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Abstract

The Fibre Distributed Data Interface (FDDI) is a Token Ring Protocol to provide commu-
nication over fibre optic rings with a transmission rate of 100 Mbps. The protocol is an ANSI
standard and supports a synchronous traffic class which offers guaranteed response time and
guaranteed bandwidth as well as an asynchronous traffic class where two token modes and up
to eight different priority levels can be provided. The access to the medium for these traffic
classes is controlled by the so-called Timed Token Protocol.

In this paper, we focus on the performance behaviour of the asynchronous traffic class without
priorities. An iterative algorithm to calculate the first two moments of the cycle time will be
presented. Furthermore, the major system characteristics in terms of mean waiting times and
queue lengths will be derived from this analysis. Our model considers queues with limited
buffer size, and the loss probability of data packets can also be calculated. The results which
are obtained by the approximate analysis will be discussed, and the accuracy will be validated
by detailed computer simulations.
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1 Introduction

FDDI is a protocol designed for a 100 Mbps token passing ring using a fibre optic medium.
The FDDI standard has been developed by the American National Standards Institute X3T9
Committee. It supports two traffic classes, both handle packet switched traffic [3]. The so-
called synchronous traffic class allows data transmission with a pre-allocated bandwidth.
The transmission of frames in the asynchronous traffic class can be based on two token
modes. Using a so-called non-restricted token, up to eight priority levels can be distinguished.
A special restricted token mode in the asynchronous traffic class allows dialogue oriented
connections between some selected stations.

The access to the medium for these traffic classes is controlled by the so-called Timed To-
ken Protocol. During ring initialization all stations negotiate a target token rotation time
(TTRT). Each station is assigned a percentage of the TTRT for its synchronous packet trans-
missions. The residual bandwidth is available for asynchronous traffic. The transmission of
asynchronous packets is is controlled by the token rotation timer (TRT), which measures
the time between successive token arrivals at a station. If the token is in time, i.e. the TRT
value is less than the negotiated TTRT when the token arrives, then the value of the TRT
is copied into the token holding timer (THT), which starts counting upward. Asynchronous



frames may now be transmitted until the THT reaches the TTRT level. Then the transmis-
sion of the last packet is completed before the token is passed to the next station. If the
token is late, i.e. the TRT has exceeded the TTRT, only synchronous traffic may be served.
If the token is in time, the TRT is reset upon token arrival, otherwise the TRT is reset after
reaching the TTRT level [3].

The FDDI protocol has been developed from the ideas of Grow [4] and Ulm [13], and the
formal description of the protocol can be found in the standard proposal (3]. Johnson
[5, 7] has made various investigations on the robustness and the reliability of the FDDI
protocol. Some basic properties of the Timed Token Protocol have been proved by Sevcik
and Johnson [9, 6]. A procedure to estimate the throughput of each asynchronous traffic
class has been presented by Dykeman and Bux [1, 2], and an estimation of the cycle time
and the station throughput has been derived by Pang and Tobagi [8], who consider the
deterministic behaviour of the Timed Token Protocol under heavy load.

The analysis presented in this paper is based on a modified polling system with timer-
controlled gated service and non-zero switch-over times. The iterative algorithm uses an
imbedded Markov chain approach in conjunction with a cycle time analysis. It is an extension
of the method used by Tran-Gia and Raith [12] and provides the system characteristics
over the whole range of the offered load for arbitrary packet length distributions [11]. The
accuracy of the presented analysis is validated by detailed computer simulations.

The queueing model which is the basis for our analysis of the FDDI media access control
part is given in the following section. In Section 3 the analysis is presented in detail, and
some results obtained by the analysis are discussed and compared with simulation results in
Section 4.

2 Modelling

The queueing model we have derived from the FDDI MAC protocol is depicted in Figure 1.
We only consider one non-restricted asynchronous priority level. Our FDDI system consists
of NV stations and is interpreted as a polling system. Every station is modelled by a single
queue ¢. The number of packets that can be buffered in a queue is limited by the value
m;. Packets arrive at station ¢ according to a Poisson process with rate ;. The server of
the polling model represents the transmission channel, which is allocated cyclically to the
stations according to the FDDI MAC protocol. The random variables of the service time
of a packet Ty, and the switchover time Ty, from station 4 to station ¢ + 1 have general
distributions. They can be chosen individually for each station and are characterized by
their first two moments. ’

Due to the complexity of the FDDI MAC protocol none of the well-known service disciplines
limited-k, gated or exhaustive [10] are appropriate for our model. Basically, the queues
are served exhaustively. However, this exhaustive service can be interrupted by the token
holding timer (THT). Furthermore, the timer value of the THT is not fixed but depends on
the duration of the last token rotation. We call this "timer controlled exhaustive service”.
For reasons of numerical tractability we have adopted a slightly different service discipline
for our model, which we call "timer controlled gated service”. With this service discipline,
packets arriving during service of a station cannot be served in this cycle but have to wait
until the next token arrival. Obviously, this assumption yields some inaccuracies under
heavy load, but it works quite well for light and medium load. Furthermore, if the number
of stations NV is large, the station times will be small compared to the cycle time and therefore
the error of this approximation will not be significant.



Timer Controlled
Gated Service

Figure 1: Queueing Model of the FDDI System
3 Analysis

The analysis consists of three parts. After a summary of the notation, first the cycle time
will be analysed by evaluating the station times Ty, which represent the amount of time
contributed by station ¢ to the cycle time. This approach will be improved in Section 3.3,
where additionally the dependence between successive station times is taken into account.
In Section 3.4 finally the queueing analysis of the individual stations is performed. Here, the
steady state distributions of the queue lengths at arbitrary times are obtained, from which
loss probabilities and mean waiting times of the packets can be derived.

3.1 Notation
In our analysis, we use the following notation:

f=(t) distribution density function of the random variable T,

F,(t) distribution function of the random variable T,
®.(s) Laplace-Stieltjes transform of F,(¢)
Q- random variable of the number of Poisson arrivals with rate A; during

the interval T,

Gy(z)  generating function of the random variable ¥

N total number of stations

my number of waiting places in queue ¢
Ad packet arrival rate at queue 1

Ta, packet service time at station ¢

switchover time from station 7 to ¢ + 1
AE”) number of packets waiting in queue 7 at the n-th token arrival



B™ maximum number of packets to be served at station 7 after the n-th
token arrival

C';(n) number of packets to be served at station 7 after the n-th token arrival
D,(n) number of packets that cannot be served at station 7 after the n-th token arrival
;%)T’. token rotation time measured by station ¢ after the n-th token arrival

Trrrr  operative target token rotation time (constant value)

T}’}}T‘,J token holding time of station ¢ after the n-th token arrival and j packet
service times

Té?) station time of station ¢ after the n-th token arrival

Téf:) cycle time measured by station ¢z after the n-th token arrival
Ty, conditional type-I vacation time of station ¢

o(7) state probability of a queue at fixed points of time

p*(7) state probability of a queue at arbitrary points of time

PL; loss probability of packets at queue 7

L; length of queue ¢ at arbitrary points of time

Tw, waiting time of packets in queue 1

3.2 Cycle Time Analysis

The analysis is based on an imbedded Markov chain approach, where the regeneration points
are represented by the token arrival times at the stations. The system state of station 7 at

the n-th token arrival is given by the token rotation time Tz(j}lz):lz measured by station : and

the number of packets AS") waiting at station ¢ with the corresponding probabilities

aV(y) = P{a” =3} . (1)
The maximum number of packets Bi(n) that can be served at station ¢ after the n-th token
arrival depends on the token rotation time measured by station :. The value of the token
rotation timer is copied into the token holding timer, which is then started counting upward.
It expires upon reaching the level Trrpr where the token has to be passed to the next
station after finishing the current packet transmission. This behaviour can be modelled by
composing the random variable Tryr, ; of the measured token rotation time Trgrr, and j
successive and independent packet service times Ty, by

¥ars(s) = Bfar(5) - 8. (s) )
in the Laplace domain and comparing T}’}}Ti'j with the constant threshold Trrgrr. Thus, the
maximum number of packets to be served can be expressed as follows:

5™(5) = P{BM =j}

( P{T{%r, > Trrar} i=0
= P{TI(';Z)T; + Ejk;i TH,- < Trrrr < sz(ng,‘ + Zizl TH;} 0 < ] < m;
P{T{Rr, + Sr7" Ta, < Trrar} j=mi (3)
(11— Ffiro(Trear) ;=0
= Fl(’f;}Ti,j—l(TTTRT) - F’}’;}T,v,j(TTTRT) 0<gy<my
| FY#t,me-1(Trrar) j=m;



In general, it is not easy to determine the distribution function F}'}}T‘_)j(t) from 34 rar;;(8)
given by equ. (2). Therefore, we use an approach, where the first two moments of T(}}T ; are

derived from equ. (2), and the distribution F}}}T ;(t) is approximated by the two-moments-
approximation suggested in [12], which generally yields quite good values. However, it is
also possible to consider higher moments or to use a standard numerical technique.

Note that in equ. (3) values ; > m; need not be considered since the service discipline

permits at most m; packets to be served. The actual number of packets to be served C’i(n)
can now be determined by the discrete random variable

c™ = Min{a™,BMy . (4)
Assuming independence between 4™ and B{™, the distribution of C{™ follows from (4) as

1-(1- a<">(o>) ( <">(o>> | i=0

(n) N j-1 5
=L (1- Z o™ (k Z Bk =SSP (k) G=1,,m )
k=0
Note that
. n . U 0 < j < my
1 B™ () = )= 6
Tml;rn—'oo ¢ (]) { 1 ] =my ( )

which yields C’( ™ = A( and ordinary gated service. The number of packets that cannot be
served in this cycle due to the fact that the Token Holding Timer expires is given by

DM = Al — oM = 4P — prin{4™, B

= Maz{A™ — B 0} (1)
“with
Za"‘k(") (k—3) 0<j<m;
" (j) = (8)
1-— Z 4™ (k) i=0

The station time Tg:) is composed of C,-(n) independent packet service times T, and the
switchover time Ty, which yields

%) = &y, - G (@ m,(s)] (9)

where G’( )(z) is the generating function of C\™. The cycle time T( 1) measured by station i
1s denned as the time between the n-th and the (n+1)-th token a,rnva.l at station z. It is
given by

(n+1) ZT(n) | ZTSZH) ) (10)

k=1

Since the station times depend on each other, equ. (10) can be evaluated only approximately
by

N
85 (s) ~ TT 8%)(s) H d5(s) (11)

=1



The token rotation time in equs. (2),(3) is not equal to the cycle time, since the token
rotation timer of the FDDI MAC protocol is not always reset and restarted upon token
arrival. However,

iz (s) ~ 2E(5) (12)

is a good approximation unless the system is under overload and the packet service times
are extremely large. This approximation means that the token rotation timer is always
reset to zero upon token arrival, which does not alter the basic cycle time properties of the
protocol [9].

From the cycle time the queue state after the next token arrival characterized by Ag"*‘”,i =

2,..., N, can be derived by exploiting the state equations of the imbedded Markov chain:
o) = d7() © 457V () (13)

where ® stands for the discrete convolution of a finite and an infinite distribution

ZP q(j — k) 0<j<m

() ®ql7) = o (14)
Z > pk)-q(l) j=m
k=0l=m-~k

Herein qé )( ) is the probability that j packets arrive at station ¢ during the (n+1)-th cycle

n . oo A,;tj Ry n .
&0) = [ (T) MET@d 5=0,1,2,.. (15)

which can be calculated by using a two-moments-approximation for T(n Y. Due to the
complexity of the analysis presented here, closed form expressions for the steady state dis-
tributions of A( ) and T( ™ cannot be found. This is the reason why we have employed an
iterative algorithm very sxmﬂar to that one in [12]. It starts with initial values for A(O) nd
T( ) (typically the values of an empty system). Equs. (1)-(12) yield an improved T and

equs. (13)-(15) in turn yield a new AE”. These two steps are repeated alternately untﬂ the
system is stable, i.e.

N B[AM) - BlAlY)
= B4l

1]

<e (16)

The parameter ¢ determines the accuracy of the results. After the iteration, the steady state
distributions of the queue lengths A4; at token arrival times and the cycle time T¢ are known
approximately:

Ai=lim AY  i=12,.,N (17)
To = lim T i=1,2,.,N (18)

Note that during the iteration T, may depend on i which is not the case for the limiting
distributions.



3.3 Improved Cycle Time Analysis

Unfortunately, equ. (11) is not exact because the dependence of the station times on each
other is not considered. This can be explained as follows: Suppose that station ¢ is allowed
to send a large number of packets. Then the token rotation time measured by the next
station ¢ + 1 will be large and the number of packets that may be transmitted will be small.
Thus station times T, and Tg,,, are correlated with a negative covariance. In this section,
we improve our analysis by taking into account these covariances. In order to support the
readability, we suppress the superscript (n) denoting the n-th iteration step.

The cycle time is given by
N
Te =3 Ts, (19)

=1

which yields the following expressions for its mean and variance

N
=Y E[Ts) (20)

i=1
N-1 N
VAR Tc Z VAR| TE + 2 Z Z OOV TE‘,TEJ , (21)
1=1 1=1 k=i41

where in the general case the covariances are defined as follows

COV{TEHTEh] = E[TE:‘ : TEJ - E[TE"] : E[TEJ % 0 . (22)

In our analysis, we consider only the dependence between the station times of adjacent
stations, which means we assume

COV(Ts,Ts ] ~0 |k—i|>2 . (23)
This leads to
N-1 .
VAR Tc Z VAR TE + 2 Z COV TE‘,TE +1] , Tg, = TEN . (24)
=1 1=0

In order to determine the unknown covariances, we consider the following two-dimensional
Laplace-Stieltjes transform of two subsequent station times:

®g(siysi41) = '/t 0/ . e—sit‘e_"+lt"+1f3(ti,t,;+1)dt,'dti+1 (25)
R 1=
my  Mi4l
= Z Z Pz;, 2‘“@3 (8,)@(] (‘31)@2,‘:11(3i+1)(§Ui+1(5i+1) (26)
z;=0 3’1+1—'0
with
Prioins = P{Ci=2;Cita = zit1}
P{C,;.H = $;+1]C; = :D,'} . P{C, = :Z!;} (27)
which yields
COV[TEH TE:'-H} = E[THi] : E[THH-I] : COV[Ci’ Ci+1] (28)
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where

m; Myl

COV[OH Oi-i-l] = Z Z LiLi41 P iy — E[CJ : E[Ci‘\“l] . (29)

z; =041 =0

The probabilities p, 4;,, can be calculated by introducing conditional cycle times conditioned
on C; = z; and evaluating the conditional distribution of C;i; using equ. (3)-(5). The
advantage of the improved variance in equ. (24) is that it yields a more accurate distribution

of the Bi(n) in equ. (3) and thus the accuracy of the analysis presented in Section 3.2 is
improved.

3.4 Queueing Analysis

The queueing analysis can be performed separately for each queue. The influence of the
other queues is contained in the cycle time. Therefore we suppress the index ¢ denoting the
station number in order to improve the readability.

Let us first define the following conditional probability

pi(7) = PAK =jlt=1;,C=1} 0<j<m, 0<I<m, 0<2<], (30)

where K is the number of packets in the queue, ¢] is the instant just after the z-th service
of a service period at the considered station (z = 0 denotes the token arrival instant) and
C is the total number of packets served during this service period. Conditioning on C =1
means introducing conditional cycle times. We call a cycle where C' = [ packets are served at
the considered station a ”type-l cycle”. Note that once the number of packets waiting upon
token arrival 4 and the maximum number to be served B are known, the actual number C
of packets to be served as well as the behaviour during a service period can be derived in a
deterministic manner. For z = 0 we get

0 0<j <l
pou(j) =1 o2 ald)-b(k) j=1 (31)
k=7
()b I<j<m

Note that with (5) X7, pou(s) = 1.

One packet service time later we have one packet less in the queue and some new arrivals
characterized by ¢z (j), the probability of j arrivals during a packet service time, which can
be calculated analogously to equ. (15). This yields for z > 0

pZ,l(j) = Pz—l,l(j + 1) ® QH(j), 1<z (32)

where ® stands for the convolution defined in equ. (14). At arbitrary time instants during
the z-th interval of a type-l cycle we get

() ®aR) 1=0,2=0
Poa(0) = § Pu(i) ®qf(j) 0<i<m,0<z<! (33)
(7)) @ (7)) 0<l<m,z=1

where ¢£(j) and q{}'l( j) represent the number of arrivals during the backward recurrence
time of the service time and the backward recurrence time of the conditional type-/ vacation
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time, respectively. The conditional type-l vacation times are given by

Ty,y =Ty, + ZTE - (34)
J#t

For the state distribution at an arbitrary instant of a type-I cycle we get

E[Ty,+i-E[Tx]

E[Tu] Y2} 22 () +E(Ty, ] 0],(5)

(o o <

mm={ — p<lsm (35)
Ps4(4) I=0.

Unconditioning on €' = [ finally yields the state distribution at arbitrary instants

) =3 el) 51 05) - (36)

=0

Since we have assumed Poisson arrivals, the loss probability of the packets equals the blocking
probability of the queue

pr=p'(m) . (37)

The mean queue length at arbitrary time instants is given by

=S i) (38)

j=0

and the mean waiting time can be derived by using Little’s law

E[L]

ST

4 Results

For the validation of the analytical results against results obtained by a simulation program
we consider a relatively small system in order to show the properties of the analysis. Ten
stations are connected to an FDDI ring with 100 Mbps bandwidth and 100 km ring length.
Every queue has a limited buffer space of m; = 5. The traffic is supposed to be symmetric,
i.e. the traffic parameters are the same for all stations. We assume a constant packet length
of 1000 bit. The total offered traffic is varied by increasing the packet arrival rate. In order
to be able to show the effects of the target token rotation time, we chose a small value of
1 ms for Trrgar.

In the diagrams the simulation results are depicted with their 95 % confidence intervals
which are suppressed if they are smaller than 1 % of the absolute value.

Figure 2 shows the mean cycle time E[T¢] versus the total offered traffic p, which is calculated
according to

p=S" X\ E[Tg] ©(40)

i=1

It can be seen clearly that E[T¢] is limited above by Trrar which has been proved in [6, 9].
The analysis underestimates slightly the upper limit of the mean cycle time because the
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Figure 2: Mean Cycle Time Figure 3: Coeflicient of Variation

of the Cycle Time

timer controlled exhaustive service of the FDDI MAC protocol is approximated by a timer
controlled gated service discipline in our model. However, the error is less than 3 %.

The coefficient of variation of the cycle time c[T¢] is depicted in Figure 3. It is defined as

To] Vv VAR[T¢] (41)
e TR

In the empty system c[T¢c] = 0. Up to a certain threshold of the total offered traffic the
coefficient of variation increases. If the total offered traffic exceeds this threshold, the cycle
time is limited by the token holding timers which yields a decreasing ¢[T¢]. This behaviour
could not be achieved with the first approach of the cycle time analysis in Section 3.2, where
c[T¢] increases monotonously. The second approach presented in Section 3.3 corrects this
error partly, but ¢[T¢] is still overestimated for high load mainly due to the assumption that
only subsequent station times depend on each other.

Figure 4 shows the mean waiting time of the packets E[Tw], which is also overestimated by
the analysis. This has two reasons: First, the waiting time increases with the variance of
the cycle time which has been overestimated itself, and second, our model overestimates the
queue length due to the assumption of timer controlled gated service, where arrivals during
the service phase have to wait until the next token arrival. The effect that gated service
yields larger waiting times than exhaustive service has also been found in [10, p. 123] for
symmetric polling systems with unlimited buffer space and without timer control.

Finally, the loss probability of the data packets is depicted in Figure 5, where the error is
as small as the error of the mean cycle time. This can be explained by the fact that in
a symmetric system the loss probability can be derived directly from the mean cycle time
according to

=) (42)

1
pr=1--(1-
p

s=1
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We conclude this section with some remarks concerning the computational effort required
for the algorithm. The results presented here have been obtained with a Pascal program of
approximately 1500 lines. The complexity of a single iteration step is O(N-(m?*+2m)). Up to
now, the conditions for convergence of this algorithm have not been evaluated theoretically,
but it can be stated that the algorithm converges very fast. Here, e.g., usually less than 20
iterations are needed in order to achieve ¢ = 107%. However, if the offered load reaches the

crucial limit of (1 =N, Ty, /Trrrr), the algorithm converges slower and up to 100 iterations
are required.

5 Conclusion

An analysis for the timer-controlled FDDI media access control protocol has been provided.
It is an iterative solution based on a cycle time analysis and an imbedded Markov chain
approach. The results in terms of the first two moments of the cycle time as well as station
characteristics like the waiting time and loss probability have been presented. Using an
exemplary FDDI configuration the system behavior has been discussed and the accuracy of
the algorithm has been validated by detailed computer simulations. '

. Currently an extension of the analysis is under work to evaluate the Timer Controlled Ex-
haustive Service in order to improve the analysis for high load.
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