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1. Introduction

Polling models are often used in performance investigations of communication and computer systems,
for example local area networks operating with token passing protocols or switching systems with
distributed control structures. Most of the investigations, which employed polling models with varying
degree of complexity, consider queueing systems having infinite capacities. Several approximation tech-
niques for the system analysis are proposed.

Single server polling systems have been the subject of numerous studies in the literature [1-9,11,12,19,20].
A number of modelling approaches considering various polling mechanisms like cyclic or priority order
[15] and several service disciplines, for example, exhaustive, nonexhaustive or gating are considered. Some
of these studies take into account the switchover time, i.e., the time interval spent by the server to switch
over from one queue to the succeeding one. In most of the investigations, the queues are assumed to have
infinite capacity and the analysis is often derived using the imbedded Markov chain technique.

Multiqueue systems with cyclic polling strategy, symmetrical load conditions, constant switchover time
and gating service were approximately analyzed by Leibowitz [12]. In [3,4], Cooper and Murray have
considered a cyclic polling system with gating or exhaustive service and zero switchover time. The case of
two queues with general switchover time was taken into account by Eisenberg [5]. The approach of Cooper |
and Murray in [4] has been generalized by Eisenberg [6] and Hashida [7] to nonzero switchover time. An
approximation technique for cyclic queues with nonexhaustive service and general switchover time has
been developed by Kuehn [9]. Morris and Wang [16] and Raith [17] provided analytical approaches to deal
with polling systems with multiple servers. Raith and Tran-Gia [18] considered the feedback effect of
receiver blocking. An exact solution for a system with two queues and nonzero switchover time was
presented by Boxma [1]. A survey on polling system analysis, where various system classes are considered,
was provided by Takagi and Kleinrock [19]. In the context of finite capacity systems, Mack et al. [13,14]
investigated the well-known ‘repair man model’, which corresponds to the case of a finite number of
sources.

In all practical systems, nonsymmetrical load conditions are often observed and all buffers are of finite
capacity. In order to obtain a realistic model of a nonsymmetrically loaded or partly overloaded system, in
which blocking of incoming messages may occur, the finite capacity of some overloaded queues must be
taken into account. For the investigation of such finite capacity systems, established analysis methods for
infinite multiqueue systems, which usually operate in transform domains by applying generating functions
or Laplace transforms, do not lead to closed form expressions or effective algorithms for performance
measures of interest.

In the following, an approximate analysis method for polling systems with finite queue capacity and
nonexhaustive cyclic service (or, more precisely, limited service by one) is presented, whereby a numerical
algorithm is developed (cf. [21,22]). According to the type of the service time distribution function ¢
(exponential or general), two numerical schemes for the cycle time calculation in conjunction with an
iteration method are derived. The accuracy of the approximation method will be illustrated by means of
numerical results, which have been obtained for a wide range of system parameters.

2. Model description

The basic model of a multiqueue system is illustrated in Fig. 1. The model consists of a number g of
finite capacity queues. The queues are served nonexhaustively by a single server according to a limited
service scheme. The service is organized in a cyclic order by a single server. The service time distribution
function can be individually chosen for each queue. Also, individual arrival rates and sizes of the buffer
capacity are considered. After the service of a queue, the server will move to the succeeding queue. This
switchover time, which models all overheads spent and procedures performed by the server to move and to
scan the succeeding queue, is assumed to have a queue-dependent general distribution function. At the
scanning epoch, i.e., at the end of the corresponding switchover time, the server will process one message
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Fig. 1. The basic queueing model.

in the queue (limited service by one), if there is at least one message waiting for service. If the queue is
empty, the observed inter-scan period consists of just the switchover time. The arrival processes are
assumed to be Poisson with queue-individual rates, according to which the system can be modelled to be
symmetrically or nonsymmetrically loaded.

The following symbols and random variables (r.v.’s) are used in this paper:

g : number of queues in the system,

A, : arrival rate of messages offered to queue j,

Ty ;. t.v. for the service time of messages in queue j,

Ty, : r.v. for the switchover time corresponding to queue j,

S, : capacity of queue j.

3. Analysis

In this section, a numerical algorithm for an approximate analysis of finite capacity multiqueue systems
will be derived. Basically, the analysis draws upon approaches presented in [8,9], using the technique of the
imbedded Markov chain. However, some modifications must be provided in order to take into account the
blocking effect and the finiteness of queue capacities. Throughout this section, the approximate analysis is
based on the assumption of independency between cycle times and cycle time segments. This assumption
will be stated in Section 3.1.2. ¢

In Section 3.1, general equations for the state analysis and system characteristics will be derived while,
in Section 3.2, the special case of exponential server and, subsequently, the case of generally distributed
service time will be investigated. Finally, Section 3.3 gives an outline of the calculation algorithm for the
Markov chain state probabilities and performance measures of interest.

For a random variable T, the following notation will be used:

F,(t) : probability distribution function,
fx(t) : probability density function,

d,(s) : Laplace-Stieltjes transform of Fy(7),
E[Ty] : mean value of Ty,

Var[Ty] : variance of Ty,

Cx : coefficient of variation of 7.

3.1. General equations for the analysis

3.1.1. Markov chain state probabilities
A particular queue j is considered in the following, which is observed at polling instants. Let ¢, be the
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time of the nth scanning epoch and let X"/(0™) be the number of messages in this queue at time ¢,, i.e.,
just prior to the nth scanning epoch. We define the Markov chain state probabilities
P,Ef’j?=Pr{X(”)(O’)=k}, k=0,1,..., 5, (1)
and the steady-state probabilities of the Markov chain are defined from
P, =Pr{X(07)=k}= lim P,Ef’}, k=0,1,..., 5. (2)
n—c0
For ease of reading, subscript j indicating the observed queue will be suppressed, for example, the
notation P, will be used instead of P, ;. For the capacity of the queue j observed, the symbols S or S; will

be used interchangeably.
In order to calculate the transition probabilities of the Markov chain

Puc=Pr{X"TD(07) = k| X(07) =i}, ()

we observe the system state X(¢) of the queue at time z, + 7. Considering the pure birth process in the
queue between two consecutive scanning epochs, i.e., during a scanning cycle, the state probabilities at
time ¢, + ¢ denoted by

P(t)=Pr{X"(1)=k}, k=0,1,...,8S, (4)

can be obtained as follows:

k
PP(t) =P{"a,(t)+ 3. PUa,_ (1), k=0,1,...,8—1,

i=0
0 S-1 0 (5)
P =P Y a,(1)+ X P Y a,(1),
i=8 i=0 m=S—i
where
a,(t)=[(A;1)"/mt] e, (6)

Using the consideration of conditional cycle time [9], where the following r.v.’s are defined with respect to
the observed queue J:

T, : r.v. for the cycle time,

T : 1. for a cycle, conditioning on an empty queue at the previous scanning instant (i.e.,
without service of queue j during the cycle),

T~ : r.v. for a cycle, conditioning on a nonempty queue at the previous scanning instant (i.e.,
with service of queue j during the cycle),

the state equations which implicitly contain the transition probabilities can be written as

© k+1 0
p,§"+1>=p0<n>f ay (1) for (1) di + ZP;")f ay_ () fer(t) dt, k=0,1,...,8—1,
0 i=1 0

(7)

o o D 0 0

P =pim Y f a;(t)fe (1) de+ 3 P Y] f @ (1) fer (1) dr.
i=s"0 i=1 0

m=S—i+1

Defining the arrival probabilities, i.e., the probabilities for m arrivals during a conditional cycle of type T
or T,

b= [ an(Dfe () dr b= [Ta,(0)fe () dr, (8)




P. Tran-Gia, T. Raith / Finite capacity polling systems 5

we obtain from (7) the following set of Markov chain state equations:

k+1
PtV =pPMp 4+ 3 PMbY .y, k=0,1,...,8-1,
i=1
) S 0 (9)
L AU WD v ¢
i=S i=1 m=S-—i+1

Equation (9) will be used for the numerical calculation of the steady-state probabilities { Py }. It remains to
determine the arrival probabilities {b,,} and {b,, } in (8), which is the subject of Section 3.2.

3.1.2. Conditional cycle time

Define T ; to be the random variable for the time interval between the scanning epochs of queue j and
j+1, ie., the segment of the cycle time corresponding to queue j, with the Laplace—Stieltjes Transform
(LST)

Dy (5) =0y (s) (1= Py ,;) @ ,(5) + Py ;) (10)

Under the approximate assumption of independence between Ty ;, j=1,2,...,g, the LST of the
conditional cycle times can be given as follows:

Der () =Dy ;(s) - k=111¢j(pE’k(s)’ (11a)
Do j(5) =y ;(5) - @y ;(s5) k_:;k .(PE,/C(S) (11b)

3.1.3. Arbitrary time state probabilities

In order to calculate system characteristics, for example blocking probability for messages or mean
waiting time in the queue, it is useful to obtain first the arbitrary time state probabilities. Again, subscript
j indicating the observed queue is suppressed in this section.

Define { P, k=0,1,..., S} to be the arbitrary time state probabilities, i.e., the distribution of the
number X, of messages in the considered queue j at an arbitrary observation instant. According to the two
types of conditional cycle times we define 7’ and #”" to be, respectively, the probability of an outside
observer to see a cycle of type T or T It can clearly be seen that

7' =Py E[T]/E[Tc], (12a)
where

E[T.] =Py E[To]+ (1 = Py) - E[Tcr] (12b)
and

7’ =1—a'. (12¢)

The time interval from the last scanning epoch until the observation point is the backward recurrence time
with the probability density function (pdf)

— Fo (1)

o) =g Lk 108

BT ] (1)

Jer (1) =
The arrival probabilities during the backward recurrence time 7/ and T/~ can be given as

b= [Can(0ie( dn b= [Ta, (0780 dr (14)
0 0
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Considering both types of conditional cycle times and combining the above results, the arbitrary time state
probabilities can be written as follows:

k+1  p
Pk*=7r’b,'(* +a” Z —~—_——'};b,’€'_"‘i+1, k=0,1,...,8-1,
i=1 0
0 S o (15)
AP MAET D VE D DY
i=S i=1 O m=5—i+1

Finally, we obtain from (12) and (15)

E[T, | EIT. ktl
P} = [[C]] Pyb}* [[C] EPb,Q’*,H, k=0,...,5—1,
(16)
S = E[TC]POZb’*+ ZP. _;‘E b
E[T,] E[T] 2 esZicn

3.1.4. System characteristics

With the arbitrary time state probabilities given from equations (16) and taking into account the
Poisson arrivals offered to the observed queue j see time averages, the blocking probability for messages in
queue j can be determined as follows:

B=P¢. (17)
The mean delay in queue j, referred to transmitted messages, is found from Little’s theorem as follows:
E[Tw,] =E[X]/{},-(1-B)}, (18)
where
s
E[X]= L i-p". (19)
i=1

It should be noted here that the well-known formula for the mean cycle time [9] is obtained in a modified
form for the case of finite queue capacity,

/[1-—2>\ -E[Ty,] - (1-B)| (20)

Jj=1

g

X E[Ty]

Equation (20) can briefly be derived as follows, using mean values consideration (cf. [9]). Given the system
in steady state, the average number of messages arriving at queue j during a cycle time (seen from an
arbitrary queue) is A ;- E[T.]. Using the property of Poisson arrivals see time average, the mean number of
messages being accepted at queue j during a cycle is thus A ;- E[T]- (1 — B,)).
Since the system is stable, on average, the number of all accepted messages in the whole system during a

cycle

g

2 }‘j'E[TC] ) (1 'Bj)

j=1
must be served during a cycle time. Hence, the mean cycle time can be given as
g g
=Y E[Ty,|+ X E[T.]-A,-(1-B)-E[Ty,].
j=1 j=1

which yields equation (20).
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3.2. Calculation of cycle time and arrival probabilities

In the following we shall start with the case of a symmetrical system with exponential service times. In
this special case, efficient and simple expressions for the cycle time analysis can be obtained, without using
the two-moment matching approximation for distribution functions. This approximation is used for
general service times as will be described in Section 3.2.2.

3.2.1. The case of exponential server and constant switchover time
In this section we devote our attention to symmetrical polling systems with exponential service time and
constant switchover time, i.e.,

©
s+p’

1 .
A=A, E[Ty ] =E[TH]=;, Dy (s)=Dy(s)= j=1,2,....g.

J
Under these assumptions, the conditional cycle times can be given as follows (cf. equations (10) and (11)):

O (s)=e""(P+ (1~ PO)QH(S))g—l’

_ (21)
D (s) =e™*0@y (s)(Py+ (1 - PO)QH(S))g 1’
where 1, = gE[T,].
It can clearly be seen that the cycle time probability density functions consist of terms corresponding to
Erlangian density functions, which are deferred according to the total system switchover time ¢,. Thus, the
conditional cycle time density functions can be given in the time domain as

g—1

fc’(t) = Z (gj 1)Pog‘l“i(l _Po)i‘-’i(t - to)s
(22)
forle) = .4_‘:0(gjl)Pog-l-fu—Po)"e,-+1(r—ro>,

where e,(¢) denotes the Erlangian probability density function of ith order. With equation (22), the arrival
probabilities given in equation (8) can be calculated in a straightforward manner as

g—1 m . .
L RO o L O RCE S10 54 (i PCEI P N
- i=1 N - . j=0 (23)
b= T (57 e a-ny £ 77 -0 )
i=0 Jj=0

with g=p/(1+p) and p=A/p.

Based on these arrival probabilities, the Markov chain state probabilities can be calculated according to
equation (9). In order to calculate the arbitrary time state probabilities of a queue, the arrival probabilities
have to be calculated. The density functions of the backward recurrence conditional cycle times are (cf.
equations (13))

-1

r _ 1 o & g_l g—1—i — i —
fC,(t)—E[TC’]‘/;ztigo( ; )Po (1 Po) ei(T IO)dTa

1 (24)
1 g

E[T.] fo_o X (g; 1)P0g'1'i(1 — Py) ey (T—1,) dr.

T=1i=0

fe (1) =
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Using equations (24), the probability of m arrivals during the backward recurrence conditional cycle times
as stated in equations (14) can be derived as

agp—
" E[T.]

{Pog-l CARES o L ISR

x(iam_,uo)'i (f j")(l—q>"qf“+ 5 aj(t(,))}, (259)
Jj=0 k=0 J=m+1

Bt = gg (g_ 1)Pg'l“'(l ~By)'
m E[TCU] = i 0 0

x(ioam_j(%)kg(’j")(l—q)kqf+1+ > aj<z0>)}. (250)

Jj=m+1

Thus, the arbitrary time state probabilities of a considered queue can be calculated according to equations
(16), in order to obtain system characteristics.

3.2.2. The case of general service time

In this section, the service time distribution is assumed to be generally distributed. The calculation of
the conditional cycle times as well as of the state probabilities are of higher complexity (cf. [21,22]).

Since the expressions of the conditional cycle times (equations (11a) and (11b)) are given in the
Laplace-Stieltjes domain, a Laplace inversion procedure should have been utilized during each iteration
cycle, in order to enable the calculation of equation (7) or (8). However, for reasons of computing efforts,
the two-moment approximation technique, as proposed in [10], will be used in this section. This will briefly
be described in the following.

Equations (10), (11a) and (11b) yield the first two moments of the conditional cycle times, thus

E[T. ;| =E[Ty,] + f E[Tg 1.

k=1,k+#/
< (26)
E|Te | =E[Ty,| +E[Tu,;| + ¥ ElTu.l,
k=1,k+j
where
E[T,,| =E[T,,] +(1-P,) E[T,].
as well as
g
Var[TC,,j] =Var[TU’j] + ) Var[Tg .l
k=1,k#j
o 27)
Var[TCu’j] :Var[TU’j] +Var[TH,j] + ) Var[T ], (

k=1,k+j

Var|T, | = Var[T, ;] + (1= P, ;) - Var[T,, | ] + Py, (1= Py ) - E[ Ty ] ™.

According to the moment matching method [10] mentioned above, a given random variable 7 with the
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expected value E[T] and the coefficient of variation ¢ is approximately described by means of the
following substitute distribution function F(t):
Case1: 0<cx1

O0<ie<ty,

0
)= {1~e‘("’”/’2, t> 1, (282)

where ;= E[T]-(1 —c¢) and t,=E[T]-c.
Case 2: ¢c>1

F(t)=1-pe /"= (1=p)e /", (28b)
where
-1
c?—1
ho=E[T] |1+ e and p=E[T]/2t;, pty=(1—p)t,.

The method is applied to the conditional cycle times 7T and T~, which are derived in (11a), (11b) in
conjunction with their means and variances in (26) and (27). We obtain subsequently the arrival
probabilities as follows, where {b,,} are given for {b,} and {5, }.

Case1: 0<c<g1

% (Azy)" A ((tl/tz)(Mz*‘l))k »
bm=-/0 am(t)fc(t) dr= m € kgo il . (29&)

Case 2: ¢>1
y o ()" )" (29b)

m =P T T T 4 ame1”
(L+As)" " (1+x8,)""!
Based on the arrival probabilities (29a) and (29b) and the state equations (9), the Markov chain state
probabilities are calculated. Analogously, the arrival probabilities during the backward recurrence condi-
tional cycle times given by equations (14) can explicitly be written as follows.
Case1: 0<c<1

_ 1 S (A" L
N+ 1y) kgo k€ T tzb’“’ (302)
where b,, corresponds to equation (29a).
Case 2: ¢c>1
An)” Aty
b= (Ar) — + (Ary) — (30b)
2(1+Aty) 2(1 +Azy)

3.3. Calculation algorithm for Markov chain state probabilities

In this section, a numerical algorithm is given to calculate the Markov chain state probabilities and the
system characteristics. The algorithm, which utilizes the expressions derived for the Markov chain state
probabilities and the conditional cycle time, is an alternating iteration scheme, which can be formulated as
follows:
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Algorithm
I. Initialization of Markov chain probabilities for all queues and conditional cycle times.
II. repeat {iteration cycle} 4

for all queues do
begin

i. In the case of general service distribution, calculation of the mean and the variance for the
approximate conditional cycle time 7T, and T~ according to equations (26) and (27).

ii. In the case of general service distribution, calculation of the parameters for the substitute
conditional cycle times according to equations (28a) and (28b), depending on the range of the
coefficient of variation.

iii. Calculation of the arrival probabilities {,,} and {5, } according to equation (23) for the case
of exponential server and constant switchover time or to equations (29a) and (29b) for the case
of general service time distribution.

iv. Calculation of the Markov chain state probabilities { P, ;} for the current iteration cycle
according to equation (9).

v. Update E[T} ;] and Var[Ty ;] for the current iteration cycle according to equations (26) and |
@n.

vi. Calculation of the current convergence indicator 4; defined below in equation (31).

end
until ¢_,4, <e (e.g, e=107°).
The convergence indicator A; for the iteration is defined from
S 5
A;=abs| Y k-P"— 3 k-PUTV . (31)
k=1 k=1

If the convergence condition of the iteration is fulfilled, the arbitrary time state probabilities according to
Section 3.1 and subsequently the performance measures required are calculated.

II. Determine system characteristics
i. Calculate the mean and the variance for the backward recurrence time 7%, and 7~ according
to equations (13).
ii. Calculate {b,*} and {b,,*} according to equations (14).
iii. Calculate the arbitrary time state probabilities { P;* } according to equation (16).
iv. Calculate system characteristics, such as blocking probabilities, mean waiting time etc.
according to equations (17)—(20).

4. Numerical results

Numerical results will be presented and discussed in the following for the two cases of symmetrically
and nonsymmetrically loaded polling systems, in order to illustrate the performance behavior. The time
variables are standardized by 7, ;=1, j=1,2,..., g, and the switchover time is chosen to be constant.
The approximation is validated by means of computer simulations. The simulation results are depicted
with their 95 percent confidence intervals, calculated using the Student-t test technique.

4.1. Symmetrical systems

In this section, two symmetric systems with g = 8 and g = 32 are taken into account. The mean waiting
time and the blocking probability for messages are shown as functions of the offered traffic intensity

00 = ixj-E[TH,j] (32)
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Fig. 2. Mean waiting time vs. offered traffic intensity. Parameters: E[T}, ;] = E[Ty]=0.5E[Ty], S;=10, j=1,2,...,g.

in Figs. 2 and 3, respectively, for different server coefficients of variation. In Fig. 2, a crossover effect of
the waiting time characteristics (g = 8) can be recognized, due to the finite number of waiting places. This
effect can be explained using the fact that at higher load the blocking probability increases and the
effective arrival rate of accepted messages decreases with higher server coefficient of variation.

Figs. 4 and 5 depict the mean and the coefficient of variation of the cycle time as function of the offered
traffic intensity. Fig. 4 exhibits the effect that servers with higher variance lead to shorter mean cycle times
in the range of traffic intensity (0.5, 0.75). It can also be seen in Fig. 4 that for higher traffic intensities the
mean cycle time approaches a maximum value (the maximum cycle), which is given by the sum of
switchover times and average service times for all queues. On the other hand, for lower traffic levels, an
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Fig. 3. Blocking probability vs. offered traffic intensity. Parameters: E[T}, ;] = E[Ty]=0.5E[Ty], §;=10, j=1,2,..., g.
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Fig. 4. Mean cycle time vs. offered traffic intensity. Parameters: E[Ty, ;] = E[Ty]=0.5E[Ty], §;=10, j=1,2,..., 8.

empty cycle is obtained, corresponding to the sum of all switchover times. As expected, for disappearing
message traffic, the cycle time coefficient of variation starts at zero, due to the chosen constant switchover
time. Under overload conditions, where the maximum cycle takes place, the cycle time coefficient of
variation approaches a limiting value, which is independent of the traffic level. As depicted in Fig. 5, there
exists a maximum value for the cycle time coefficient of variation. This maximum increases by increasing
service time coefficient of variation or decreasing means switchover time.

The influence of the finite queue capacity S on the mean waiting time is illustrated in Fig. 6 and on the
blocking probability in Fig. 7, for different traffic intensities. Due to the finite queue capacity, the waiting
time for accepted messages is limited (Fig. 6). However, for dimensioning purposes, the increasing
blocking probability has to be taken into account.
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Fig. 5. Cycle time coefficient of variation vs. offered traffic intensity. Parameters: E[T, ;] = E[T,]=05E[Ty] S;=10, j=1,2,..., 8
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The case of exponential service time distribution function (C, = 1) can be calculated by both methods
discussed in Sections 3.2.1 and 3.2.2. From the approximation accuracy point of view, there is no
significant difference between results obtained using the direct approach and using the moment matching

method. However, the direct method is more effective concerning the computing efforts and the number of

iteration cycles required until convergence.

4.2. Systems with nonsymmetrical load conditions

Nonsymmetrical load conditions exist in polling systems, in which overload occurs in a part of the
system. This phenomenon can be observed, for example in systems with distributed control structures

Blocking Probability B —*

Fig. 7. Blocking probability versus number of waiting places. Parameters: E[Ty, ;] = E[Ty] = 05E[Ty], j=1,2,....8, g=8.
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(switching systems, local area networks, etc.), in the case of a dramatic induction of an overload situation
arising in a particular subsystem throughout the whole system.

The example in this section considers a polling system with g = 3, in which the first queue is considered
to be overloaded with the traffic intensity p, = A, - E[T};;]. Symmetrical conditions are assumed for the
remainder queues.

Figs. 8 and 9 show the influence of the overload in queue 1 to the mean waiting times and blocking
probabilities in queue 2 and 3, for different values of service time coefficient of variation. It can clearly be
seen that the mean waiting time in queues 2 and 3 increases rapidly with increasing traffic intensity until a
certain level (p; = 0.35). Above this level, due to the blocking effects in the system (Fig. 9), the influence of
the local overload situation in queue 1 to other queues in the system is limited.
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Fig. 9. Blocking probability vs. offered traffic intensity of queue 1. Parameters: E[Ty ;] = E[Ty]=0.5E[Ty], S;=10, j=1,2,..., 8,
p2=p3=0.2.
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4.3. Approximation accuracy

The overall approximation accuracy for the given system parameters is sufficient for system engineering
application. However, as expected, the accuracy strongly depends on system parameters, especially on the
number of queues and the mean switchover time. In general, the following tendencies are observed: the
approximation accuracy of the algorithm increases with increasing values of switchover time, increasing
number of queue (cf. [9]) and smaller values of the service time coefficient of variation. The approximation
is also less accurate for extreme nonsymmetrical system configurations and offered traffic intensity
patterns. Concerfiing the essential new model component in this investigation, the assumption of finite
queue capacity, it is observed that the approximation is more accurate for smaller queue capacities (e.g.,
1<5;<10).

Further parameter studies show that the approximation accuracy is satisfactory when the product of the
mean switchover time and the number of queues is larger than the mean service time. It should be noted
here that the results delivered by the presented method always show the same tendencies and phenomena
as they are obtained by computer simulations.

5. Conclusions

In this paper, an approximate analysis approach for polling systems is presented, where the realistic
assumption of finite buffer capacity has been considered. The algorithm can be applied to performance
investigations of a class of computer and communication systems modelled by multiqueue systems with
ordinary cyclic service and switchover time, such as local area networks with token passing protocols or
stored program controlled switching systems with distributed control structures.

The cycle time distribution function, which is required for the iteration scheme in the analysis, was
given in terms of Erlangian distribution functions in the simple case of exponential server or approximated
using a two moment matching method for generally distributed service times. System characteristics of
interest for symmetrical as well as nonsymmetrical load conditions are discussed. It is shown that the
accuracy and the convergence behavior of the algorithm is good over a wide range of system parameters.
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