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Abstract—In this paper we evaluate strategies to reduce the
required processing capacity in a Cloud-Radio Access Network
(C-RAN) architecture by improving the placement of user pro-
cessing tasks. Our approach of assigning compute tasks in a
pool of compute resources is based on fine granular tasks, where
one compute task per served user is introduced. We compare
different strategies in order to balance the load in the pool and
save processing resources. Therefore we evaluate the best possible
reallocation method by formulating an optimization problem
including extensions to reduce the number of reassignments. We
also introduce an algorithm for dynamic reallocations that can be
implemented in real systems. From the evaluation results we can
conclude that all strategies reduce the total overload by enhanced
load balancing. Further all strategies improve the perceived
Quality of Experience (QoE) of individual users.

I. INTRODUCTION AND RELATED WORK

Cloud-Radio Access Network (C-RAN) is a key enabler for
future mobile networks. It has the potential to save deployment
and operational costs by simultaneously improving the sys-
tem performance. Compared with traditional Decentral-RAN
(D-RAN) we can expect a factor of four for the maximum
statistical multiplexing gain [1].

Traffic variations in time and space hold significant poten-
tials for multiplexing gains in C-RAN environments [2] and
with C-RAN we are able to flexibly adapt to the current traffic
demand [3].

The critical aspects like increased link capacity require-
ments and the choice of the applied virtualization techniques
are discussed intensively [4]. Promising solutions to address
the fiber consumption are given in [5] but the virtualization of
wireless communication systems is still challenging due to the
strict real-time processing requirements.

In order to tackle compute time variations induced from vir-
tualization the authors of [6] propose an open-source software-
based cloud execution architecture that shows nearly as good
processing deadlines as dedicated implementations.

The feasibility of end-to-end applications running over
virtual base station pools on multi-core platforms is proved
in [7] and [8] demonstrates that strict timing requirements can
be met by use of computational load balancing and massive
parallelization. In [9] the authors introduce concepts to discuss
flexible functionality assignment and cloud technologies in
5G RAN with the aim to support network densification and
centralization.

A publication from [10] introduces a flexible functional
split between the RAN front-ends and the Base Band Unit

(BBU) pool. These splits need to address constraints coming
from architecture and implementation as well as existing
Long Term Evolution (LTE) Radio Access Network (RAN)
specifications in order to support different applications.

The C-RAN architecture introduced in [11] constitutes
the basic concept for the investigations presented in this
publication. The uniqueness of the solution is that it enables
flexible pooling on user and even bearer granularity. Each
Remote Radio Head (RRH) is associated to its Home-BBU,
which performs the Physical Layer Cell functions, like Fram-
ing/Deframing, iFFT/FFT, for the RRH’s cell. The traffic load
dependent functions per user, further on called User Processing
(UP), comprise S1 termination, PDCP, RLC, MAC and User
Scheduling and the load dependent functions of the physical
layer. The big advantage of such an approach is that a UP
stack can be reassigned quickly and the throughput can be
kept during migration from one BBU to another. When a
new user arrives, the UP is initially placed on its Home-
BBU. Load peaks are encountered locally within the BBU by
overload prevention first. If this measure does not succeed the
architecture allows reallocating UPs to other BBUs.

Starting from this architecture [12] already presents heuris-
tics, which decide for the initial UP assignment to a processing
unit. Compared with a classical cell-based allocation strategy
the proposed heuristic enables about 50% savings of hardware
resources by keeping the required service quality.

As a follow-up and in contrast to [12] in this publication we
allow for dynamic reallocations of user jobs in an optimized
way in order to achieve balanced load within the pool and save
compute resources.

Using the same C-RAN architecture the authors of [13] aim
at reducing the energy consumption. Similar to our approach
they modify the assignment of UPs to BBUs to save processing
capacity. In contrast, they assume the same constant processing
effort for all UPs, which significantly simplifies the allocation
of UPs to BBUs.

The remainder of the paper is structured as follows. In
Section II, we describe the system model comprising radio
network, user distribution, traffic and processing effort model.
Section III introduces different variants of dynamic reallo-
cations and formulates them as optimization problems. In
Section IV we explain an algorithm for dynamic reallocation
used in the system level simulation for comparison with
the optimization results. Further we introduce a necessary
overload prevention mechanism. We present the evaluation
results in Section V comprising overload values for optimized
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and heuristic reallocations as well as results showing the user
experience under limited compute resource conditions. Finally,
the paper is concluded in Section VI.

II. SYSTEM MODEL

We use a 10MHz LTE system as the basis for the evalua-
tions. The RRHs (macro cells) are arranged in 19 hexagonal
sites each comprising 3 sector cells In total 57 cells are
available. To avoid border effects wrap-around is applied. We
focus on the downlink (DL) operation in the physical layer, as
the physical processing generates the highest processing effort.
Even though uplink (UL) processing causes higher computa-
tional effort in the base station or BBU, the principal behavior
is similar to the DL [14]. The Multiple-Input-Multiple-Output
(MIMO) and Forward Error Correction (FEC) processing is
more complex in the receiver side than for the transmitter. In
the downlink this effort scales quadratically with the number
of used transmit antennas, in uplink the processing effort scales
cubically.

A. Radio network model

As a basis for our evaluation we modeled the radio network
according to the parameters in Table I, which are compliant to
3GPP specifications.

Our model supports to choose between 2x2 MIMO, Space-
Frequency Block Coding (SFBC) and Single-Input-Single-
Output (SISO), depending on the channel conditions. The
transmit power and the signal degradation between all active
transmitters and the receiver as well as the noise is used
to determine the channel conditions in terms of the Signal-
to-Interference-and-Noise-Ratio (SINR). An appropriate LTE
Modulation and Coding Scheme (MCS) is chosen according
to the calculated SINR. With MCS, transmission mode and
Block Error Rate (BLER) tables it is possible to derive the bit
rate. Further we assume ideal channel knowledge and a target
decode probability of 80 %. To model the Automatic Repeat
Request (ARQ) process, failed transmissions are reinserted into
the sending buffer after 8 ms.

B. User and traffic model

The user distribution has a large impact on the achievable
multiplexing gain. To replicate the non-uniform distribution of
users in the real world, we place the users with a probability
of 50 % in three hotspots which are located in the scenario
so that the distance between the centers of the hotspots is
maximized. The remaining 50 % are placed uniformly over
the whole scenario.

Because the traffic pattern in the network influences possi-
ble multiplexing gains, we do not apply a full buffer approach.
Instead we model the traffic as request-response pairs. After
each finished transmission of request and response the user
is moved to a new position. The object sizes of request and
response are based on measurements in a campus network
[15]. As we want to avoid problems with large objects the
distributions are clipped at 100 Mbyte. The load in the net-
work can be controlled by varying the negative exponentially
distributed Inter-Arrival Time (IAT) of new request-response
pairs. Further we have defined a simple admission control,
which drops arriving requests when there are more than 100
users active in the sector.

C. Processing effort model

We apply a model for the compute effort generated by
a UP first introduced in [2]. It comprises the physical layer
processing of a UP as explained in Section I. The input of the
model is based on the scheduling decision, i. e., the number
of radio resources, the transmission mode and applied MCS.
The output is processing effort per UP per Transmission Time
Interval (TTI).

The following equation describes the compute resource
effort Pu,t in Giga Operations Per Second (GOPS) that is
required to serve UP u at time t:

Pu,t =

(
3Au,t +A2

u,t +
1

3
Mu,tCu,tLu,t

)
· Ru,t

10
(1)

where A is the number of used antennas, M the modulation
bits, C the code rate, L the number of spatial MIMO-layers
and R the number of Physical Resource Blocks (PRBs), each
as allocated to UP u at time t.

III. OPTIMAL DYNAMIC REALLOCATION

In this chapter we introduce different variants of dy-
namic reallocations and show their formulation as optimization
problems. The purpose of dynamic reallocations of UPs is
to achieve a load balancing between the BBUs. Equal load
distribution results in maximized multiplexing gains.

Real systems might not be able to support unlimited
number of reallocations. E.g. if UPs are realized as Virtual Ma-
chines (VMs), reallocations generate additional network load
when the memory content has to be transferred from one BBU
to another. Therefore we present an extension that reduces
the number of reallocations. In a real system there are even
more possibilities how to restrict the number of reallocations to
numbers that can be handled. E. g., in our proposed algorithm
in Section IV reallocations are only performed for BBUs that
are currently overloaded.

A. Baseline

The ideal baseline (referred to as Ideal) is determined by
recording the total overload of all BBUs in the system.

Oideal =
1

|T |
∑
t∈T

max

(
0,
∑
u∈U

Pu,t −
∑
b∈B

Cb

)
(2)

B defines the set of all BBUs, U the set of all UPs and Cb the
processing capacity of BBU b. The total overload is divided by
the duration |T | to make it independent of the considered time
range T . Here we assume only discrete time steps, as LTE also

TABLE I. SYSTEM MODEL PARAMETERS

Property Value
Cell layout 19 sites, 3 sectors per site, 500 m inter site distance,

wrap-around
BS TX power 46 dBm
BS / UE height 32 m / 1.5 m
Path-loss [dB] 128.1 + 37.6 · log10 d[km], from [16]
BS antenna model 3D, 15◦ tilt, from [16]
Shadowing 8 dB log-normal
UE velocity 0 km/h (for fast fading model: 3 km/h)
Carrier frequency 2 GHz
System bandwidth 10 MHz
Subframe duration (TTI) 1 ms
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operates in a slotted fashion with time steps of 1 ms. Note that
the ideal baseline equals a system with only one BBU with a
processing capacity of

∑
b∈B Cb.

B. Optimization problem

The objective of the optimization problem is to perform
the reallocations of UPs so that the total overload Oopt in the
system is minimized. The overload is defined as:

Oopt =
1

|T |
∑
t∈T

∑
b∈B

Ob,t (3)

where Ob,t represents the overload of BBU b at time t. In
the optimization problem we introduce the binary flags au,b,t,
which are set to 1 if UP u is served by BBU b at time t, and
to 0 otherwise. The restriction∑

b∈B

au,b,t = 1 ∀u ∈ U, t ∈ T (4)

ensures that each UP is served by exactly one BBU during the
considered time interval. With the help of the binary flags, we
can define the overload for BBU b at time t as:

Ob,t = max

(
0,
∑
u∈U

au,b,tPu,t − Cb

)
(5)

C. Optimization problem with intervals

As an extension of the original optimization problem we
introduce the concept of intervals to allow reallocations only
at fixed points in time. During the intervals the UPs stay
on the BBU they are assigned to. Newly arriving users are
initially assigned to their Home-BBU. This concept decreases
the necessary signaling and load caused by reallocations.

Still, the objective of the optimization problem is to min-
imize the total overload Oopt. The only difference is the way
the binary flags have to be handled:

au,b,t =

{
1 b = hu,∀u ∈ U, t < d tati eti
0 otherwise

(6)

Where hu is the Home-BBU of UP u, ta the first time index
where Pu,t > 0 (the start of the activity phase of a newly
arriving user) and ti the length of the reallocation interval.
This ensures that the UP is initially assigned to the Home-
BBU and stays there until the next reallocation is permitted.
Note that the problem from III-B is a special case with ti = 1.

At the times t = nti the binary flags may be changed to
minimize the overload for all UPs with ta < nti. Here, n is
an integer variable to count the reallocation intervals. Whereas
for the times t = nti, . . . , (n+ 1)ti − 1 the binary flag au,b,t
has the value of au,b,nti .

D. Static

To allow a comparison with the worst case, we introduce
the Static variant, which performs a static initial assignment
without any dynamic reallocation. This resembles a D-RAN,
where UPs are executed on the processing hardware responsi-
ble for the cell of the user. Again we record the overload:

Ostatic =
1

|T |
∑
t∈T

∑
b∈B

Ob,t (7)

The overload Ob,t is the same as defined in equation (5). The
binary flags au,b,t are set as follows:

au,b,t =

{
1 b = hu,∀u ∈ U, t ∈ T
0 otherwise

(8)

IV. REALIZABLE REALLOCATION MECHANISM

In this section we present two mechanisms needed to
implement dynamic reallocations in real systems. The first one
is an algorithm to perform reassignments which is an heuristic
approach to imitate the behavior of the optimization problems
described in the previous section. Additionally a mechanism
to prevent short term overload situations is required. This
mechanism has to be executed every TTI and modifies the
scheduling decision in order to keep the processing effort
below the available capacity.

A. Reallocation algorithm

In contrast to the optimal reallocation strategies introduced
in Section III we present an heuristic that can be implemented
and used to evaluate the performance of dynamic realloca-
tions under limited processing resources. The pseudocode can
be found in Algorithm 1. This procedure can be executed
either every TTI or similar to the optimization problem in
section III-C at predefined intervals.

Every time when the algorithm is started, it iterates over
all available BBUs and checks if it is overloaded (Line 2).
In case of overload all UPs which are currently assigned to
the currently evaluated BBU are sorted in descending order
according to their processing effort (Line 3). Sorting of UPs
before reallocation has the advantage that as few UPs as
possible will be reassigned. Then we start a loop to iterate
over the sorted UPs as long as the currently examined BBU
still suffers from overload. For each UP we check whether
it can be reallocated back to its Home-BBU. A UP can be
reassigned back, if it is currently on another BBU and the
Home-BBU has sufficient free processing capacity (Lines 5 to
9). Otherwise the UP is reallocated to the BBU with the lowest
processing effort. If this is not possible, we try to reassign the
UP to other BBUs with ascending processing effort (Lines 13
to 17). The reason why we first try to reallocate UPs back to
their Home-BBU is that we want to prevent the fragmentation
of UPs, which are located in the same cell, onto many BBUs.
Further it has been observed in [12] that assigning UPs on
their Home-BBU helps to reduce the overload. This idea is
reused here for dynamic reallocations.

B. Overload prevention mechanism

In the system level simulation as well as in the real system
overload of BBUs has to be handled, when the available
processing capacity is exceeded. Long term overload situations
can be resolved through dynamic reallocations. However, short
term overload needs to be tackled also. Therefore we introduce
an overload prevention mechanism. Each TTI this mechanism
treats overload by modifying the scheduler’s decisions, espe-
cially reducing the number of allocated PRBs Ru,t. For that
purpose, each UP is assigned a reduced processing capacity:

Pu,t,reduced = Pu,t

(
1−Ob,t

Pu,t∑
v∈Ub

Pv,t

)
(9)
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Algorithm 1 Dynamic Reallocation Algorithm
1: for all b ∈ B do
2: if Pb,t ≥ Cb then
3: Sort descending Ub = [Pu,t|au,b,t = 1, u ∈ U ]
4: for all u ∈ Ub do
5: if b 6= hu and Phu,t + Pu,t ≤ Chu

then
6: Pb,t ← Pb,t − Pu,t

7: Phu,t ← Phu,t + Pu,t

8: au,b,t ← 0
9: au,hu,t ← 1

10: else
11: Sort ascending Bsorted = [Pb′,t|b′ ∈ B]
12: for all b′ ∈ Bsorted do
13: if b′ 6= b and Pb′,t + Pu,t ≤ Cb′ then
14: Pb,t ← Pb,t − Pu,t

15: Pb′,t ← Pb′,t + Pu,t

16: au,b,t ← 0
17: au,b′,t ← 1
18: end if
19: end for
20: end if
21: if Pb,t ≤ Cb then break end if
22: end for
23: end if
24: end for

where Ub is the set of UPs on BBU b, Ob,t is the overload
as defined in (3) and Pu,t the processing effort of UP u as
defined in (1). This ensures that the overload is distributed to
the UPs relative to the UPs’ requested processing capacity.
Subsequently, for each UE, the number of allocated PRBs
is reduced such that the allowed processing capacity of the
respective UP is not exceeded:

Ru,t,reduced =

⌊
Ru,t

Pu,t,reduced

Pu,t

⌋
(10)

Note that thereby we assume that single PRBs can be assigned
to UEs, which is only possible in LTE resource allocation
type 1 [17]. However, this concept can be easily extended to
other resource allocation types. Also, we do not exploit the
effect that disabling PRBs reduces interference experienced
by neighboring cells. The MCS is not adapted to the reduced
interference and the disabled PRBs are only considered for
calculating the capacity of the affected transmission.

V. EVALUATION

The investigation is split into three parts. The first part
shows upper and lower bounds of the achievable multiplexing
gains for different reallocation variants by solving the opti-
mization problems from sections III-A to III-D. We use traces
of the processing effort per UP generated in a system level
simulation as input for the optimization problems. Since the
optimization is too complex and time consuming to execute for
longer time intervals, we only consider a short time range of
30 ms, which is feasible because the traffic model generates
many short living transmissions. Then we present results of
the algorithm from section IV implemented in a system level
simulation. During the simulation run the overload is recorded
without activated overload prevention mechanism. These re-
sults are also compared with the optimized results. Finally, the
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Fig. 1. Overload of optimized reallocations

last evaluation uses only the simulation model of the presented
network including the overload prevention mechanism. In this
part we show the impact of reduced processing capacities on
the user experience.

We assume to have 19 equal BBUs. The capacity of
the BBUs is configured in percent of the theoretical upper
bound of the load. 100 % corresponds to a BBU capacity of
204.33 GOPS, which is the peak processing effort required to
serve three cells with the best MCS and transmission mode
on all PRBs. The following results show the mean of 10
independent runs as well as the 95 % confidence intervals.

During the evaluations the sum downlink rate of the system
is configured to 430 Mbit/s by adjusting the IAT of new
request-response pairs. This load leads to an admission control
drop rate for newly arriving users of 1 %.

A. Overload of optimized reallocations

The results of the first assessment can be seen in Figure 1.
We reduce the available processing capacity Cb from 100 %
down to 10 % and record the total overload as defined in
equation (3). A satisfactory task reallocation variant would
keep the overload at zero or at least at a low level. If the
installed processing capacity is small, the measured overload
is independent of the applied strategy, because all BBUs are
fully loaded. Note that the results denoted with ”1 ms interval”
are equal to the results obtained with the optimization without
any intervals (Section III-B).

As we can see in the figure, the gap between 1 ms Interval
and Ideal solution is quite small, whereas the overload of the
Static solution is much higher. The reason for the difference
between Ideal and 1 ms Interval solutions is the granularity
of the UPs. In the 1 ms Interval solution they have to be
assigned to the 19 available BBUs, whereas in the Ideal case
they are assigned to a 19 times larger BBU. If we consider
the processing capacity needed to serve the UPs without
causing overload, we observe in Figure 1 that more than 70 %
processing capacity is needed in the Static case. In contrast,
overload occurs for the Ideal and 1 ms Interval solution only
for processing capacities lower than 40 %.

The results clearly show that the interval should be chosen
as small as possible, to reduce overload. However, the dif-
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Fig. 2. Overload of heuristic reallocations

ference between intervals of 1 ms and 2 ms are quite small.
Intervals of 5 ms or larger significantly increase the overload
compared to smaller intervals or the Ideal variant. Even if
during the considered time range reallocations are performed
only once, as in the case of an interval of 15 ms, the overload
is smaller than for the Static variant.

The goal of introducing intervals is to reduce the number
of reallocations, because depending on the system design only
a limited number of reallocations might be possible. Table II
shows that the approach of performing reallocations only after
discrete intervals really reduces the number of reallocations.
The left column of the table shows the configured interval,
the column in the middle the total number of performed
reallocations during the considered time range of 30 ms and the
right column the average number of performed reallocations
per interval. The total number of reallocations can be reduced
noticeably. However, the number of reallocations per interval
does not decrease significantly. The reason is the applied traffic
model, which generates many relatively short living users. So
the number of reallocations per interval depends on the number
of users that are active from one interval to the next.

B. Overload of heuristic reallocations

The results of the reallocation algorithm introduced in
Section IV-A can be found in Figure 2. During simulations
it is possible to consider larger time ranges, so we included
reallocation intervals up to 500 ms. Besides the outcomes of
the algorithm we also include the results of the Ideal and Static
case as upper and lower bounds.

Similar to the optimized results the overload rises with
increasing reallocation intervals. But even if reallocations are
only triggered every 500 ms the overload is smaller than for
the Static variant. However, the gap between Ideal solutions

TABLE II. AVERAGE NUMBER OF PERFORMED REALLOCATIONS FOR
60 % INSTALLED PROCESSING CAPACITY

Interval [ms] Total Number of Reallocations Reallocations per Interval
1 1861.2 64.1
2 910.6 65.0
5 320.6 64.1

10 113.2 56.6
15 37.5 37.5
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Fig. 3. Comparison of optimized and heuristic reallocations

and the solutions of the reallocation algorithm with an interval
of 1 ms is significantly larger than in the optimized case.

By comparing the optimized results and the outcomes of
the reallocation algorithm in Figure 3 we can conclude that
the performance of the simple heuristic is worse than the
optimal reallocation scheme. However, the proposed algorithm
can be implemented in real systems and requires only little
state information of the system. Especially it does not include
any predictions of future processing efforts.

C. User experience under limited compute resources

In the last step we evaluate how the overload impacts the
service quality perceived by the users. The results can be
found in Figure 4. We measure the achieved DL bit rate for
individual transmissions as an indicator for the user experience.
Poor reallocation decisions lead to situations where users get
less processing capacity and therefore stay in the system for a
longer time. This may lead to higher admission control drop
rates and therefore to a higher bit rate for remaining users.
Thus, we define the bit rate r as follows:

r =

{
object size

transmission time UP accepted

0 UP dropped by admission control
(11)

Transmission time is defined as the duration between sending
the object at the server and receiving it in the UE. Here we
define the 100 % bit rate level to be achieved in the case of
100 % processing capacity. Besides the effect of admission
control drops, a system with a better reallocation variant is able
to serve more users at the same time, because the processing
effort generated by the users is balanced on the available
compute resources. Therefore the individual user is affected
less by the overload prevention mechanism.

As expected from the previous outcomes a short realloca-
tion interval leads to higher bit rates. Also the variant with an
interval of 1 ms achieves results close to the Ideal case. For
processing capacities above 44 % the Static variant performs
worst. However, for capacities below 44 % Static becomes
better then all heuristic variants. The reason is as stated above
that for capacities below 44 % all reallocation algorithms are
able to serve more users and in consequence the bit rate is

2016 IEEE 27th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC): Mobile
and Wireless Networks



0 20 40 60 80 100
Processing Capacity [%]

0

20

40

60

80

100

Bi
t R

at
e 
r 

[%
]

Heuristic - 1ms interval
Heuristic - 5ms interval
Heuristic - 10ms interval
Heuristic - 100ms interval
Heuristic - 500ms interval
Ideal
Static

Fig. 4. QoE under restricted compute capacity

0 20 40 60 80 100
Processing Capacity [%]

0

1000

2000

3000

4000

5000

6000

Ac
tiv

e 
U

se
rs

Heuristic - 1ms interval
Heuristic - 5ms interval
Heuristic - 10ms interval
Heuristic - 100ms interval
Heuristic - 500ms interval
Ideal
Static

Fig. 5. Number of simultaneously active users

smaller for the individual user. The average number of users
in the system served at the same time is depicted in Figure 5.

By observing the behavior of the Quality of Experience
(QoE) the trade-off between bit rate and required processing
capacity gets evident. By allowing a certain degradation of the
bit rate the achievable multiplexing gain can be adjusted.

VI. CONCLUSION

In this paper we have investigated a mobile network
architecture supporting fine granular reallocation of user pro-
cessing tasks in a pool of multiple BBUs. The results show
that the combination of task reassignment and short term
overload prevention mechanism allows to utilize the trade-off
between compute resources and QoE. In the best case we can
economize up to 40 % of processing resources without any
QoE degradation. If a degradation of QoE is accepted, even
more compute resources can be saved.

A promising extension of this work is the combination
of reallocation and improved initial placement of UPs, as
presented in [12]. We plan to investigate the interplay of
both algorithms in a future publication and expect that even
higher multiplexing gains are possible. Additionally we will
analyze for which types of traffic initial placement or dynamic
reallocations are more appropriate.
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