PO et = Rl e

PREPRIN Teletraffic Congress
Torino, Italy, 1-8 June, 1988

ANALYSIS OF A LOAD-DRIVEN OVERLOAD CONTROL MECHANISM IN
DISCRETE-TIME DOMAIN®

Phuoc TRAN-GIA
IBM Research Division, Zurich Research Laboratory, 8803 Ruschlikon, Switzerland

A general class of overload control mechanism for communication and switching
systems is modeled and analyzed in this paper. The overload indicator is
considered to be the amount of unfinished work in the system. The overload

~control is based on a throttling mechanism for new arriving requests when the
load status of the system is above a predefined threshold. The input process,
modeling the subscriber requests, is assumed to be general and can be
considered under stationary or nonstationary conditions. To model the main
mechanism of this class of overload control strategy, a generic queueing system
of type G/G/1 with feedback, in conjunction with a workload-controlled acceptance
scheme is used. The analysis method works in the discrete-time domain and
allows use of efficient discrete transform algorithms [e.g., Fast Fourier Transform
(FFT)] to determine the system characteristics. In discussing dimensioning
aspects of the overload control strategy, numerical results are given for different
types of input processes and overload threshold parameters.

1. OVERLOAD CONTROL MODELING

In modern communication systems the overload phenomenon and its influence on system
performance has become more critical and complex due to the increasing number of new
system features and customer facilities provided. To guarantee proper system performance,
sensitivity of communication systems against overload must be taken into account in the
design and development phase as well as in the post-cutover phase of a switching system.

‘Modeling approaches for investigation of the overload phenomenon in communication
systems, especially in telephone switching systems [1-9], can be classified in two categories:

i) Overload modeling: evaluation models for overload indicators and time-dependent
requirements for overload detection which include models describing the dynamics of
overload situations and those describing customer behavior.

ii) Overload control modeling: models for performance evaluation of overload control
strategies, where aspects like timeliness, influence on other subsystems, etc., are

considered.

The class of overload control strategy operating with mechanisms which throttie the input
process is often implemented in communication systems, especially in stored program
controlled (SPC) switching systems. The main subject of this paper is this class of control
“strategy in conjunction with a generic queueing model.

The main mechanism of these overload control strategies is based on workload-driven
call-acceptance schemes. We consider two levels of traffic: i) call traffic, representing the
process of subscriber requests and ii) workioad, standing for the amount of tasks or
atomic-processing activities generated during the lifetime of a call. In contrast to various
overload control schemes known in the literature [1,6-9], the actual workload (i.e. the
~ amount of unfinished work in the system) is taken as the overload indicator instead of the
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number of active calls in the system. When the workload exceeds a defined threshold,
arriving customers are rejected.

The basic mode! of the class of overload control strategy considered In this paper Is of type
G/G/1 with a feedback-controlled input process. This generic model leads to a modified form
of the Lindley integral equation [10]), when the analysis Is derived in the continuous-time
domain. In this case, solutions are only given for some specific sysiems or as
approximations [1). To obtain a generally applicable exact calculation algorithm, analysis
methods operating in the discrete-time domain are employed in this paper (cf. [11-14]). A
further obvious Justification of the discrete-time approach is the fact that the parameterization
of model components is often based on measured data in terms of histograms.

An algorithm to calculate system characteristics (e.g., customer blocking probability) is
developed to estimate the performance of the overload contro! strategy. The discrete-time
analysis technique used here takes advantage of efficient convolution and transformation
algorithms (e.g., the Fast Fourier Transform FFT [3,6,11]). The results obtained show system
behavior under stationary and nonstationary load conditions.

2. BASIC MODEL FOR LOAD-DRIVEN OVERLOAD CONTROL

The basic structure and related parameters of the overload control model are illustrated in
Fig. 1. In principle, the model has the structure of a G/G/1-system with a feedback control
path. Note that although the model and the analysis presented can be more generally
applied, we restrict ourselves to the context of call-acceptance and set-up procedures in
switching systems. Some motivations for applications in call-control processes of switching
systems are mentioned below.

FIGURE 1
The basic load-driven overload control model.

The input process, which models the call arrival process and the service time which models
the call set-up time are assumed to be general. In the following, a call will be also referred
to as a customer. A further assumption made for these two processes is that they can be
customer-dependent, i.e., the interarrival time and the service time can be individually
chosen for each customer. Reasons for this general assumption is useful e.g., in the
modeling of realistic call mixes in systems with integrated services and in the construction
of nonstationary overload patterns offered to a system.

As indicated in Fig. 1, the following symbols and random variables (r.v.) are used:

An r.v. for the interarrival time between the n-th and the (n+1)-st customer.
B, r.v. for the service time of the n-th customer.
U, r.v. for the amount of unfinished work (workload) which remains In the system

(e.g., the number of call handling tasks to be executed) immediately prior to
the arrival Instant of the n-th customer. This measure Is used as overload

indicator.

L threshold value of the overload control mechanism.



The maln mechanism of the overload control strategy discussed Is based on the following
workload-driven customer acceptance scheme:

U, <L the arriving call will be accepted

Up2 L the arriving call will be rejected

3. ANALYSIS IN THE DISCRETE-TIME DOMAIN

3.1. Notation

In the context of discrete-time analysis, we consider the random variables to be of
discrete-time nature, i.e., the time axis is divided into intervals of unit length At. As a
consequence, samples of those random variables are integer multiples of At; the time

discretization is equidistant.

The following notation is used for functions belonging to a discrete-time random variable
(rv.) X ‘

x(k)=Pr(X=k), —oo<k<+oo distribution (probability mass function) of X

k
Xk)= ¥ x(i), —oo<k<+too distribution function of X

j=—00
EX, cx mean and coefficient of variation of X

3.2. OQutline of the Analysls

A sample of the state process development in the system is shown in Fig. 2. Observing the
n-th customer in the system and the condition for customer acceptance upon arrival instant,
the following conditional r.v. for the workload is introduced:

Upo = UplUpy <L, Upg = UgqlUp 2L, (3.1)

Un+1‘0=Un+1|Un < L, Un+1'1 =Un+1lUn > L. (32)
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FIGURE 2
Sample path of unfinished work in the system.

Thus, the distributions of these random variables can be obtained:

L—1 L—1 :
Lu,k) ] Lo ()]
upolk) = oPr{U:n<(L)} - = L—1u o0 (33)
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Lup) ] Lupk) ] :
unalk) = %r(t!:(z)u e ! (34)
Z“n(')

=L

where 6™(.) and o,(.) are operators which truncate a part of a probabllity distribution
function. The results of these operations are unnormalized distributions as follows:

¢ M [x(k)]= {;(k) ’k‘ ; 2 (3.5)

o m [x(K)] = {200 ';: . (3.6)

Taking the development of the process (cf. Fig. 2) with the overload control strategy
discussed above into account, the following relationships between the random variables and
their distributions can be obtained:

i) U, < L :customer acceptance

wox (0,
Unt10 =Un,0+Bn’°An> (3.7)
Une100) = molup (k) * by(k) * a(—k)J , (3.8)

where the operator =, is defined as

0 k<m

T m(x(K)=< D, ) k=m (3.9)
{=—00
x(k) " k>m

and the %-symbol! denotes the discrete convolution operation:

400
agk)=aq(k) * ap(0= ). as(k—1) - a0)- (3.10)

j=—00

ii) U, = L : customer rejection

A (O/
Uns,e = Una —An) (3.11)
Unet (k) = nolu .4 (k) * ag( -k)] . (3.12)
The distribution of the workload seen by the (n+ 1)-st customer can be written as:
Uppq(k) = Pr{Up<L} - u n+10(K) + Pr{Ug2L} - upyq9 (k). (3.13)

From Egs. (3.8), (3.12) and (3.13), we finally arrive at a recursive relation to calculate the
workload at arrival epochs of customers:

Uy () = RO[OLJ[U n(0Txb ()% an(~k)] + mo[ofun(]xas( k)]

. (3.14
- no[(al'—1[un(k)]*bn(k) + oL[un(k)])*an(-k)] (344



Using Eq. (3.14), an algorithm for t{he calculation of the workload prlor to customer arrivals
can be found for both stationary and nonstationary traffic conditions. The computational
diagram is shown in Fig. 3.
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FIGURE 3
Computational diagram for G/G/1-system with feedback control.

The blocking probability of the n-th arriving customer is

(o]

Ban = ).un(). (3.15)

i=L
4. SOME NUMERICAL RESULTS

Some results for the dimensioning of the overload control threshold where the discrete time
axis is scaled to At= 1 will be discussed briefly. Time variables are normalized to the mean
service time EB=20 At. The offered traffic intensity is denoted by p = EB/EA.

To obtain a parametric representation of random process types, we consider the interarrival
and service times having distributions given by their two parameters, e.g., the mean and the
coefficient of variation, whereby the negative binomial distribution is employed (cf. [14]).
Thus, for a r.v. X with mean EX and coefficient of variation cy

X(k)=(Y+t—1)py(1—p)k ) 0<p<1, yreal,
1 EX

p= R A ; , EX.ck > 1.
EX . ¢k EX.ck — 1

(4.1)

Note here that the coefficients of variation of the discrete-time processes are intentionally
chosen to be equivalent to the deterministic (ca.cg = 0), the Erlangian of 4-th order
(ca, cg = 0.5), the Markovian (ca cg = 1), and the hyper-exponential (ca. cg = 1.5)
distributions.

The impact of the call arrival process on blocking probability is illustrated in Fig. 4 where
customer blocking depends strongly on the coefficient of variation of the Interarrival time.
Customer blocking probability is depicted in Fig. 5 as a function of the threshold of the
overload control strategy for different types of interarrival processes and traffic conditions.
Figures 4 and 5 show that, for a proper dimensioning of the threshold value of the overload
contro! strategy, the arrival process characteristics must carefully be taken into account.
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f the load-driven overload control strategy is depicted in Fig.
{ the arrival process the customer number is marked on the
We investigate the system reaction in terms of
-term overload patterns. These patterns are

FIGURE 6

Nonstationary behavior of the overload

contro! mechanism.



According to this, the mean duration of the overload pattern Is 25.EB. We assume further
that the first customer (n=0) finds an emply system (Bap=0). For the given parameters, the
speed of the dynamic system reaction to the nonstationary overload pattern ls relatively
independent of the type of the arrival process.

5. CONCLUSIONS

An exact analysis of a general class of overload control strategy applied in communication
switching systems is presented. Using the analysis derived in this paper system behavior,
under steady state load conditions as well as transient behavior of systems under short-term
overloads, can be investigated. The performance modeling is done using a generic
queueing system of type G/G/1 with controlled input process. The modeling approach takes
two main principles of these overload control strategies into account: i) instead of the
number of active calls in the system the actual workload (i.e., the amount of unfinished work)
is taken as the overload indicator and ii) the call-acceptance mechanism is directly
workload-driven, (i.e., when the workload exceeds a defined threshold, arriving customers

are rejected).

To obtain a generally applicable exact analysis algorithm, methods operating in the
discrete-time domain are employed in this paper, allowing us to take advantage of efficient
convolution and transformation algorithms like the FET. The discrete-time analysis approach
is advantageous as the parameterization of model components can be done directly based
on measured data in terms of histograms. An algorithm to calculate system characteristics
is derived to estimate the performance of the overload control strategy. The results
presented show system behavior under stationary and nonstationary load conditions.
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