INSTITUT FUR
SEEEH Universitat Stuttgart KOMMUNIKATIONSNETZE
: : 9 UND RECHNERSYSTEME

* ,0‘0:‘0‘0 :' * - -
o Prof. Dr.-Ing. Andreas Kirstadter

Copyright Notice

© 1987 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must
be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright
and all rights therein are retained by authors or by other copyright holders. All persons copying this
information are expected to adhere to the terms and constraints invoked by each author’s copyright. In
most cases, these works may not be reposted without the explicit permission of the copyright holder.

Institute of Communication Networks and Computer Engineering
University of Stuttgart
Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Phone: ++49-711-685-68026, Fax: ++49-711-685-67983
Email: mail@ikr.uni-stuttgart.de, http://www.ikr.uni-stuttgart.de







(

PERFORMANCE ANALYSIS OF SEMIDYNAMIC SCHEDULING STRATEGIES IN
DISCRETE-TIME DOMAIN

Phuoc TRAN-GIA*, Erwin RATHGEB

Institute of Communications Switching and Data Technics, University of Stuttgart, FRG

Abstract. Semidynamic scheduling strategies used in
load sharing, routing or job scheduling problems form
a class of mechanisms, which lead to delay
optimizations in distributed systems. A performance
investigation for semidynamic scheduling strategies
using discrete-time analysis methods is presented in
this paper. The interarrival process as well as the
service process are characterized by means of
generally distributed random variables. The arising
performance model can be decomposed into
submodels in an exact manner. The analysis of
submodels includes, e.dg., the discrete-time
investigation of the general class of G/G/1 models with
general service and cyclic renewal input processes.
In order to compare semidynamic scheduling
strategies with random scheduling schemes, a model
example is given, for which numerical results are
provided to show the influences of a range of system
parameters, e.g., the types of input and service
processes, the traffic intensity, etc., on the system
performance.

1. Introduction

in distributed systems the messaging delays are
strongly influenced by the applied load sharing
mechanism, routing strategy or scheduling scheme. In
a common class of distributed processing systems a
decentralized architecture is employed, where a
number of heterogeneous processing units of different
speeds and service characteristics share service of an
incoming job stream. This architecture can be found,
e.g.,, in file server systems, distributed databases,
switching processors in stored program controlled
(SPC) systems, etc. In such systems, the incoming
traffic has to be distributed among the processing
units (cf. Fig. 1) according to a predefined scheduling
strategy, taking into account the load conditions and
the properties of the dedicated servers. The aim of the
scheduling strategy design often is an optimization of
the delays for customers or jobs. A scheduler can
be characterized by means of the following
characteristics:
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Fig. 1. Load distribution and scheduling.

(i) Load distribution scheme:

Defines the amount of load which is directed to
each processing unit. Examples are:

— Load balancing scheme: Load is distributed in
such a way, so that the heterogeneous servers will
have the same utilization factor.

— Load-driven or Dynamic: Load is distributed
depending on the actual system load, in order to
symmetrize the actual load in all processing units
(e.g., an incoming job will join the queue with
lowest actual load level). ’

Scheduling scheme:

Determines the order how to distribute- the load
according to the applied load distribution scheme.
Examples are:

— Random scheduling: The amount of load which
is dedicated to the i-th processing unit will be
formulated as a branching probability p;, according
to which the incoming traffic will be randomly split
(Bernouili branching).

— Semidynamic. The load distribution s
implemented according to a deterministic
scheduling cycle. The number of scheduling

positions of a queue is proportional to the amount
of traffic distributed to this queue.

The differemt load sharing strategies require
different levels of information about the system state.
An overview including an extensive classification of
scheduling strategies has been given in Wang and
Morris [17]. Buzen and Chen [5] presented an



algorithm to define the optimal load distribution
scheme assuming the random scheduling strategy,
Poisson input processes and general service times. In
Yum [16] semidynamic scheduling sirategies have
been presented and investigated in the context of
routing problems in computer communication
networks, whereby Markovian input and service
processes are taken into account. Analysis and
performance comparisons concerning the random and
semidynamic scheduling schemes have been given in
Agrawala and Tripathi [3,4] and Ephremides et al. [7].

The performance analysis of models for scheduling
strategies, especially for semidynamic schemes ieads
to a number of submodels, for which a closed-form
solution or a numerical algorithm in continuous-time
domain and related transforms are not available. In
most of the performance studies mentioned above,
Markovian assumptions for arrival or service
processes are often considered, where solutions in
transform domain can be obtained (cf. [4]).

In this paper, general assumptions are made for
arrival and service processes, by means of which
effects appearing in real systems like the influence of
heterogeneous servers and non-Poissonian arrival
processes on the performance of the scheduling
strategies can be investigated. The analysis employs

methods developed for discrete-time queueing
systems [1,8,15]. ~
2. Models of Scheduling Strategies
in this section the queueing model and the

according scheduling strategies will be defined.
24 Load Distribution and Scheduling Model

As illustrated in Fig. 1 the queueing system
consists of a number N of single server queueing
stations, which represent the processing units. The
offered traffic of each queue results from the load
distribution performed by the scheduler. As mentioned
above, the main subject of interest is the quantitative
load distribution among N heterogeneous servers of
different capacities and service-time distributions.

The main arrival process is assumed to be a
renewal process with generally distributed discrete
interarrival time and the service processes to be
general discrete-time processes. The following random
variables (r.v.) are used:

A r.v. for the interarrival time of the main arrival
process

B; r.v. for the service time of server i.

The queues are thought of to be infinite and the
service discipline is first-in, first-out (FIFO); thus, the
waiting time of a job only depends on the amount of
unfinished work in the system (queue and server)
seen upon arrival. The following notations for
functions belonging to a discrete-time random variable
X will be used:
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x(K)=Pr{X=k}, —oo < k< +o00

o (2.1a)
distribution of X
k
XK)= ) i) —oo <k< oo (2.1b)
j=—00 :distribution
function of X
(oo
—k
X71(2) = Z x(k) z
z7(2) (k) 2.10)
k=—c0

:Z-transform of x(k)

EX mean of X

cy coefficient of variation of X.

In the analysis, where the sum of independent random
variables of the same type is used, the r.v. and the
according distribution obtained by convolution are
denoted as: '

XD = XE X+ .+ X (2.2a)
N —
j-times
D)= x(k) * x(k) * .. * x(k) . (2.2b)

—
j-times

in the following, attention is devoted to the load
balancing scheme used as load distribution principle,
according to which all servers in the system have the
same utilization factor (i.e., the normalized traffic
intensity)

EB;

=1,
EA, =0

pi= =p, N . (2.3)

’

With the service time factors k; defined by

k=0 2.4
i_-_EB_1_t ()

the mean interarrival time at queue i can be given as
follows

EA; = kiEA; . (2.5)

Considering the conservation of flows in the system
we arrive at

(2.6)

Thus, we obtain for the mean interarrival time of the
input process offered to queue i
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2.2 Semidynamic vs Random Scheduling
The characterization of input processes at

individual queues depends on the applied scheduling
scheme, as specified in the following:

(i) Random Scheduling Scheme (RS):

According to this strategy the traffic offered to a
queue i results of a Bernoulli branching of the
main input process with the routing probability
given by

EA

Pi

the input process at each queue is again a renewal

process. The calculation of these decomposed
processes in discrete-time domain will be dealt
with in section 3.1.

(if) Semidynamic Scheduling Scheme (SD):

The jobs are distributed in a cyclic manner. In
general, the input process can be described by
means of a cyclic input process (or alternating
renewal process [6]). Since, the performance
investigation requires an algorithm to analyze
general single server queues with cyclic inputs, as
will be described in section 3.3.

2.3 Model Example

2.3.1 Model Parameters: For the numerical
computations in section 4 a system with three servers
(N = 3) is considered. According to the load
balancing scheme the service time factors result to

EBy 3

EB,

EB
—3_3

(2.9)

From eqgs. (2.7) and (2.9) the routing probabilities p;
are obtained

1 il

Py = (2.10)

1
pq = 57 Py 3
For the semidynamic scheme, in order to fulfill the
load distribution scheme given in eq. (2.8) the minimal
cycle length is 6. During each cycle the servers 1, 2
and 3 will receive 3, 2 and 1 jobs, respectively. There
exist ten alternatives to design such a cycle using
different groupings for the appearances of the servers.
According to this cycle length, two semidynamic
scheduling schemes will be defined and investigated

for comparison purposes:

— Semidynamic Scheduling Scheme 1 (SD1) defined
by the sequence

111223.
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In this scheme the appearances of the servers are
grouped together in blocks.

— Semidynamic Scheduling Scheme 2 (SD2) defined
by the sequence

312121,

In this scheme the appearances are distributed as
regular as possible over the cycle.

2.3.2 Description of Submodels

a) Random Scheduling

As mentioned in section 22, the processes
resulting from a random decomposition still are
renewal processes and therefore the waiting time
distributions for the RS scheme can be evaluated
using standard methods for discrete-time GI/G/1
systems as described in section 3.2.

b) Semidynamic SD1

In the SD1 scheme the jobs are distributed as
depicted in Fig. 2, where the interarrival processes at
individual processing units are illustrated.

Al
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Fig. 2. Input process characteristics for the
semidynamic scheduling SD1.

As a result we observe at processing unit 1 a cyclic
input with an arrival cycie consisting of three
segments. The interarrival interval is of length A for
the first and second segment and of length A 4) for the
third segment. These three segments yield to an
arrival process which is obviously non-renewal and
has to be analyzed using the methods described in
section 3.3. Similarly, the cyclic input process at
processing unit 2 consists of two segments of length A
and A, respectively.

A special case of a cyclic input can be observed for
processing unit 3, where only one segment of length
A®) occurs. This process still is a renewal process and
can be obtained from the main arrival process by
means of convolutions. Because of this characteristic
we call this class of processes “convolved” inputs.
Their renewal property makes convoived inputs
amenable to the more efficient analysis with standard
methods for discrete-time GI/G/1 systems.

¢) Semidynamic SD2

The processing units 1 (A(2)) and 3 (A(6)) in the SD2
scheme fall into the class of convolved input
submodels, whereby for processing unit 3 there is no



fifference between the SD1 and the 5D2 scheme.
>rocessing unit 2 has to be analyzed using the
ilgorithms for G/G/1 queues with cyclic inputs due to
ts two-segment cyclic arrival process.

.4 System Characteristics

The performance measures of the whole model are
ybtained from the characteristics calculated in the
submodel analysis. Denote W to be the waiting time
or an arbitrary job entering the system and W; the
wvaiting time of jobs distributed to the i-th processing
mit, the overall waiting-time distribution can be
jetermined by a weighted summation

N
w(k)= ) pywi(k) .

i=1

(2.11)

lhe distribution of the sojourn time F of an arbitrary
ob of the main arrival process is given by:

pa

0= plwk) * bk)] . (2.12)

=1
3. Discrete-Time Analysis of Submodels

In this section, analysis methods for the submodeis
arising out of the scheduling models described above
will be presented.

Renewal

34 Decomposition of Discrete-Time

Processes

According to the random scheduling scheme (RS)
the main arrival process is considered to branch
randomly to the i-th processing unit with the
probabiiity p;. The input process of queue i is a
renewal process described by the rv. A; with the
distribution given as follows (cf. [11]):

piazr (2)
1—(1=plazr(z)

ajz7(2)= (3.1)

3.2 Discrete-Time Analysis of GI/G/1-Queues

For the discrete time as well as for the continuous
time GI/G/1 system several approaches to compute
the waiting-time distribution w(k) have been proposed
[1,97, most of which are based on the Lindley Integral
Equation [8,11]. Assuming the distributions for
interarrival and service times to be of finite length
according to

a(k)=Pr{A =k}, k=0,1,..,ny— 1,0y < c0,(3.2a)

b(k) = Pr{B =k}, k=0,1, ..,ng —1,ng < oo, (3.2b)

in the discrete-time domain an equivalent form of this
equation is given for stationary conditions by
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w(k) = n(w(k) * c(k)) ,
where (3.3)
c(k) = a{ —k) * b(k) ,

and the discrete n-operator is defined by [1,8,14]

x(K) k>0
n(x(k)) = S (3.4)
x(i) k=0.
i:Zoo

The derivation of eq. (3.3) can be found in [14]. This
eq. can be solved by iteration in the time domain
(probability domain) [1] or directly, without iteration
in the frequency domain. The latter method has been
found to be more effective for computation, especially
when the distributions a(k) and b(k) are relatively long
(> 270 elements). To get eq. (3.3) into a suitable form
for solutions in the frequency domain we introduce the
discrete probability distribution function W(k) and
express (3.3) as

0
W)= < k) % W(K)

Defining a sequence W—(k) similar to Kleinrock [9] as

w‘m:{ ;(k) * Wik) tig (3.6)

k<0

k>0 . (3.5)

and using the Z-transform to get into the frequency
domain we get

Wzr(2)
Wiy 0@ e

or, replacing the probability distribution function by
the probability distribution

Wzr (2) _ cz(z)~ 1 B
Wzt (Z) - 1 2—1 - SZT (Z) . (38)

For finite length sequences a(k) and b(k), c(k) is also a
finite length sequence. Furthermore, the function
cz7(2) can be shown to have a single zero for z = 1.
Taking into account these properties Sz7(z) has to be
a finite polynomial in 1/z and for that reason has no
poles. It can also be shown that the term W7y (z) is a
polynomial without poles for a finite length c(k).
Applying the theorem of Enestrdm and Kakeya [1] to
W—( —k) we find, that all zeros of Wz (z) are located
outside the unit circle. The function wyzr(z) is the
Z-transform of a probability distribution and converges
for z = 1. From that we can conclude, that wzy(z) has
only poles inside the unit circle and so all zeros of
1/wz7(z) have to be located inside the unit circle as

e,

B e S

i b,




well. Since Sy7(z) and Wz(z) have no poles and the
latter function only has zeros outside the unit circle it
is obvious, that 1/wy7(z) can have no poles. To obtain
Wzt (z) from eq. (3.8) it is thus necessary to find the
zeros of Sy7(z) and to separate them with respect to
their location to the unit circle.

Two principles have been proposed to accomplish
this separation numerically:

— The polynomial factorization algorithm as proposed
by Konheim [10]. In this algorithm the zeros of the
characteristic function have to be explicitly
determined, which may be ineffective for
interarrival and service-time - distributions with a
great number of elements. Furthermore, the results
are given in the frequency domain only and further
computations are required to get them into the
probability domain.

The complex cepstrum algorithm as presented by
Ackroyd [1]. This algorithm takes advantage of the
properties of the complex cepstrum [12] and all
operations  involved, e.g., convolutions and
correlations, can be computed using highly
effective Fast Fourier Transform algorithms. The
result of this algorithm is the waiting-time
distribution in the probability domain. An
implementation of the Ackroyd algorithm has been
used, in combination with a decomposition
procedure implementing eq. (3.1), for the
computation of the random scheduling scheme as
well as for the parts of the semidynamic schemes
with convolved inputs.

3.3 Discrete-Time Analysis of G/G/i-Systems with
Cyclic Inputs

in the literature solutions of queueing systems with
cyclic inputs can be found in continuous-time domain,
mainly for systems with Poisson input [4]. In order to
investigate the system with more general assumptions,
e.g., heterogeneous service process and general
cyclic input, an analysis approach in discrete-time
domain will be presented in the following. It should be
noted here that this class of problems can be dealt
with using results and algorithms employing
Levinson’s method for systems with cyclo-stationary
behavior [2]. In this chapter the aiternative applying
iterative convolutions will be described.

Wn(k)
T

Wiz(k)

— —

3.3.1 Algorithm in Discrete-Time Domain

We consider a single server with arbitrary
distributed service times in discrete-time domain. The
input process is cyclic and consists of a number n of
interarrival intervals. With respect to the processing
unit i these intervals will be denoted by means of the
r.v. AU" j=1,..,n. Within a cycle an interval Aij is
assumed to be started with the job j which
experiences the waiting time W,;. For the first-in,
first-out service discipline, W, is the amount of
unfinished work seen from joé j upon arrival (cf.
Fig. 3). The service time of job j is denoted by the r.v.
Bijv j=1,...n. Considering the process development of

A

Wi2

Wi3

4 ARRIVAL CYCLE——P]

Fig. 3. A sample path of unfinished work in a
single server queue with cyclic input.

-
unfinished work during an arrival cycle, as depicted in
Fig. 3, the following equation system can be obtained
under stationary conditions for the random variables

Wi,j+1 = max(Wij + BIJ - Aij' O), ] =1,..,

,n—1,
(3.9)
Wi1 = max(Wm + Bin - Ainy 0) ’

and accordingly, for the waiting time distributions

Wi 4(k) = m(wij (k) H by (k) * ai( —K)),
j=1,..,n—-1,
wig(K) = m(Win(K) * byy(k) * aj(—k)) .

(3.10)

Cin

(k)

Fig. 4. Flow graph of the algorithm in time domain.
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In accordance with eq. (3.10), the waiting time
distributions of jobs in the next arrival cycle can
successively be calculated from those of the current
arrival cycle. Using this fact the equilibrium
waiting-time  distributions can be determined
iteratively, as schematically depicted in Fig. 4 (cf.
[15]). This iteration scheme is referred to as the
method of iterative convolutions. For large vector.
sizes of the arrival and service distributions, the
discrete convolution operation can effectively be
implemented using standard algorithms, e.g., the Fast
Fourier Transform (based on the Discrete Fourier
Transform) [13].

3.3.2 Waiting-Time Distribution

The waiting-time distributions of jobs within a
observed cycle wj(k)j =1, .., n, which are obtained by
means of the iterative convolution described in the
previous subsection, form the basic requirements for
the calculation of further system characteristics.

The waiting time distribution of an arbitrary job
arriving at the observed processing unit i can be
determined as follows: ‘

wik) =" wk).

Naal

K
L

4. Numerical Examples

In order to provide a quantitative comparison of the
scheduling strategies discussed above, the model
example as presented in section 2.3 will be
investigated. The three scheduling mechanisms
considered will be referred to as

- RS : Random Scheduling

- SD1: Semidynamic Scheduling with the sequence
111223

- 8D2: Semidynamic Scheduling with the sequence
312121,

In order to investigate the influences of the random
processes in a systematic way we will consider the
random variables having distributions given by the
first two moments. In this context, the arrival process
and the service processes will be characterized by
means of the negative binomial distribution:

x(K) = (V e 1) (1 - ¥, 0<p<1,y real (4.1)

The mean and the coefficient of variation are given by:

y(1-p) 2 1
EX=——"1 f=o (4.2)
P Y1)
or
1 EX
EX.cy EXecy — 1
where

(3.11)
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EXeck > 1. (4.4)

The time measures will be given in a normalized form
with the discrete time unit At=1. For the mean waiting
time EW, of jobs at individual queues, Fig. 5 shows a
comparison of the worst performing scheme (Random
Scheduling) and the scheme with the best
performance (SD2). The server coefficients of variation
have been set to cg= 0.5, which are equivalent to
continuous-time Erlangian distribution of 4-th order
(EBy = 30, p = 0.5). The mean-waiting times have been
normalized to the mean service times of the
corresponding servers. It is obvious from Fig. 5 that
for any queue the normalized mean waiting time is
higher for the RS scheme than for the SD2 scheme
over the whole range of cp.

NORMALIZED MEAN WAITING TIME ——~>

0.0 ! ' .
0.0 0.5 1.0 1.5
INTERARRIVAL TIME COEFF. OF VAR, —~——>
Fig. 5. Influence of scheduling strategies on
queue individual waiting times.
The coefficient of variation of the interarrival

process at queue i for the RS scheme is known as
[117:

2 2 -

CAizpiOCA+(1‘pi) . (45)

According to this formula cp3rg is the highest of

the cpjrg for cp < 1, for cp, = 1 there is a cross-over

point with CA1,RS = CAQ\RS = CA3,RS =1 and for CaA > 1,
CAS,RS is lower than CA1.RS and CAQ.RS'

Since a higher interarrival time coefficient of
variation implying a higher normalized mean waiting

.

s,




time, the same behavior can be observed for these
mean-waiting times.

As far as the SD2 scheme is concerned, queue 1
and queue 3 have got convolved inputs. In this context
it shall be mentioned here, that mean value and
coefficient of variation of a convolved input process
are defined by

Ela0]=j.EA (4.6)

(4.7)

According to eq. (4.62 the normalized mean-waiting
time of queue 1 (A1 =A 2)) has to be higher compared
to the one of queue 3 (A3 = A(S)) over the full range
except for Cp= 0, where CA1,SD2 = CA&SDQ = 0.

For the cyclic input queue 2, due to the alternating
input process, casgpy is greater than 0 even for
cp =0, which results in a higher normalized waiting
time compared to the queues 1 and 3 at this point.

Figure 6 shows the waiting-time coefficients of
variation of the queues for the same parameters and
Fig. 7 shows the complementary waiting-time
probability distribution functions for the case where
cp= cg ='0.5. Figures 8 to 10 show a comparison of
the mean overall waiting times for the three
scheduling schemes. The mean-waiting times have

WAITING TIME COEFF. OF VAR, =—=>

0.50 0.75 1.00 i.

3.25
INTERARRIVAL TIME COEFF. OF VAR, —=->

Fig. 6. Influence of scheduling strategies on the
waiting time coefficients of variation.
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Fig. 7. Queue individual complementary waiting
time distribution functions.
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1.5

s
o

o
w

.0 0.5 1.0 1.5

SERVICE TIME COEFF. OF VAR, =~-=~>

Fig. 8. Influence of scheduling strategies and
types of servers on waiting times.



NORMALIZED MEAN WAITING TIME —~->

NORMALIZED MEAN WAITING TIME —==>

(=]
o@

1.5

.0 ' o.ls 1.0 1.8
INTERARRIVAL TIME COEFF. OF VAR. ~==>

Fig. 9. Influence of scheduling strategies and
types of arrival processes on waiting times.

W

n

"3

0.2 0.3 0.4 0.5 0.6 0.7 0.8

SERVER UTILIZATION -=-->

Fig. 10. Influence of scheduling strategies
and server utilizations on waiting times.

been normalized to the overall mean-service time
EB = 45.

These figures demonstrate that the SD2 scheme
performs better than the SD1 and the ‘RS scheme,
independent of c, (Fig. 8), cg (Fig. 9) and the traffic
intensity (Fig. 10).

5. Conclusion and Outlook

In this paper, a performance investigation for
scheduling strategies using discrete-time analysis
methods is presented, whereby attention is devoted to
the class of semidynamic scheduling strategies which
are used in load sharing, routing and job scheduling
problems in distributed systems. General assumptions
are made for arrival and service processes, by means
of which effects appearing in real systems like the
influence of heterogeneous servers and non-
Poissonian arrival processes on the performance of
the scheduling strategies are investigated.

The model is decomposed into submodels in an
exact manner. The analysis of the the arising
submodels includes a new class of models with
non-renewal processes, i.e., G/G/1 models with
general service and cyclic input processes.

Different variations of semidynamic scheduling
strategies are compared with the random scheduling
scheme using a model example, for which numerical
results are provided fo show the influences of system
parameters on the overall system performance.
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