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A Class of Renewal Interrupted Poisson Processes
and Applications to Queueing Systems

By P. Tran-Gia®

Abstract: Switched Poisson Processes and Interrupted Poisson Processes are often employed to
characterize traffic streams in distributed computer and communications systems, especially in
investigations of overflow processes in telecommunication networks. With these processes, input
streams having inter-segment correlations and high variance as well as state-dependent traffic can
properly be modelled. In this paper we first derive an approximation method to describe the
Generalized Switched Poisson processes in conjunction with a renewal assumption. As a special
case of this class of processes, the class of Interrupted Poisson processes is also included in the in-
vestigation. As a result, a generalization of the well-known class of Interrupted Poisson processes
is obtained. It is shown that the renewal property is also given for this general class of Interrupted
Poisson processes having generally distributed off-phase. To illustrate the accuracy of the presented
renewal approximation of Generalized Switched Poisson processes and to show the major prop-
erties of the General Interrupted Poisson processes, applications to some basic queueing systems
are discussed by means of numerical results.

Zusammenfassung: Zur Beschreibung von Verkehrsstrdmen in modernen Rechner- und Kommuni-
kationssystemen werden zunehmend Punktprozesse mit komplexen Charakteristiken bendtigt. Die
Klassen von unterbrochenen Poisson-Prozessen (IPP: Interrupted Poisson Process) sowie von ge-
schalteten Poisson-Prozessen (SPP: Switched Poisson Process) finden hier hiufig Anwendung, z. B.
in Untersuchungen von Uberlaufverkehr in Fernsprechnetzen, hochvarianzigen Datenstrdmen in
Paketvermittlungssystemen etc. In diesem Beitrag wird zunichst der veraligemeinerte SPP-Prozef§
untersucht und dessen Verteilungsfunktion entwickelt, wobei eine Approximation mittels einer
Erneucrungsannahme vorgenommen wird. Danach wird eine exakte Beschreibung des verallgemei-
nerten IPP-Prozesses vorgestellt, in der einige ProzeRbeschreibungen in der Literatur als Sonder-
fille enthalten sind. Abschliefend werden Parameterstudien anhand einiger einstufiger Verkehrs-
modelle durchgefiihrt.
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1 Introduction

In real-time processing systems with distributed control, statistical characteristics of
traffic streams resulting from events interchanged between processors are very com-
plex. On the one hand, the behavior of these streams often depends on the actual state
of the whole system, which is, e.g., represented by the number of active processes to
be scheduled in the system. On the other hand, traffic streams, which result from in-
put processes in overload situations, such as interprocess or interprocessor communica-
tions, are highly time-dependent. They have to be described by means of non-station-
ary processes or approximated by means of quasi-stationary processes.

For performance modeling of such systems, to describe properly traffic processes
obtained by measurements, numerous renewal and non-renewal process description
and approximation techniques has been proposed and investigated (cf. Fond 1978;
Heffes 1976, 1980, 1986; Kuczura 1972, 1973; Machihara 1983, Meier 1984, Tran-Gia
1983). There are a number of studies using the Switched Poisson process and its
related processes (e.g. the Interrupted Poisson process) as input process of queueing
models. In Kuczura (1973) and Heffes (1976) systems with Interrupted Poisson input
process (IPP) are discussed. While in Kuczura (1973) the infinite server model with
IPP input is investigated, the output process of the queue GI/M/n is treated in Heffes
(1976). The Switched Poisson process (SPP) with Markovian (exponential) phase
lengths is dealt with e.g. in Fond (1978), Heffes (1980), Kuczura (1972), Meier (1984)
and Yechiali (1971). In Kuczura (1972) the process SPP appears as a special case of
the GI'+M input. A solution for the delay system SPP/M/1 is given in Yechiali (1971).
To clarify the relationship between the classes of processes mentioned here, Fig. 1
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Fig. 1. Overview and relationship between classes of processes
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gives an overview of these process classes, such as Switched Poisson process, Interrupted
Poisson process and Markov Modulated Poisson process, etc.

Section 2 presents a generalization of the Switched Poisson Process SPP(G 4, G),
for which a general Laplace-Stieltjes-Transform formula based on a renewal approxi-
mation has been derived (cf. Tran-Gia 1983). The formula obtained in Section 2 re-
conciles a wide range of results known in the literature. In Section 3, attention is
devoted to a particular case of SPP(G, G,), the class of Interrupted Poisson processes
IPP(G, M). 1t is shown that this class of processes, which is a generalization of the
Interrupted Poisson process given by Kuczura (1973), forms a class of general traffic
processes with the renewal property. Finally, Section 4 investigates the presented clas-
ses of processes in conjunction with standard queueing systems, in order to estimate
the applications to more complex modeling approaches.

2 The Generalized Switched Poisson Process

In this section, the Generalized Switched Poisson Process will be defined and a charac-
terization of the process in terms of interarrival distribution functions using a renewal
approximation will be presented.

2.1 Process Description

A generating model of the Generalized Switched Poisson process is shown in Fig. 2.
The process results from an alternated switching between two Poisson processes (the
originating processes), which are characterized by the rates \; and A, respectively.
The visit times of the resulting process are independent and identically distributed
random variables 7'y and T5,.

According to the arbitrary phase length distribution functions, the following nota-
tion will be used for the class of Generalized Switched Poisson processes: SPP(G,, G,),

M, A, phase 1 (G,)
T
Poisson SPP(G,, G,)
sources -
M, A

2 T
phase 2 (G,)

Fig. 2. Generating model for the Generalized Switched Poisson Process
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where G; and G, denote the distribution types of 7 (Phase 1) and T, (Phase 2),
respectively. For A; =0, we have the special case of the class of General Interrupted
Poisson processes IPP(G;, G,).

Thus, the Generalized Switched Poisson Process SPP(Gy, G,) can be completely
characterized by the following random variables (r.v.):

T r.v. for the length of phase 1 with mean 1/w,
T, r.v. for the length of phase 2 with mean 1/cw,
T4y  r.v.for the interarrival time during phase 1 with mean 1/,

Ty  r.v.for the interarrival time during phase 2 with mean 1/,

According to the definition, T4, and T4, are negative exponentially distributed r.v.
corresponding to the originating Poisson sources in Fig. 2, where

1
FAi(t)=Pr{TA,~<t}=l-—e_}‘it; E[TA,‘]=;\“, i=1,2. (1)
i
Furthermore, the mean phase lengths are denoted by:
1
E[Tyl=hi=—, i=1,2. )
Wi

As an alternative to the basic parameters given in egs. (1,2) the following process
parameters are defined for modeling purposes which allow a description of input
processes (e.g., overload traffic streams) in a more realistic way:

i) The mean arrival rate

Mt Ry Nwy t o
N h1+h2 COI+(02 ’

3

ii) Considering two consecutive phases of type 1 and 2 together as a period of the
process, the mean number of events in a period is

S
"o=)\1h1+7\2h2=;‘;+: 4)
2
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The parameters A and ng can be used to characterize the switching frequency of
the SPP(G,, G, ) process.

iii) The ratio of phase lengths

hy w
@=-2=—, (5)
hy  w

iv) The overload factor

_ N 6
Y= (6)

In the following it is assumed that y>1 (A; = N), i.e. A, represents the higher
and A, the lower load level.

In this context, two well-known renewal processes, the Interrupted Poisson Process
IPP(M, M) (cf. Kuczura 1973) and the Poisson process can be identified as limiting
cases of the Switched Poisson Process. These boundary processes correspond to the
limiting values of the overload factor :

—  Poisson process, which corresponds to the minimum value Y, of the overload
factor:

M=2FN2 Ymin = 1. (7

—Interrupted Poisson process IPP(M, M), which corresponds to the maximum value
Ymax Of the overload factor:

N=0~> =_(i)_1_t_"_0_2=1+_.1_ (8)
1 Ymax N 01 0"
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2.2 Renewal Approximation for the Generalized Switched Poisson Process

In general the class of Generalized Switched Poisson Process SPP(G, G, ) is non-te-
newal. Under assumption of the renewal property, an approximate expression for the
Laplace-Stieltjes-transform is developed in Tran-Gia (1983). The derivation will briefly
be described, ensuing the following steps:

i) Calculation of the distribution function of the forward recurrence interarrival

time

ii) Calculation of the interarrival distribution function using the renewal assumption.

2.2.1 Notation

For the notation of random variables and their related functions, the following sym-

bols will be used:
T; random variable (r.v.), index i
Ty  forward recurrence time of the r.v. T}
Fy(t) =Pr{T;<t} probability distribution function (PDF) of the r.v. T}
ar;(1) o .
;) = 7 probability density function (pdf) of the r.v. T}
@;(s) =LT{f;(t)} = LST{F;(¢)} Laplace-Stieltjes-transform of the PDF Fi(t) or

Laplace-Transform of the pdf f;(z)

Additionally, the conditional random variables T;|T;> T; and T;|T; > T; are intro-
duced, which have the following unnormalized pdf’s and Laplace-transforms:

[z, > 1= HOF; @), Y1y > 1= LT {0y > 7,)

©)

fi(t)’Tj >T; =ft(t)(1 —F}’(t))a &)i(s)IT]' >T;= LT{ﬁ(f)u} > Ti}
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The corresponding normalized forms are:

[ > T;
fOm>n=r—> Q1> 5= LT > 5}

O > 1;dt

o3

} (10)
HOL S
O >n=7— i(S)i7; > 1, = LTSy > 13}

J;i(t)\Ti > 1;dt

o 38

2.2.2 Forward Recurrence Time Distribution Function

The calculation of the PDF F'(¢) of the forward recurrence time and its Laplace-
Stieltjes-transform @"(s) is based on an observation of the process at an arbitrary
time epoch ¢* (the observation point, see Fig. 3). The probability of seeing the process
in a phase 1 can be written as follows:

1 _ W
hithy witw,

py =Pr{¢*is in a phase of type 1} = (11)

and analogously:

At)d | €
. b b
Lo
M - } l' | | li' %
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Fig. 3. Parameters of the Generalized Switched Poisson Process
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Fig. 4. Calculation of the forward recurrence time of the Generalized Switched Poisson Process

2 W
hythy witw,

p2 = Pr{t*isin a phase of type 2} = (12)

Let the observation point ¢* be now in a phase 1. Taking into account this assumption,
Fig. 4 illustrates three examples of the forward recurrence time 77, which is the dura-
tion from #* to the next arrival instant.

Two cases can occur:

i) The expected event is an arrival in the current phase 1 (see case 1 in Fig. 4). In
this case the forward recurrence time is

T"=TT{ > Ty,
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ii) The expected event is the end of the current phase 1. The process must spend the
time interval Tj|T 44 > T}, after which the process observation will be continued
until the next arrival is found.

The process is now observed from the beginning of a phase 2. The following cases can
occur:

i) The expected event is an arrival in the current phase 2 (see case 2 in Fig. 4). In
this case, the compound forward recurrence time is given as

TrlerlTA]>Tlr + TA2|T2>TA2

ii) The expected event is the end of the current phase 2, 1i.e. no arrival has occurred
during this phase. After the phase T,|T4, > T, the observation of the process
will be continued.

The process is being observed at the beginning of a phase 1, where the following two
cases can occur:

i) The expected event is an arrival in the current phase 1 (see case 3 in Fig. 4). The
compound forward recurrence time is given according to

Tr‘:TlrlTA1>T1r + T2|TA2>T2 + TAI‘T1>TA1

ii) The end of the current phase 1 is reached and no arrival has been registered.

The observation of the process can be analogously continued until an arrival is at-
tained. Taking into account all combinatorial possibilities for the forward recurrence
time 77, a phase diagram as shown in Fig. 5 can be obtained. It should be recalled
here that the observation point #* is assumed to be in a phase of type 1.

Fig. 5. Phase diagram of the forward recurrence time (conditioned on an observation point in
phase 1)
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Fig. 6. Phase diagram of the forward recurrence time

The combination of the two cases for the observation point ¢* yields to the com-
plete phase diagram of the forward recurrence interarrival time in Fig. 6, where the
random variables for time intervals are indicated.

Considering the phase diagram in Fig. 6 as a Mason flow graph (cf. Mason 1953,
1956), which consists of six forward paths and one loop, the Laplace-Stieltjes-trans-
form of the forward recurrence interarrival PDF of the Generalized Switched Poisson
Process SPP(G, G, ) is obtained as follows:

F(s)=p1Pa1 ()7 > 14,

D2y > 145t P2 iTyy > 7, Pa1 Ty > T
2> T4z 42 1>Tq1

+p P (s) r = =
11Oy > 7 1 =217y > 1 P2y, > 1y

(13)

02242 > 745

D416y > T4t P17y > 1 P2y > T
1> Ty 41> Ty 2> T4

+P2‘i’;(s)|TA2 >T5 = =
1=®1 1y > 1, P2)745 > 15

The probabilities py, p, are given in egs. (11), (12) and the Laplace-Stieltjes-trans-
forms of the conditional PDFs for the conditional phases in eq. (13) can be calculated
according to eqs. (9) and (10). It should be recalled here that the expression for @ (s)
given in eq. (13) is valid for arbitrary types of the phase lengths T'; and T,.
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2.2.3 Renewal Approximation

Assuming the renewal property for the Generalized Switched Poisson Process
SPP(G,, G,), we obtain the following approximate expression for the Laplace-Stieltjes-
transform of the interarrival distribution function (see Cox 1962):

o)=1-=¥() (14)

where @(s) is given in eq. (13).

2.3 Special Case of Exponential Phase Lengths

As mentioned above, the expressions given in egs. (13) and (14) can be used for
arbitrary phase lengths 7y and T, (cf. Figs. 2 and 3), which correspond to the nota-
tion SPP(G, G,). In the following we will devote attention to a special case, which is
often used in the literature. The phase lengths T; (i = 1, 2) are now negative exponen-
tially distributed:

Fi()=Pr{T;<t}=1-e" @i =102, (15)

Using the notation presented before, the process is of type SPP(M, M). This special
case of the Generalized Switched Poisson Process corresponds to the two-state Markov
Modulated Poisson Process (MMP) discussed in Heffes (1980, 1986), Meier (1984)
(cf. Fig. 1) and the input process with heterogeneous arrivals analyzed in Yechiali
(1971).

According to the PDFs given in egs. (1) and (15) for the r.v. Ty, Ty, T4y, T4, of
the process SPP(M, M), the Laplace-Stieltjes-transforms of the conditional PDFs in
eq. (9) are determined and subsequently, the Laplace-Stieltjes-transform of the for-
ward recurrence time:

1 Mwa(stwitwy tA) thwi(s+wy+wyt))
Wyt wy (SHNDE+N) (s +2) + wa(s +2y)

'(s) = (16)
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Taking into account the renewal assumption in eq. (14), the Laplace-Stieltjes-trans-
form of the interarrival time of the Generalized Switched Poisson Process with ex-
ponential phase lengths SPP(M, M) is given by:

1 s(?\%w2+?\%w1)+(7\1?\2+7\1w2+7\2w1)(?\1w2+7\2w1)

Aw;y AWy s+ Nyt wp W) F ANt AN Wy A W)

®(s) =
(17)

The corresponding pdf of the interarrival time can be obtained from eq. (17)

f()=LT 1{d(s)} = [(@—s1)e™17 + (s, —a)e™ 2] (18)
$1t8,
where
N, t Ny MM A W T AW
K1w2+7\2w1’ K
b 1 3
81’2:'515 Vb —4aK with b=)\1+?\2+w1+w2.

While the mean interarrival time is

(19a)

> | =

E[T]=

as expected, the coefficient of variation ¢ can be determined from eq. (17):

AN+ A Wyt wy— A
pog Mttt 7 (19b)
?\17\2+7\1w2+7\2w1

As mentioned above, the formula given in eq. (17) covers the whole range between
the Poisson process and the Interrupted Poisson process, according to the overload
factor vy defined in eq. (6). For these two boundary processes, which have the renew-
al property, eq. (17) can be rewritten as follows:
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A
— Poisson process: A =N =A(Y=Ypin=1); &)= Y
1
— Interrupted Poisson process IPP(M, M): A =0{7=Ymax=1+ P :

Na(s + wq)

Sz +s(w1 twy t )\2)"‘ )\2(,01

D(s) = (cf. Kuczura 1973) (20)

2.4 Accuracy of the Renewal Approximation

In order to estimate the accuracy of the renewal approximation, we consider in this
chapter the process SPP(M, M) as input of a single exponential server queueing system
with finite waiting capacity S, i.e. the delay-loss system SPP(M, M)/M/1-S. The mean
service time will be used here to standardize the results.

i
o

Mean system size E[ X]

exact
analysis

renewal
approx.

15 2,
Offered traffic p

Fig. 7. Accuracy of the renewal approximation: mean system size vs offered traffic
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In the following, system characteristics will be compared to validate the renewal
approach and to show the dependency of the approximation accuracy on the process
parameters, where:

i) The exact solution of the system SPP(M, M)/M/1-S is carried out by means of a
two-dimensional Markov process. The results are obtained using a recursive
algorithm.

ii) The renewal approximation considers the process SPP(M, M) as a general indepen-
dent input process with the Laplace transform given in eq. (17) or the PDF in
eq. (18). The results for the approximation are obtained by solving the arising
system GI/M/1-S, using a numerical algorithm.

A
Fig. 7 shows the mean system size as a function of the offered traffic p = —. For the
M

chosen parameters (S =20, © = 1, ny = 10) the overload factor y can vary from ypi,

Blocking probability B

exact
analysis

renewal _ _ __ _
approx.

0.005

1 12 % 16 18 2.
Overload factor y

Fig. 8. Accuracy of the renewal approximation. blocking probability vs overload factor




A Class of Renewal Interrupted Poisson Processes 245

1
=1 (Poisson process) t0 Ypax =1 + P =2 (Interrupted Poisson process). For these two

boundary cases, the renewal assumption is exact as expected.

The blocking probabilities are depicted in Fig. 8. For different values of the of-
fered traffic, it is seen here that the renewal assumption is a closed approximation for
a wide range of y. However, the accuracy shown here depends very strongly on the
mean number ng of the arrivals per process period. This can be explained be the fact
that for smaller values of n, the Switched Poisson process is of more random nature
and therefore the renewal approximation is more accurate.

3 General Interrupted Poisson Processes with Renewal Property
3.1 Process Description

In the case of A; =0 we obtain from the SPP(G;, G,) a generic form of the Inter-
rupted Poisson Process, denoted in the following by IPP(G,, G, ). Choosing further T
and T, to be negative exponentially distributed, we arrive at the well-known special
case of this class of traffic processes, the IPP(M, M) process (cf. Heffes 1980, 1986;
Meier 1984), which are often employed in the teletraffic theory to model bursty traf-
fic streams like overflow processes.

Assuming the on-phase of the process to be exponential, while the off-phase
remains general, we obtain a new class of Interrupted Poisson processes which is of
renewal nature. We denote this class as General Interrupted Poisson Process, charac-
terized by IPP(G, M). The renewal property of this process class can be shown using
relationships of doubly stochastic Poisson processes as given by Kingman (1964).

3.2 Interarrival Distribution Function

Using results derived in egs. (13) and (14) the interarrival distribution function of the
General Interrupted Poisson Process IPP(G, M) can be obtained as follows:

W)
s+ 2yt wp (1= Dy(s)

(21)

Pipp(g, m)(s) =

where @, (s) is the Laplace-Stieltjes-transform of the off-phase of the process.
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3.3 Special Cases

Various results on Interrupted Poisson Processes known in the literature can be con-
sidered as special cases of the result in eq. (21), e.g.

—  The IPP(M, M) process which has been investigated by Kuczura (1973)

— The IPP(H2, M) process which is presented in Machihara (1983). Opposite to the
approximate result in Machihara (1983), the result we obtain in this paper follow-
ing eq. (21) is exact.

3.4 The IPP(G, M)/M/n Quene

To show some properties of the General Interrupted Poisson Process IPP(G, M), in
particular to illustrate the impact of the off-phase characteristics in conjunction with
a queueing system, we take the IPP(G, M) process as input of some standard queueing
systems. The delay system IPP(G, M)/M/n and the delay-loss system IPP(G, M)/M/n-S
are considered in the following.

34.1 Infim're Capacity System IPP(G, M)/M/n

Due to the interarrival distribution function given in Laplace-Stieltjes domain, the
analysis of this system is done by means of the method given by Takacs (1962).

In Fig. 9 the impact of the off-phase interval on the sojourn time of a
IPP(G, M)/M/n with infinite capacity of waiting places is shown, for different values of
the number #n of servers. Standard types are taken for the distribution function of the
off-phase: deterministic (D), Erlangian of 2nd order (£, ), exponential (M), and hyper-
exponential of 2nd order (H,, ¢ = 2). It can be clearly seen here that the waiting time
and subsequently, the sojourn time in the system, are strongly affected by the prop-
erties of the off-phase of the General Interrupted Poisson process offered.
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Fig. 9. Infinite capacity system IPP(G, M)/M/n: influence of the off-phase distribution of the input
process on the mean sojourn time

3.4.2 Finite Capacity System IPP(G, M)/M/n-S

Since the system is now of finite capacity and the arrival process is given as of Laplace-
Stieltjes transform, an imbedded Markov chain is use in the analysis. To obtain the
transition probabilities, we make use of a Laplace transform inversion technique.

The blocking probability of the IPP(G, M)/M/3-S system is depicted in Fig. 10 as
function of the normalized offered traffic intensity. For the off-phase the same types
of distribution functions as in the case of infinite capacity systems are used. The in-
fluence of the off-phase interval on the system behavior can be again observed in
Fig. 10, for different values of the number S of waiting places.
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Blocking probability B

0.1

0.01

0 5 1.
Offered traffic p

Fig. 10. Finite capacity system IPP(G, M)/M/n-S: influence of the off-phase distribution of the
input process on the blocking probability

4 Conclusions

In this paper we presented an approximation method to describe the Generalized
Switched Poisson processes SPP(G, G,), using a renewal assumption. As shown by
the results presented for the example system SPP(M, M)/M/1-S the renewal approxi-
mate technique provided is accurate for a wide range of process parameters. The re-
newal approximation approach represents a simplification of the analysis in the case
of more complex models, where merely the distribution function of the input process
or its Laplace-Stieltjes-transform is required.

We derived further a generalization of the Interrupted Poisson processes as in-
vestigated e.g. by Kuczura (1973). It is shown that this new class of General Inter-
rupted Poisson Process IPP(G, M) is of renewal nature.
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The traffic processes investigated in this paper are often employed to characterize
traffic streams in distributed computer and communications systems, especially in in-
vestigations of overflow processes in telecommunication networks. With these proces-
ses, effects like inter-segment correlation of input streams and state-dependency of
traffic flows can properly be modelled.

The approximation accuracy of the renewal assumption applied to the General-
ized Switched Poisson process some properties of the class of General Interrupted
Poisson processes are discussed by means of numerical results in conjunction with a
number of basic queueing systems.
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