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P. TRAN-GIA and E. RATHGEB: SCHEDULING MECHANISMS

Performance Analysis of Load-Balancing
Semidynamic Scheduling Mechanisms
in Distributed Systems

by Phuoc Tran-Gia* and Erwin Rathgeb**

Semidynamic scheduling mechanisms used in load-sharing, routing or job-scheduling problems
form a class of stratcgics to optimize delay characteristics in distributed systems. An essential
question arising in this class of problems is: how to distribute the system load among a number of
heterogeneous service units in order to optimize the overall delay performance of the system. In this
paper a performance investigation for semidynamic scheduling strategies using discrete-time analy-
sis methods is presented. The interarrival process and the service process are assumed to be general.
The arising performance model is decomposed into submodels in an exact way. The analysis of
these submodels includes the discrete-time investigation of the general class of G, G/1 models with
general service and cyclic input processes. To compare semidynamic scheduling strategies with
random scheduling schemes, a model example is taken, for which numerical results are provided
showing the influences of a range of system parameters, e.g., the types of input and service processes.,
the traffic intensity. ctc., on the system performance.

Leistungsanalyse von semidynamischen Lastteilungsstrategien in verteilten Systemen

Semidynamische Lastteilungsstrategien finden hédufig Anwendung in Systemen mit verteilter
Steucrung. Diese Klasse von Mechanismen hat die Optimierung von Warte- und Durchlaufzeiten
in derartigen Systemen zum Zicl. Beispiele sind Lastteilungs-, Wegesuch- oder Anforderungs-
verwaltungs-Mechanismen in Rechner- und Kommunikationssystemen. Dieser Beitrag stellt cin
neues Verfahren zur Leistungsbewertung der semidynamischen Lastteilungsstrategien vor, das auf
Methoden der zeitdiskreten Verkehrstheorie basiert. Sowohl die Ankunftsprozesse als auch die
Bedienzeiten kénnen dabei allgemein verteilt sein. Fiir die Analyse wird das gewonnene Gesamt-
modell in Teilmodelle exakt dekomponiert. Das Spektrum der entstehenden Teilmodelle beinhaltet
u. a. cine allgemeine Klasse von G/G/1- Systemen mit allgemein verteilten Bedienzeiten und zykli-
schen Ankunftsprozessen, fir dic ein ncucr Analyse-Algorithmus entwickelt wird. Anhand eines
Beispiels wird anschieend ein Leistungsvergleich von semidynamischen und zufallgesteuerten Last-
teilungsstrategien durchgefiihrt. Weitere Ergebnisse zeigen den Einflull der Systemparameter. wie
z.B. Typ des Ankunfts- und Bedienprozesses, Verkehrsintensitét ete. auf die Systemleistung, unter
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Anwendung unterschiedlicher Lastteilungsstrategien.

1. Introduction

In distributed systems the messaging delays are
strongly influenced by the load-sharing mechanism,
routing strategy or scheduling scheme implemented.
In a common class of distributed processing systems a
decentralized architecture is employed, where a num-
ber of heterogeneous processing units of different
speeds and service characteristics share service of an
incoming job stream. This architecture can be found,
e.g., in file server systems, distributed databases,
switching processors in stored program controlled
(SPC) systems, transmission groups in computer net-
works, etc. In such systems, the incoming traffic has to
be distrubuted among a number of distributed con-
trolled, heterogeneous processing units (cf. Fig. 1). The
connectivity is provided via an interconnection net-
work. The load distribution is done according to a

* Prof. Dr.-Ing. P. Tran-Gia, Lehrstuhl fiir Informatik I1I,
Universitdt Wiirzburg, Am Hubland, D-8700 Wiirzburg.

** Dipl-Ing. E. Rathgeb, Institut fiir Nachrichtenver-
mittlung und Datenverarbeitung. Universitit Stuttgart, Sei-
denstrafe 36, D-7000 Stuttgart 1.

predefined scheduling strategy, taking into account
the load conditions and the properties of the dedi-
cated servers. Two problems have to be considered:
1) Define the amount of traffic to be routed to each of
the processing units acting as servers in the system
and 2) determine the scheduling mechanism to distrib-
ute these traffic streams in such a way, that the bursti-
ness of inputs offered to the processing units is re-
duced and the delays can be minimized.

1O
KO
O

=

Seurce Scheduler Inter - Service /
connection processing
network units

Fig. 1. Load distribution and scheduling in distributed sys-
tems.
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The aim of the scheduling-strategy design is an opti-

mization of the overall delays for customers or jobs. A

scheduler can be characterized by means of the follow-

ing characteristics:

1) Load Distribution Scheme: Defines the amount
of load which is directed to each processing unit. Ex-
amples are:

o Load balancing: Load is distributed in such a way,
so that the heterogeneous servers will have the same
utilization factor.

o Load-driven or dynamic: Load is distributed de-
pending on the actual system load, in order to bal-
ance the actual load in all processing units (e. g., an
incoming job will join the queue with lowest actual
load level).

2) Scheduling Scheme: Determines the order to
distribute the load according to the applied load-
distribution scheme. Examples are:

e Random scheduling: The amount of load which is
dedicated to the /-th processing unit will be formu-
lated as a branching probability p,;, according to
which the incoming traffic will be randomly split
(Bernoulli branching).

e Semidynamic scheduling: The load distribution ac-
cording to a deterministic scheduling cycle. The
number of scheduling positions of a queue is pro-
portional to the amount of traffic distributed to this
queue.

The different load-sharing strategies require differ-
ent levels of information about the system state. From
an implementation viewpoint, it is obvious that the
class of semidynamic scheduling schemes requires a
smaller amount of processing overhead compared
with other scheduling schemes. In the case of load-
driven dynamic scheduling strategies. the scheduler
has to known the actual load levels of all processing
units; this often requires extensive on-line signalling
overheads. To route a job according to the random
scheduling, processing overhead of a random number
generator implementing the branching probabilities is
required. To dimension semidynamic scheduling stra-
tegies, only the processing speeds of the servers are
needed as off-line input information during the system
initialization phase.

An overview, including an extensive classification of
scheduling strategies has been given in Wang and
Morris [17]. Buzen and Chen [5] presented an algo-
rithm to define the optimal load-distribution scheme
assuming the random-scheduling strategy, Poisson in-
put processes and general service times. In Yum [16]
semidynamic scheduling strategies have been present-
ed and investigated in the context of routing problems
in computer communication networks, whereby Mar-
kovian input and service processes are taken into ac-
count. Analysis and performance comparisons con-
cerning the random and semidynamic scheduling
schemes have been given in Agrawala and Tripathi [3],
[4] and Ephremides et al. [7].

The performance analysis of models for scheduling
strategies, especially for semidynamic schemes leads
to a number of submodels, for which a closed-form
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solution or a numerical algorithm in continuous-time
domain and related transforms are not available. A
typical example of this is the class of G/G/1 systems
with non-renewal cyclic input processes. In most of
the performance studies mentioned above, Markovian
assumptions for arrival or service processes are con-
sidered, where solutions in transform domain can be
obtained (cf. [4]).

In this paper, general assumptions are made for
arrival and service processes, by means of which ef-
fects appearing in real systems like the influence of
heterogeneous servers and non-Poisson arrival pro-
cesses on the performance of the scheduling strategies
can be investigated. The analysis employs methods
developed for discrete-time queueing systems [1], [8],

[13].

2. Models of Scheduling Strategies

In this section the queueing model and the accord-
ing scheduling strategies will be defined. The basic
queueing model is shown in Fig. 2.

O~
TG

Main
input
process
'] 8y
Scheduter Processing
units

Fig. 2. The basic model.

2.1. Load Distribution and Scheduling Model

As illustrated in Fig. 2 the queueing system consists
of a number N of single server queueing stations rep-
resenting the processing units. The offered traffic of
each queue results from the load distribution per-
formed by the scheduler. As mentioned above, the
main subject of interest is the quantitative load distri-
bution among N heterogeneous servers of different
capacities and service-time distributions.

The main arrival process is general with an arbi-
trary discrete-time interarrival distribution. The ser-
vice processes are general discrete-time processes
which can be individually chosen for each processing
unit as well. The following random variables (r.v.) are
used:

A is the r.v. for the interarrival time of the main
arrival process,
B, is the r.v. for the service time of server i

The queues are infinite and the service discipline is
first-in, first-out (FIFO). Hence, the waiting time of a
job only depends on the amount of unfinished work in
the system (queue and server) seen upon arrival. The
following notations for functions belonging to a dis-
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crete-time random variable X will be used:

X(k)=Pr{X =k}, —aco<k< +ao0: (1a)
distribution of X,
X(k)ivﬁ x(), —oo<k<+o0: (1b)
o distribution function of X,
xz7(2) :ki /,\‘(k)z"": (1o

Z-transform of x (k)

EX, ¢y are the mean and the coefficient of variation of
X, respectively.

For the sums of independent random variables of
the same type, the r.v. and the according distribution
obtained by convolution are denoted as:

J
XP=3X, (2a)
i=1

x (k)= x (kU™ (2b)

where the symbol x (k)% is used for the j-fold convo-
lution of the distribution x (k) with itself.

In the following, attention is devoted to the load-
balancing scheme used as load-distribution principle.
Accordingly, we distribute the amount of incoming
traffic to the servers in such a way that the servers in
the system have the same utilization factor (i.e., the
normalized traffic intensity)

EB, ,
0;=-——=9, i=1,....N. (3)
EA,;
With the service time factors k; defined by
EB,
k=t )
EB,

the mean interarrival time at queue i can be given as
follows .
EA; =k EA,. (5)

Considering the conservation of flows in the system
we arrive at )
1 % 1 ©)
EA = EA;
Thus, we obtain for the mean interarrival time of the
input process offered to queue i

EA;
=k

EA 7 u

M=z

1
Lk

2.2. Semidynamic vs Random Scheduling

The characterization of input processes at individ-
ual queues depends on the applied scheduling scheme,
as specified in the following:

1) Random Scheduling Scheme ( RS) : According to
this strategy the traffic offered to a queue / results
from a Bernoulli branching of the main input process
with the routing probability given by

EA
Pi= ">

EA;

i

(8)
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the input process at each queue is again a renewal
process. The analysis of these decomposed processes
in discrete-time domain will be dealt with in Section
3.1

2) Semidynamic Scheduling Scheme (SD) . The jobs
are distributed in a cyclic manner. In general, the
input process can be described by means of a non-
renewal cyclic input process (or alternating renewal
process [6]). The analysis, therefore, requires an algo-
rithm to analyze general single server queues with
cyclic inputs. This new method will be described in
Section 3.3.

2.3. Model Example

1) Model Parameters: For the numerical computa-
tions in Section 4, a system with three servers (N = 3)
is considered. The service time factors are chosen as
follows [cf. (4)]:

k=1, 9)

From (7). (8) and (9) the routing probabilities p, are
obtained .
/)1:%* 1’2:‘;" Ps=g%- (10)
For the semidynamic scheme. in order to fulfill the
load-distribution scheme given in (8) the minimal cy-
cle length is 6. During each arrival cycle the servers 1,
2 and 3 will receive 3, 2 and 1 jobs, respectively.
Clearly, ten alternatives exist to design such an arrival
cycle using different groupings for the appearances of
the servers.
According to this cycle length, two semidynamic
scheduling schemes will be defined and investigated
for comparison purposes:

e Semidynamic Scheduling Scheme 1 (SD 1) defined
by the sequence 11122 3.
In this scheme the appearances of the servers are
grouped together in blocks.

e Semidynamic Scheduling Scheme 2 (SD 2) defined
by the sequence 12121 3.
In this scheme the appearances are distributed as
regularly as possible over the arrival cycle.

It is obvious that the choice of the scheduling cycle
strongly affects the variation of the input processes
offered to the servers, where grouping of appearances
of a server leads to a more bursty arrival process
offered to it. As a consequence, the grouping effect
will lead to longer waiting time in the processing unit,
as we shall see in the results presented in Section 4.

2) Description of Submodels :

a) Random scheduling: As mentioned in Section
2.2. the processes resulting from a random branching
of a renewal process still have the renewal property.
Therefore, the waiting-time distributions for the RS
scheme can be evaluated using standard methods for
discrete-time G/G/1 systems with renewal inputs as
described in Section 3.2.

b) Semidynamic SD1: According to the SD1
scheme the jobs are distributed as depicted in Fig. 3,
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Fig. 3. Input process characteristics according to the semi-
dynamic scheduling SD1.

where the interarrival processes at individual process-
ing units are illustrated.

As a result, we observe at processing unit 1 a cyclic
input with an arrival cycle consisting of three seg-
ments. The interarrival interval is of length A4 for the
first and second segment and of length A for the
third segment. These three segments yield to an ar-
rival process which is obviously non-renewal and has
to be analyzed using the methods described in Sec-
tion 3.3. Similarly, the cyclic input process at process-
ing unit 2 has an arrival cycle consisting of two seg-
ments of length 4 and A4, respectively.

A special case of a cyclic input can be observed for
processing unit 3, where only one segment of length
A'® occurs. This process still is a renewal process and
can be obtained from the main arrival process by
means of convolutions. Because of this characteristic
this class of processes will be referred to as convolved
inputs. Their renewal property makes convolved in-
puts amenable to the more efficient analysis with stan-
dard methods operating in frequency domain for
discrete-time G//G/1 systems.

¢) Semidynamic SD 2: The processing units 1 (A4
and 3 (4') in the SD2 scheme fall into the class of
submodels with convolved inputs, whereby for pro-
cessing unit 3 the input process is the same as in the
case of the SD 1 scheme. Thus, the processing unit 2
has to be analyzed using the algorithms for G/G/1
queues with cyclic inputs due to its two-segments cy-
clic arrival process.

2.4. System Characteristics

The performance measures of the whole model are
obtained from the characteristics calculated in the
submodel analysis. Denote W to be the waiting time
for an arbitrary job entering the whole system and W,
the waiting time of jobs routed to the i-th processing
unit, the overall waiting-time distribution can be de-
termined by a weighted summation

N
w(k)= 2 p; w; (k).
i=1

Out of the waiting time W, and the service time B,
the distribution of the sojourn time F of an arbitrary
job of the main arrival process is given by:

fk)= }: pilwi (k) = by (k)]

i=1

(11

(12)

3. Discrete-Time Analysis of Submodels

In this section, analysis methods for the submodels
arising out of the scheduling models described above
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will be presented. As we have discussed in the previous
section, the variation of arising submodels can be re-
duced to two basic types:

e Standard GI/G/1 systems (with renewal inputs) and

e G/G/1 systems with non-renewal cyclic inputs,
which have to be investigated to form the com-
pound solution of the whole system.

The solution for the standard GI/G/1 systems is well
known in the literature and will be outlined in Sec-
tion 3.2. For the analysis of systems with cyclic inputs
a new iterative algorithm is developed and will be
presented in Section 3.3.

An overview of the submodels and analysis meth-
ods applied is given in Fig. 4. Starting with a load-

Load Scheduling Type of Solution in
distribution strategy arising
scheme submodel
Random Frequgncy
domain
Load /
batancing 61161
. ) Time
Semidynamic domain
G/6/1 with
cyclic input

Fig. 4. Overview of submodels and analysis methods.

distribution scheme, i.¢. the load-balancing scheme in
our case, the two scheduling strategies, Random
Scheduling and Semidynamic Scheduling, are ana-
lyzed. The standard GI/G/1 type of submodels can be
found in the analysis of both scheduling schemes. The
analysis of the waiting-tume distribution for these sys-
tems can be done in the time domain as well as in the
frequency domain. The submodel type with cyclic in-
puts appears in the analysis of the Semidynamic
Scheduling schemes. Its solution operates in the time
domain, as will be described in Section 3.3.

3.1. Random Branching of Discrete-Time
Renewal Processes

According to the random-scheduling scheme (RS)
the main arrival process is randomly routed to the i-th
processing unit with the probability p;. The input pro-
cess of queue i is a renewal process described by the
r.v. A; with the distribution given as follows (cf. [11]):

Pidzr(2)

e e 13
I~(1=p;)ag(2) 13

a; zr(2) =

3.2. Discrete-Time Analysis of GI/G/1-Queues

For the discrete time as well as for the continuous
time GI/G/1 system several approaches to compute
the waiting-time distribution w(k) have been pro-
posed [1]-[10], most of which are based on the Lind-
ley Integral Equation [9], [12]. Assuming the distribu-
tions for interarrival and service times to be of finite
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length according to

ak)=Pr{Ad=k}, k=01,...n,—1, n,<w, (14a)
b(ky=Pr{B=k}, k=0,1,....,n,—1, ng<o0, (14b)

in the discrete-time domain an equivalent form of this
equation is given for stationary conditions by

w (k) =7 (w(k)*c(k)),
c(k)y=a(—k)=b(k),
and the discrete n-operator is defined by [1], [9], [15]

(15)
where

x (k) for k>0
n(x (1\)) = 0 (16)
_ S x(i) for k=0.

The derivation of (15) can be found in [15]. This equa-
tion can be solved by iteration in the time domain
(probability domain) or directly, without iteration in
the frequency domain [1]. The latter method has been
found to be more efficient for computation, especially
when the distributions a(k) and b (k) are relatively
long (>2'° elements). To get (15) into a suitable form
for solutions in the frequency domain we introduce
the discrete probability distribution function W(k) and
express (15) as

k<0

k=0.

0 for
W (k) =
V (k) {(‘(k) * W(k)
Defining a sequence W™ (k) similar to Kleinrock [9] as

R c(ky«=wi(k) for k<0
v “‘)’{o for k=0

(17
for 7
(18)

and using the Z-transform to move into the frequency
domain we get

(19)

»»»»»» Cypp(z)—1
or, replacing the probability distribution function by
the probability distribution

lfViH:) . f;{'l ()1

wy(2) 1—z7!

=Szr(2). (20)

For finite length sequences a (k) and b (k), ¢ (k) is also
a finite length sequence. Furthermore, the function
¢41(2) can be shown to have a single zero for z = 1.
Taking these properties into account S, (z) has to be
a finite polynomial in 1/z and for that reason has no
poles. It can also be shown that the term W,;(z) is a
polynomial without poles for a finite length ¢ (k). Ap-
plying the theorem of Enestrém and Kakeya [1] to
W™ (—k) we find, that all zeros of W, (z) are located
outside the unit circle. The function w,,(z) is the Z-
transform of a probability distribution and converges
for z = 1. From this we can conclude that w,(z) has
only poles inside the unit circle and so all zeros of
1/w5(2) have to be located inside the unit circle as
well. Since Sz (2) and W, (z) have no poles and the
latter function only has zeros outside the unit circle it
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is obvious that 1/w,,(z) can have no poles. To obtain
w,r(z) from (20) it is thus necessary to find the zeros
of S,¢(z) and to separate them with respect to their
location to the unit circle.

Two principles have been proposed to accomplish
this separation numerically:

e The polynomial factorization algorithm as pro-
posed by Konheim [10]. In this algorithm the zeros
of the characteristic function have to be explicitly
determined, which may be inefficient for interarrival
and service-time distributions with a large number
of elements. Furthermore, the results are given in
the frequency domain only and further computa-
tions are required to get them into the probability
domain.

e The complex cepstrum algorithm as presented by
Ackroyd [1]. This algorithm takes advantage of the
properties of the complex cepstrum [13] and all op-
erations involved, e.g., convolutions and correla-
tions can be computed using highly efficient Fast
Fourier Transform algorithms. This algorithm de-
livers the waiting-time distribution of the GI/G/1
queueing system. For the computation of the
random-scheduling scheme and investigation of the
parts of the semidynamic schemes with convolved
inputs, the algorithm as proposed by Ackroyd [1]
has been used, in combination with a decom-
position procedure in transform domain imple-
menting the relationship in (13).

3.3. Analysis of G/G/1-Systems with Cyclic Inputs

In the literature, solutions of queueing systems with
cyclic inputs can be found in continuous-time domain
under simplifying assumptions, mainly for systems
with Poisson input [4]. To investigate the system with
more general assumptions, e.g., heterogeneous service
process and general cyclic input, and to overcome
numerical barriers of transform techniques, an analy-
sis approach operating in discrete-time domain has
been developed and will be presented. It should be
noted here that this class of problems can be dealt
with using results and algorithms employing Levin-
son’s method for systems with cyclo-stationary behav-
lor [2]. In this subsection the alternative applying ite-
rative convolutions will be described.

1) Algorithm in Discrete-Time Domain: We con-
sider a single server with arbitrary distributed service
times in discrete-time domain. The input process is
cyclic and consists of a number n of interarrival inter-
vals or segments. With respect to the processing unit
i these intervals will be denoted by means of the r.v.
Ai;j=1,..., n. Within an arrival cycle an interval 4;;
is assumed to be started with the job j which experi-
ences the waiting time W,;. For the first-in, first-out
service discipline, W;; is the amount of unfinished
work seen by job j upon arrival (cf. Fig. 5). The service
time of job j is denoted by the r.v. By, j=1,....n
Considering the process development of unfinished
work during an arrival cycle, as depicted in Fig. 5 the
following equation system can be obtained under sta-




AEU, Band 43
(1989), Heft 1

Arrival cycle

Fig. 5. A sample path of unfinished work in a single server
queue with cyclic input.

tionary conditions for the random variables

Wi =max (W, + B;—A4,,,0), j=1,..,n-1,
I/I/Zl:n‘lax(u/in+BiniAin’O)7 (21)
and accordingly, for the waiting-time distributions

Wiit (k)= T[(ij(k) * bij (k)= aij(—k))a
j=1...,n—1,
w, (k) = m(w,, (k) * b, (k)*a;, (—k)).

In accordance with (22), the waiting-time distribu-
tions of jobs in the next arrival cycle can be calculated
successfully from those of the current arrrival cycle.
Using this fact the equilibrium waiting-time distribu-
tions can be determined iteratively, as schematically
depicted in Fig. 6 (cf. [15]). This iteration scheme is

Cip (K
Wm[k)% C

Fig. 6. Computational diagram of the algorithm in time do-
main.

(22)

referred to as the method of iterative convolutions.
For large vector sizes of the arrival and service distri-
butions, the discrete convolution operation can be
implemented efficiently using standard algorithms,
e.g., the Fast Fourier Transform (based on the Dis-
crete Fourier Transform) [8], [13].

2) Waiting-Time Distribution: The waiting-time
distributions of jobs within an observed cycle w;(k),
Jj=1,...,n, as obtained by means of the iterative con-
volution described in the previous subsection, form
the basic requirements for the calculation of further
system characteristics.

The waiting-time distribution of an arbitrary job
arriving at the processing unit i is determined as:

1 n
w; (k)= o 2w (k). (23)
j=1

The overall waiting time and sojourn distributions
seen from an arbitrary job entering the system are
calculated from these waiting-time distributions in ac-
cordance with (11) and (12).

P. TRAN-GIA and E. RATHGEB:
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4. Numerical Examples

To provide a quantitative comparison of the sched-
uling strategies discussed above, the model example as
presented in Section 2.3 will be investigated. Again,
the three scheduling mechanisms considered will be
referred to as

e RS: Random Scheduling.

e SD1: Semidynamic Scheduling according to the
sequence 11122 3.

e SD2: Semidynamic Scheduling according to the
sequence 12121 3.

To investigate the influences of the random process-
es systematically we consider the random variables
having distributions given by the first two moments.
With the exception of the deterministic case, we use
for both, the arrival and the service processes, the
negative binomial distribution for this purpose:

l (24)
x (k)= (‘ TR 1>p-"[1 -pk 0<p<i,

y real.

k

The mean and the coefficient of variation are given by:

(25a)
ot 25b
1 EX bere py o2 (1 )
e T ere > 1
PTExa T Exa 1 Y o

The time measures will be given in a normalized
form with the discrete time unit At = 1. For the mean-
waiting time EW; of jobs at individual queues, Fig. 7
shows a comparison of the worst performing scheme
(Random Scheduling) and the scheme with the best
performance (SD?2). The server coefficients of varia-
tion have been set to ¢, = 0.5, which are equivalent to
continuous-time Erlangian distribution of 4-th order

12

08

C/« -
Fig. 7. Influence of scheduling strategies on queue individual
waiting times.
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(EB, =30, ¢=0.5). The mean-waiting times have
been normalized to the mean-service times of the cor-
responding servers. It is obvious from Fig. 7 that for
any queue the normalized mean-waiting time is higher
for the RS scheme than for the SD2 scheme over the
whole range of ¢,. The coefficient of variation of the
interarrival process at queue i for the RS scheme is
known as [11]:

Gi=pic+=p). (26)

According to this formula ¢ 5 gq s the highest of the
coefficients of variation c,; gs for ¢ <1, for ¢, =1
there is a cross-over point with ¢, pg=C45 ps =
Ca3.rs = 1. In the range of ¢, >1, ¢; gg IS lower than
Caprs and ¢45 g

Since a higher interarrival time coefficient of varia-
tion implies a higher normalized mean-waiting time,
the same behavior can be observed for the corre-
sponding mean-waiting times.

As far as the SD 2 scheme is concerned, queue 1 and
queue 3 have got convolved inputs. In this context, it
shall be mentioned here, that mean value and coeffi-
cient of variation of a convolved input process are
defined by
Cath = 7 (27)

Y

According to (27) the normalized mean-waiting
time of queue 1 (4, = A4'®) has to be higher compared
to that of queue 3 (4, = A"®) over the full range except
for ¢, =0, where ¢,; gp> = €43 5p2 = 0. For the cyclic
input queue 2, due to the alternating input process,
C42.sp2 18 greater than O even for ¢, = 0, which results
in a higher normalized waiting time compared to the
queues 1 and 3 at this point.

Fig. 8 shows the waiting-time coefficients of varia-
tion of the queues for the same parameters. Inter-
preting these results one has to take into account the
small absolute value of the mean-waiting time for the

E[AY] =/ EA,

’I L L L L
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Fig. 8. Influence of scheduling strategies on the waiting-time
variation.
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ti£g, ——
Fig. 9. Queue individual complementary waiting-time distri-
bution functions. --- RS, — SD2, ¢, = 0.5, ¢, = 0.5.

SD?2 scheme and small interarrival time coefficients of
variation. In these cases the whole waiting-time distri-
bution is dominated by the probability of having
disappearing waiting time, which approaches the
value 1. Fig. 9 shows the complementary waiting time
probability distribution functions for the case where
¢, =cp=0.5.Tt can be seen that all distributions tend
to have geometric tail characteristics.

Figs. 10 to 12 show a comparison of the mean over-
all waiting times for the three scheduling schemes over
a variation of systems parameters. These are the
service-time coefficient of variation ¢ (Fig. 10), the
interarrival time coefficient of variation ¢, (Fig. 11)
and the traffic intensity of the arrival stream (Fig. 12).
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-

Fig. 10. Influence of scheduling strategies and types of servers
on waiting times. (a) ¢, =0.5. (0) ¢, = 1.
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Fig. 11. Influence of scheduling strategies and types of arrival
processes on waiting times. (a) ¢; = 0.5, (0) ¢y =1.
A
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Fig. 12. Influence of scheduling strategies and server utiliza-
tions on waiting times. ¢, = 0.5, ¢y = 1.5.

The mean-waiting times have been normalized for
these figures to the overall mean service time £EB = 45.
The figures demonstrate that in all cases the semi-
dynamic schemes lead to better performance than the
random scheme, independent of the system parame-
ters.

5. Conclusion and Outlook

In this paper, we present an exact analysis for a
generic class of scheduling strategies using methods
operating in discrete-time. Attention is devoted to the
class of semidynamic scheduling strategies which can
be found in load-sharing, routing, and job-scheduling
problems in distributed systems. General assumptions
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are made for arrival and service processes, by means
of which effects appearing in real systems like the
influence of heterogeneous servers and non-Poisson
arrival processes on the performance of the scheduling
strategies are investigated.

The model is decomposed into submodels in an
exact manner. The analysis of the resulting submodels
includes a new class of models with non-renewal pro-
cesses, i.e., G/G/1 models with general service and
cyclic input processes. Different variations of semi-
dynamic scheduling strategies are compared with the
random-scheduling scheme using a model example,
for which numerical results are provided to show the
influences of system parameters on the overall system
performance.
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