. This applies to the small and medium rate limits for medium and
high loads, i.e. greater than 1.3. Third, with increasing load the background durations decrease
for all rate limits, and this decrease gets less steep the higher the load. Note also the different
scales of the two figures and consider the range of resulting ratios of foreground- to background
time of the different parameterizations: While the 18 Mbit/s rate-limited traffic is recognized as
background for only about 1/1000 of the time at a load of 1.69, the ratio for 4 Mbit/s rate-limited
traffic at load 1.0 is about 20/1.
So our expectation of an oscillating behavior is met, yet on different levels for the different
parameterizations. We will analyze its consequences in the following.

4.7.2 Waiting Time

In this section, we present results of two types of parameterizations: First, we evaluate if the
resulting packet delay depends from the number of background subscribers and the offered load.
Second, we evaluate the impact of the limit rate for different offered loads on the packet delay.

4.7.2.1 Waiting Time for Different Rate Limits

First, we evaluate a scenario with overload factor 1.69, the highest value we consider in all
our simulations, and vary the number of background subscribers. Figure 4.28 shows the mean
packet waiting time in the BNG scheduler’s queue for the rate-limited flow, either when applying

162 Chapter 4. Evaluation

0 5 10 15
Bandwidth of rate-limiting link [Mbit/s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2
M

ax
im

um
pa

ck
et

w
ai

tin
g

tim
e

[s
]

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(a) Applying RADICCO

0 5 10 15
Bandwidth of rate-limiting link [Mbit/s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ax

im
um

pa
ck

et
w

ai
tin

g
tim

e
[s

]

Number of background subscribers
1
2
3

4
5
6

7
8

9
10

(b) Applying the reference HFS

Figure 4.29: Maximum packet waiting times in the scheduler’s queue for rate-limited traffic in
the BROAD topology, uTP-controlled background traffic and a overload factor of 1.69

RADICCO, Figure 4.28a, or when applying the reference HFS, Figure 4.28b. Here, we show
only the results for uTP-controlled background traffic since the results for TCP Vegas-controlled
are less interesting: The waiting times for all rate limits are very like the waiting times for the
case of only one uTP-controlled background subscriber.

The mean packet waiting time when applying RADICCO is negligible for a rate limit of
0.5 Mbit/s, mostly high for small rate limits between 1 Mbit/s and 4 Mbit/s and for high rate
limits, but close to zero for medium values. In contrast, the reference HFS—as expected—
results in almost no waiting times for rate limits up to 10 Mbit/s and increasing waiting times
for the high rate limits (14 and 18 Mbit/s). This behavior of the unmodified HFS meets our
expectations since it always allocates the fair share, which at the examined loads are greater than
10 Mbit/s. Therefore, for rate limits greater or equal 10 Mbit/s the effective bottleneck—and
the only queue—is at the rate-limiting link. Applying RADICCO changes this: If a subscriber
is recognized as background subscriber, its target rate will be reduced to the minimum, in our
parameterization 1 Mbit/s. The effective rate is even smaller in this scenario since the configured
overload factor of 1.69 must be expected to result in RADICCO operating in Heavy Overload
state most of the time. For 0.5 Mbit/s rate limited traffic, the scheduler does not constitute the
bottleneck despite the further reduced effective rate, so the queuing delay is negligible. Yet, for
the higher rate limits, this does not hold. Here we already can see the negative effect of the
combination of the untouched buffer limit designed for the access link nominal capacity and the
reduced effective rate.

This effect becomes even more impressive when looking into maximum waiting times. These are
only single values and have no statistical significance but give a clear impression of which ranges

4.7 Performance for Otherwise Rate-limited Greedy Traffic 163

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.00

0.05

0.10

0.15

0.20
M

ea
n

pa
ck

et
w

ai
tin

g
tim

e
[s

]

˜̃
˜̃

Rate limit of SenderPacingLink [Mbit/s]
0.5
1

2
4

6
10

14
18

(a) Applying RADICCO

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.00

0.05

0.10

0.15

0.20

M
ea

n
pa

ck
et

w
ai

tin
g

tim
e

[s
]

˜̃
˜̃

Rate limit of SenderPacingLink [Mbit/s]
0.5
1

2
4

6
10

14
18

(b) Applying the reference HFS

Figure 4.30: Packet waiting times in the scheduler’s queue for rate-limited traffic in the BROAD
topology and one uTP-controlled background subscriber

waiting times may reach. Figure 4.29 shows the maximum packet waiting times, Figure 4.29a
when applying RADICCO, Figure 4.29b when applying the reference HFS. Again, we omit the
results for TCP Vegas-controlled background traffic since it is very like the results for one uTP
subscriber. The huge waiting times for low rate limits are the direct consequence of reducing the
target rate down to 1 Mbit/s while leaving the buffer size and the foreground detection threshold
untouched. The reason for the effect of more uTP background subscribers reducing the waiting
time lies in uTP’s hibernation behavior that in that cases reduces the actual load.

So, if the bottleneck is at the scheduler and not at the rate-limiting link, the reduced serving rate
implies a common maximum waiting time for all rate limits that result in such a state. Therefore,
for most numbers of background subscribers, there is plateau for the rate limits 1–4 Mbit/s. These
plateaus differ depending on the number of background subscribers since the more background
traffic is recognized, the higher the final rate. As explained in Section 3.7.7, the final rate is
obtained by sharing the capacity among all target rates. Assuming the subscriber in focus at
the time has a target rate equal to the minimum 1 Mbit/s of a background subscriber, the final
rate may be about divided by the current overload factor of 1.69 if all other subscribers are
foreground subscribers. If nine, i.e. about half of the other subscribers is also at that minimum
rate, the effective rate at a load of 1.69 is even higher than 1 Mbit/s.

Nevertheless, the results presented only concern a very high overload factor of 1.69. We therefore
also looked into the relation between overload and induced waiting time.

164 Chapter 4. Evaluation

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.0

0.2

0.4

0.6

0.8

1.0

1.2
M

ax
im

um
pa

ck
et

w
ai

tin
g

tim
e

[s
]

˜̃
˜̃

Rate limit of SenderPacingLink [Mbit/s]
0.5
1

2
4

6
10

14
18

(a) Applying RADICCO

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ax

im
um

pa
ck

et
w

ai
tin

g
tim

e
[s

]

˜̃
˜̃

Rate limit of SenderPacingLink [Mbit/s]
0.5
1

2
4

6
10

14
18

(b) Applying the reference HFS

Figure 4.31: Maximum packet waiting times in the scheduler’s queue for rate-limited traffic in
the BROAD topology and one uTP-controlled background subscriber

4.7.2.2 Waiting Time for Different Loads

In the simulation presented in the following we always used just one background subscriber, as
it is the worst case as seen and explained above.

The mean packet waiting time depending on the offered load in shown in Figure 4.30, again
for RADICCO, Figure 4.30a and the reference HFS, Figure 4.30b. For the high rate limits, i.e.
14 Mbit/s and 18 Mbit/s, not only the behavior for high load, as seen before, but also for all
loads is not substantially different from the waiting time induced by the reference scheduler. For
rate limits 6 and 10 Mbit/s there seems to be no significant difference in waiting times between
RADICCO and the reference HFS on the first glance. Nevertheless, there are differences: While
the reference HFS does not induce significant waiting time at all (< 0.2 ms for all loads), applying
RADICCO increases this waiting time to a few milliseconds, at the highest measured load of
about 9 ms. Such an increase is not significant in today’s Internet since a more generously
dimensioned buffer at the bottleneck easily induces a greater impact. The mean waiting time for
6-Mbit/s-limited traffic is a bit higher than for the traffic with higher rate limits and its confidence
intervals are non-negligible except for overload factors 1.32 and 1.69. The results for the lowest
rate limit of 0.5 Mbit/s show a rather low waiting time that increases with increasing load from
3 ms to a maximum of about 20 ms. The most interesting and alarming measurements are the
ones for the even lower rate limits of 1–4 Mbit/s. We see a very high and slightly increasing
large average waiting time for any overload.

4.7 Performance for Otherwise Rate-limited Greedy Traffic 165

The corresponding maximum waiting times are also high for load levels above 1.0, as can be
seen in Figure 4.31. We show the measurements for RADICCO in Figure 4.31a and for the
reference HFS in Figure 4.31b. Again, we can identify four groups of patterns:

- Traffic with high rate limits that show minor impact that increases linearly with the
overload.

- Traffic with medium rate limits (10 Mbit/s only) that are not substantially impacted.

- Traffic with low rate limits (1–6 Mbit/s) that are heavily impacted.

- Traffic with the lowest rate limit (0.5 Mbit/s) that is not substantially impacted.

Interestingly the 6-Mbit/s-limited traffic does not seem to belong to the group of the 10-Mbit/s-
limited traffic but to the group of lower rate limits, in contrast to the results on mean packet
waiting times.

We start detailed discussion with the highest rate limits of 18 and 14 Mbit/s. They both show
similar shapes for RADICCO as for the reference HFS since for loads higher than some overload
threshold the hierarchical scheduler defines the bottleneck and not the rate-limited link. Neverthe-
less, for the 14 Mbit/s rate-limited traffic, this threshold seems to be shifted to a higher load for
RADICCO compared to the reference HFS. Unfortunately, this probably is just a consequence of
a random peak in load for the HFS simulation: for the configured offered load of 1.32 on average
every subscriber should receive 15.15 Mbit/s. Moreover, the elastic traffic model with idle times
results in higher instant shares most of the time.

The second group consists of the 10-Mbit/s-rate-limited traffic only. For this traffic, the bottleneck
is never located at the BNG interface. Due to the rate variations induced by RADICCO, queuing
occurs in the scheduler and therefore the queuing delay is significantly higher than for the
reference HFS. The maximum values are at about 80 ms for any simulated load.

The third group is defined by traffic, for which the bottleneck alternates with substantial du-
rations between both places. Here, the oscillation described in Section 3.8.5.3 applies and
we see the expected huge waiting times. Interestingly, for the 6-Mbit/s-rate-limited traffic the
RADICCO-enhanced BNG scheduler is not the bottleneck most of the time, so no significant
queue builds up as seen in the mean delay shown in Figure 4.30a. Nevertheless, at rare constella-
tions, i.e. many active foreground subscribers, the bottleneck shifts to the BNG, thus causing
similar problems as for the lower rate limits. In Figure 4.31a we see that we captured such events
for most overload factors but not for overload factors 1.32 and 1.69.

The fourth group consists of traffic whose rate limit is so low that the BNG never is the bottleneck.
Nevertheless, applying RADICCO implies less constant scheduling so the waiting time increases
significantly from below 1 ms to a maximum of 35 ms. With this value, the overall OWD does
not exceed 85 ms, so it remains well below the 150 ms maximum OWD recommended by the
ITU [G.114].

166 Chapter 4. Evaluation

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0

5

10

15

20
M

ea
n

al
lo

ca
te

d
bi

tr
at

e
[M

bi
t/s

]

˜̃
˜̃

Rate limit of SenderPacingLink [Mbit/s]
0.5
1

2
4

6
10

14
18

(a) Applying RADICCO

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Overload factor

0

5

10

15

20

M
ea

n
al

lo
ca

te
d

bi
tr

at
e

[M
bi

t/s
]

˜̃
˜̃

Rate limit of SenderPacingLink [Mbit/s]
0.5
1

2
4

6
10

14
18

(b) Applying the reference HFS

Figure 4.32: Throughput of rate-limited traffic for the BROAD topology and one uTP-controlled
background subscriber

4.7.3 Bandwidth Allocation

In Figure 4.32 the mean allocated bandwidth is plotted, in Figure 4.32a for RADICCO, in Fig-
ure 4.32b for the reference HFS. Clearly, the reference HFS provides an actual perfect allocation:
Since all subscribers have same weight corresponding to their equal access link capacity, every
subscriber receives the maximum of incoming rate (here limited by the SenderPacingLink) and
the current fair share. Since the traffic source cannot catch up after a time of a lower effective
rate at the BNG scheduler, average throughput decreases earlier than the average offered load
might suggest. For instance, the 18 Mbit/s-rate-limited subscriber does not reach 18 Mbit/s at
load 1.0 but just 17.97 Mbit/s and at load 1.1 just 17.93 Mbit/s. Note also the barely visible
confidence intervals for the reference HFS.

Comparing the achieved throughputs of RADICCO with the reference HFS, we find no significant
difference for the higher three rate limits and even for the 6 Mbit/s rate-limited traffic the
difference is small (less than 3 %). In contrast, lower rate limits result in significantly reduced
allocations. For instance, the traffic limited to 4 Mbit/s receives between 2.1 and 2.5 Mbit/s
for overload factors of 1.1 and higher and traffic limited to 2 Mbit/s receives between 1.27 and
1.4 Mbit/s for overload factors of 1.1 and higher. The root cause for these low rates are the long
durations recognized as background as shown already in Figure 4.27a. A rate of 6 Mbit/s suffices
to leave background recognition after about one second, most of which the target rate is still well
above 6 Mbit/s. Therefore, the average rate of such 6 Mbit/s rate-limited traffic is determined
by the arrival rate and the minimum background target rate has not a big influence. For lower
rates the situation is contrary: There are long durations of background recognition, therefore
implying a low or even minimum target rate for the biggest part of these durations, resulting in

4.8 Evaluation Summary 167

a much lower average target rate than the rate limit. These low target rates become effective
at overload only and the higher the overload and the less background traffic is present in the
aggregate, the more effective the target rates are. Since there is only one background subscriber,
even low overload (of 1.1) or temporary overload (at stochastic load 1.0) results in an effective
rate substantially lower than the respective rate limits. For the 1 Mbit/s rate-limited traffic the
situation is basically the same but the minimum target rate is not lower than the rate limit, so
the impact is much less severe. The lowest rate-limit of 0.5 Mbit/s in contrast receives almost
perfectly its full rate, the largest deviation is 53 bit/s.

So, also the bandwidth allocation mirrors the effects of false background recognition: Rate limits
that are not subject to false recognition or receive a rate lower than the effective minimum rate
receive about the same rate as with the HFS. In contrast, the medium rates receive reduced
throughput rate only.

4.7.4 Scenario Conclusion

The evaluation of rate-limiting traffic confirms our expectations and concerns. Even for low
overload, applying RADICCO results in large queuing delays at the scheduler for traffic that
arrives at rates much lower than the respective access link’s bitrate. With the configured low
minimum background target rate, for traffic arriving with about half the respective access link’s
bitrate or higher, there is no significant negative effect. Even for rate limits above 6 Mbit/s we
found limited impact in form of sporadic large delays for the evaluated 20 Mbit/s access links.

These results cover almost the worst case for several reasons: First, we simulated partly high
overload factors. Usual ISPs do not operate their networks with an overload greater than 1.2,
as the measurements during peak load suggest (see Section 2.1.3). We also simulate higher
overload factors since we aim to evaluate the capabilities and limits of RADICCO. Second, we
simulated a constant bitrate bottleneck. Real sender-limited traffic mostly has a variable bitrate,
e.g. video conferencing calls. Bottlenecks at other links in the network are usually shared with
other flows, also resulting in varying throughput. Both scenarios result in bursts of traffic arriving
at the BNG, which would trigger the traffic being recognized as foreground traffic. Third, we
show that traffic below the minimal effective rate (bgmin

OLF) is protected from excessive queuing
delays. We set this value extremely low for the same motivation we used high overload factors.
For instance, configuring bgmin to 10 Mbit/s would protect all normal VoIP and real-time video
conferences for usual overload factors.

Nevertheless, for a product based on RADICCO, the issue of handling otherwise rate-limited
traffic can and should be solved by introducing a detection mechanism for this rare third traffic
type as outlined in Section 3.8.5.3.

4.8 Evaluation Summary

The evaluation of RADICCO shows that RADICCO fulfills all qualitative objectives in praxis.
We summarize the result of the evaluation in Table 4.1.

168 Chapter 4. Evaluation

Table 4.1: Evaluation summary

Objective Abstract
rating

Comment

Network neutrality
√

Mechanism is controlled by end hosts and treats all
services the same.

Sufficient efficiency
√

In praxis O(1), although theoretical complexity.
O(N)

Smooth Rate Allocations
for Foreground Traffic

√
At least as smooth as HFS except when allocating
bandwidth from background to new foreground.

QoE improvement ++ QoE improvement for foreground traffic with a bot-
tleneck at the BNG. Extension required for other-
wise rate-limited traffic.

High bottleneck utilization + Depends on background CCA. For uTP low for
bursty traffic.

Fairness among
foreground subscribers

+++ Close to perfect.

Fairness among
background subscribers

- Depends on background CCA. Interaction of con-
trol loops of CCAs and RADICCO may result in
unfairness.

The simulative performance evaluation shows that, if the BNG is the bottleneck, RADICCO
improves QoE for all examined traffic models. In particular, we show that RADICCO mecha-
nisms work on both, the leaf node level but if the resource reallocation is required at a higher
hierarchy level. The benefit can be distinguished in two levels: First, RADICCO results in
overload not deteriorating the foreground traffic’s QoE up to a certain level of overload. There
often is an approximately linear relation between the share of background traffic and the limiting
level. Second, beyond this level of overload the QoS decreases. Transfer times increase about
linearly with the elastic load, but the QoS is substantially improved compared to the HFS. The
slope of the increase depends on the share of background traffic, more background traffic results
in a lower slope. At all loads and with any share of background traffic, RADICCO maintains
a high fairness among foreground subscribers. Nevertheless, performance differs depending
on the CCA used by the background traffic: If uTP is used, benefit and fairness, among both
foreground and background subscribers, are greater than for TCP Vegas. The cause for this
difference is the background detection mechanism reliably recognizing uTP but often recognizing
TCP Vegas-controlled flows as foreground. For uTP-controlled background traffic RADICCO
often results in significantly lower bottleneck utilization compared to the HFS. This is not the
case for TCP Vegas. The reason for this difference is the behavior of uTP that often reacts with
long hibernation phases to the rate changes introduced by RADICCO.

If the incoming traffic is rate-limited at another location, RADICCO may induce large packet
delay which is prohibitive for several services that base on traffic that is rate-limited by the
sender, e.g. (real-time) VoIP and video conferencing. The induced packet delay scales with
the relation of the subscriber’s capacity Ci, j to his minimum target rate bgmin

i, j . Therefore, for
high minimum target rates the effect is less severe, so the minimum target delay can be used to

4.8 Evaluation Summary 169

adjust the maximum packet delay assuming the overload is known. Furthermore, a deploying
ISP can differentiate the extent of this effect per subscriber. Nevertheless, we assume that any
product implementing RADICCO should implement an extension mitigating this behavior, see
Section 3.8.5.3 for possible approaches.

170 Chapter 4. Evaluation

5 Conclusion and Outlook

This section provides a short summary of this thesis, draws conclusions and provides an outlook
on future work.

In this thesis, we introduced the novel concept of Rate Adaptation Considering Traffic Differenti-
ation by Congestion Control during Overload (RADICCO), which uses knowledge on transport
layer mechanisms to improve a hierarchical scheduler’s MAC layer function. RADICCO is
intended for deployment at the BNG downstream hierarchical scheduler, which is the bottleneck
for most downstream traffic due to the typical design of ISP network topologies.

Chapter 2 gave an overview on the relevant background. Since RADICCO combines packet
scheduling with CC behavior and is designed for the deployment at BNGs, this chapter covered
access networks and their role, packet schedulers, congestion and transport layer CC.

In Chapter 3, we gave a motivation for this thesis, a description of the problem to be approached
in it and presented the concept of RADICCO. In continuation, we presented our objectives
and related work, provided a detailed algorithm description and discussed design decisions and
alternatives.

In Chapter 4, we evaluated RADICCO according to the defined qualitative design goals and
quantitative performance objectives. We found that RADICCO meets the objectives of network
neutrality and smooth rate allocations for foreground traffic. The practical computational
complexity is acceptable and allows implementation. Therefore, we considered the qualitative
objectives met by RADICCO. The performance evaluation was carried out by simulations
incorporating unmodified wide-spread real-world CCA implementations of TCP Cubic for
foreground traffic and TCP Vegas and uTP for background traffic. The simulative performance
evaluation showed that RADICCO improves QoE for all examined traffic models if the BNG
is the bottleneck. In particular, we showed that RADICCO’s mechanisms achieve a beneficial
bandwidth reallocation on both levels, on the AN level and on the AGS level. Regarding QoE,
the performance evaluation shows two correlations:

1. RADICCO avoids deterioration of QoE despite overload up to a certain limit. The more
background traffic exists in the traffic mix, the higher the limit of overload, which RADICCO
can accept without QoS deterioration.

2. At load beyond that limit, the QoE decreases, but substantially less than for a HFS. The slope
also depends on the share of background traffic, more background traffic results in a lower
deterioration.

171

172 Chapter 5. Conclusion and Outlook

The bottleneck utilization achieved by RADICCO depends heavily on the CCA of the background
traffic. Defensive CCAs such as BitTorrent’s uTP partly react to the rate changes implemented by
RADICCO with long phases of inactivity, causing low utilization despite increased foreground
rates. The fairness among foreground subscribers achieved by RADICCO is high at all loads and
with any share of background traffic. Yet, RADICCO has a drawback for incoming traffic that
has no bottleneck at the BNG because it is rate-limited at another location. For this rare type of
traffic, RADICCO may induce large packet delay depending on scenario and parameterization.

In the following, we analyze potential impact for concerned parties and their possible reactions.
RADICCO particularly concerns:

- The deploying ISP.

- The users in the subscriber households.

- OS designers, application developers and service providers.

A deploying ISP substantially benefits from RADICCO. RADICCO allows to postpone costly
investments into infrastructure upgrades and to accept daily overload since RADICCO shifts
the limits of offered load that can be handled without QoE deterioration. Moreover, RADICCO
reduces the QoE deterioration beyond these limits, so the pressure for investments is reduced for
such overload. If the ISP delays upgrades, RADICCO results in higher average utilization due to
the avoided bandwidth reductions of adaptive services such as DASH-like VoD. The average
utilization also becomes smoother, easing routing and traffic engineering in the ISP’s metro and
core networks. Moreover, these benefits can be achieved with unchanged or not significantly
changed BNG devices. This is a strong contrast to DPI-based overload management that requires
substantial computational resources and therefore expensive devices.

Users, and thus the subscribers, also benefit from RADICCO being deployed. For most situations,
foreground traffic is transferred faster or at least as fast as with HFS, and QoE is generally
improved. Nevertheless, we do not expect a change in users’ behavior, since most transfers are
not triggered and controlled by a human user directly but by an application or the OS of a device.

For OS designers, application developers and service providers, a deployment of RADICCO
increases the achievable QoE, yet for these players the reason for the increased network per-
formance does not matter. For service providers, peak loads may change: For foreground
services, the load during the network’s peak periods increases due to RADICCO allocating
more bandwidth to their receivers. For background services, the load during these periods
decreases but after them increases correspondingly. Apart from that, the incentive situation
changes. Since OS designers define one solution that is applied to many devices, the design is
based on a statistical view on all deployed systems. From this perspective, RADICCO introduces
the opportunity for subscribers to mutually benefit from using traffic differentiation by CC on
average. Thus, RADICCO adds incentive for OS designers to use traffic differentiation by CC,
although we consider the competition for Internet bandwidth of the networked devices within a
subscriber’s household providing sufficient incentive. For application developers and service
providers that offer both foreground services as well as background services, the same argument
applies. Nevertheless, its importance decreases with decreasing prevalence of the respective
application or service.

173

After this thesis introduced and evaluated the novel concept of RADICCO, there are still
numerous questions that merit further investigation. We recognize three main purposes:

- Enhance RADICCO to detect and handle otherwise rate-limited traffic.

- Evaluate and tune RADICCO by a prototype with real Internet traffic.

- Evaluate if RADICCO’s concept can also be applied to other network bottlenecks, e.g. in
cellular networks.

Enhancing RADICCO to detect and appropriately handle otherwise rate-limited traffic is required
if RADICCO shall be configured with low minimum background target rates. This is attractive
since low minimum background target rates achieve greater benefits for low shares of background
traffic.

Real communication networks differ from our simulation by several properties, that may impact
the behavior of RADICCO as well as the CCAs and may imply a need for re-calibrating
RADICCO parameters. Therefore, measuring a prototype with real Internet traffic would be
desirable. Potential causes for deviating behaviors are the variation of available BE capacity
caused by priority traffic and the jitter today’s network cards produce due to offloading and
interrupt coalescing.

Finally, it is interesting how RADICCO performs when applied to other network bottlenecks, in
particular the packet gateway of a cellular network. Up to now, this is no use case since most high
volume and background transfers of mobile devices are carried out using local WiFi connections,
which access the Internet via wired access links.

174 Chapter 5. Conclusion and Outlook

Bibliography

[1] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and A. Warfield. QoS’s Downfall: At
the bottom, or not at all! In Proceedings of the ACM SIGCOMM workshop on Revis-
iting IP QoS: What have we learned, why do we care?, pages 109–114, New York,
NY, USA, 2003. ACM. URI: http://doi.acm.org/10.1145/944592.
944594, doi:http://doi.acm.org/10.1145/944592.944594.

[2] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu. Characterizing
residential broadband networks. In Internet Measurement Conference, pages 43–56,
2007.

[3] Broadband Internet Technical Advisory Group, Inc. Real-time Network Manage-
ment of Internet Congestion. Technical report, Broadband Internet Technical Advi-
sory Group, Inc., Oct 2013. URI: https://www.bitag.org/documents/
BITAG_-_Congestion_Management_Report.pdf.

[4] Nokia Networks. 7750 Service Router. Web site. Retrieved
2017-01-18. URI: https://networks.nokia.com/products/
7750-service-router.

[5] Cisco Systems, Inc. Cisco ASR 9000 Series Aggregation Services Routers. Re-
trieved 2017-01-18. URI: http://www.cisco.com/c/en/us/products/
routers/asr-9000-series-aggregation-services-routers/
index.html.

[6] Akamai Technologies, Inc. Akamai’s State of the Internet Q2 2016 Report. Techni-
cal report, Akamai Technologies, Inc., September 2016.

[7] Dialog Consult / VATM. 18. TK-Marktanalyse Deutschland 2016. Technical report,
VATM, October 2016. Retrieved 2016-11-10 from http://www.vatm.de/
vatm-marktstudien.html.

[8] W. Coomans, R. B. Moraes, K. Hooghe, A. Duque, J. Galaro, M. Timmers, A. J.
van Wijngaarden, M. Guenach, and J. Maes. XG-FAST: Towards 10 Gb/s copper
access. In 2014 IEEE Globecom Workshops (GC Wkshps), pages 630–635, Dec
2014. doi:10.1109/GLOCOMW.2014.7063503.

[9] K. A. Noll. Hybrid Fibre-Coaxial Networks: Technology and Challenges in Deploy-
ing Multi-Gigabit Access Services, Presentation on the 7th NANOG on the road
meeting, June 2015. Retrieved 2016-12-21.

175

http://doi.acm.org/10.1145/944592.944594
http://doi.acm.org/10.1145/944592.944594
http://dx.doi.org/http://doi.acm.org/10.1145/944592.944594
https://www.bitag.org/documents/BITAG_-_Congestion_Management_Report.pdf
https://www.bitag.org/documents/BITAG_-_Congestion_Management_Report.pdf
https://networks.nokia.com/products/7750-service-router
https://networks.nokia.com/products/7750-service-router
http://www.cisco.com/c/en/us/products/routers/asr-9000-series-aggregation-services-routers/index.html
http://www.cisco.com/c/en/us/products/routers/asr-9000-series-aggregation-services-routers/index.html
http://www.cisco.com/c/en/us/products/routers/asr-9000-series-aggregation-services-routers/index.html
http://www.vatm.de/vatm-marktstudien.html
http://www.vatm.de/vatm-marktstudien.html
http://dx.doi.org/10.1109/GLOCOMW.2014.7063503

176 BIBLIOGRAPHY

[10] G. Maier, A. Feldmann, V. Paxson, and M. Allman. On Dominant Characteristics
of Residential Broadband Internet Traffic. In Proceedings of the 9th ACM SIG-
COMM Conference on Internet Measurement Conference, pages 90–102, New York,
NY, USA, 2009. ACM. URI: http://doi.acm.org/10.1145/1644893.
1644904, doi:10.1145/1644893.1644904.

[11] K. Fukuda, K. Cho, and H. Esaki. The Impact of Residential Broadband Traffic
on Japanese ISP Backbones. SIGCOMM Comput. Commun. Rev., 35(1):15–22,
2005. URI: http://doi.acm.org/10.1145/1052812.1052820, doi:
10.1145/1052812.1052820.

[12] L. Quan, J. Heidemann, and Y. Pradkin. When the Internet Sleeps: Correlating
Diurnal Networks with External Factors. In Proceedings of the 2014 Conference
on Internet Measurement Conference, pages 87–100, New York, NY, USA, 2014.
ACM. URI: http://doi.acm.org/10.1145/2663716.2663721, doi:
10.1145/2663716.2663721.

[13] A. Finamore, M. Mellia, M. Meo, M. M. Munafo, P. D. Torino, and D. Rossi.
Experiences of Internet traffic monitoring with tstat. IEEE Network, 25(3):8–14,
May 2011. doi:10.1109/MNET.2011.5772055.

[14] K. Lukas, A. Marx, B. O. Schöttler, and C. Sudhues. „dienstequalität von
breitbandzugängen ii“ - studie im auftrag der bundesnetzagentur. Technical report,
zafaco GmbH, jun 2014. URI: http://www.bundesnetzagentur.de/
SharedDocs/Downloads/DE/Sachgebiete/Telekommunikation/
Unternehmen_Institutionen/Breitband/Breitbandmessung/
Qualitaetsstudie/AbschlussberichtQualitaetsstudie2013.
pdf.

[15] FCC’s Office of Engineering and Technology and Consumer and Governmental
Affairs Bureau. 2015 measuring broadband america - fixed broadband report.
Technical report, FCC’s Office of Engineering and Technology and Consumer and
Governmental Affairs Bureau, 2015.

[16] T.-Y. Tsai, Y.-L. Chung, and Z. Tsai. Introduction to packet scheduling algorithms
for communication networks. Communications and Networking, pages p263–271,
2010.

[17] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair Queueing
Algorithm. In Symposium Proceedings on Communications Architectures and
Protocols, pages 1–12, New York, NY, USA, 1989. ACM. URI: http://doi.
acm.org/10.1145/75246.75248, doi:10.1145/75246.75248.

[18] K. Nichols and V. Jacobson. Controlling Queue Delay. Queue, 10(5):20:20–
20:34, 2012. URI: http://doi.acm.org/10.1145/2208917.2209336,
doi:10.1145/2208917.2209336.

[19] S. Floyd and V. Jacobson. Random early detection gateways for congestion
avoidance. Networking, IEEE/ACM Transactions on, 1(4):397–413, 1993. doi:
10.1109/90.251892.

http://doi.acm.org/10.1145/1644893.1644904
http://doi.acm.org/10.1145/1644893.1644904
http://dx.doi.org/10.1145/1644893.1644904
http://doi.acm.org/10.1145/1052812.1052820
http://dx.doi.org/10.1145/1052812.1052820
http://dx.doi.org/10.1145/1052812.1052820
http://doi.acm.org/10.1145/2663716.2663721
http://dx.doi.org/10.1145/2663716.2663721
http://dx.doi.org/10.1145/2663716.2663721
http://dx.doi.org/10.1109/MNET.2011.5772055
http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Telekommunikation/Unternehmen_Institutionen/Breitband/Breitbandmessung/Qualitaetsstudie/AbschlussberichtQualitaetsstudie2013.pdf
http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Telekommunikation/Unternehmen_Institutionen/Breitband/Breitbandmessung/Qualitaetsstudie/AbschlussberichtQualitaetsstudie2013.pdf
http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Telekommunikation/Unternehmen_Institutionen/Breitband/Breitbandmessung/Qualitaetsstudie/AbschlussberichtQualitaetsstudie2013.pdf
http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Telekommunikation/Unternehmen_Institutionen/Breitband/Breitbandmessung/Qualitaetsstudie/AbschlussberichtQualitaetsstudie2013.pdf
http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Telekommunikation/Unternehmen_Institutionen/Breitband/Breitbandmessung/Qualitaetsstudie/AbschlussberichtQualitaetsstudie2013.pdf
http://doi.acm.org/10.1145/75246.75248
http://doi.acm.org/10.1145/75246.75248
http://dx.doi.org/10.1145/75246.75248
http://doi.acm.org/10.1145/2208917.2209336
http://dx.doi.org/10.1145/2208917.2209336
http://dx.doi.org/10.1109/90.251892
http://dx.doi.org/10.1109/90.251892

BIBLIOGRAPHY 177

[20] P. Lothberg. Terastream – a simplified ip network service delivery model.
https://ripe67.ripe.net/archives/video/3/, October 2013. Retrieved 2016-12-21. URI:
https://ripe67.ripe.net/archives/video/3/.

[21] P. L. Dordal. An Introduction to Computer Networks, Release 1.8.22. Department
of Computer Science, Loyola University Chicago, 1.8.22 edition, July 2016.

[22] L. R. Tymes. Routing and Flow Control in TYMNET. IEEE Transactions on Commu-
nications, 29(4):392–398, Apr 1981. doi:10.1109/TCOM.1981.1095020.

[23] A. Fraser. Towards a Universal Data Transport System. IEEE Journal on Selected Ar-
eas in Communications, 1(5):803–816, Nov 1983. doi:10.1109/JSAC.1983.
1145998.

[24] J. Nagle. On Packet Switches with Infinite Storage. IEEE Transactions on Commu-
nications, 35(4):435–438, Apr 1987. doi:10.1109/TCOM.1987.1096782.

[25] L. Kleinrock. Time-shared Systems: A Theoretical Treatment. J. ACM, 14(2):242–
261, 1967. URI: http://doi.acm.org/10.1145/321386.321388,
doi:10.1145/321386.321388.

[26] L. Kleinrock. Queueing Systems, volume II: Computer Applications. Wiley Inter-
science, 1976. (Published in Russian, 1979. Published in Japanese, 1979.).

[27] L. Kleinrock and R. R. Muntz. Processor Sharing Queueing Models of Mixed
Scheduling Disciplines for Time Shared System. J. ACM, 19(3):464–482,
1972. URI: http://doi.acm.org/10.1145/321707.321717, doi:10.
1145/321707.321717.

[28] L. Kleinrock, R. R. Muntz, and E. Rodemich. The processor-sharing queue-
ing model for time-shared systems with bulk arrivals. Networks, 1(1):1–13,
1971. URI: http://dx.doi.org/10.1002/net.3230010103, doi:10.
1002/net.3230010103.

[29] E. Gafni and D. Bertsekas. Dynamic control of session input rates in communication
networks. IEEE Transactions on Automatic Control, 29(11):1009–1016, Nov 1984.
doi:10.1109/TAC.1984.1103431.

[30] L. Massoulie and J. Roberts. Bandwidth sharing: objectives and algorithms. In
INFOCOM 99. Eighteenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, volume 3, pages 1395–1403 vol.3,
1999. doi:10.1109/INFCOM.1999.752159.

[31] L. Massoulie and J. Roberts. Bandwidth sharing: objectives and algorithms.
IEEE/ACM Transactions on Networking, 10(3):320–328, Jun 2002. doi:10.
1109/TNET.2002.1012364.

[32] A. G. Fraser and S. P. Morgan. Queueing and framing disciplines for a mixture of
data traffic types. AT&T Bell Laboratories Technical Journal, 63(6):1061–1087,
July 1984. doi:10.1002/j.1538-7305.1984.tb00114.x.

https://ripe67.ripe.net/archives/video/3/
http://dx.doi.org/10.1109/TCOM.1981.1095020
http://dx.doi.org/10.1109/JSAC.1983.1145998
http://dx.doi.org/10.1109/JSAC.1983.1145998
http://dx.doi.org/10.1109/TCOM.1987.1096782
http://doi.acm.org/10.1145/321386.321388
http://dx.doi.org/10.1145/321386.321388
http://doi.acm.org/10.1145/321707.321717
http://dx.doi.org/10.1145/321707.321717
http://dx.doi.org/10.1145/321707.321717
http://dx.doi.org/10.1002/net.3230010103
http://dx.doi.org/10.1002/net.3230010103
http://dx.doi.org/10.1002/net.3230010103
http://dx.doi.org/10.1109/TAC.1984.1103431
http://dx.doi.org/10.1109/INFCOM.1999.752159
http://dx.doi.org/10.1109/TNET.2002.1012364
http://dx.doi.org/10.1109/TNET.2002.1012364
http://dx.doi.org/10.1002/j.1538-7305.1984.tb00114.x

178 BIBLIOGRAPHY

[33] C. Y. Lo. Performance analysis and application of a two-priority packet queue. AT&T
Technical Journal, 66(3):82–99, May 1987. doi:10.1002/j.1538-7305.
1987.tb00213.x.

[34] L. Zhang. Virtual Clock: A New Traffic Control Algorithm for Packet
Switching Networks. SIGCOMM Comput. Commun. Rev., 20(4):19–29, 1990.
URI: http://doi.acm.org/10.1145/99517.99525, doi:10.1145/
99517.99525.

[35] L. Zhang. A new architecture for packet switching network protocols. PhD thesis,
1989. URI: http://hdl.handle.net/1721.1/14184.

[36] A. K. J. Parekh. A Generalized Processor Sharing Approach to Flow Con-
trol In Integrated Services Networks. PhD thesis, 1992. URI: http://www.
tecknowbasic.com/thesis.pdf.

[37] J. Bennett and H. Zhang. WF2Q: worst-case fair weighted fair queueing. In
INFOCOM 96. Fifteenth Annual Joint Conference of the IEEE Computer Societies.
Networking the Next Generation. Proceedings IEEE, volume 1, pages 120–128
vol.1, Mar 1996. doi:10.1109/INFCOM.1996.497885.

[38] J. C. R. Bennett and H. Zhang. Hierarchical Packet Fair Queueing Algorithms. In
Conference Proceedings on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communications, pages 143–156, New York, NY, USA,
1996. ACM. URI: http://doi.acm.org/10.1145/248156.248170,
doi:10.1145/248156.248170.

[39] D. Stephens, J. Bennett, and H. Zhang. Implementing scheduling algorithms
in high-speed networks. Selected Areas in Communications, IEEE Journal on,
17(6):1145–1158, Jun 1999. doi:10.1109/49.772449.

[40] S. Suri, G. Varghese, and G. Chandranmenon. Leap forward virtual clock: a new
fair queuing scheme with guaranteed delays and throughput fairness. In INFOCOM
97. Sixteenth Annual Joint Conference of the IEEE Computer and Communications
Societies. Driving the Information Revolution., Proceedings IEEE, volume 2, pages
557–565 vol.2, Apr 1997. doi:10.1109/INFCOM.1997.644506.

[41] M. Shreedhar and G. Varghese. Efficient fair queuing using deficit round-
robin. IEEE/ACM Transactions on Networking, 4(3):375–385, Jun 1996. doi:
10.1109/90.502236.

[42] G. Chuanxiong. SRR: An O(1) Time Complexity Packet Scheduler for Flows in
Multi-service Packet Networks. In Proceedings of the 2001 Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communications,
pages 211–222, New York, NY, USA, 2001. ACM. URI: http://doi.acm.
org/10.1145/383059.383076, doi:10.1145/383059.383076.

[43] L. Lenzini, E. Mingozzi, and G. Stea. Aliquem: a novel DRR implementation to
achieve better latency and fairness at O(1) complexity. In Quality of Service, 2002.
Tenth IEEE International Workshop on, pages 77–86, 2002. doi:10.1109/
IWQoS.2002.1006576.

http://dx.doi.org/10.1002/j.1538-7305.1987.tb00213.x
http://dx.doi.org/10.1002/j.1538-7305.1987.tb00213.x
http://doi.acm.org/10.1145/99517.99525
http://dx.doi.org/10.1145/99517.99525
http://dx.doi.org/10.1145/99517.99525
http://hdl.handle.net/1721.1/14184
http://www.tecknowbasic.com/thesis.pdf
http://www.tecknowbasic.com/thesis.pdf
http://dx.doi.org/10.1109/INFCOM.1996.497885
http://doi.acm.org/10.1145/248156.248170
http://dx.doi.org/10.1145/248156.248170
http://dx.doi.org/10.1109/49.772449
http://dx.doi.org/10.1109/INFCOM.1997.644506
http://dx.doi.org/10.1109/90.502236
http://dx.doi.org/10.1109/90.502236
http://doi.acm.org/10.1145/383059.383076
http://doi.acm.org/10.1145/383059.383076
http://dx.doi.org/10.1145/383059.383076
http://dx.doi.org/10.1109/IWQoS.2002.1006576
http://dx.doi.org/10.1109/IWQoS.2002.1006576

BIBLIOGRAPHY 179

[44] S. Ramabhadran and J. Pasquale. Stratified Round Robin: A Low Complexity
Packet Scheduler with Bandwidth Fairness and Bounded Delay. In Proceedings
of the 2003 Conference on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communications, pages 239–250, New York, NY, USA,
2003. ACM. URI: http://doi.acm.org/10.1145/863955.863983,
doi:10.1145/863955.863983.

[45] X. Yuan and Z. Duan. FRR: a proportional and worst-case fair round robin scheduler.
In Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and
Communications Societies., volume 2, pages 831–842 vol. 2, March 2005. doi:
10.1109/INFCOM.2005.1498314.

[46] C. Sun, L. Shi, C. Hu, and B. Liu. DRR-SFF: A Practical Scheduling Algorithm to
Improve the Performance of Short Flows. In Networking and Services, 2007. ICNS.
Third International Conference on, pages 13–13, June 2007. doi:10.1109/
ICNS.2007.54.

[47] S. Bakiras, F. Wang, D. Papadias, and M. Hamdi. Vertical dimensioning: A novel im-
plementation for efficient fair queueing . Computer Communications, 31(14):3476
– 3484, 2008. URI: http://www.sciencedirect.com/science/
article/pii/S0140366408003599, doi:http://dx.doi.org/10.
1016/j.comcom.2008.06.008.

[48] J. Bennett and H. Zhang. Hierarchical packet fair queueing algorithms. Network-
ing, IEEE/ACM Transactions on, 5(5):675–689, Oct 1997. doi:10.1109/90.
649568.

[49] S. J. Golestani. A self-clocked fair queueing scheme for broadband applications. In
INFOCOM 94. Networking for Global Communications., 13th Proceedings IEEE,
pages 636–646 vol.2, Jun 1994. doi:10.1109/INFCOM.1994.337677.

[50] M. Karsten. Approximation of Generalized Processor Sharing with Inter-
leaved Stratified Timer Wheels. IEEE/ACM Trans. Netw., 18(3):708–721, 2010.
URI: http://dx.doi.org/10.1109/TNET.2009.2033059, doi:10.
1109/TNET.2009.2033059.

[51] F. Checconi, L. Rizzo, and P. Valente. QFQ: Efficient Packet Scheduling With Tight
Guarantees. Networking, IEEE/ACM Transactions on, 21(3):802–816, June 2013.
doi:10.1109/TNET.2012.2215881.

[52] J. Xu and R. J. Lipton. On Fundamental Tradeoffs Between Delay Bounds and
Computational Complexity in Packet Scheduling Algorithms. SIGCOMM Com-
put. Commun. Rev., 32(4):279–292, 2002. URI: http://doi.acm.org/10.
1145/964725.633052, doi:10.1145/964725.633052.

[53] L. Lenzini, E. Mingozzi, and G. Steay. Tradeoffs between low complexity, low
latency, and fairness with deficit round-robin schedulers. Networking, IEEE/ACM
Transactions on, 12(4):681–693, Aug 2004. doi:10.1109/TNET.2004.
833131.

http://doi.acm.org/10.1145/863955.863983
http://dx.doi.org/10.1145/863955.863983
http://dx.doi.org/10.1109/INFCOM.2005.1498314
http://dx.doi.org/10.1109/INFCOM.2005.1498314
http://dx.doi.org/10.1109/ICNS.2007.54
http://dx.doi.org/10.1109/ICNS.2007.54
http://www.sciencedirect.com/science/article/pii/S0140366408003599
http://www.sciencedirect.com/science/article/pii/S0140366408003599
http://dx.doi.org/http://dx.doi.org/10.1016/j.comcom.2008.06.008
http://dx.doi.org/http://dx.doi.org/10.1016/j.comcom.2008.06.008
http://dx.doi.org/10.1109/90.649568
http://dx.doi.org/10.1109/90.649568
http://dx.doi.org/10.1109/INFCOM.1994.337677
http://dx.doi.org/10.1109/TNET.2009.2033059
http://dx.doi.org/10.1109/TNET.2009.2033059
http://dx.doi.org/10.1109/TNET.2009.2033059
http://dx.doi.org/10.1109/TNET.2012.2215881
http://doi.acm.org/10.1145/964725.633052
http://doi.acm.org/10.1145/964725.633052
http://dx.doi.org/10.1145/964725.633052
http://dx.doi.org/10.1109/TNET.2004.833131
http://dx.doi.org/10.1109/TNET.2004.833131

180 BIBLIOGRAPHY

[54] P. Valente. Reducing the execution time of fair-queueing packet
schedulers . Computer Communications, 47:16 – 33, 2014. URI:
http://www.sciencedirect.com/science/article/pii/
S0140366414001455, doi:http://dx.doi.org/10.1016/j.
comcom.2014.04.009.

[55] A. Francini and F. M. Chiussi. Minimum-latency dual-leaky-bucket shapers for
packet multiplexers: theory and implementation. In Quality of Service, 2000.
IWQOS. 2000 Eighth International Workshop on, pages 19–28, 2000. doi:10.
1109/IWQOS.2000.847935.

[56] D. Hang, H.-R. Shao, W. Zhu, and Y.-Q. Zhang. TD2FQ: an integrated traffic
scheduling and shaping scheme for DiffServ networks. In High Performance
Switching and Routing, 2001 IEEE Workshop on, pages 78–82, 2001. doi:10.
1109/HPSR.2001.923608.

[57] J. F. Lee, M. C. Chen, and Y. Sun. WF2Q-M: Worst-case fair weighted
fair queueing with maximum rate control . Computer Networks, 51(6):1403
– 1420, 2007. URI: http://www.sciencedirect.com/science/
article/pii/S1389128606002064, doi:http://dx.doi.org/10.
1016/j.comnet.2006.07.013.

[58] J. F. Lee, M. C. Chen, and Y. Sun. WF2Q-M : a worst-case fair weighted fair
queueing with maximum rate control. In Global Telecommunications Conference,
2002. GLOBECOM 02. IEEE, volume 2, pages 1576–1580 vol.2, Nov 2002. doi:
10.1109/GLOCOM.2002.1188463.

[59] J. S. Hong. Design of an Atm Shaping Multiplexer Algorithm and Architecture. PhD
thesis, Brooklyn, NY, USA, 1997. AAI9711852.

[60] J. Rexford, F. Bonomi, A. Greenberg, and A. Wong. Scalable architectures for
integrated traffic shaping and link scheduling in high-speed ATM switches. Selected
Areas in Communications, IEEE Journal on, 15(5):938–950, Jun 1997. doi:
10.1109/49.594854.

[61] H. J. Chao. Design of leaky bucket access control schemes in ATM networks. In
ICC 91 International Conference on Communications Conference Record, pages
180–187 vol.1, Jun 1991. doi:10.1109/ICC.1991.162356.

[62] T. Moors, N. Clarke, and G. Mercankosk. Implementing traffic shaping. In Local
Computer Networks, 1994. Proceedings., 19th Conference on, pages 307–314, 1994.
doi:10.1109/LCN.1994.386589.

[63] J. Rexford, F. Bonomi, A. Greenberg, and A. Wong. A scalable architecture for
fair leaky-bucket shaping. In INFOCOM 97. Sixteenth Annual Joint Conference
of the IEEE Computer and Communications Societies. Driving the Information
Revolution., Proceedings IEEE, volume 3, pages 1054–1062 vol.3, Apr 1997. doi:
10.1109/INFCOM.1997.631123.

http://www.sciencedirect.com/science/article/pii/S0140366414001455
http://www.sciencedirect.com/science/article/pii/S0140366414001455
http://dx.doi.org/http://dx.doi.org/10.1016/j.comcom.2014.04.009
http://dx.doi.org/http://dx.doi.org/10.1016/j.comcom.2014.04.009
http://dx.doi.org/10.1109/IWQOS.2000.847935
http://dx.doi.org/10.1109/IWQOS.2000.847935
http://dx.doi.org/10.1109/HPSR.2001.923608
http://dx.doi.org/10.1109/HPSR.2001.923608
http://www.sciencedirect.com/science/article/pii/S1389128606002064
http://www.sciencedirect.com/science/article/pii/S1389128606002064
http://dx.doi.org/http://dx.doi.org/10.1016/j.comnet.2006.07.013
http://dx.doi.org/http://dx.doi.org/10.1016/j.comnet.2006.07.013
http://dx.doi.org/10.1109/GLOCOM.2002.1188463
http://dx.doi.org/10.1109/GLOCOM.2002.1188463
http://dx.doi.org/10.1109/49.594854
http://dx.doi.org/10.1109/49.594854
http://dx.doi.org/10.1109/ICC.1991.162356
http://dx.doi.org/10.1109/LCN.1994.386589
http://dx.doi.org/10.1109/INFCOM.1997.631123
http://dx.doi.org/10.1109/INFCOM.1997.631123

BIBLIOGRAPHY 181

[64] J. Liebeherr and E. Yilmaz. Workconserving vs. non-workconserving packet
scheduling: an issue revisited. In Quality of Service, 1999. IWQoS 99. 1999 Sev-
enth International Workshop on, pages 248–256, 1999. doi:10.1109/IWQOS.
1999.766500.

[65] R. L. Cruz. A calculus for network delay. I. Network elements in isolation. IEEE
Transactions on Information Theory, 37(1):114–131, Jan 1991. doi:10.1109/
18.61109.

[66] R. L. Cruz. A calculus for network delay. II. Network analysis. IEEE Transactions
on Information Theory, 37(1):132–141, Jan 1991. doi:10.1109/18.61110.

[67] A. K. Parekh and R. G. Gallager. A Generalized Processor Sharing Approach to
Flow Control in Integrated Services Networks: The Single-node Case. IEEE/ACM
Trans. Netw., 1(3):344–357, 1993. URI: http://dx.doi.org/10.1109/90.
234856, doi:10.1109/90.234856.

[68] A. K. Parekh and R. G. Gallager. A Generalized Processor Sharing Approach to
Flow Control in Integrated Services Networks: The Multiple Node Case. IEEE/ACM
Trans. Netw., 2(2):137–150, 1994. URI: http://dx.doi.org/10.1109/90.
298432, doi:10.1109/90.298432.

[69] A. Kortebi, S. Oueslati, and J. Roberts. Implicit service differentiation using deficit
round robin. ITC19, 2005.

[70] S. Jiwasurat, G. Kesidis, and D. J. Miller. Hierarchical shaped deficit round-robin
scheduling. In GLOBECOM 05. IEEE Global Telecommunications Conference,
2005., volume 2, pages 6 pp.–, Nov 2005. doi:10.1109/GLOCOM.2005.
1577729.

[71] L. Lenzini, E. Mingozzi, and G. Stea. Bandwidth and Latency Analysis of Modified
Deficit Round Robin Scheduling Algorithms. In Proceedings of the 1st Interna-
tional Conference on Performance Evaluation Methodolgies and Tools, New York,
NY, USA, 2006. ACM. URI: http://doi.acm.org/10.1145/1190095.
1190147, doi:10.1145/1190095.1190147.

[72] L. Lenzini, E. Mingozzi, and G. Stea. Performance analysis of Mod-
ified Deficit Round Robin schedulers. Journal of High Speed Net-
works, 16(4):399–422, 2007. URI: http://iospress.metapress.com/
content/p476t48201538820.

[73] Cisco Systems, Inc. Understand and Configure MDRR/WRED on the
Cisco 12000 Series Internet Router, mar 2008. Retrieved 2016-12-21.
URI: http://www.cisco.com/c/en/us/support/docs/routers/
12000-series-routers/18841-mdrr-wred-18841.html#topic1.

[74] P. Southwick, D. Marschke, and H. Reynolds. Junos Enterprise Routing: A Practical
Guide to Junos Routing and Certification. O’Reilly Media, 2011.

http://dx.doi.org/10.1109/IWQOS.1999.766500
http://dx.doi.org/10.1109/IWQOS.1999.766500
http://dx.doi.org/10.1109/18.61109
http://dx.doi.org/10.1109/18.61109
http://dx.doi.org/10.1109/18.61110
http://dx.doi.org/10.1109/90.234856
http://dx.doi.org/10.1109/90.234856
http://dx.doi.org/10.1109/90.234856
http://dx.doi.org/10.1109/90.298432
http://dx.doi.org/10.1109/90.298432
http://dx.doi.org/10.1109/90.298432
http://dx.doi.org/10.1109/GLOCOM.2005.1577729
http://dx.doi.org/10.1109/GLOCOM.2005.1577729
http://doi.acm.org/10.1145/1190095.1190147
http://doi.acm.org/10.1145/1190095.1190147
http://dx.doi.org/10.1145/1190095.1190147
http://iospress.metapress.com/content/p476t48201538820
http://iospress.metapress.com/content/p476t48201538820
http://www.cisco.com/c/en/us/support/docs/routers/12000-series-routers/18841-mdrr-wred-18841.html#topic1
http://www.cisco.com/c/en/us/support/docs/routers/12000-series-routers/18841-mdrr-wred-18841.html#topic1

182 BIBLIOGRAPHY

[75] D. Ros and M. Welzl. Less-than-Best-Effort Service: A Survey of End-to-End
Approaches. Communications Surveys Tutorials, IEEE, 15(2):898–908, Second
2013. doi:10.1109/SURV.2012.060912.00176.

[76] M. Kühlewind, S. Neuner, and B. Trammell. On the state of ECN and TCP options
on the Internet. In Passive and active measurement, pages 135–144. Springer, 2013.

[77] R. Craven, R. Beverly, and M. Allman. A Middlebox-cooperative TCP for a
Non End-to-end Internet. SIGCOMM Comput. Commun. Rev., 44(4):151–162,
2014. URI: http://doi.acm.org/10.1145/2740070.2626321, doi:
10.1145/2740070.2626321.

[78] T. Stockhammer. Dynamic Adaptive Streaming over HTTP –: Standards and
Design Principles. In Proceedings of the Second Annual ACM Conference on
Multimedia Systems, pages 133–144, New York, NY, USA, 2011. ACM. URI:
http://doi.acm.org/10.1145/1943552.1943572, doi:10.1145/
1943552.1943572.

[79] A. Aaron, Z. Li, M. Manohara, J. D. Cock, and D. Ronca. The Net-
flix Tech Blog: Per-Title Encode Optimization. Blog, dec 2015. Re-
trieved 2016-12-21. URI: http://techblog.netflix.com/2015/12/
per-title-encode-optimization.html.

[80] V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner, and Z. L. Zhang.
Unreeling netflix: Understanding and improving multi-CDN movie delivery. In
INFOCOM, 2012 Proceedings IEEE, pages 1620–1628, March 2012. doi:10.
1109/INFCOM.2012.6195531.

[81] D. Lee, B. E. Carpenter, and N. Brownlee. Observations of UDP to TCP Ratio
and Port Numbers. In Internet Monitoring and Protection (ICIMP), 2010 Fifth
International Conference on, pages 99–104, May 2010. doi:10.1109/ICIMP.
2010.20.

[82] A. Feldmann and W. Willinger. Distilling the Internet’s Application Mix from
Packet-Sampled Traffic. In Passive and Active Measurement: 16th International
Conference, PAM 2015, New York, NY, USA, March 19-20, 2015, Proceedings,
volume 8995, page 179. Springer, 2015.

[83] Sandvine Inc. ULC. 2015 Global Internet Phenomena Report - Asia-Pacific and
Europe. Technical report, September 2015. URI: https://www.sandvine.
com/trends/global-internet-phenomena/.

[84] Sandvine Inc. ULC. 2016 Global Internet Phenomena Report - Africa, Asia-
Pacific, and Middle East. Technical report, October 2016. URI: https://www.
sandvine.com/trends/global-internet-phenomena/.

[85] Sandvine Inc. ULC. 2016 Global Internet Phenomena Report - Latin America and
North America. Technical report, June 2016. URI: https://www.sandvine.
com/trends/global-internet-phenomena/.

http://dx.doi.org/10.1109/SURV.2012.060912.00176
http://doi.acm.org/10.1145/2740070.2626321
http://dx.doi.org/10.1145/2740070.2626321
http://dx.doi.org/10.1145/2740070.2626321
http://doi.acm.org/10.1145/1943552.1943572
http://dx.doi.org/10.1145/1943552.1943572
http://dx.doi.org/10.1145/1943552.1943572
http://techblog.netflix.com/2015/12/per-title-encode-optimization.html
http://techblog.netflix.com/2015/12/per-title-encode-optimization.html
http://dx.doi.org/10.1109/INFCOM.2012.6195531
http://dx.doi.org/10.1109/INFCOM.2012.6195531
http://dx.doi.org/10.1109/ICIMP.2010.20
http://dx.doi.org/10.1109/ICIMP.2010.20
https://www.sandvine.com/trends/global-internet-phenomena/
https://www.sandvine.com/trends/global-internet-phenomena/
https://www.sandvine.com/trends/global-internet-phenomena/
https://www.sandvine.com/trends/global-internet-phenomena/
https://www.sandvine.com/trends/global-internet-phenomena/
https://www.sandvine.com/trends/global-internet-phenomena/

BIBLIOGRAPHY 183

[86] A. Norberg. uTorrent Transport Protocol, August 2015. Retrieved 2016-12-21. URI:
http://www.bittorrent.org/beps/bep_0029.html.

[87] Sandvine Inc. ULC. 2015 Global Internet Phenomena Report - Africa, Middle
East and North America. Technical report, December 2015. URI: https://www.
sandvine.com/trends/global-internet-phenomena/.

[88] L. Gharai. Rtp with tcp friendly rate control. Internet-Draft draft-ietf-
avt-tfrc-profile-10, IETF Secretariat, July 2007. http://www.ietf.
org/internet-drafts/draft-ietf-avt-tfrc-profile-10.
txt. URI: http://www.ietf.org/internet-drafts/
draft-ietf-avt-tfrc-profile-10.txt.

[89] I. working group. RTP Media Congestion Avoidance Techniques (rmcat). Re-
trieved 2016-06-16. URI: https://datatracker.ietf.org/wg/rmcat/
charter/.

[90] C. Perkins. Rtp control protocol (rtcp) feedback for congestion control in
interactive multimedia conferences. Internet-Draft draft-ietf-rmcat-rtp-cc-
feedback-02, IETF Secretariat, October 2016. http://www.ietf.org/
internet-drafts/draft-ietf-rmcat-rtp-cc-feedback-02.
txt. URI: http://www.ietf.org/internet-drafts/
draft-ietf-rmcat-rtp-cc-feedback-02.txt.

[91] Z. Sarker, C. Perkins, V. Singh, and M. Ramalho. Rtp control protocol
(rtcp) feedback for congestion control. Internet-Draft draft-dt-rmcat-feedback-
message-01, IETF Secretariat, October 2016. http://www.ietf.org/
internet-drafts/draft-dt-rmcat-feedback-message-01.
txt. URI: http://www.ietf.org/internet-drafts/
draft-dt-rmcat-feedback-message-01.txt.

[92] S. Holmer, H. Lundin, G. Carlucci, L. D. Cicco, and S. Mascolo. A google
congestion control algorithm for real-time communication. Internet-Draft
draft-ietf-rmcat-gcc-02, IETF Secretariat, July 2016. http://www.ietf.org/
internet-drafts/draft-ietf-rmcat-gcc-02.txt. URI: http:
//www.ietf.org/internet-drafts/draft-ietf-rmcat-gcc-02.
txt.

[93] ZDF. Multicast Adressen ZDF und ARD Programme, 2016. Retrieved 2017-01-
18. URI: http://www.zdf.de/ZDF/zdfportal/blob/26516094/1/
data.pdf.

[94] D.-M. Chiu and R. Jain. Analysis of the Increase and Decrease Algorithms for Con-
gestion Avoidance in Computer Networks. Computer Networks and ISDN Systems,
17(1):1–14, 1989. URI: http://dx.doi.org/10.1016/0169-7552(89)
90019-6, doi:10.1016/0169-7552(89)90019-6.

[95] V. Jacobson. Congestion Avoidance and Control. In Symposium Proceedings
on Communications Architectures and Protocols, volume 18, pages 314–329,
New York, NY, USA, 1988. ACM. URI: http://doi.acm.org/10.1145/
52324.52356, doi:10.1145/52324.52356.

http://www.bittorrent.org/beps/bep_0029.html
https://www.sandvine.com/trends/global-internet-phenomena/
https://www.sandvine.com/trends/global-internet-phenomena/
http://www.ietf.org/internet-drafts/draft-ietf-avt-tfrc-profile-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-avt-tfrc-profile-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-avt-tfrc-profile-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-avt-tfrc-profile-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-avt-tfrc-profile-10.txt
https://datatracker.ietf.org/wg/rmcat/charter/
https://datatracker.ietf.org/wg/rmcat/charter/
http://www.ietf.org/internet-drafts/draft-ietf-rmcat-rtp-cc-feedback-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-rmcat-rtp-cc-feedback-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-rmcat-rtp-cc-feedback-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-rmcat-rtp-cc-feedback-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-rmcat-rtp-cc-feedback-02.txt
http://www.ietf.org/internet-drafts/draft-dt-rmcat-feedback-message-01.txt
http://www.ietf.org/internet-drafts/draft-dt-rmcat-feedback-message-01.txt
http://www.ietf.org/internet-drafts/draft-dt-rmcat-feedback-message-01.txt
http://www.ietf.org/internet-drafts/draft-dt-rmcat-feedback-message-01.txt
http://www.ietf.org/internet-drafts/draft-dt-rmcat-feedback-message-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-rmcat-gcc-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-rmcat-gcc-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-rmcat-gcc-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-rmcat-gcc-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-rmcat-gcc-02.txt
http://www.zdf.de/ZDF/zdfportal/blob/26516094/1/data.pdf
http://www.zdf.de/ZDF/zdfportal/blob/26516094/1/data.pdf
http://dx.doi.org/10.1016/0169-7552(89)90019-6
http://dx.doi.org/10.1016/0169-7552(89)90019-6
http://dx.doi.org/10.1016/0169-7552(89)90019-6
http://doi.acm.org/10.1145/52324.52356
http://doi.acm.org/10.1145/52324.52356
http://dx.doi.org/10.1145/52324.52356

184 BIBLIOGRAPHY

[96] The Institute of Electrical and Electronics Engineers, Inc. Ieee std 802.11-2012:
Wireless LAN medium access control (MAC) and physical layer (PHY) specification.
Technical Report 802.11-2012, IEEE 802.11, Piscataway, NJ, 2012.

[97] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end Arguments in System Design.
ACM Trans. Comput. Syst., 2(4):277–288, 1984. URI: http://doi.acm.org/
10.1145/357401.357402, doi:10.1145/357401.357402.

[98] S. Hemminger. tcp: remove appropriate byte count support, February
2013. Retrieved 2016-12-21. URI: http://git.kernel.org/
cgit/linux/kernel/git/torvalds/linux.git/commit/?id=
ca2eb5679f8ddffff60156af42595df44a315ef0.

[99] S. Alcock and R. Nelson. Application Flow Control in YouTube Video
Streams. SIGCOMM Comput. Commun. Rev., 41(2):24–30, 2011. URI:
http://doi.acm.org/10.1145/1971162.1971166, doi:10.1145/
1971162.1971166.

[100] M. Ghobadi, Y. Cheng, A. Jain, and M. Mathis. Trickle: Rate Limiting
YouTube Video Streaming. In Presented as part of the 2012 USENIX An-
nual Technical Conference (USENIX ATC 12), pages 191–196, Boston, MA,
2012. USENIX. URI: https://www.usenix.org/conference/atc12/
technical-sessions/presentation/ghobadi.

[101] Y. C. Eric Dumazet. Tso, fair queuing, pacing: three’s a charm. Slides
at TCPM Meetingm at 88. IETF Meeting, November 2013. Retrieved
2016-12-21. URI: http://www.ietf.org/proceedings/88/slides/
slides-88-tcpm-9.pdf.

[102] B. Briscoe. Flow Rate Fairness: Dismantling a Religion. SIGCOMM Comput.
Commun. Rev., 37(2):63–74, 2007. URI: http://doi.acm.org/10.1145/
1232919.1232926, doi:10.1145/1232919.1232926.

[103] N. Dukkipati and N. McKeown. Why Flow-completion Time is the Right Metric for
Congestion Control. SIGCOMM Comput. Commun. Rev., 36(1):59–62, 2006. URI:
http://doi.acm.org/10.1145/1111322.1111336, doi:10.1145/
1111322.1111336.

[104] M. Welzl. Network Congestion Control: Managing Internet Traffic (Wiley Series on
Communications Networking & Distributed Systems). John Wiley & Sons, 2005.

[105] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock. Host-to-Host Congestion
Control for TCP. IEEE Communications Surveys Tutorials, 12(3):304–342, Third
2010. doi:10.1109/SURV.2010.042710.00114.

[106] W. Lautenschläger. A Deterministic Bandwidth Sharing Model. CoRR,
abs/1404.4173, 2014. URI: http://arxiv.org/abs/1404.4173.

[107] Z. Wang and J. Crowcroft. Eliminating Periodic Packet Losses in the 4.3-Tahoe BSD
TCP Congestion Control Algorithm. SIGCOMM Comput. Commun. Rev., 22(2):9–
16, 1992. URI: http://doi.acm.org/10.1145/141800.141801, doi:
10.1145/141800.141801.

http://doi.acm.org/10.1145/357401.357402
http://doi.acm.org/10.1145/357401.357402
http://dx.doi.org/10.1145/357401.357402
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ca2eb5679f8ddffff60156af42595df44a315ef0
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ca2eb5679f8ddffff60156af42595df44a315ef0
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ca2eb5679f8ddffff60156af42595df44a315ef0
http://doi.acm.org/10.1145/1971162.1971166
http://dx.doi.org/10.1145/1971162.1971166
http://dx.doi.org/10.1145/1971162.1971166
https://www.usenix.org/conference/atc12/technical-sessions/presentation/ghobadi
https://www.usenix.org/conference/atc12/technical-sessions/presentation/ghobadi
http://www.ietf.org/proceedings/88/slides/slides-88-tcpm-9.pdf
http://www.ietf.org/proceedings/88/slides/slides-88-tcpm-9.pdf
http://doi.acm.org/10.1145/1232919.1232926
http://doi.acm.org/10.1145/1232919.1232926
http://dx.doi.org/10.1145/1232919.1232926
http://doi.acm.org/10.1145/1111322.1111336
http://dx.doi.org/10.1145/1111322.1111336
http://dx.doi.org/10.1145/1111322.1111336
http://dx.doi.org/10.1109/SURV.2010.042710.00114
http://arxiv.org/abs/1404.4173
http://doi.acm.org/10.1145/141800.141801
http://dx.doi.org/10.1145/141800.141801
http://dx.doi.org/10.1145/141800.141801

BIBLIOGRAPHY 185

[108] D. Rossi. Open Source Scavenging Transport Protocols, 2013.
URI: http://www.telecom-paristech.fr/~drossi/paper/
rossi13scavenging.pdf.

[109] Y. Gong, D. Rossi, C. Testa, S. Valenti, and D. Täht. Interaction or Interference:
Can AQM and Low Priority Congestion Control Successfully Collaborate? In
Proceedings of the 2012 ACM Conference on CoNEXT Student Workshop, pages
25–26, New York, NY, USA, 2012. ACM. URI: http://doi.acm.org/10.
1145/2413247.2413263, doi:10.1145/2413247.2413263.

[110] Y. Gong, D. Rossi, C. Testa, S. Valenti, and M. Täht. Fighting the bufferbloat:
On the coexistence of AQM and low priority congestion control. In Computer
Communications Workshops (INFOCOM WKSHPS), 2013 IEEE Conference on,
pages 411–416, April 2013. doi:10.1109/INFCOMW.2013.6562885.

[111] A. Kuzmanovic and E. W. Knightly. TCP-LP: a distributed algorithm for low priority
data transfer. In INFOCOM 2003. Twenty-Second Annual Joint Conference of the
IEEE Computer and Communications. IEEE Societies, volume 3, pages 1691–1701
vol.3, March 2003. doi:10.1109/INFCOM.2003.1209192.

[112] A. Kuzmanovic and E. Knightly. TCP-LP: low-priority service via end-point
congestion control. Networking, IEEE/ACM Transactions on, 14(4):739–752, Aug
2006. doi:10.1109/TNET.2006.879702.

[113] A. Venkataramani, R. Kokku, and M. Dahlin. TCP Nice: A Mechanism for Back-
ground Transfers. SIGOPS Oper. Syst. Rev., 36(SI):329–343, 2002. URI: http:
//doi.acm.org/10.1145/844128.844159, doi:10.1145/844128.
844159.

[114] A. Cooper and S. Dawkins. Congestion Control For Interactive Real-Time Com-
munication - The IAB and IAB/IRTF Workshop, July 2012. Retrieved 2016-12-21.
URI: https://www.iab.org/wp-content/IAB-uploads/2012/10/
Congestion-Control-Workshop-Minutes.pdf.

[115] Microsoft. About BITS. Retrieved 2016-12-21. URI: https://msdn.
microsoft.com/en-us/library/aa362708(v=vs.85).aspx.

[116] C. Caini and R. Firrincieli. TCP Hybla: a TCP enhancement for heteroge-
neous networks. International Journal of Satellite Communications and Network-
ing, 22(5):547–566, 2004. URI: http://dx.doi.org/10.1002/sat.799,
doi:10.1002/sat.799.

[117] S. Bensley, L. Eggert, D. Thaler, P. Balasubramanian, and G. Judd. Data-
center tcp (dctcp): Tcp congestion control for datacenters. Internet-Draft
draft-ietf-tcpm-dctcp-02, IETF Secretariat, July 2016. http://www.
ietf.org/internet-drafts/draft-ietf-tcpm-dctcp-02.
txt. URI: http://www.ietf.org/internet-drafts/
draft-ietf-tcpm-dctcp-02.txt.

http://www.telecom-paristech.fr/~drossi/paper/rossi13scavenging.pdf
http://www.telecom-paristech.fr/~drossi/paper/rossi13scavenging.pdf
http://doi.acm.org/10.1145/2413247.2413263
http://doi.acm.org/10.1145/2413247.2413263
http://dx.doi.org/10.1145/2413247.2413263
http://dx.doi.org/10.1109/INFCOMW.2013.6562885
http://dx.doi.org/10.1109/INFCOM.2003.1209192
http://dx.doi.org/10.1109/TNET.2006.879702
http://doi.acm.org/10.1145/844128.844159
http://doi.acm.org/10.1145/844128.844159
http://dx.doi.org/10.1145/844128.844159
http://dx.doi.org/10.1145/844128.844159
https://www.iab.org/wp-content/IAB-uploads/2012/10/Congestion-Control-Workshop-Minutes.pdf
https://www.iab.org/wp-content/IAB-uploads/2012/10/Congestion-Control-Workshop-Minutes.pdf
https://msdn.microsoft.com/en-us/library/aa362708(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa362708(v=vs.85).aspx
http://dx.doi.org/10.1002/sat.799
http://dx.doi.org/10.1002/sat.799
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-dctcp-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-dctcp-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-dctcp-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-dctcp-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-dctcp-02.txt

186 BIBLIOGRAPHY

[118] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan. Data Center TCP (DCTCP). In Proceedings
of the ACM SIGCOMM 2010 Conference, pages 63–74, New York, NY, USA,
2010. ACM. URI: http://doi.acm.org/10.1145/1851182.1851192,
doi:10.1145/1851182.1851192.

[119] V. Jacobson. Modified tcp congestion avoidance algorithm. Email to the end2end
mailing list at the Information Sciences Institute, April 1990. Retrieved 2016-12-21.
URI: ftp://ftp.ee.lbl.gov/email/vanj.90apr30.txt.

[120] L. S. Brakmo and L. L. Peterson. TCP Vegas: end to end congestion avoidance on a
global Internet. IEEE Journal on Selected Areas in Communications, 13(8):1465–
1480, Oct 1995. doi:10.1109/49.464716.

[121] P. Yang, J. Shao, W. Luo, L. Xu, J. Deogun, and Y. Lu. TCP Congestion Avoidance
Algorithm Identification. IEEE/ACM Transactions on Networking, 22(4):1311–
1324, Aug 2014. doi:10.1109/TNET.2013.2278271.

[122] T. Hoff. 7 years of youtube scalability lessons in 30 minutes. Retrieved
2016-12-21. URI: http://highscalability.com/blog/2012/3/26/
7-years-of-youtube-scalability-lessons-in-30-minutes.
html.

[123] C. Do. Seattle conference on scalability: Youtube scalability. Youtube
Video. Retrieved 2017-01-18. URI: https://www.youtube.com/watch?
v=w5WVu624fY8.

[124] B. Gregg. The netflix tech blog - linux performance analysis in 60,000 milliseconds,
November 2015. Retrieved 2017-01-18. URI: http://techblog.netflix.
com/2015/11/linux-performance-analysis-in-60s.html.

[125] Apple Inc. Sources of the latest os x at the time of writing, version 10.11.6, file
tcp_ledbat.c. Retrieved 2016-12-21. URI: https://opensource.apple.
com/source/xnu/xnu-3248.60.10/bsd/netinet/tcp_ledbat.c.

[126] M. Mathis, J. Semke, and J. Mahdavi. The rate-halving algorithm
for tcp congestion control. Internet-Draft draft-mathis-tcp-ratehalving-00,
IETF Secretariat, August 1999. https://tools.ietf.org/html/
draft-mathis-tcp-ratehalving-00.txt. URI: https://tools.
ietf.org/html/draft-mathis-tcp-ratehalving-00.txt.

[127] S. Ha, I. Rhee, and L. Xu. CUBIC: A New TCP-friendly High-speed TCP Variant.
SIGOPS Oper. Syst. Rev., 42(5):64–74, 2008. URI: http://doi.acm.org/10.
1145/1400097.1400105, doi:10.1145/1400097.1400105.

[128] L. Xu, K. Harfoush, and I. Rhee. Binary increase congestion control (BIC) for fast
long-distance networks. In INFOCOM 2004. Twenty-third AnnualJoint Conference
of the IEEE Computer and Communications Societies, volume 4, pages 2514–2524
vol.4, March 2004. doi:10.1109/INFCOM.2004.1354672.

http://doi.acm.org/10.1145/1851182.1851192
http://dx.doi.org/10.1145/1851182.1851192
ftp://ftp.ee.lbl.gov/email/vanj.90apr30.txt
http://dx.doi.org/10.1109/49.464716
http://dx.doi.org/10.1109/TNET.2013.2278271
http://highscalability.com/blog/2012/3/26/7-years-of-youtube-scalability-lessons-in-30-minutes.html
http://highscalability.com/blog/2012/3/26/7-years-of-youtube-scalability-lessons-in-30-minutes.html
http://highscalability.com/blog/2012/3/26/7-years-of-youtube-scalability-lessons-in-30-minutes.html
https://www.youtube.com/watch?v=w5WVu624fY8
https://www.youtube.com/watch?v=w5WVu624fY8
http://techblog.netflix.com/2015/11/linux-performance-analysis-in-60s.html
http://techblog.netflix.com/2015/11/linux-performance-analysis-in-60s.html
https://opensource.apple.com/source/xnu/xnu-3248.60.10/bsd/netinet/tcp_ledbat.c
https://opensource.apple.com/source/xnu/xnu-3248.60.10/bsd/netinet/tcp_ledbat.c
https://tools.ietf.org/html/draft-mathis-tcp-ratehalving-00.txt
https://tools.ietf.org/html/draft-mathis-tcp-ratehalving-00.txt
https://tools.ietf.org/html/draft-mathis-tcp-ratehalving-00.txt
https://tools.ietf.org/html/draft-mathis-tcp-ratehalving-00.txt
http://doi.acm.org/10.1145/1400097.1400105
http://doi.acm.org/10.1145/1400097.1400105
http://dx.doi.org/10.1145/1400097.1400105
http://dx.doi.org/10.1109/INFCOM.2004.1354672

BIBLIOGRAPHY 187

[129] D. Leith and R. Shorten. H-TCP: TCP for high-speed and long-distance networks.
In Proceedings of PFLDnet, volume 2004, 2004.

[130] D. Leith. H-tcp: Tcp congestion control for high bandwidth-delay
product paths. Internet-Draft draft-leith-tcp-htcp-06, IETF Secre-
tariat, April 2008. http://www.ietf.org/internet-drafts/
draft-leith-tcp-htcp-06.txt. URI: http://www.ietf.org/
internet-drafts/draft-leith-tcp-htcp-06.txt.

[131] D. Rossi, C. Testa, S. Valenti, and L. Muscariello. LEDBAT: The New BitTorrent
Congestion Control Protocol. In Computer Communications and Networks (ICCCN),
2010 Proceedings of 19th International Conference on, pages 1–6, Aug 2010.
doi:10.1109/ICCCN.2010.5560080.

[132] G. Carofiglio, L. Muscariello, D. Rossi, C. Testa, and S. Valenti. Rethinking
the Low Extra Delay Background Transport (LEDBAT) Protocol . Computer
Networks, 57(8):1838 – 1852, 2013. URI: http://www.sciencedirect.
com/science/article/pii/S1389128613000765, doi:http:
//dx.doi.org/10.1016/j.comnet.2013.02.020.

[133] Y. Gong, D. Rossi, C. Testa, S. Valenti, and M. Täht. Fighting the bufferbloat: On the
coexistence of and low priority congestion control . Computer Networks, 65(0):255
– 267, 2014. URI: http://www.sciencedirect.com/science/
article/pii/S1389128614000188, doi:http://dx.doi.org/10.
1016/j.bjp.2014.01.009.

[134] G. Carofiglio, L. Muscariello, D. Rossi, and C. Testa. A hands-on assessment
of transport protocols with lower than best effort priority. In Local Computer
Networks (LCN), 2010 IEEE 35th Conference on, pages 8–15, Oct 2010. doi:
10.1109/LCN.2010.5735831.

[135] A. J. Abu and S. Gordon. Impact of Delay Variability on LEDBAT Performance.
In Advanced Information Networking and Applications (AINA), 2011 IEEE Inter-
national Conference on, pages 708–715, March 2011. doi:10.1109/AINA.
2011.98.

[136] N. Kuhn, O. Mehani, A. Sathiaseelan, and E. Lochin. Less-than-Best-Effort
Capacity Sharing over High BDP Networks with LEDBAT. In Vehicular Tech-
nology Conference (VTC Fall), 2013 IEEE 78th, pages 1–5, Sept 2013. doi:
10.1109/VTCFall.2013.6692266.

[137] S. Q. V. Trang, N. Kuhn, E. Lochin, C. Baudoin, E. Dubois, and P. Gelard. On the
existence of optimal LEDBAT parameters. In 2014 IEEE International Conference
on Communications (ICC), pages 1216–1221, June 2014. doi:10.1109/ICC.
2014.6883487.

[138] BitTorrent Inc. uTorrent Transport Protocol library. Retrieved 2017-01-18. URI:
https://github.com/bittorrent/libutp.

[139] M. Granatiero. Vergleichende Bewertung von Lower-Than-Best-Effort Congestion
Control Algorithmen. Bachelor Thesis, Universität Stuttgart, 2015.

http://www.ietf.org/internet-drafts/draft-leith-tcp-htcp-06.txt
http://www.ietf.org/internet-drafts/draft-leith-tcp-htcp-06.txt
http://www.ietf.org/internet-drafts/draft-leith-tcp-htcp-06.txt
http://www.ietf.org/internet-drafts/draft-leith-tcp-htcp-06.txt
http://dx.doi.org/10.1109/ICCCN.2010.5560080
http://www.sciencedirect.com/science/article/pii/S1389128613000765
http://www.sciencedirect.com/science/article/pii/S1389128613000765
http://dx.doi.org/http://dx.doi.org/10.1016/j.comnet.2013.02.020
http://dx.doi.org/http://dx.doi.org/10.1016/j.comnet.2013.02.020
http://www.sciencedirect.com/science/article/pii/S1389128614000188
http://www.sciencedirect.com/science/article/pii/S1389128614000188
http://dx.doi.org/http://dx.doi.org/10.1016/j.bjp.2014.01.009
http://dx.doi.org/http://dx.doi.org/10.1016/j.bjp.2014.01.009
http://dx.doi.org/10.1109/LCN.2010.5735831
http://dx.doi.org/10.1109/LCN.2010.5735831
http://dx.doi.org/10.1109/AINA.2011.98
http://dx.doi.org/10.1109/AINA.2011.98
http://dx.doi.org/10.1109/VTCFall.2013.6692266
http://dx.doi.org/10.1109/VTCFall.2013.6692266
http://dx.doi.org/10.1109/ICC.2014.6883487
http://dx.doi.org/10.1109/ICC.2014.6883487
https://github.com/bittorrent/libutp

188 BIBLIOGRAPHY

[140] J. Schneider, J. Wagner, R. Winter, and H. J. Kolbe. Out of my way - evaluating
Low Extra Delay Background Transport in an ADSL access network. In Teletraffic
Congress (ITC), 2010 22nd International, pages 1–8, Sept 2010. doi:10.1109/
ITC.2010.5608714.

[141] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A Compound TCP Approach for
High-Speed and Long Distance Networks. In Proceedings IEEE INFOCOM 2006.
25TH IEEE International Conference on Computer Communications, pages 1–12,
April 2006. doi:10.1109/INFOCOM.2006.188.

[142] M. Sridharan, K. Tan, D. Bansal, and D. Thaler. Compound tcp:
A new tcp congestion control for high-speed and long distance net-
works. Internet-Draft draft-sridharan-tcpm-ctcp-02, IETF Secretariat,
November 2008. http://www.ietf.org/internet-drafts/
draft-sridharan-tcpm-ctcp-02.txt. URI: http://www.ietf.
org/internet-drafts/draft-sridharan-tcpm-ctcp-02.txt.

[143] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing Router Buffers. SIGCOMM
Comput. Commun. Rev., 34(4):281–292, 2004. URI: http://doi.acm.org/
10.1145/1030194.1015499, doi:10.1145/1030194.1015499.

[144] C. Villamizar and C. Song. High Performance TCP in ANSNET. SIGCOMM
Comput. Commun. Rev., 24(5):45–60, 1994. URI: http://doi.acm.org/10.
1145/205511.205520, doi:10.1145/205511.205520.

[145] D. Medhi and K. Ramasamy. Network Routing: Algorithms, Protocols, and Archi-
tectures. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

[146] M. Allman. Comments on Bufferbloat. SIGCOMM Comput. Commun. Rev.,
43(1):30–37, 2012. URI: http://doi.acm.org/10.1145/2427036.
2427041, doi:10.1145/2427036.2427041.

[147] C. Chirichella and D. Rossi. To the Moon and back: Are Internet bufferbloat
delays really that large? In 2013 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pages 417–422, April 2013. doi:10.1109/
INFCOMW.2013.6562886.

[148] J. Gettys and K. Nichols. Bufferbloat: Dark Buffers in the Internet. Commun.
ACM, 55(1):57–65, 2012. URI: http://doi.acm.org/10.1145/2063176.
2063196, doi:10.1145/2063176.2063196.

[149] Federal Communications Commission. Open internet. Website. Retrieved on
2017-01-18. URI: https://www.fcc.gov/general/open-internet.

[150] Sandvine Inc. ULC. Network Congestion Management: Considerations and Tech-
niques. Webdownload, 2015. Retrieved 2016-12-21.

[151] R. B. Briscoe. Re-feedback: Freedom with Accountability for Causing Congestion
in a Connectionless Internetwork. PhD thesis, 2009. URI: URL:url{http:
//www.cs.ucl.ac.uk/staff/B.Briscoe/pubs.html#refb-dis}.

http://dx.doi.org/10.1109/ITC.2010.5608714
http://dx.doi.org/10.1109/ITC.2010.5608714
http://dx.doi.org/10.1109/INFOCOM.2006.188
http://www.ietf.org/internet-drafts/draft-sridharan-tcpm-ctcp-02.txt
http://www.ietf.org/internet-drafts/draft-sridharan-tcpm-ctcp-02.txt
http://www.ietf.org/internet-drafts/draft-sridharan-tcpm-ctcp-02.txt
http://www.ietf.org/internet-drafts/draft-sridharan-tcpm-ctcp-02.txt
http://doi.acm.org/10.1145/1030194.1015499
http://doi.acm.org/10.1145/1030194.1015499
http://dx.doi.org/10.1145/1030194.1015499
http://doi.acm.org/10.1145/205511.205520
http://doi.acm.org/10.1145/205511.205520
http://dx.doi.org/10.1145/205511.205520
http://doi.acm.org/10.1145/2427036.2427041
http://doi.acm.org/10.1145/2427036.2427041
http://dx.doi.org/10.1145/2427036.2427041
http://dx.doi.org/10.1109/INFCOMW.2013.6562886
http://dx.doi.org/10.1109/INFCOMW.2013.6562886
http://doi.acm.org/10.1145/2063176.2063196
http://doi.acm.org/10.1145/2063176.2063196
http://dx.doi.org/10.1145/2063176.2063196
https://www.fcc.gov/general/open-internet
URL: url{http://www.cs.ucl.ac.uk/staff/B.Briscoe/pubs.html#refb-dis}
URL: url{http://www.cs.ucl.ac.uk/staff/B.Briscoe/pubs.html#refb-dis}

BIBLIOGRAPHY 189

[152] S. Dörner. Bewertung der Leistungsfähigkeit von ConEx-Policing. Master’s thesis,
Universität Stuttgart, 2013.

[153] working group. Congestion Exposure (conex). Retrieved 2017-01-18. URI: https:
//datatracker.ietf.org/wg/conex/documents/.

[154] M. Kühlewind, D. P. Wagner, J. M. R. Espinosa, and B. Briscoe. Using data center
TCP (DCTCP) in the Internet. In 2014 IEEE Globecom Workshops (GC Wkshps),
pages 583–588, Dec 2014. doi:10.1109/GLOCOMW.2014.7063495.

[155] D. P. Wagner. Congestion Policing Queues - A new approach to managing bandwidth
sharing at bottlenecks. In 10th International Conference on Network and Service
Management (CNSM) and Workshop, pages 206–211, Nov 2014. doi:10.1109/
CNSM.2014.7014160.

[156] R. Sinha, C. Papadopoulos, and J. Heidemann. Internet packet size distribu-
tions: Some observations. USC/Information Sciences Institute, Tech. Rep. ISI-
TR-2007-643, 2007.

[157] S. S. Kanhere and H. Sethu. Fair, efficient and low-latency packet scheduling using
nested deficit round robin. In High Performance Switching and Routing, 2001 IEEE
Workshop on, pages 6–10, 2001. doi:10.1109/HPSR.2001.923594.

[158] H. Kocher and M. Lang. An object-oriented library for simulation of complex
hierarchical systems. SIMULATION SERIES, 26:145–145, 1994.

[159] Institute of Communication Networks and Computer Engineering (IKR). Institute
of Communication Networks and Computer Engineering (IKR) - IKR Simulation
Library - Getting the Libraries. Retrieved 2017-01-18. URI: http://www.ikr.
uni-stuttgart.de/Content/IKRSimLib/Download/.

[160] T. Werthmann, M. Kaschub, M. Kühlewind, S. Scholz, and D. Wagner. VMSimInt:
A Network Simulation Tool Supporting Integration of Arbitrary Kernels and Appli-
cations. In Proceedings of the 7th International ICST Conference on Simulation
Tools and Techniques, pages 56–65, ICST, Brussels, Belgium, Belgium, 2014.
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering). URI: http://dx.doi.org/10.4108/icst.simutools.
2014.254623, doi:10.4108/icst.simutools.2014.254623.

[161] L. Torvalds et al. Linux kernel release 4.4.6. Web site, March 2016. Retrieved
2017-01-18. URI: https://www.kernel.org/pub/linux/kernel/v4.
x/linux-4.4.6.tar.xz.

[162] J. Sing and B. Soh. TCP New Vegas: Improving the Performance of TCP Vegas
Over High Latency Links. In Fourth IEEE International Symposium on Network
Computing and Applications, pages 73–82, July 2005. doi:10.1109/NCA.
2005.52.

[163] D. A. Hayes and G. Armitage. Revisiting Congestion Control using Delay Gradients.
In Proc. of IFIP Networking, pages 328–341, Valencia, Spain, 2011. Springer. URI:
http://dx.doi.org/10.1007/978-3-642-20798-3_25.

https://datatracker.ietf.org/wg/conex/documents/
https://datatracker.ietf.org/wg/conex/documents/
http://dx.doi.org/10.1109/GLOCOMW.2014.7063495
http://dx.doi.org/10.1109/CNSM.2014.7014160
http://dx.doi.org/10.1109/CNSM.2014.7014160
http://dx.doi.org/10.1109/HPSR.2001.923594
http://www.ikr.uni-stuttgart.de/Content/IKRSimLib/Download/
http://www.ikr.uni-stuttgart.de/Content/IKRSimLib/Download/
http://dx.doi.org/10.4108/icst.simutools.2014.254623
http://dx.doi.org/10.4108/icst.simutools.2014.254623
http://dx.doi.org/10.4108/icst.simutools.2014.254623
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.4.6.tar.xz
https://www.kernel.org/pub/linux/kernel/v4.x/linux-4.4.6.tar.xz
http://dx.doi.org/10.1109/NCA.2005.52
http://dx.doi.org/10.1109/NCA.2005.52
http://dx.doi.org/10.1007/978-3-642-20798-3_25

190 BIBLIOGRAPHY

[164] A. Kuzmanovic and E. W. Knightly. TCP-LP: Low-priority Service via End-
point Congestion Control. IEEE/ACM Trans. Netw., 14(4):739–752, 2006. URI:
http://dx.doi.org/10.1109/TNET.2006.879702, doi:10.1109/
TNET.2006.879702.

[165] C. P. Fu and S. C. Liew. TCP Veno: TCP enhancement for transmission over
wireless access networks. IEEE Journal on Selected Areas in Communications,
21(2):216–228, Feb 2003. doi:10.1109/JSAC.2002.807336.

[166] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang. TCP Westwood:
Bandwidth Estimation for Enhanced Transport over Wireless Links. In Proceedings
of the 7th Annual International Conference on Mobile Computing and Networking,
pages 287–297, New York, NY, USA, 2001. ACM. URI: http://doi.acm.
org/10.1145/381677.381704, doi:10.1145/381677.381704.

[167] A. C. F. Vacirca, A. Baiocchi. YeAH-TCP: yet another highspeed TCP. Proceedings
of Fifth International Workshop on Protocols for FAST Long-Distance Networks
(PFLDnet 2007), Marina Del Rey, CA, USA, Feb 2007.

[168] A. Currid. TCP Offload to the Rescue. Queue, 2(3):58–65, 2004. URI:
http://doi.acm.org/10.1145/1005062.1005069, doi:10.1145/
1005062.1005069.

[169] J. C. Mogul. TCP Offload is a Dumb Idea Whose Time Has Come. In Proceedings
of the 9th Conference on Hot Topics in Operating Systems - Volume 9, pages 5–5,
Berkeley, CA, USA, 2003. USENIX Association. URI: http://dl.acm.org/
citation.cfm?id=1251054.1251059.

[170] A. P. Foong, T. R. Huff, H. H. Hum, J. R. Patwardhan, and G. J. Regnier. TCP
performance re-visited. In Performance Analysis of Systems and Software, 2003.
ISPASS. 2003 IEEE International Symposium on, pages 70–79, March 2003. doi:
10.1109/ISPASS.2003.1190234.

[171] R. Prasad, M. Jain, and C. Dovrolis. Effects of Interrupt Coalescence on Network
Measurements, pages 247–256. Springer Berlin Heidelberg, Berlin, Heidelberg,
2004. URI: http://dx.doi.org/10.1007/978-3-540-24668-8_25,
doi:10.1007/978-3-540-24668-8_25.

[172] K. Kant. TCP offload performance for front-end servers. In Global Telecommunica-
tions Conference, 2003. GLOBECOM 03. IEEE, volume 6, pages 3242–3247 vol.6,
Dec 2003. doi:10.1109/GLOCOM.2003.1258835.

[173] W. Feng, P. Balaji, C. Baron, L. N. Bhuyan, and D. K. Panda. Performance
characterization of a 10-Gigabit Ethernet TOE. In High Performance Interconnects,
2005. Proceedings. 13th Symposium on, pages 58–63, Aug 2005. doi:10.1109/
CONECT.2005.30.

[174] M. Zec, M. Mikuc, and M. Žagar. Estimating the Impact of Interrupt Coalescing
Delays on Steady State TCP Throughput. In in Proceedings of 10-th SoftCOM,
2002.

http://dx.doi.org/10.1109/TNET.2006.879702
http://dx.doi.org/10.1109/TNET.2006.879702
http://dx.doi.org/10.1109/TNET.2006.879702
http://dx.doi.org/10.1109/JSAC.2002.807336
http://doi.acm.org/10.1145/381677.381704
http://doi.acm.org/10.1145/381677.381704
http://dx.doi.org/10.1145/381677.381704
http://doi.acm.org/10.1145/1005062.1005069
http://dx.doi.org/10.1145/1005062.1005069
http://dx.doi.org/10.1145/1005062.1005069
http://dl.acm.org/citation.cfm?id=1251054.1251059
http://dl.acm.org/citation.cfm?id=1251054.1251059
http://dx.doi.org/10.1109/ISPASS.2003.1190234
http://dx.doi.org/10.1109/ISPASS.2003.1190234
http://dx.doi.org/10.1007/978-3-540-24668-8_25
http://dx.doi.org/10.1007/978-3-540-24668-8_25
http://dx.doi.org/10.1109/GLOCOM.2003.1258835
http://dx.doi.org/10.1109/CONECT.2005.30
http://dx.doi.org/10.1109/CONECT.2005.30

BIBLIOGRAPHY 191

[175] R. Raghavendra and E. M. Belding. Characterizing high-bandwidth real-time video
traffic in residential broadband networks. In Modeling and Optimization in Mobile,
Ad Hoc and Wireless Networks (WiOpt), 2010 Proceedings of the 8th International
Symposium on, pages 597–602, May 2010.

[176] A. Rao, A. Legout, Y.-s. Lim, D. Towsley, C. Barakat, and W. Dabbous. Network
Characteristics of Video Streaming Traffic. In Proceedings of the Seventh COnfer-
ence on Emerging Networking EXperiments and Technologies, pages 25:1–25:12,
New York, NY, USA, 2011. ACM. URI: http://doi.acm.org/10.1145/
2079296.2079321, doi:10.1145/2079296.2079321.

[177] B. A. Mah. An empirical model of HTTP network traffic. In INFOCOM 97.
Sixteenth Annual Joint Conference of the IEEE Computer and Communications
Societies. Driving the Information Revolution., Proceedings IEEE, volume 2, pages
592–600 vol.2, Apr 1997. doi:10.1109/INFCOM.1997.644510.

[178] P. Barford and M. Crovella. Generating Representative Web Workloads for Network
and Server Performance Evaluation. In Proceedings of the 1998 ACM SIGMETRICS
Joint International Conference on Measurement and Modeling of Computer Systems,
pages 151–160, New York, NY, USA, 1998. ACM. URI: http://doi.acm.
org/10.1145/277851.277897, doi:10.1145/277851.277897.

[179] H.-K. Choi and J. O. Limb. A behavioral model of Web traffic. In Network Protocols,
1999. (ICNP 99) Proceedings. Seventh International Conference on, pages 327–334,
Oct 1999. doi:10.1109/ICNP.1999.801961.

[180] F. Hernandez-Campos, K. Jeffay, and F. D. Smith. Tracking the evolution of Web
traffic: 1995-2003. In 11th IEEE/ACM International Symposium on Modeling, Anal-
ysis and Simulation of Computer Telecommunications Systems, 2003. MASCOTS
2003., pages 16–25, Oct 2003. doi:10.1109/MASCOT.2003.1240638.

[181] R. Pries, Z. Magyari, and P. Tran-Gia. An HTTP web traffic model based on the
top one million visited web pages. In Next Generation Internet (NGI), 2012 8th
EURO-NGI Conference on, pages 133–139, June 2012. doi:10.1109/NGI.
2012.6252145.

[182] J. J. Lee and M. Gupta. A New Traffic Model for Current User Web Brows-
ing Behavior. Technical report, 2007. URI: http://blogs.intel.
com/wp-content/mt-content/com/research/HTTP%20Traffic%
20Model_v1%201%20white%20paper.pdf.

[183] R. Jain, D.-M. Chiu, and W. Hawe. A Quantitative Measure Of Fairness And
Discrimination For Resource Allocation In Shared Computer Systems. Technical
report, September 1984.

[184] A. M. Law. Simulation Modeling and Analysis. McGraw-Hill Higher Education,
4th edition, 2007.

[DOCSIS] Cable Television Laboratories, Inc. DOCSIS 3.1 Physical Layer Specification
cm-sp-phyv3.1-i09-160602. Specification 3.1, Cable Television Laboratories, Inc.,
June 2016.

http://doi.acm.org/10.1145/2079296.2079321
http://doi.acm.org/10.1145/2079296.2079321
http://dx.doi.org/10.1145/2079296.2079321
http://dx.doi.org/10.1109/INFCOM.1997.644510
http://doi.acm.org/10.1145/277851.277897
http://doi.acm.org/10.1145/277851.277897
http://dx.doi.org/10.1145/277851.277897
http://dx.doi.org/10.1109/ICNP.1999.801961
http://dx.doi.org/10.1109/MASCOT.2003.1240638
http://dx.doi.org/10.1109/NGI.2012.6252145
http://dx.doi.org/10.1109/NGI.2012.6252145
http://blogs.intel.com/wp-content/mt-content/com/research/HTTP%20Traffic%20Model_v1%201%20white%20paper.pdf
http://blogs.intel.com/wp-content/mt-content/com/research/HTTP%20Traffic%20Model_v1%201%20white%20paper.pdf
http://blogs.intel.com/wp-content/mt-content/com/research/HTTP%20Traffic%20Model_v1%201%20white%20paper.pdf

192 BIBLIOGRAPHY

[802.1q] IEEE. IEEE Std 802.1Q-2014 bridges and bridged networks. Specification 802.1Q,
IEEE, March 2014.

[G.114] ITU-T. One-way transmission time. Rec. G.114, ITU-T, May 2003.

[G.9701] ITU-T. Fast access to subscriber terminals (G.fast). Rec. G.971, ITU-T, December
2014.

[G.987] ITU-T. 10-gigabit-capable passive optical network (XG-PON) systems: Definitions,
abbreviations and acronyms. Rec. G.987, ITU-T, June 2012.

[G.987.2] ITU-T. 10-gigabit-capable passive optical networks (XG-PON): Physical media
dependent (PMD) layer specification. Rec. G.987.2, ITU-T, February 2016.

[G.989.2] ITU-T. 40-Gigabit-capable passive optical networks 2 (NG-PON2): Physical media
dependent (PMD) layer specification. Rec. G.989.2, ITU-T, December 2014.

[G.992.1] ITU-T. Asymmetric digital subscriber line (ADSL) transceivers. Rec. G.992.1,
ITU-T, July 1999.

[G.992.3] ITU-T. Asymmetric digital subscriber line transceivers 2 (ADSL2). Rec. G.992.3,
ITU-T, January 2005.

[G.992.5] ITU-T. Asymmetric Digital Subscriber Line (ADSL) transceivers - Extended
bandwidth ADSL2 (ADSL2+). Rec. G.992.5, ITU-T, January 2005.

[G.993.1] ITU-T. Very high speed digital subscriber line transceivers. Rec. G.993.1, ITU-T,
June 2004.

[G.993.2] ITU-T. Very high speed digital subscriber line transceivers 2 (VDSL2). Rec.
G.993.1, ITU-T, June 2004.

[X.200] ITU-T. Information technology - Open Systems Interconnection - Basic Reference
Model: The basic model. Rec. X.200, ITU-T, July 1994.

[RFC793] J. Postel. Transmission Control Protocol. RFC 793 (INTERNET STANDARD),
September 1981. Updated by RFCs 1122, 3168, 6093, 6528. URI: http://www.
ietf.org/rfc/rfc793.txt.

[RFC826] D. Plummer. Ethernet Address Resolution Protocol: Or Converting Network Proto-
col Addresses to 48.bit Ethernet Address for Transmission on Ethernet Hardware.
RFC 826 (INTERNET STANDARD), November 1982. Updated by RFCs 5227,
5494. URI: http://www.ietf.org/rfc/rfc826.txt.

[RFC896] J. Nagle. Congestion Control in IP/TCP Internetworks. RFC 896 (Historic), January
1984. Obsoleted by RFC 7805. URI: http://www.ietf.org/rfc/rfc896.
txt.

[RFC970] J. Nagle. On Packet Switches With Infinite Storage. RFC 970, December 1985.
URI: http://www.ietf.org/rfc/rfc970.txt.

http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc826.txt
http://www.ietf.org/rfc/rfc896.txt
http://www.ietf.org/rfc/rfc896.txt
http://www.ietf.org/rfc/rfc970.txt

BIBLIOGRAPHY 193

[RFC1122] R. Braden. Requirements for Internet Hosts - Communication Layers. RFC 1122
(INTERNET STANDARD), October 1989. Updated by RFCs 1349, 4379, 5884,
6093, 6298, 6633, 6864. URI: http://www.ietf.org/rfc/rfc1122.
txt.

[RFC2018] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Acknowledgment
Options. RFC 2018 (Proposed Standard), October 1996. URI: http://www.
ietf.org/rfc/rfc2018.txt.

[RFC2177] B. Leiba. IMAP4 IDLE command. RFC 2177 (Proposed Standard), June 1997.
URI: http://www.ietf.org/rfc/rfc2177.txt.

[RFC2581] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control. RFC 2581
(Proposed Standard), April 1999. Obsoleted by RFC 5681, updated by RFC 3390.
URI: http://www.ietf.org/rfc/rfc2581.txt.

[RFC3168] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion
Notification (ECN) to IP. RFC 3168 (Proposed Standard), September 2001. Updated
by RFCs 4301, 6040. URI: http://www.ietf.org/rfc/rfc3168.txt.

[RFC3465] M. Allman. TCP Congestion Control with Appropriate Byte Counting (ABC). RFC
3465 (Experimental), February 2003. URI: http://www.ietf.org/rfc/
rfc3465.txt.

[RFC3550] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport
Protocol for Real-Time Applications. RFC 3550 (INTERNET STANDARD), July
2003. Updated by RFCs 5506, 5761, 6051, 6222, 7022, 7160, 7164. URI: http:
//www.ietf.org/rfc/rfc3550.txt.

[RFC3782] S. Floyd, T. Henderson, and A. Gurtov. The NewReno Modification to TCP’s Fast
Recovery Algorithm. RFC 3782 (Proposed Standard), April 2004. Obsoleted by
RFC 6582. URI: http://www.ietf.org/rfc/rfc3782.txt.

[RFC4654] J. Widmer and M. Handley. TCP-Friendly Multicast Congestion Control (TFMCC):
Protocol Specification. RFC 4654 (Experimental), August 2006. URI: http:
//www.ietf.org/rfc/rfc4654.txt.

[RFC4861] T. Narten, E. Nordmark, W. Simpson, and H. Soliman. Neighbor Discovery for
IP version 6 (IPv6). RFC 4861 (Draft Standard), September 2007. Updated by
RFCs 5942, 6980, 7048, 7527, 7559. URI: http://www.ietf.org/rfc/
rfc4861.txt.

[RFC5166] S. Floyd. Metrics for the Evaluation of Congestion Control Mechanisms. RFC 5166
(Informational), March 2008. URI: http://www.ietf.org/rfc/rfc5166.
txt.

[RFC5348] S. Floyd, M. Handley, J. Padhye, and J. Widmer. TCP Friendly Rate Control
(TFRC): Protocol Specification. RFC 5348 (Proposed Standard), September 2008.
URI: http://www.ietf.org/rfc/rfc5348.txt.

http://www.ietf.org/rfc/rfc1122.txt
http://www.ietf.org/rfc/rfc1122.txt
http://www.ietf.org/rfc/rfc2018.txt
http://www.ietf.org/rfc/rfc2018.txt
http://www.ietf.org/rfc/rfc2177.txt
http://www.ietf.org/rfc/rfc2581.txt
http://www.ietf.org/rfc/rfc3168.txt
http://www.ietf.org/rfc/rfc3465.txt
http://www.ietf.org/rfc/rfc3465.txt
http://www.ietf.org/rfc/rfc3550.txt
http://www.ietf.org/rfc/rfc3550.txt
http://www.ietf.org/rfc/rfc3782.txt
http://www.ietf.org/rfc/rfc4654.txt
http://www.ietf.org/rfc/rfc4654.txt
http://www.ietf.org/rfc/rfc4861.txt
http://www.ietf.org/rfc/rfc4861.txt
http://www.ietf.org/rfc/rfc5166.txt
http://www.ietf.org/rfc/rfc5166.txt
http://www.ietf.org/rfc/rfc5348.txt

194 BIBLIOGRAPHY

[RFC5681] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control. RFC 5681 (Draft
Standard), September 2009. URI: http://www.ietf.org/rfc/rfc5681.
txt.

[RFC5760] J. Ott, J. Chesterfield, and E. Schooler. RTP Control Protocol (RTCP) Extensions
for Single-Source Multicast Sessions with Unicast Feedback. RFC 5760 (Proposed
Standard), February 2010. Updated by RFC 6128. URI: http://www.ietf.
org/rfc/rfc5760.txt.

[RFC5851] S. Ooghe, N. Voigt, M. Platnic, T. Haag, and S. Wadhwa. Framework and Re-
quirements for an Access Node Control Mechanism in Broadband Multi-Service
Networks. RFC 5851 (Informational), May 2010. URI: http://www.ietf.
org/rfc/rfc5851.txt.

[RFC6057] C. Bastian, T. Klieber, J. Livingood, J. Mills, and R. Woundy. Comcast’s Protocol-
Agnostic Congestion Management System. RFC 6057 (Informational), December
2010. URI: http://www.ietf.org/rfc/rfc6057.txt.

[RFC6093] F. Gont and A. Yourtchenko. On the Implementation of the TCP Urgent Mechanism.
RFC 6093 (Proposed Standard), January 2011. URI: http://www.ietf.org/
rfc/rfc6093.txt.

[RFC6128] A. Begen. RTP Control Protocol (RTCP) Port for Source-Specific Multicast (SSM)
Sessions. RFC 6128 (Proposed Standard), February 2011. URI: http://www.
ietf.org/rfc/rfc6128.txt.

[RFC6298] V. Paxson, M. Allman, J. Chu, and M. Sargent. Computing TCP’s Retransmission
Timer. RFC 6298 (Proposed Standard), June 2011. URI: http://www.ietf.
org/rfc/rfc6298.txt.

[RFC6320] S. Wadhwa, J. Moisand, T. Haag, N. Voigt, and T. Taylor. Protocol for Access
Node Control Mechanism in Broadband Networks. RFC 6320 (Proposed Standard),
October 2011. Updated by RFC 7256. URI: http://www.ietf.org/rfc/
rfc6320.txt.

[RFC6333] A. Durand, R. Droms, J. Woodyatt, and Y. Lee. Dual-Stack Lite Broadband
Deployments Following IPv4 Exhaustion. RFC 6333 (Proposed Standard), August
2011. Updated by RFC 7335. URI: http://www.ietf.org/rfc/rfc6333.
txt.

[RFC6528] F. Gont and S. Bellovin. Defending against Sequence Number Attacks. RFC 6528
(Proposed Standard), February 2012. URI: http://www.ietf.org/rfc/
rfc6528.txt.

[RFC6582] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida. The NewReno Modification to
TCP’s Fast Recovery Algorithm. RFC 6582 (Proposed Standard), April 2012. URI:
http://www.ietf.org/rfc/rfc6582.txt.

[RFC6675] E. Blanton, M. Allman, L. Wang, I. Jarvinen, M. Kojo, and Y. Nishida. A
Conservative Loss Recovery Algorithm Based on Selective Acknowledgment
(SACK) for TCP. RFC 6675 (Proposed Standard), August 2012. URI: http:
//www.ietf.org/rfc/rfc6675.txt.

http://www.ietf.org/rfc/rfc5681.txt
http://www.ietf.org/rfc/rfc5681.txt
http://www.ietf.org/rfc/rfc5760.txt
http://www.ietf.org/rfc/rfc5760.txt
http://www.ietf.org/rfc/rfc5851.txt
http://www.ietf.org/rfc/rfc5851.txt
http://www.ietf.org/rfc/rfc6057.txt
http://www.ietf.org/rfc/rfc6093.txt
http://www.ietf.org/rfc/rfc6093.txt
http://www.ietf.org/rfc/rfc6128.txt
http://www.ietf.org/rfc/rfc6128.txt
http://www.ietf.org/rfc/rfc6298.txt
http://www.ietf.org/rfc/rfc6298.txt
http://www.ietf.org/rfc/rfc6320.txt
http://www.ietf.org/rfc/rfc6320.txt
http://www.ietf.org/rfc/rfc6333.txt
http://www.ietf.org/rfc/rfc6333.txt
http://www.ietf.org/rfc/rfc6528.txt
http://www.ietf.org/rfc/rfc6528.txt
http://www.ietf.org/rfc/rfc6582.txt
http://www.ietf.org/rfc/rfc6675.txt
http://www.ietf.org/rfc/rfc6675.txt

BIBLIOGRAPHY 195

[RFC6789] B. Briscoe, R. Woundy, and A. Cooper. Congestion Exposure (ConEx) Concepts
and Use Cases. RFC 6789 (Informational), December 2012. URI: http://www.
ietf.org/rfc/rfc6789.txt.

[RFC6817] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind. Low Extra Delay Background
Transport (LEDBAT). RFC 6817 (Experimental), December 2012. URI: http:
//www.ietf.org/rfc/rfc6817.txt.

[RFC6928] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis. Increasing TCP’s Initial Window.
RFC 6928 (Experimental), April 2013. URI: http://www.ietf.org/rfc/
rfc6928.txt.

[RFC6937] M. Mathis, N. Dukkipati, and Y. Cheng. Proportional Rate Reduction for TCP.
RFC 6937 (Experimental), May 2013. URI: http://www.ietf.org/rfc/
rfc6937.txt.

[RFC7713] M. Mathis and B. Briscoe. Congestion Exposure (ConEx) Concepts, Abstract
Mechanism, and Requirements. RFC 7713 (Informational), December 2015. URI:
http://www.ietf.org/rfc/rfc7713.txt.

[RFC7778] D. Kutscher, F. Mir, R. Winter, S. Krishnan, Y. Zhang, and C. Bernardos. Mobile
Communication Congestion Exposure Scenario. RFC 7778 (Informational), March
2016. URI: http://www.ietf.org/rfc/rfc7778.txt.

[RFC7786] M. Kuehlewind and R. Scheffenegger. TCP Modifications for Congestion Exposure
(ConEx). RFC 7786 (Experimental), May 2016. URI: http://www.ietf.
org/rfc/rfc7786.txt.

[RFC7837] S. Krishnan, M. Kuehlewind, B. Briscoe, and C. Ralli. IPv6 Destination Option
for Congestion Exposure (ConEx). RFC 7837 (Experimental), May 2016. URI:
http://www.ietf.org/rfc/rfc7837.txt.

[TR-59] DSL Forum. DSL Evolution - Architecture Requirements for the Support of QoS-
Enabled IP Services. Technical Report TR-59, DSL Forum, September 2003.

[TR-101] DSL Forum. Migration to Ethernet-Based DSL Aggregation. Technical Report
TR-101, DSL Forum, April 2006.

[TR-134] The Broadband Forum. Broadband Policy Control Framework (BPCF). Technical
Report TR-134, Broadband Forum, July 2012.

http://www.ietf.org/rfc/rfc6789.txt
http://www.ietf.org/rfc/rfc6789.txt
http://www.ietf.org/rfc/rfc6817.txt
http://www.ietf.org/rfc/rfc6817.txt
http://www.ietf.org/rfc/rfc6928.txt
http://www.ietf.org/rfc/rfc6928.txt
http://www.ietf.org/rfc/rfc6937.txt
http://www.ietf.org/rfc/rfc6937.txt
http://www.ietf.org/rfc/rfc7713.txt
http://www.ietf.org/rfc/rfc7778.txt
http://www.ietf.org/rfc/rfc7786.txt
http://www.ietf.org/rfc/rfc7786.txt
http://www.ietf.org/rfc/rfc7837.txt

196 BIBLIOGRAPHY

A Acknowledgments

First of all, my thanks go to Prof. Dr.-Ing. Andreas Kirstädter for all the research opportunities and
chances that he provided at the Institute of Communication Networks and Computer Engineering
(IKR) and the very open and supporting guidance during the creation of this thesis. I also thank
him and Prof. Dr. Michael Menth for the assessment of this written thesis.

My special thanks go to Ulrich Gemkow. He created an atmosphere at the IKR that was always
defined by as much as possible freedom in research and high standards in all aspects of research
and teaching. Uli always had his own way of fostering the best of all members of the institute. I
also thank for Uli’s feedback, this thesis benefited a lot from it.

Many thanks go to my fellow researchers at the IKR. We had so many fruitful and enlightening
discussions, but also so many events that helped to free my mind. I’d like to thank in particular
Mirja Kühlewind, Sebastian Meier and Frank Feller for listening and discussing. I’d like to
thank all of my fellow mortarboard makers: I learned much about microcontrollers and on how
distributed projects with hard deadlines can be completed timely and successfully. I always
enjoyed these times with my IKR colleagues.

I’m also very grateful for the valuable input and help in different aspects from the people who
reviewed parts of the draft of this thesis, namely Marc Barisch, Uwe Bauknecht, Dorothea
Dombrowski, Frank Feller, Ester Gallardo, Ulrich Gemkow, Sebastian Meier, Sebastian Scholz
and Jürgen Wagner.

I greatly appreciate the cooperation and exchange with fellow researchers, especially Mirja
Kühlewind, Bob Briscoe and Wolfram Lautenschläger. It was a pleasure and again and again
enlightening to work and discuss with you. Actually, Bob’s input and ideas regarding ConEx
were the starting point of my interest and fascination for congestion management and thus for
this work.

The work with bachelor and master students during their thesis projects helped me exploring
a wider range in the field of congestion control research and their often divergent perspective
helped me deepening my understanding in this field. My thanks go to all the students who by
this supported the creation of this work.

Another group that definitely deserves my thanks are my former colleagues at Fraunhofer
FOKUS: Karl Jonas, the head of our little research group in the Birlinghoven outpost, who
always motivated me to go further and actually motivated me to approach a doctorate. I am also
very thankful for the many opportunities Karl opened up. I thank Jens Mödeker and Mathias

197

198 Appendix A. Acknowledgments

Kretschmer for all the good discussions, their patience with me and for the many things I learned
from them.

I also thank the many research colleagues in the projects I had the opportunity to take part
in: Daidalos, NetQoS, SelfNet, G-Lab, ETICS, SASER. The role of these colleagues changed
over time: At the beginning, research colleagues mostly inspired me and expanded my view on
networks, most prominently in Daidalos II. In later projects, the fellow researchers rather were
valuable discussion partners to me and touchstones for new ideas. All of them helped me to
make my way to this point.

My deepest thanks go to my family and my girlfriend Thea. My parents always supported me
and also motivated me to strive for more. They provided the basis for all this. Finally, I sincerely
thank the one person who supported me in so many ways during the completion of this thesis as
well as during the preparation for the oral exam: my wonderful girlfriend Thea.

	Summary
	Kurzfassung
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Contributions
	Outline

	Background
	Wired Broadband Internet Access
	Topologies and Architectures of Internet Service Provider Networks
	Wired Access Technologies and their Impact on Topologies
	Traffic Patterns and Link Dimensioning in Wired Access Networks

	Packet Scheduling
	Introduction and Definitions
	Packet Scheduling Evolution
	Delay Relative to the Perfect Schedule and Fairness of Scheduling Algorithms
	Complexity of Scheduling Algorithms
	Hierarchical Schedulers
	Rate Limiting Schedulers
	Packet Scheduling of Multi-Class Traffic
	Best Effort Packet Scheduling at the Edge of Access Networks

	Congestion in the Internet
	Introduction to Congestion
	General Congestion Control
	Prevalence of Protocol-based Congestion Control in the Internet

	Transport Layer Congestion Control
	General Principles of Transport Layer Congestion Control Algorithms
	Bandwidth Allocation:Fairness Challenge and Opportunity for Prioritization
	Selected Congestion Control Algorithms
	Relation to Buffer Sizing

	Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload
	Motivation
	Problem Statement
	Concept of Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload
	Objectives of Rate Adaptation Considering Traffic Differentiation by Congestion Control during Overload
	Qualitative Objectives
	Quantitative Objectives

	Related Work on Peak- and Overload Management
	Definitions
	Context of Overload Management
	Comcast's Protocol-Agnostic Congestion Management System
	Traffic Management based on Deep Packet Inspection
	Congestion Policing based on Congestion Exposure
	Congestion Policing Queues

	Assumptions and Prerequisites
	Regional Access Network Properties
	Packet Scheduler
	Traffic Differentiation by Congestion Control
	Incentives for Using Background Congestion Control Algorithms
	Information of Subscribers

	Algorithm Description
	Definitions
	Execution Overview
	Definition of Load States and Operating Modes
	Traffic Type Recognition
	State Calculation for Leaf Nodes
	State Calculations for Inner Nodes
	Calculation of Effective Rates

	Rationales for Core Design Decisions
	Granularity of Operation
	Extent of State Updates
	Filling Up the Rates of Background Traffic
	Calculation of Target Rates of Background Leaf Nodes
	Traffic Type Recognition
	Initial Traffic Type

	Evaluation
	Evaluation of Qualitative Objectives
	Network Neutrality
	Sufficient Efficiency
	Smooth Rate Allocations for Foreground Traffic

	Performance Evaluation Approach
	Simulation Utilizing Wide-spread Congestion Control Implementations
	Simulation Topologies
	Scaling Load
	Traffic Models
	Model Parameterization and General Simulation Parameters
	Algorithmic Parameters
	Reference Scheduler Implementation

	Performance Metrics
	Improved Quality of Service for Foreground Traffic
	Bottleneck Utilization
	Fairness of Bandwidth Allocation
	Correct Subscriber Recognition

	Performance for Software Updates Traffic
	Transfer Times of Foreground Traffic
	Bottleneck Utilization
	Fairness among Foreground Subscribers
	Fairness among Background Subscribers
	Correct Recognition of Foreground Traffic
	Correct Recognition of Background Traffic
	Scenario Conclusion

	Performance for Video on Demand Streaming Traffic
	Transfer Times of Foreground Traffic
	Bottleneck Utilization
	Scenario conclusion

	Performance for Web Browsing Traffic
	Transfer Times of Foreground Traffic
	Bottleneck Utilization
	Scenario Conclusion

	Performance for Otherwise Rate-limited Greedy Traffic
	Phases of Constant Recognition
	Waiting Time
	Bandwidth Allocation
	Scenario Conclusion

	Evaluation Summary

	Conclusion and Outlook
	Bibliography
	Acknowledgments

