INSTITUT FUR
SEEEH Universitat Stuttgart KOMMUNIKATIONSNETZE
: : 9 UND RECHNERSYSTEME

* ,0‘0:‘0‘0 :' * - -
o Prof. Dr.-Ing. Andreas Kirstadter

Copyright Notice

© 1986 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must
be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright
and all rights therein are retained by authors or by other copyright holders. All persons copying this
information are expected to adhere to the terms and constraints invoked by each author’s copyright. In
most cases, these works may not be reposted without the explicit permission of the copyright holder.

Institute of Communication Networks and Computer Engineering
University of Stuttgart
Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Phone: ++49-711-685-68026, Fax: ++49-711-685-67983
Email: mail@ikr.uni-stuttgart.de, http://www.ikr.uni-stuttgart.de




Dependency of Service Time on Waiting Time in Switching Systems -

A Queueing Analysis with Aspects of Overload Control

by

P. Tran-Gia

Dept. of Communications
University of Siegen
W.-Germany

and

M.H. van Hoorn

TAWE

Vrije Universiteit, Amsterdam
The Netherlands



ABSTRACT

Performance degradation of switching systems when the load
increases above the engineered load can be caused by system-
dependent and customer-dependent factors. In this paper the
dependency of the service time and the call completion rate on the
waiting time of a customer is investigated. The problem is modelled
by means of a queueing system of‘type'M[X]/G/1, where state
dependent batch size distribution is considered. Two analysis
methods, the continuous Markov chain approach and the regenerative
method, are used for Markovian and generally distributed service
phases, respectively. Numerical results are given for system
characteristics, in particular the call completion rate of the

system.

Finally, an overload control scheme is developed and investi-
gated, which increases the throughput of completed calls at higher

traffic levels.



1. INTRODUCTION

In switching systems, especially in stored program controlled
systems, overload situations are caused by various factors, e. g.
customer behaviour or lack of system resources. Interaction between
customer and system is an important factor which affects very

strongly the system performance.

Reactions of customers can influence the system in different
ways. On the one hand, a customer may abandon his call with a
certain probability when he is confronted with large delays during
the call set-up phase (e. g. waiting for dial tone, post dialling
delay etc..). In this case; an ineffective amount of work has
been offered to the processor and hence the call completion rate

of the system decreases.

On the other hand, rejected customers may reattempt their call
after a certain time. The repeated attempts will further inflate

the overload.

The aim of this paper is to determine performance limitations
of switching systems in overload situations, taking into account
the dependency between waiting time, service time and completion

probability of a customer.

The most important performance measures in a switching system
are the probability for call completion and the call completion
rate. The probability for call completion is defined as the number
of call attempts that have been performed successfully, compared

to all call requests offered to the system.



There is a number ofkstudies which consider the dependency of
the service time on the waiting time with varying degrees of
complexity. Posner D] analyses a single server queueing‘model with
respect to the dependency of the service duration on the waiting
time, where an example for two service levels is given. Forys [Z
discusses a basic model for applications in telephone switching
systems where customers contribute one of two exponentially
distributed processing times depending on their waiting time.
Rosenshine [ﬂ considers this dependency in modelling the service
time of air traffic controllers where the imbedded Markov chain

method is used for analysis.

In this paper the call completion rate is estimated and the
system performance is investigated by means of a queueing model,
which will be presented in section 2. In section 3 the analysis
method will be described. Some:numerical results will be given
here to show the main effects for the considered essential system
characteristics.‘Finally, in section 4 a control mechanism for
overload situations will be presented and investigated, which

allows to optimize the system performance above engineered load.



2. MODELLING APPROACH WITH SERVICE TIME DISCRETISATION

In this section a gueueing system is presented which allows
us to describe the dependency of processor service time of a call
on its waiting time in order to calculate the call completion rate

in a switching system.

We observe a test call entering a switching system. The call
sees an amount of work waiting for processing. Concretely this
work may stand for the number of subcalls or telephonic events
buffered in the processor queue. Based on this observation and in ;f
order to simplify the analysis without losing essential effects,
we consider the amount of work in the processor queue as a discrete
number of phases which are assumed to be independent and identically

distributed random variables with distribution function FS(t).

The number of phases the test call sees upon arrival corre-
sponds to its waiting time before entering service. Depending on
the duration of its waiting time, the test call decides to bring
a number of phases into the system. These phases can be inter-
preted as the number of subcalls and the corresponding call handling
effort the switching system must spend for the call attempt. From
analysis point of view we can consider the decision to be taken at
the arrival epoch of the call, although in reality it is taken at

the instant the customer enters service (e.g. dialing phase).

Calls with incompleted dialing or abandoned calls usually

offer a small number of phases to the system while successful



calls with completed dialing often have offered a larger number

of phases to the system.

Therefore, according to the number of phases chosen by a cali
we define the probability that it will become a bad call or a

successfull call.

Considering all arguments discussed above, we have modelled
the system as a single server queuewng system of type M[ ]/G/1
with state dependent batch arrivals. In fact we have the dlscrete

version of a single server queue with state dependentyserv1ce time.

In this model the following assumptions are made:

- Call arrivals follow é Poisson process with rate k. 

- A call that sees k phases in the system (includihé?the phaée
in service) will offer j phases to the system with‘ | |

probablllty g§ )

- A call having chosen j phases becomes a successful call B
(completed call) with the conditional completion probabllltyw
cj. |

- Service time for an arbitrary phase has the distribution

function Fs(t).

As will be specified in section 3.2, the probability that a
call chooses 7j phases decreases with increasing number k of phases

in the system and the conditional completion probability Cj

increases in J



The modelling arguments described below will help to simplify the

calculation algorithm:

- Considering the observation of subcalls in switching systems,
the number j of service phases chosen by a call may vary

between fixed numbers N, and N, (N, € J <€ N1).

’— A call that sees upon arrival a very large number of
phases in the system, say at least ko phases, will,ténd‘fi
to become a bad call and it will add NO phases for servgéef
This assumption corresponds to the observation thatiabij
customer who waits too long often tends to abandon higé,

call after producing few subcalls.

Using the state dependent batch size distribution theééffect'J
of dependency between customer service time and waiting tiﬁe can
be described. In the next section, based on the calculatién of
the steady state probabilities of the queueing system, thé céll‘
completion rate for customers and the effective system thfouéhpﬁtf

can be derived under different call traffic conditions.



3. PERFORMANCE ANALYSIS

In this chapter the steady state analysis of the M[XJ/G/1'
queueing system with state dependent batch arri?als, as deScribea
in the previous chapter, is presented. For ease;of presentation,
we shall refer to customers or calls consisting of phases and
describe the state of the system by the number of phases present,
including the phase in service. ‘

The following terminology will be used

A call arrival rate of_the Poisson arrival process
h = % mean service time of phases
X random variable (r.v.) for the number of
phases in the system at an arbitrary epoch
P, = Pr{X = n} steady state probabilities
G(k) r.v. for batch size of a call that sees upon
arrival k phases in the system
gék) = Pr{G(k) = 3} batch size distribution, dependent on state
. k (k< k).
(k) (k)
G =G and g. = g. for k > k
| gj 93 2 K4
pd= Ah EIG] normalised call traffic intensity.

Assumed is that conditions for statistical equilibrium are.

4

satisfied, a sufficient condition for a stable gueue is o < 1.

In section 3.1 Markovian service phases are considered
‘(Fs(t) =1 - e _Ut). In this case the queueing process is a birth
and death process with multiple births and the analysis is
substantially easier than in the general case, which will be dealt

with in section 3.4.



3.1 Analytic Algorithm for Markovian Service Phases

' To derive a set of equations for the state probabiiiﬁies;;Wé  :
use the well-known balance property of Markov processes‘théﬁpthé 4 '
transition rate into some macro state S equals the transitioﬁ rate
out of S for any subset § of the state space. Consider thé ¢ﬁ6iéé’

s = {0,1,...,n}, the transition rate out of § is given by
lpoPr{G(O)>n+1}-rkp1pr{G(1)>h}-+... + Apnpf{G(n)>1}'

and the transition rate into S by

upn+1

Hence, we -obtain v
v = A E%: p Pr{G(k) >n+1-k} n=0 (3.1)
Pn+1 = P > ' ;

The following generating functions are defined

P(z) = zi: pnzn

n=0
n=0
T (z) = gnzn e..(3.2)



Multiplying (3.1) with z" and summing over n, we obtain

i (k)
(R (2)-p,) = Az S pkzk 1 ;F_ _ (z)
k=0
ko-1 (k) :
- 1-I" (2) k 1-T (z)-(1-T'(z))
= Az —— P(z) + Az éa Py 2 >
=0
or
k -1 )
0 (k) » -1
. k 1-T (z)-(1-I'(z)) 1-T' (z)
P(z) = |up +Az . p, z L Ju-aglz=t2)

... (3.3)
i i * % :
Substituting Pr=PyPq (O£ k £ ko—1) with po=1, we can compute
p. (1 £ 1% ko—1) with egn. (3.1). Inserting z=1 in (3.3) we obtain

k -1
e * -1
Py = (H-KE[G}).(U&A]{%' pk[E[G(k)] -E[G]] ) (3.4)

by noting that

. (k)
lim 1 =T (z) _ (k)
z > 1 ~7-:7?_*'-E[G 1.

The algorithm to calculate Py is summarized in the following

steps:

* *
1. Set po=1 and compute recursively Py s 12k £ ko—1 with (3.1)

*
2. Calculate Po with egn. (3.4) and renormalise P.=PyPq for

< < -
0=k =< kO 1

3. Compute further state probabilities Py k > ko recursively

with (3.1).
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After differentiation of egn. (3.3) and setting z=1) the

following expression for the mean number of phases in the system

is found:

E[X] =P'(1) = > «k Py

k=1 T «

= A [?[G]+E[G2}+» ﬁi (2k+1) (E[G(k)j—E[G]}
2(u=AE[G]) = Px

pk(E[G(k)z]—E[GZ]U - (3.5)

ko=
2
k=0

3.2 System Characteristics

The derivation of the steady state distribution of the number
of phases in the system formes the basic requirements to obtain the

following performance characteristics:

PCOMPL completion probability for an arbitrary Qall

Y call completion rate

E[X] mean number of phases in the system

MBS mean batch size, i. e. mean number of phases brought

into the system by an arbitrary customer

The performance characteristics are expressed in terms of P,

in the following way
Poompr, = 2 P 2 ©59;
Y = AP ... (3.6)

E[x] = 25 kp,

i
()8
e
o
=
[
@
=
LJ

MBS



With the assumptions_ggk)=o,j<NOor j>N1 s and»ggk);gj‘for'
k > k PCOMPL can be rewritten as

- O,
N, ky-1 o
- E (k) _ ' ;
PooMPI, = . 5 {gj + E{: pk(gj .gj)J (3.7)
= o k=0

Further note that A*MBS is the average arrival rate of phases
and A°MBS*h is the workload offered to the system per time unit,
which is equal to 1—po, the fraction of time the server is busy.

So we have

1->pO

MBS = h ' ‘(3.8)

The mean system size E[X] is given by eqn. (3.5).

For the probabilities cj we have made the following choice

containing the parameters y and N as degrees of freedom

LIM
r j"'No
Y+ (1 -Y) g N_<j<N
N Ng o LIM
Cy = 41 Np ==y
e otherwise ... (3.9)
cji
M o
| |
| |
| i
O | I | .
No  Npru Ny 3

Fig.1 Conditional completion probabilities



In practical situations, the number of subcalls'pybduced by
a completed call will vary between certain limits, hé;é représented
by NLIM and N1. If the number of subcalls produced byya call is les
than NLIM' the probability to be completed decreasesﬁbut need not

be zero.

The batch size distribution is the factor thaﬁ takeémiﬁto
account the dependency between the service time of a customer‘andi
his waiting time. If a customer sees k phases inﬂthe system upon
arriVal,‘his waiting time has an Erlang-k distribution, correspondi:
to the negative exponential phases. He is suppoéed to have‘a certair
patience, i. e. he is willing to wait a reasonable time, say,"
before entering service. If his waiting time is short, he will
choose a service time consisting of a relatively large number of
phases, corresponding to.a large number of subcalls. If his waiting
time is longer than 1 he will tend to bring a smaller number‘of’
phases into the system because he abandons his call sooner. As |
discussed in section 2, it is realistic to assume that the number
of phases a customer chocses lies between certain numbers NO and
N1. However, for the analysis this assumption is not essential.

The length of the patience 1 could be obtained by measurement in

a real system. Here we choose 1 = 3 N.h (c.f. Forys [2]). The above
reasoning allows the following choice for the group size
distribution:

~

Pr {G(k) = N, }

i

Pr {Wk <t}

pr (¢ = j)

i

Pr { T+(Nl—j_l)hSWk<T+(Nl“j)h}o
No<J<Ny

pr {¢®) = n 3} = pyr {w, > T+ (N =N -1)h} ... (3.10)




.

The random variable Wk denotes the waiting time of a customer
seeing k phases in the system on his arriVal epoch. In Fig. 2 the
average number of phases chosen by a customer is shown. Also the‘
effect of the patience of customers is clearly illustrated.

E[G(k)]A

N1=8

1 L L L

30 40 :

L

T 1 i A i
0 20 .
T/h=3N,

Fig.2 Modelling aspects of customer behaviour

3.3 Some Numerical Results

In this subsection numerical results are presented which show
system characteristics under different traffic conditions. For all
the results, time is normalised by the mean service time of phases

h=1/u=1 and the offered traffic intensity is standardized by oO=ANO/

Fig. 3 shows the completion probability for an arbitrary call
as a function of the offered traffic intensity. The curves are drawn
for different values of y. It should be recalled that Yy represents
the completion probability for calls which have a relative long wait

ing time and choose the minimum number N. of phases. It can be seen

0
here that the call completion probability decreases rapidly above a
certain level of the offered traffic. A degradation of the system
performance is said to have occurred. This effect is shown more clearkt

in Fig. 4, where the call completion rate is depicted for different

traffic intensities.
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For;%32,1 the system becomes instable and the queue increases to
infinity. However, according to the modelling approach, the call

completion rate is constant with value Y.

The mean number of phases in the system is shown in Fig. 5 as
a function of the offered traffic intensity, where different values
of the ratio N1/NO are considered. For higher values of N1/No the
curve can be clearly recognised as a superposition of two segments.
The first segment of the curve corresponds to lower traffic levels
where the group size is approximately N1; the second segment
corresponds to higher traffic intensities where the majority of

customers chooses N, phases.

0
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3.4. General Phase Distribution

EXJ/G/I queue with general distribution of

the service time of phases is more complicated than the M[X}M/l case.

The analysis of the M

In van Hoorn [4] the analysis is done by means of the regenerative
method. Using up and down crossing arguments, a complete set of
equations is derived to obtain the steady state probabilities at
arbitrary and at departure epochs. We shall summarize below the mainf_

aspects of the analysis.

Assuming the system is empty at epoch 0, we define the following
‘random variables:
T the next epoch at which the system becomes empty
T, amount of time during which n phases are in the system in théf
busy cycle (0,T], n=0.
N number of phases served in (0,T]

N number of service completion epochs at which the phase‘Served

leaves n other phases behind in the system in (0,T], n=0
and the gquantities

Akn expected amount of time that during a service n phases are
present, given that the service starts with k phases present;

k=0,1,...,n.

By partitioning the busy cycle by means of the service completion
epochs and using Wald's theorem (cf. Ross [7]), we find
n : ,
BT 1 = k; E(N, JA, , n>1 (3.11)
Note that E[Nk] equals the average number of times in a busy cycle that

a service starts with k customers present.



For a second relation between the E[Tn] and E[Nn] we use a simila
up and down crossing argument as in section (3.1). However, now we
equate the number of transitions into S and out of S in a busy cycle.
Noting that E[Nn] is the average number of transitions from state n+l
to n and AE[Tk] the average number of arriving groups, given state k

we get
E[N ] = § efr, 1pr{c %) > n+i-k}, n20 (3.12)
n = k _

Together, (3.11) and (3.12) allow the computation of the E[Tn]

and E[Nn], as shown below

1. evaluate the constants Akn

1
2. put E[N,]=1, E[T,] =
0 0 A.Pr{G(O)zl}
3. given that E[TO],...,E[Tn_lJ, E[NO],...,E[Nn_l] are computed,
solve
E[Tn] = E[Nn]Ann+func(E[NO],...,E[Nn_l]) cf.(3.11)
- - (n)
E[Nn] = E[TnJPr{G > l}+func(E[TO],...,E[Tn~1]) cf (3.12)
4. return to step 3 if necessary
5. compute E[T] = ), E[T ] and E[N] = ) E[N_]
n=0 n=0

Define

Py steady state distribution of the number of phases at an
arbitrary epoch
q steady state distribution of the number of phases at a

(phase) departure epoch.

Then by the theory of the regenerative processes (cf. Stidham [8] and

Ross [71),

E[T ] EIN_]

P T BT and q, BTN for all n=0
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Below, we specify some schemes for the evaluation of the constants
Akn in the case of exponential, hyperexponential and Erlang servicé
time of phases. These schemes can be extended to more general phasé‘
type service time distributions. Some other cases are treated ih

Van Hoorn [4].

case 1. FS(t) =1 - em“t

Using the memoryless property of the exponential distribution and
the property that with probability A/(A+u) a batch of phases arrives

before the completion of a service, we find

R - (k)

Ben T 00 £y 91 Prti,n 1<k<n.
_ A (n) 1

Ann 3+ Yo Ann + AFu ! nzl.

Starting with Ann the Akn can be computed recursively for k=n-1,..,1.

; ; —ult -u2t
case 2. FS(t) =1 - p,e = pPye
We apply case 1 twice to compute Aéi? and Aéi), with u replaced by My

and Moy respectively and then find

= (1) (2)
Akn plAkn + p2Akn
-ut
case 3. Fs(t) =1 - (l+ut)e

We define the auxiliary quantities.

Bkn = expected amount of time that during the second phase of the
service n phases are present, given that the second phase of the

service starts with k phases present.
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Again applying case 1, B can be computed and then we get

kn
_ A X (k) U _
Ben T T ;;E 95 Pryi,n t 350 Brne 1<k<n
A = 2 g(n) A + . + LB nzl.
nn x+tu 20 nn A+u r+u “nn’

For the numbers A the following relation holds.

On
0
3{0)
Bop = L (0 Bins nzl
i=l 1-g
0
5(0
Remark that “£~757 is the probability that an arriving batch initiatinc
1-g
0

a busy period consists of j phases.

Remark 1. Putting E[N0]=l in step 2 of the algorithm is motivated by
the fact that in every busy cycle only once the system is left behind

empty after the completion of a service.

Remark 2. E[T] and E[N] can be computed as follows. Note that zE:Akn=h
n=k
and EE:Pr{G(k)2n+1—k} = E[G(k)]. By summing (3.11) for n=1 and (3.12)
n=k

for nz20, we get

E[T] - E[TO] = E[NJ].h

(3.13)
S (k)
E[N] = ) AELT, JELG™ ]
k=0
Using E[G(k)] = E[G] for k=k (3.13) is rewritten as

14
k. -1 0

E[N] = AE[T].E[GI+A ib E[Tk](E[G(k)

1-E[G]1). So, EIN] and E[T] can

be found after computing E[Tk], O<kz<k A comparison of different

0*1.

service phase distributions is given in Table 1, where numerical result

for the call completion rate are listed. In general, above a certain
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TABLE I Comparison of the call completion rate for different

phase service time distributions.

(N)=4, N; =8, N.,,= 5, y=0.1)
Offered Phase Service Time Distribution
Traffic
Intensity
o E M Ho
0 3 €2 L 3
0.1 0.099981 0.099975 0.099953
0.2 0.199375 0.199231 0.198698
0.3 0.294200 0.293248 0.290196
0.5 0.411585 0.406709 0.394015
0.7 0.356940 0.352679 0.342012
0.9 0.198035 0.196382 0.192602

value of the mean batch size, the system performance is dominated
by the batch size statistics, and the system is relative insensitive

to the service time distribution (cf. [5]).
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4. INVESTIGATION OF AN OVERLOAD CONTROL SCHEME

4.1 Description of the control scheme

In the previous section it can be seen that the system 
performance, say the call completion rate, has decreased rapidly
after a critical level of offered load. By those high load levels,
the gueue becomes large and customers must wait for a long time
before they enter service. They then become impatient, tend to

abandon their calls and hence, decrease the call completion rate. .

In order to avoid this effect, the system may stop accepting’ai
calls at a certain load level. The idea behind it is that if the
switching system accepts less calls it would be able to
handle them well. As illustrated in Fig. ® we can save processor
time and increase the améunt of good calls if we allow the system
to reject calls according to a»scheme which will be described in
the following. It should be noted here that the phenomenon of
repeated attempts of blocked calls is not taken into account in

this consideration.

system

call requests accepted calls good calls successful
> — <+ rcalls

[ bad calls

® | ynsuccessfu!
calls

blocked calls

4

Fig.6 On the call completion in a switching system



Two levels L, and L, are defined for the call blocking scheme.
Depénding on the system state k upon arrival epoch, calls will be
blocked with probability Bk where we choose

-

0 for O<k_<_L1
k-L, | |
B.= I T L, <k<L, (4.1)
1
1 k2L,

According to this scheme, the maximum number of phases the
system can have is in the case, where a accepted call sees L2—1
- phases in the system and then adds N, phases for service. Hence we

have a queueing system with finite capacity L +N1—1.

2

To show the performance of the overload control method we have
chosen the linear characteristic of By in (4.1). In principle,
from analysis point of view, we could choose any other gradual

blocking scheme for Bk between L1 and L,.

In the case of one-level control we can choose L2=L1+1, where
all call arrivals see less thanI? will be accepted, otherwise they

will be blocked.

4,2 Model modification and analysis

The overload control scheme, described by the two levels'LT
and L2, reduces\our queueing system to a finite capacity M[XJ/G/1
queue. The blocking probability, gradually increasing with the queue
size a customer sees, equals 1 when there are more than L2-1 phases

in the system. As discussed above, the system has the finite

capacity M==L2+N1—1.



The most simple way to model blocking is to allow a customer
to bring a "batch of size zero" into the system, Blocked customers

do not affect the system by having a batch without phases.

The modified batch size distribution for the overload control
—(k)

scheme is denoted by §§k)==Pr{G =j}. We have the following
relations between the probabilities §§k) and vgék) :
—(k) _ ' .
0s<ksL, 9% = 0° =0
' ‘ —(k) _ (k) .
—(k) _ ‘L
L<k<L, 9o = T By J=
—(k) (k) ,,_ .
95 = 95 (1-B,) No=J=<N;
—(k) _ .
L,<k<M 9o ! 1=0
2 =) _ 4 N <oy
93 0=I=Ny
Eék) = 0 otherwise

For the computation of the state probabilities we use again
egn. (3.1) with the modified batch size distribution. The algorithm

to calculate p,, 0<k=<M is

l. set Py = 1
2. Compute Pqr--1Py recursively with (3.1)

3. Renormalise PorPqyrssPy

The system characteristics can be written as follows

N M
(k)
P - S e, > P 9
COMPL j=NO J £ k 23

M
kp

E[X]



(1 - p‘o)
MBS =
Ah(1 PBLOCK)
—(k)
P = P 9
BLOCK kST +1 k “o
o* _ Feompr,
COMPL 1 = PBLOCK
* : .
PCOMPL is defined as the completion probability for accepted

calls (c.f. Fig.6).

4.3 Results and comparison

The performance of the overload control strategy‘will be

"discussed in this subsection.

Fig. 7 shows the interference between call blocking and call
completion in the system. The dashed line stands for the case
without overload control. With the simple control mechanism
(L1 = 3N1, L, = 4N1, linear call blocking between L, and Lz) thé
call blocking probability increases rapidly with higher offered
traffic intensity, while the call completion probability P oMPT.
lies above the curve without overload control. As expected, the
system accepts less calls but then it is able to perform them well.

* -
For the accepted calls, PCOMPL gives us an idea about the fraction

of good calls served by the system.

The call completion rate with overload control is depicted
in Fig. 8. It can be seen clearly that the choice of the control
levels (with L2= L1ok1) affects very strongly the system perform-

ance by overload. For L,= N1 the system performance is worse idn case
lower traffic levels but becomes better for very high traffic intensi
ties. Above a certain level of L1/N1 the call completion rate is

always higher with overload control.
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TABLE II Call Completion Rate with Overload Control -

A Comparison for diffe}ent Phase Service Time

Distributions (No==4, N1=ﬁ8, NLIM= 5, y =0.1,
Control Levels : L1==3N1, L2==5N1)
Offered Phase Service Time Distribution
Traffic
Intensity E3 M : , HZ
pb (c&=3)
0.1 0.0999880 0.099974 0.099949
0.3 0.294192 0.293271 0.290380
0.5 0.425019 0.421388 0.412192
0.7 0.445664 0.443856 0.439294
1.0 0.405236 0.407232 0.412044
1.2 0.375811 0.379266 0.387623
1.5 0.338031 0.343039 0.354784
2.0 0.290323 0.297062 0.312029

Table II compares the call completion rate using the overload
control strategy for different phase service time distributions.
For the given batch statistics the difference caused by the phase
distributions is not essential. This argument justifies the
Markovian phase modelling approach, which requires a simpler
analysis and less computing efforts without loosing essential

effects.
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5. CONCLUSION

In this paper, the dependency of the service time and the
completion probability of customers on the waiting time is modelled
by means of a queueing system of type M[XJ/G/1 with state dependent
batch size distribution. Considering the impatience of customers,
the performance degradation of the system above the design load is
investigated. These effects can be controlled and minimised by using
very simple overload regulation scheme, which is presented and
discussed in section 4. However, the improvement of the call com-
pletion rate by the overload control method depends strongly on
the statistics of the customer behaviour and on the call handling
mechanism of the switching system, which is modelled by the number

of subcalls according to a successful or unsuccessful call.

The analysis methods used in this paper can be applied for a
wide range of systems and modelling approaches, using the freedom of
the state dependent batch size and the call service time

distributions.
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