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In modern real-time processing systems the intelligence is distributed among a number of in-
dividual processors operating in modes of functional or load sharing. Communication between
distributed processors is often organised in the form of message interchanging according to
an event transfer protocol. In this paper, a performance -analysis is given for the commonly
used clocked event transfer scheme, where a two-level queueing system is investigated. For
the analysis a dimension-reduction of the two-dimensional description of the imbedded Markov
chain is developed. Numerical results for dimensioning purposes are discussed, especially
for event delay characteristics under different traffic conditions, clock intervals, and
buffer sizes. Finally, the distribution function of the prequeueing delay is presented for
the two event transfer disciplines first-in first-out and random.

1. INTRODUCTION

In distributed processing systems, especially
in communication applications, the rates of
real-time events, which have to be handled by
several processors, are very high. These events
are generated by peripheral devices or users,

or are caused by inter-processor communications.

Fig. 1 illustrates a basic control structure

of a multi-processor system where events are
preprocessed by peripheral controllers (process
level A) and stored in event buffers as valid
events in a logical sense. They have to be
transferred to another processor (process level
B) according to an event tramsfer protocol for
further processing. An optimal transfer
protocol for this high event rate allows to
increase the throughput and to optimize delay
characteristics. The most commonly used event
transfer protocol is the clocked scheme,
whereby events are transmitted between differ-~
ent processors in a batch-wise manner at a
scheduled time, initialised by a real-time
clock. The event transfer protocol includes

the initialisation of transfer, transmission
control, acknowledgment etc..

There are a number of studies [1,2,5,6,7] which
investigate the performance of event sampling
and transfer schemes by means of one-level
basic gueueing models with scheduled batch
arrivals. Some of them [1,4] deal with models
having infinite waiting capacity. [5} con-~
siders dimensioning aspects for models with
batch input and finite queue capacity, whereby
the blocking probability is calculated for
events and batches, which are partly or fully
rejected according to the number of free
waiting places. Several event transfer schemes
with batch arrivals and overhead are discussed
in [6], in which a number of events in a batch
is considered to be lost when the actual batch
is larger in size than the actual number of
free waiting places.

In order to analyse the system depicted in
Fig.1, a two-level queueing system is investi-
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Fig.1  Basie Control Structure for a
Distributed Processing System

gated in this paper, where a clocked event
transfer protocol is considered.

In principle an approximation of this model is
possible using two separate one-level queues.
This method implies an independence assumption
for the two queues, the primary queue and the
secondary queue for events to be transferred
(c.f. Fig. 2). Because of this assumption the
accuracy of the one-dimensional approximation
depends very strongly on system parameters.
Therefore, an exact analysis requires a two-
dimensional model which will be presented in
the next section. Fortunately, computational
efforts can be reduced by the analytical
method described in section 3.

2. MODELLING OF CLOCKED EVENT TRANSFER
BETWEEN TWO PROCESSORS

The gueueing model considered in this paper has
the structure shown in Fig. 2. Event arrivals
constitute a Poisson process with rate A. This
assumption is based on the observatiocn that the
incoming event stream is the superposition of



offered traffic from a large number of differ-
ent devices and users connected to the processor.
Taking into account the different types of
events and the tasks and programs they may
activate, the service time TSE for events is
assumed to be negative exponen%ially distrib-
uted with mean 1/u.
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Fig.2 The two~level queueing system

Every event transfer activity which is con-
trolled by the processor is usually performed
by the same I/0 task and has approximately the
same run-time during which the processor is not
available for event processing. Therefore, the
whole clock period T consists of two parts: the
overhead time T and the active service period
T,(c.f. Fig. 2)7" It should be noted here that
during the active service period the server is
available for event processing but not neces-
sarily busy. In this paper the clock period is
chosen to be constant. This is often the case
in real systems where the I/O phases are
activated by a real-time clock. Another reason
for this choice of T can be found in [6]. It is
shown there that a well dimensioned clocked
scheme is relatively robust with respect to
event traffic intensity. The primary queue is
considered to have the finite capacity S. At a
clock instant when the actual batch (i.e.
events existing in the secondary queue prior to
the clock instant)is larger in size than the
number of free waiting places in the primary
queue, all free positions will be filled and
the remaining events must wait for retrial
until the next clock instant.

Each batch consists of two parts, the fresh
part and the reattempt part. All arrivals
during the clock pericd form the fresh part;
the reattempt part contains events which have
been rejected at the previous clock instant.

The total sojourn time of an event in the whole
system is composed of three components:

-~ The prequeueing delay T
time in the secondary
to be sent.

; i.e. the waiting
queue for events

PQD

- The queueing delay T __, i.e. the waiting time
in the primary queue,~ including overhead
periods.

- The service time Tsgr

Tpops Two and Tp will be considered as random
variables in the next section.

3. ANALYSIS OF THE TWO-LEVEL QUEUEING SYSTEM

In this section performance measures of the
above described two-level queueuing system are
presented. Subsection 3.} discusses queue
stability conditions and subsection 3.2 deals
with the system state probabilities. Subse-
quently, system characteristics will be derived
in 3.3.

3.1 Queue Stability

Since we consider the overhead time T and a
finite primary queue capacity S, the system
is only stable under certain conditions derived
below. For given values of T, S, and offered
traffic intemsity 0 (p=A/U)° we can calculate
a lower and an upper limit for the clock period
T, for which the system is stable. The lower
limit T is found using the fact that the
active s€rvice time T_ in which the server is
available must be long enocugh to serve all
arriving events on average:

Ty = TOH/(l - 0) (3.1
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Fig.3 Queue Stability Conditions (Toy=1/u)

On the other hand, if T becomes tco long, the
batch sizes are also very large on average and
the finite queue is likely to be filled
completely at each clock instant and tends to
be empty before the next clock. The upper limit
TMAX is given by:

TMAX = N/X\ (3.2)

where N = S + 1 is the primary system size.

The queueing system is stable for

<
TMIN < T TMAX (3.3)



The queue stability condition (3.3) is illus-
trated in Fig. 3. For S = 5 the system is
stable in the hatched field. The dashed lines
show the upper limit for other values of S.

3.2 The Imbedded Markov Chain and System
State Probabilities

In Fig. 4 we consider the two-dimensional
random process {X(t), Y(t), te(0,T)} more
closely

M(x,y,t) = Pr {X(t)=x, Y(t)=y, te(0,T)} (3.4)
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Fig.4 The Two-dimensional Random Process

The system can be analysed using the well-known
technique of the imbedded Markov chain. It is
here convenient to choose the time-epochs just
after the event transfer instants as regenera-
tion points (t=0 ), at which the two queues can
be considered as connected. This argument al-
lows us to reduce the two-dimensional descrip-
tion of the process into an one-dimensional
description at regeneration points. The rela-
tionship between the two- and the cne-dimen-
sional description of state probabilities is
given by

+ +

P (x+y)=Il(x,y,0) (3.5)
where H(x,y,o+)=o for x#S+1 and y#0 .
Observing two consecutive event transfer
periods n and n+l with state probabilities
I (x,y,t) and Hn+1(x,y,t), te(0,T), the main

steps of the analysis can shortly be
resumed as follows:

- +
LI (x,y,T )=f{Hn(x,y,O )}
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... (3.7)

Egns. (3.6) and (3.7) give us a relationship
between state probabilities for two consecutive
regeneration points. Using this consideration,
the state probabilities at an arbitrary time
can easily be derived. Therefore, in general,
from a given starting probability vector,
transient behaviour of the system can be
investigated by means of the power method.

Under stationary conditions

+ + +
Hn+1 (x,y,0) = Hn(x,yyo ) = P (x+y)
and after simple algebraic manipulations using
(3.6) and (3.7) the system of difference
equations for state probabilities can be
obtained

. N-1 . r o mini},k)
Prk)= 3, P Lgk E:az LD I S gk_x]
i=0 Q=i x=1 )
N+k o ii
+ z:: P (1) [g . d
= X+N-1 fyrd 2
min (N+k-i,N)
* dN—x gk+N~i—x]
x=1
b
with Z (.) =0 for b < a. ... (3.8)
X=3a

Using egqn. (3.8), the state probabilities of
the imbedded Markov chain can be obtained by
means of an iteration method with over-relaxa-
tion, whereby a proper adaptive truncation of
the state space must be provided.

3.3 Time-dependent State Probabilities and
System Characteristics

In order to calculate the mean waiting time in
the primary queue EET ] and the mean
prequeueing delay EfT , it is conven-
ient to use Little's law[B]?QD for which it is
necessary tc know the mean queue lengths at an
arbitrary point in time. Under stationary
conditions, we only have to observe the system
during one clock period (te(0,T)).

Using the terminology

Pi(t) = pr{x(t)=k}
Pi(t) = pr{v(t)=k} . (3.9)
we obtain
Pi(o) ="k k=0,1,..,N-1
PL(0) = 3 BT(i) k=N (3.10a)
i=N
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(3.10b)
Between two transfer instants, X(t) follows a
pure death process (T  _<t<T)} and Y(t) follows
a pure birth process (0LE<T) .

The mean numbers of events in the primary system
E[X] and in the secondary queue ETY] are given
by
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Using Little's law, the mean waiting time in
the primary queue E and the mean

[t ]
) wQ-< ;
prequeueing delay ET 1 can be given

as follows - PQD-
_ERX] 1
E[TWQJ i wally (3.13)
_ElY]
and E [TPQD}- == (3.14)

The mean total delay of events in the system is

elr)] = E[TWQ] +E[T (3.15)
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4. RESULTS AND DISCUSSION

In this section numerical results are presented
concerning the mean delays for events in the
whole system using a clocked event grotocol.
All values are normalised by E TQERJ = 1/u=.1.
Fig. 5 depicts the different mean  value of
delays as a function of the clock period T. By
the chosen parameters (P = .5, S = 10, TOH = 1)
the system is stable for 2 < T < 22

(c.f.egn. 3.3). It is clearly shown that a
minimum of the total delay for events exists as
expected.

In Fig. 6 the total delay is plotted as a
function of clock period T and an optimum
choice for T can be defined for a given level
of offered traffic intensity. The sensitivity
of these optimum values has to be taken into
account for dimensioning purposes. The best
choice T = 5 for 0 = 0.6 will make the system
unstable for P > 0.8, which occurs in overload
situations.

The delay characteristics discussed here can be
used for dimensioning purposes where the clock
period T and the capacity S of the event queue
have to be chosen for a given traffic range.

5. PREQUEUEING DELAY DISTRIBUTION FUNCTION

5.1 General Relations

For the following derivation, we consider the
two different disciplines PIFO and RANDOM for
event transfer from secondary into primary
queue. These two strategies can be considered
as marginal cases for real systems, whereby
FIFO strategy is a more optimistic and RANDOM
strategy a more pessimistic case. In order to
investigate the distribution function of the
Croas e Tace ot 0 CLetueg D) 1 505"
L.C.
in a fresh batch is considered (Fig. 7).
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Fig.7 The Prequeueing Delay

As shown in Fig. 7 the prequeueing delay T
consists of two components : the delay from
arrival until the next clock instant (t_) and
a number i of clock periods (i.T), i=0, 1,2,..
The probability that the prequeueing delay
varies between iT+tB—dtB and iT+tB is

QD

dt
+t_- < < iT+ = i .
Pr{iT tB dtB TPQD__LT tB} w(l,tB) 1FB
with osthT, i>o0 (5.1)

dtB/T :probability that the f.c.arrives in dtB

w(i,tB):weighted sum over all possible posi-
tions in system the f.c. can take, who
- arrives tp before the clock instant
- will be delayed i clock periods.

By integration we obtain from egn., (5,1)
t

1
rer, cmel= k[ wi,ne .
Pr{iT TPQD_1T+tBJ T w(i,T)dtT (5.2)
and for the delay distribution

Foop (t) =pr{TPQDs.iT+tB}

=pr{ iT<T, QD_<_iT+tB}+Pr{ T, QDS_iT} . (5.3)

Egn. (5.3) can be solved recursively and after
some algebraic manipulations we have finally

F_ _(t)=px{T <iT+tB}

PQD POD™
NE= ty
=5 Z j w(\hT)’dTi—/ w(i,T)'dTJ (5.4)
=0 O (0]
where i=[t/T]-, is the largest integer less
than t/7T.
i=0,1,2..., OSt T, (¢)=0 for j<i.

i
5.2 RANDOM Event Transfer Discipline

In RANDOM case the events are chosen randomly
for transfer at clock instants. Based on the
stationary state distribution of the imbedded
Markov chain we can calculate the probability
B, that the f.c.is in the rejected batch part
at the first clock instant after his arriwval.
In this case he has to compete with all
customers in the secondary gqueue at transfer
instants (including arrivals during his waiting
time). The probability that he will be delayed
at those clock instants is denoted by Bl.

.From B_ and B,, which are determined using
combinatorial arguments, we obtain the

probabilities w(i,tB) as follows

N £
w(o,tB)-l-BO b w(l,tB)—BO(l Bl)Bl (5.5)

The delay distribution function is found by
egn. (5.4) to
i-1 ¢
=p <4 = i o (= -1
Fpop r{TPQD_lT-f-tB} D WVt ) (i, e) e (2 -1)
v=0 (5.6)

The mean pre-queueing delay E[T ] and its

c s , . PgD
coefficient of variation c n ¢@ be found from
egn. (5.6) and can be writggn in terms of BO

and B1

1. %
E[TPQD]= Tl + =) ) (5.7)
S T WO S T T - U
PQD E[Tpop) 3 (1_31)2

5.3 FIFO Event Transfer Discipline

In PIFO case the events are transferred between
the two queues in order of arrival. Based on
the stationary state distributicn of the
imbedded Markov chain, the prequeueing delay
depends only on the service process of those
custcmers in front of the f.c.. Due to the
clocked scheme and the finiteness of the
primary queue, idle pericds of the server can
exist although there are customers still
waiting for transfer.

The prequeueing delay distribution function

for the FIFO case has been developed analogously
to the RANDOM case. However, the extensive
derivation of the formula should not be
discussed here in more detail.
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5.4 Results and Comparison

In the following the complementary prequeueing
delay distribution function FP (t) will be
discussed for the two considergg event transfer
disciplines FIFO and RANDOM. As expected the
variance of TPQD is higher for RANDOM case as
shown by the gradient of the curves in Fig.
8, where FPQD(t) is depicted for both disci-
plines_and different values of T. Fig. 9
shows FPQD(t) more closely in case of RANDOM
for different values of the clock period
T. Between T and T ; a value of T can be
found to optimize the coefficient of varia-
tion ¢ for T This argument can be taken
into 9 accounEQDtogether with the optimum
choice of the mean total delay for different
dimensioning conditions.

6. CONCLUSION

In this paper, a two-level gueueing system has
been developed and investigated, which models

a clocked event transfer protocol between
distributed real~time processing systems. In
order to analyse the system, an exact one-
dimensional description for the two-dimensional
process 1s presented. From the steady state
distribution system characteristics as event
delays and mean values are derived and dis-
cussed. Finally, the prequeueing delay distri-
bution function for events with FIFO and RANDOM
transfer disciplines is investigated. The model
is applicable for a wide range of distributed
computing systems where high rate of real-time
events have to be interchanged between
processors and the response time is a critical
factor. It is shown here that for dimensioning
purposes, the queue stability and delay
characteristics in overload situations must be
taken into account to guarantee proper system
performance.
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