
Changing the Ethernet Protocol -Benefits and Drawbacks

100GET- Ericsson cluster networking research activities

Joachim Scharf, Frank Feller joachim.scharf@ikr.uni-stuttgart.de 21.07.2008

Universität Stuttgart Institute of Communication Networks and Computer Engineering (IKR) Prof. Dr.-Ing. Dr. h.c. mult. P. J. Kühn

Outline

- Introduction of 100GET Ericsson Cluster
 - Participants
 - Topics
- Development of Ethernet
- Increased Ethernet frame size
 - Use case
 - Benefits
 - Drawbacks

100GET - Ericsson Cluster

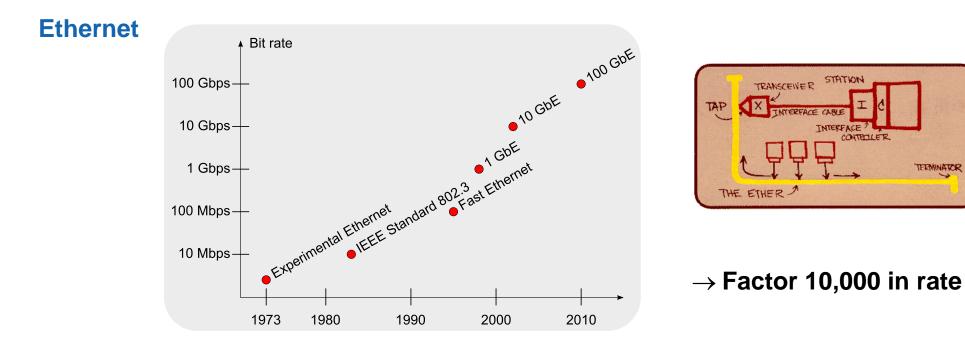
Participants

Germany

- Ericsson
- Micram
- Heinrich-Hertz-Institut
- Universität Stuttgart (IKR, INT)
- Christian-Albrechts-Universität zu Kiel

Sweden

- Ericsson
- Acreo
- SP Devices
- KTH Royal Institute of Technology
- Chalmers University of Technology


Complete Cluster

- Devices
 - Lasers
 - Modulators
 - ADCs, DACs
- Transmission and modulation
 - DQPSK
 - Sub-Carrier Multiplexing
 - OFDM
- Networking aspects
- \rightarrow Majority of 100GET-ER participants dealing with non-networking topics

Networking Aspects

- Overall network architecture
- Protocol aspects
- Network Control Plane

Developments

Access Bandwidth

- Modem 300 bit/s 56 kbit/s
- ISDN 64 kbit/s
- DSL 3 Mbit/s (down), 768 kbit/s (up)
- VDSL 250 Mbit/s
- GPON 2.5 Gbit/s (down), 1.2 Gbit/s (up)
- \rightarrow Tremendous increases in speed

© 2008 Universität Stuttgart • IKR

 \rightarrow Factor >10,000 in rate

....

Standards

- 802.3
- 802.1Q (VLAN)
- 802.1ad ("Q-in-Q")
- 802.1ah ("MAC-in-MAC")
- \rightarrow Changes triggered by additional requirements, not by increased speed
- \rightarrow Payload size (46-1500 bytes) untouched

Reality Check

- ~9000 byte frames (Jumbo-Frames) supported by most Gbit/s equipment
- Usage of Jumbo-Frames in closed systems
- \rightarrow Larger frames beneficial for specific applications (e.g. storage)

Questions addressed within Ericsson cluster

- Consequences of increased maximum frame size
- Optimal maximum frame size

SA DA TPID

SA DA

SADAET

C-VID

TPID

SA DA TPID VID ET Payload FCS

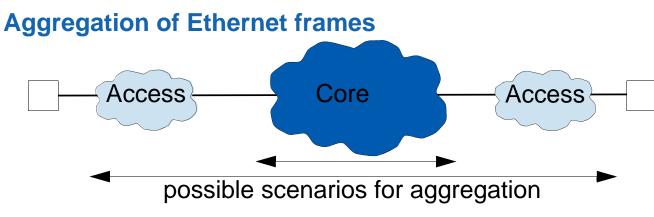
ET

Payload FCS

Payload FCS

Payload FCS

Increased Frame Size


How to fill large frames

Services

- Video on Demand
- HD Video Streaming
- File Transfer
- File Sharing
- .

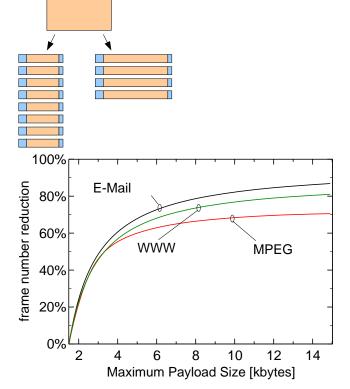
 \rightarrow Many (emerging) end-to-end services with bulk data transfer

- Hugh traffic amount especially for aggregation at core
- \rightarrow Only small additional aggregation delay required

Increased Frame Size

Benefits

Capacity Usage Efficiency


- Overhead of normal Ethernet ~2.4%
- Worst case scenario (MAC-in-MAC, ...) < 5%
- \rightarrow Increasing frame size improves efficiency but not significantly

P+SFD

8

Frame Rate

- At most linear decrease with increasing frame size
- Actual impact depends on traffic properties
 - Savings in range of 50% and above possible
 - Saturation with increasing size
- → Less hardware processing requirements in core as well as end systems
- \rightarrow Cheaper hardware

SA

6

Т

2

DA

6

Payload

46 - 1500

CRC

4

IFG

12

Increased Frame Size

Drawbacks

Incompatibility

- Maximum payload 1500 bytes according to standard
- Huge amount of legacy equipment
- One legacy device in communication path inhibits usage
- \rightarrow Main reason for not using larger frames so far

MTU Discovery

- MTU Discovery especially necessary in inhomogenous networks
- Current approaches based on probing and ICMP
- ICMP often filtered due to potential denial of service attacks
- \rightarrow Current approaches insufficient

Crosslayer Effects

- Influence on performance of other protocols (e.g. TCP)
- \rightarrow Detailed investigation necessary
- \rightarrow Impact on **Future Internet**?

Conclusion

- Basic Ethernet frame format fixed in 1983
- Since then 25 years of technological progress
- Payload size of Ethernet frame never changed in standardization
- Jumbo frames already used in closed scenarios
- Increase of frame size would have beneficial effects
- Potential issues and drawbacks have to be investigated

 \rightarrow How long do we stick to the current Ethernet protocol?