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Abstract As today’s systems are beoomlng more and more complex, simulation is often the only vi-
able way to verify the funct/onallty of a system, or to estimate its performance. Especially in time and
money critical sections it is important to gain information about a designed system before any expen-
sive hardware is to be implemented. Using an object oriented simulation framework eases the solving
of this prob/em Different CAN components were developed separately and are now available as a
CAN part library. Complete and heterogeneous systems can now be simulated and evaluated by tak-
ing parts from the library and connecting them using the standardized interface from the srmulat/on
framework. Configuration of the simulation is supported by a simple to use descr/ptlon language.

- The gained results are presented in the last section. We use the SAE scenarlo to show how the
simulation results can be used to dimension a CAN network S

1 Introduction

Todays systems are becoming | more and more complex. The human mind is unable to compre-
hend complex systems in their entirety. Therefore, complex systems need to be structured in a way
that allows humans to cope with this complexity. This is usually achieved by breaking down the sys-
tem into a hierarchy of subsystems and modules. In such cases, simulations can help in evaluating
different des gn choices. Simulation programs can be used to verify the functronallty of the system as
well as to estimate the performance of the target system.

; Slmulatlon of systems is also important in time and money cntrcal market sections.: Obtammg :
information about a desired designed system is rmportant before constructmg it. This helps to find
~ bottlenecks and gives hints for design tmprovements It is also an important addition to analytical
results that usually present a worst case vrew or an approxrmatlon ofa system [1 4] and therefore may
be away from reallty ' '
This paper is structured as follows In Sectron 2 we will present the key desrgn |ssues of the used'
stmutatlon framework. A more detailed descnptlon can be found in [4, 5]. Section 3 deals with the
modeling of CAN systems. We present here the major aspects of the implemented simulation model.
In this section we also introduce the environment of the simulation. This framework consists of the
open network descnptlon language ODL [13] and a special compiler that generates the necessary
input information for the simulation.
The paper ends with a presentation of simulation results regardlng the SAE scenario.

2 The Object-Oriented Simulation Framework

The followmg section describes briefly the overatl software archrtecture of the simulation frame-
work. Two main parts can be distinguished. The simulation support subsystem contains all
components that are necessary to control the execution of a simulation program.

The main part of the system is the simulation model. The simulation model can be hierarchically
decomposed into submodels and model components. The latter are called entities. Entities communi-
cate with each other by exchanging messages. All messages are derived from an abstract base class
that defines some common propetties, e.g. the message type. Contents and meaning of a message
are user defined. Each entity can evaluate only those aspects of a message which it is interested in.

A port mechanism is used for communication. Transferring messages between entities is as
simple as connecting the input and output ports of these entities. A handshake protocol which is part
of the simulation framework ensures that both entities are ready to exchange messages before they
are actually sent. Entities can be seen as black boxes-that communicate with the outside world using
ports. This strict encapsulation allows separation of the behavior of an entity from the structural ar-




rangement within the model. Therefore rt is easy to insert a new entity between existing entities with-
out modifying the existing ones.

The simulation framework is based on an event driven paradigm. In event-driven simulations,
events are used to plan future activities. Events are entered into a sorted event list and processed
later. The meanmg of an event depends on the entity that generated it. Events are passed to the en-
tity for processing. The entlty might process the event itself, or may pass it on to its parent entity. In
this way hierarchical processing of events is supported.

A model entity is a special entity that has a built-in event list. Usually, the model entity stays at
the top level of the simulation model hierarchy. Since a model may be composed of more than one
submodel, the framework supports more than one event list. The submodels are responsible for syn-
chronizing distributed event lists.

3 Simulating CAN-Systéms |

In the following section, we will describe some architectural details of the simulation model. After
a short introduction into the CAN elements of the simulation we show how complex simulation scenar-
ios may be constructed using parts of a simulation library. We then focus on the modeling of
applications using burst-silence generators. Finally we describe the infrastructure that surrounds the
simulation and makes it easy to use. ,

3.1 Elements of the CAN Model

- The simulation of a system has to guarantee functional equivalence to reality. The realization of
the CAN protocol in different controller types therefore requests the decomposition of a controller
network into two basic parts: the controllers with their duty, to manage messages with different priori-
ties either as Full-Can or as Basic-CAN, and the bus with its centralized arbitration and routing
functionality. We will present these two parts in the following sections.

3.1.1 CAN Controllers

Controllers generaﬂy consnst of a sender and a receiver part. They provide buffers for messages
that have to be sent over or have been received from the bus, respectively. One general difference
exists between so called ,Basic-CAN“ controllers and ,,FuII-CAN“ controllers. Whilst Basic-CAN con-
trollers provide only one general receiving channel, Full-CAN controllers provide buffers to each
message identifier that is proposed to be received. From this fact results the basic structure of our
controller model hierarchy that can be seen in Figure 3.1: :
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Figure 3.1: CAN Controller Model Hierarchy



The TCANController class is implemented as an abstract base class that is derived from the

basic model class TEntity of the simulatron

framework. By deriving all components from this base

class all controllers inherit the ability of statistic measurement capabilities and general connectivity to

other components. The derived classes only
sponding controller.

contain specmc implementation details of the corre-

A further feature is the realrzatlon of the extended frame format and the standard frame format
specified in the second edition of the CAN specification [9]. Frame formats are supported accordlng o
the implementation documentations of the controllers.

The connection to applications is realized
ponents. The signaling of having sent or recei

by the same port concept that is used within the com- -
ived a message is done by a specral interrupt message

(IR) that is sent from the controllers to the application.

Basic CAN controllers like the Phrhps PCA82C200 [8] and the Motorola M0680705-fam|ly [6] use
an alternating buffer mechanism as their receiving channel. This allows them to store two different
arriving messages: one buffer contains the oldest arrived message and the other contains the newest
which has not yet been requested by the appllcatlon Figure 3.2 shows the internal structure of our

Basic-CAN model.
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Full CAN Controllers like Intel's 82527 3]

or the Siemens SAE81C90 [11] provide message filter-

ing on-chip. Therefore these controllers have multiple receiving buffers which are assigned to a

special CAN identifier.
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Figure 3.3: Full-CAN Controller Model



This prevents the upper layers of a CAN fsystem from spending tlme in message filtering. Gen-
erally one channel of Full-CAN controllers is able to be used as Basic-CAN receiving channel that
permits receiving of all messages that are on the bus (according to a specified acceptance mask).

3.1.2 The Bus- Model

~ The bus model contains the only service phase of the whole model. It models the access of a
message to the shared medium and calculates the time that is used to transmit the message. Bus
access is gained via an N:1 multiplexer and the routing of messages is done bya 1:N demultrplexer

from'sender-part of controllers

error generator

to recelver-palt"of controllers

Flgure 3 4 CAN Bus Model

Addltronally, an error generator may be con‘ e cted to the system It generates error-frames ac- = .

‘icordmg to a continuous llmlted dlstnbutlon Bus access of such errors is also controlled by a
, contlnuous dlstnbutlon

3.2 Burldlng a Hlerarchrc and Heterogeneous Slmulatlon Model

The mapping of the model to the simulation is straightforward. A hierarchy of entities can be de-
rived directly from the model. During the development of the program another great benefit of the
object-oriented approach became obvious. The library supports an incremental development process.
Due to the encapsulation of the entities and the framework that is provided by the library, it is always
possible to build a reduced model (single controllers, the bus) which can be tested separately. Later,
individual entities are combined to hierarchical entities, and their ports are connected. This has the
advantage that an executable program is available dunng every stage of the development process.
The need to integrate a large and complex system in one step does not exist. Since the individual
entities are already tested, testing of the whole program could be reduced to validating interactions
between controllers and the bus.

During the implementation of the simulation program, we could easily reuse the framework pro-
vided by the library. The queues, service phases and generators could either be used directly from
the library, or had only to be slightly modified (like the Mux and Demux classes). These modifications
could easily be accomplished by deriving new classes from the library entities and by overriding
specific methods. The modular architecture also allows to simulate multiple bus systems that are
connected via gateway ECUs (electronic control units).
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Flgure 3, 5 A complete CAN Model with two nodes

For the moment there are no restrlctlons to the kmd and number of contro]lers that are. attached
to the bus but from memory space o :

33 Usmg Burst Sllence Generators as an Appllcatron Model

Provrdmg the simulation with appropriate generators that represent real attached message
sources is a difficult task. In general applications there are predecessor and successor relations, e.g.
a message is sent only after ancther message has arrived.

To cover all possible timing cases we used a burst-sﬂence generator. Figure 3.6 gives the pa-
rameters of such a message source. :
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Figure 3.6: Burst-Silence Generator



The burst phase is the active phase of the generator. It is defined by a burst dlstnbutron which
results in the number of events during the burst phase. Each event is separated by a constant ,inter
cell time“ that may also be chosen. The third parameter is'the sﬂence phase which is again given by a
distribution function.

The benefit of using such generators is the posslblltty to generate all possrble phase relations.
Therefore a short silence phase is selected that allows small phase dilations.

Typical distributions are a geometric distribution with a mean value of ten for the burst phase and

.a negatlve exponentlal distribution with a mean value of one time unit for the silence phase. The inter
cell tlme is given by the interarrival time of the messages

3.4 Infrastructure to the Simulation‘

Preparlng a srmulatron scenario is as easy as describing the controller network W|th the Open De-
scription Language ODL [13]. That means to define ECUs, the tasks that run on the ECU, the
messages with their priorities and choose the desired hardware controller and write it down in a text-
based file. A compiler generates the necessary data for the simulation ("Sim-Para“) which then
executes automatically: The simulation dynamically parses the description and builds the desired
simulation model.

Output is generated by supplying an output-format-file ("Desired Output Specrflcatlon“) This file
contains information about which measurements should be recorded.

| Sim-Para

Desired
Output
Spec.

Library:
- Generator Models
- Controler Models

Figdre',"3'.'7‘:' Information'ﬂow of simulation

An extension to the presented model is currently under development: A communications software
layer that provides communication mechanisms to the application programmer. Therefore, we see the
CAN model as one basic model abstraction and use the input ports of the controllers as interfaces to
the overlaying software. The developer of the software model does not need to know how the CAN
model works, they just ,plug” the CAN model to their model and then are able to run a whole system
simulation. This is also supported by the already mentioned description language that helps to keep
the use of the simulation transparent to the user. They just define what kind of generator they want to
use and what mtormatron is expected from the simulation.

4’ Results

In the following section we present some of the obtained results. We implemented the scenario
that was proposed by the Society of Automotive Engineers [10]. The scenario originally consists of
seven ECUs with 53 messages being exchanged between these ECUs.

To assign all messages to identifiers on real controllers (Intel's i82527 allows for example for 14
different identifiers) we had to "piggy pack” some messages. We chose those messages to be put
together that have the same deadlines and the same arrival rates. The resulting scenario consists of
42 messages [7]. Selection of priorities follows the "deadline first - jitter" assignment proposed by
Tindell [14]. Release jitter of messages is represented by the bounds for the distribution of the mes-
sage generators.



Further assumptions regarding the design of the message generators are as follows: we only use
cyclic generators. Signals that are not meant to be cyclic but sporadic (e.g. "Emergency Brake®) but
have a minimal inter arrival time are also considered to be cyclic with the minimal inter arrival time
used as cyclic inter cell time.

Due to space limitations we will only present a small selection of our resulis. For the presentatlon
we picked out the following messages: ,

CANID | SAE-Signal | Sentby ECU| Lengthin | ICTin |Deadline| Calculated Re-
- | Name byte - ms inms | sponse Time at
; o ; 125 kBd in ms
1 |Hi&Lo Contactor|  Battery 1 | 50 | 5 1,544
Open/Close , ;
25 | Shutdown . IM_C A 50 20 exceeds dead!.
40 Motor/Trans Trans 1 ‘ 1 000 | 1000 ‘exceeds deadl.
Over Temp , .

Table: 4.1 Presented Messages

4.1 Simulating the error-free system

According to the time dilation algorithm [14] worst-case response times can be calculated for
these messages. As can be seen in table 4.1 only the first message is supposed to meet its deadline
regarding their worst-case. Both other messages are expected to be over their deadlines.

- Simulation of the SAE scenario will show that also other messages are supposed to meet their

deadlines. Therefore, we extracted the results for the above mentloned message IDs from the simu-
lation.
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Figure 4.1.a: Message ID 1. Deadline is within 5 ms which will be no problem at any of the simulated
bus speeds, because simulation results are always less then 2 ms.
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Figure 4.1 b) Message ID 25.
The message’s deadline is at
20ms. Simulation gives evi-
dence to the worst-case
analysis: the probability to
meet its deadline at the

~ simulated speed is very little:

at any of the simulated bus
- speeds there are cases when
‘the deadline cannot be held.

 Figure 4.1 c) Message ID 40.

The message’s deadline is at
1s which will be met without

_ problems at 125 kBd! But any

lower bus rate will result in a

| " loss distribution of 1, i.e. no

message at all will bé suc-
cessfully transmitted. The
edge between successful
transmission and full loss is

 verysteep.

Figure 4.1 a-c: Three messages at différent bus speeds: 100 kBd, 110 kBd, 125 kBd

4.2 Simulation with error source

When errors are introduced, the deadlines may not be met any more. To find out at what rate the
system will stop working correctly, we increased the disturbance rate. The results are shown for one

selected message ID, ID 40.
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Figure 4.2 Message Id 40 with increasing disturbance rate. Deadline is at 1.0s. The val-
ues for the arrival of disturbing messages are given as the mean values of a negative
exponential distribution. It can be seen that an error source with a mean value of 4 ms
causes Id 40 to reach the value of the deadline. ‘

Simulation of the whole scenario shows another interesting aspect: We first give a 3-D plot of the

whole system with the influence of an error generator. Figure 4.3 shows the loss probability over all

message Ids at various inter errOr times (1ms .. 100ms mean value of neg. exp. distribution).
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Figure 4.3: Simulation of the whole scenario with error source. Results less than 10e-6
are equal to 0, i.e. represent no loss.



As expected, loss probability increases with shorter inter error times. More interesting is the fact
that also high priority messages show a certain loss probability even at low disturbance rates. The
following plcture givesa 2- D plot of this effect.
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Flgure 4.4 Loss probablllty over all ldentlf/ers at two mean values 10 ms and 6. 3 ms, of
the neg. exp. distribution of the error source. Bus rate is 125 KkBd. (Tl hls p/ot g/ves s:mula-
t/on vaiues together with thelr 95% conﬂdence intervals.) , g

The problem in the presented case is that too many requests of even high pnorlty messages ar-
rive in the system that cannot be transmitted due to errors on the bus. This results in a certain loss
probability for high and low priority messages whereas messages with intermediate priority are only
affected at higher error rates. What can be learned from this is that priority assignment according to
deadlines is not necessarily the best choice. A better way might be assignment according to arrival
~ rates (rate monotonic assignment).

5 Summary

In this paper, we presented a flexible object-oriented framework for the simulation of CAN sys-
tems. With its help it is easy to build complex and heterogeneous systems for gaining desired
information about the performance of the designed systems without the need of having the real sys-
tem. The whole design and simulation process is supported by the description language ODL.

Our results showed that worst-case analysis is sometimes too hard for real systems. Also priority
assignment is not in every case the best choice. Further simulations in this field have to propose bet-
ter solutions.

Other simulation results showed, as expected for priority systems, that under no circumstances
loss of messages can be accepted. This will always result in the loss of almost all further messages.



6 Acknowledgments

The authors would like to thank Oliver Fnednchsohn and Klaus Pantleon, who did a contnbutmg work
[2, 7] to this paper

7 References

Booch, G.: ,Object Oriented Analysrs and Desrgn W/th Appl/catrons" 2nd Edition, Ben]amm
Cummlngs Redwood City, CA, 1994

Friedrichsohn, O.: ,,Modelllerung und Simulation von CAN-Systemen mit Hilfe einer objektorien-
tierten Simulationsbibliothek”, Diploma-Thesis, Institute of Communications Switching and Data
Technics, University of Stuttgart, Germany, 1994 ,

Intel Data Sheet. ,,82527 Serial Commumcat/ons Controller“ QOctober 1993

Kocher, H.: ,,Desrgn and lmp/ementatlon of a Slmulat/on Library Using Object-Oriented Meth-
ods* Dissertation, Institute of Communications Swrtchmg and Data Technics, University of
Stuttgart, Germany, 1993. [In German]

‘ Lang, M., Stumpfle, M., Kocher, H.: ,Building a H/erarch/cal CAN-Simulator Usrng an Ob/ect-

Oriented Envrronment" MBB Tools Conference Heidelberg, 1995 )

- Motorola Data Sheet. ,,M/crocontro/ler M068HC705X 167 August 1991

Pantleon, K.: ,,Slmulatlon von CAN—Systemen“ Semester Thesis, Institute of Communlcanons
Switching and Data Technics, University of Stuttgart, Germany, 1995

Philips Data Sheet. PCA82C200 Stand-alone CAN-controller, October 1990
Robert Bosch GmbH: CAN Specification 2.0, Stuttgart, 1991

: SAE: ,Class C Appllcatlon Requrrement Conslderat/ons“ SAE Technrcal Report J2056/1 June
1993 ‘

Slemens Data Sheet Stand-alone Full CAN Controller SAE 81 CQO Mar 1994

; Sremens Data Sheet . The On Chlp CAN Modu/e C167 o Mar 1993

. Stumpﬂe M.: ,,Beschrelbung von Kommunikatlonsszenar/en in heterogenen automot/ven Sys-
temen’”; Proceedmgs of ,,Kommumkatron in vertellten Systemen®, Chemnitz, 1995 Ll :

Tindell, K Burns, A.: ,, Guaranteelng Message Latencres on Controler Area Network“ Proceed-"

ings of 1. lnternatlonal CAN Conference, Mainz, 1994



