
Copyright Notice

c© 2010 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All

persons copying this information are expected to adhere to the terms and constraints invoked
by each author’s copyright. In most cases, these works may not be reposted without the

explicit permission of the copyright holder.

Institute of Communication Networks and Computer Engineering
University of Stuttgart

Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Phone: ++49-711-685-68026, Fax: ++49-711-685-67983

Email: mail@ikr.uni-stuttgart.de, http://www.ikr.uni-stuttgart.de

On Optimal Communication Spanning Trees
in Embedded Ethernet Networks

Jörg Sommer

University of Stuttgart, Institute of Communication Networks and Computer Engineering (IKR)
Pfaffenwaldring 47, 70569 Stuttgart, Germany

Email: joerg.sommer@ikr.uni-stuttgart.de

Abstract— In network design, the Optimal Communica-
tion Spanning Tree (OCST) problem is to find a spanning
tree that connects the network entities and satisfies their
communication requirements with minimal total cost. In
an embedded Ethernet network, we organize the full
duplex links into bundles and install these bundles into
ducts. The traditional OCST problem does not take into
account this fact.

In this paper, we introduce a mathematical model of the
communication cost of an embedded Ethernet network. We
propose novel algorithms to find an OCST. Their principle
idea is that they iteratively examine a set of neighboring
trees that differ in one duct and choose the tree with the
lowest cost. Finally, we evaluate the performance of the
algorithms in terms of the quality of the solution found as
well as the running time.

I. INTRODUCTION

IN the last decades, Ethernet evolved from a bus
topology to a micro segmented network with full

duplex links. Today, it is the predominant Local Area
Network (LAN) technology and is considered as a de
facto standard for network infrastructure. The flexibility
and the plug-and-play feature of Ethernet are its keys
to success. Thanks to the wide availability of its compo-
nents, its large bandwidth, its reliability, and its backward
compatibility, Ethernet has become an attractive option
in many application areas [1].

A prominent example of Ethernet’s application area is
the industrial domain where Ethernet is gaining ground
over traditional fieldbuses. Another area is avionics,
where today’s Ethernet proved its ability to fulfill real-
time requirements needed in such an environment [2].
The automotive industry is investigating Ethernet as a
suitable in-vehicle network technology [3]–[5].

A motivation to use Ethernet in embedded networks
is the use of commercial off-the-shelf components. This
allows manufactures to cut down the development cost

as well as the time needed to build new components.
Furthermore, the large number of Ethernet vendors and
the wide range of products promote the competition to
provide the best equipment at the lowest price.

Today, we use wiring harnesses to interconnect and
to supply with power the electrical components in an
embedded network. The motivation of using wiring har-
nesses, which bundle individual wires or smaller bundles
together, is cost savings. The wires or bundles leave/join
ducts at various points known as junction points or
breakouts. Since we do not consider the wires required
to supply the components with electrical power, we use
the term link harness.

When designing an embedded Ethernet network, we
have to minimize the total cost of the link harness
while satisfying the communication requirements. In
graph theory, this problem is generally well known
as the Optimal Communication Spanning Tree (OCST)
problem [6]. Normally, the OCST problem does not take
into account that the links are organized into link bundles
and installed into ducts as done in embedded networks.

In this paper, we propose and evaluate novel al-
gorithms to find an OCST in an embedded Ethernet
network. In such A network, the numbers of nodes,
switches, and junction points as well as their positions
are known. In addition, the occurring traffic is predictable
and thus we are able to compute the communication
demands.

The rest of the paper is organized as follows. First,
we introduce the characteristics of an embedded Ethernet
network and a mathematical model for the communica-
tion cost. Besides, we discuss the economy of scale of
bundling links. In Section III, we propose algorithms to
find an OCST. In Section IV, we evaluate the algorithms’
performance. Finally, we conclude the paper in Section V
and give an outlook for future work.

II. CHARACTERISTICS AND MODELING

A. Ethernet

The main requirements of a communication technol-
ogy for a company and a manufacturer are planning
reliability, future proof hardware, and easy manage-
ment (i.e., plug-and-play capabilities). This especially
includes scalability with respect to network size and link
speed as well as simple migration. Consequently, the fast
bandwidth evolution in the mid/late 1990-ies while main-
taining backward-compatibility laid the fundamentals of
Ethernet’s success story.

Since its invention, Ethernet’s line rate has evolved
from 2.94 Mbps to higher rates: 10 Mbps in 1993 (IEEE
802.3a), 100 Mbps in 1995 (IEEE 802.3u), 1 Gbps in
1998 (IEEE 802.3z, [7]), and 10 Gbps in 2002 (IEEE
802.3ae). Currently, the IEEE P802.3ba task force is
working on 40 Gbps and 100 Gbps [8]. In an embedded
environment, the predominant line rate used is 100
Mbps [1]. If a link between two entities is overloaded,
we have two options: Either we replace the link by a
faster one or we add a number of parallel physical links
having the same line rate and make use of Ethernet’s
Link Aggregation feature [7]. This is an optional feature
for full duplex capable Ethernet devices. It provides a
single logical interface to parallel physical links between
two devices. This increases the link availability and
enables a linear increase in the bandwidth. For further
reading of this feature, we refer to Watanabe et al. They
show in [9] the benefits and cost savings using Ethernet
link aggregation. Throughout this work, in case of an
overloaded link, we use a greedy strategy and make use
of the second option (installing physical parallel links).

In [1], we describe the common Ethernet LAN tech-
nology and highlight its main features. Furthermore, we
give a survey of Ethernet application fields.

B. Communication Demands

In traditional LANs, a client (workstation) typically
communicates with a (workgroup) server. The work-
group server in turn communicates with a back-end
server. This leads to a hierarchical structure, where on
lower layers the clients send their packets to a switch
that forwards the packets, e.g., to a router. In such a
network, the traffic is aggregated on each hierarchical
level. Consequently, the traffic of a link depends on the
level in the hierarchy. In an embedded network, each
node interacts with one or more nodes. Besides, we have
different types of services and protocols: Peer-to-peer vs.
multi-peer and multicast, confirmed and unconfirmed,

acknowledgment and not, and connection and connec-
tionless protocols [10].

For some applications, temporal characteristics like
delay, jitter, and response time play an important role.
Today, a number of different Ethernet solutions support-
ing different classes of QoS exist [1]. As defined in
the IEEE 802.1Q standard [11], Ethernet allows frame
tagging that enables traffic prioritization and a separation
of real-time and best effort traffic (which gets the lowest
priority).

In order to take into account the communication or
traffic demands, in an embedded network, we introduce
the principle of a demand matrix R = (ri,j), where ri,j
specifies the amount of traffic between node i and j.

Normally, in an embedded network we know the type
of applications and the number of sources. Furthermore,
such networks are mostly closed. I.e., all occurring traffic
is predictable (or shaped) [1]. Thus, we are able to
specify the communication demands in detail. If an
embedded network is interconnected with, e.g., an office
LAN, traffic shapers and policers are applied to restrict
the unforeseen traffic. In the following, we will not
consider any temporal requirements. We assure that the
resulting communication tree is able to carry the required
traffic.

C. Link Harness Design

In today’s embedded environments, as mentioned in
Section I, wire harnesses are used to connect the network
entities and to supply them with power. By bundling
multiple wires together and deploying them inside ducts,
they can be protected against various adverse effects such
as vibrations, moisture, and over-heat [12]. Moreover,
installing a wire harness instead of individual, unbundled
wires reduces the installation time during the assembly
and the installation process can be easily standardized.

Since Ethernet evolved from a bus to a micro-
segmented network without collision domains, we have
full duplex links between each node and its attached
switch as well as between the switches. In Figure 1,
we give an example of a full duplex link harness
that does not consider other types of wires or cables
(e.g., electrical power). Since the links do not have the
same endpoints, some full duplex links may leave a duct
at some points referred to as junction points or breakouts.
At these junction points, a bifurcation is created into the
duct in order to protect the leaving links as well as the
remaining links in the original link harness.

By allowing multiple links following the same path to
be bundled together and installed within a single duct,

Junction
point

Duct

Node
Switch

Full duplex link

Fig. 1. Example of a link harness of an embedded Ethernet network.

the optimal topology is no more obtained by using the
paths with the lowest cost. In fact, by allowing some
links to be deployed along paths with higher cost, they
can be bundled together along a common path segment
and installed in a common duct. Thus, the cost penalty
due to the use of individual higher link costs can be
compensated by the cost benefit due to the use of a
common duct instead of separate ones. This holds if we
assume that the cost of φ links bundled together and
installed within a common duct is smaller than the sum
of the costs of the φ links deployed separately within
φ different ducts. According to the before-mentioned
property, we define the cost θi,j(φ) of a single duct
comprising φ links between an entity i at position (xi, yi)
and an entity j at position (xj , yj) as:

θi,j(φ) =

{
0 if φ = 0,
(λ · φ+ c) · di,j otherwise.

(1)

with λ+ c = 1, λc is the ratio of the cost of a single link
to the cost of a single duct for a unit length, and di,j is
the Manhattan distance between entity i and j [13]:

di,j = |xi − xj |+ |yi − yj |. (2)

The cost function can be generalized to more complex
functions without affecting the proposed algorithms.
Such generalization reflects more general assumptions
such as the Economy of Scale where higher number of
links bundled together within one duct results in lower
cost per link.

The correspondence between the terminology em-
ployed for a link harness and the more conventional
language of graph theory is as
• duct ↔ edge
• nodes, switches, and junction points ↔ vertexes
• cost of a single duct (cf. Equation 1) ↔ cost (or

weight) of an edge. Thus, the cost function, which
associates an edge e = {i, j} cost, is in that case
c : e→ θi,j(φ).

We can also model the link harness of an embedded
Ethernet network as an undirected, weighted graph G =

(V,E, c). Since we investigate an Ethernet network with-
out redundant paths, the graph G is acyclic and forms a
tree.

D. Communication Cost

We have a given set of nodes Ni(xi, yi) (i =
1, . . . , |N |), a given set of switches Si(xi, yi) (i =
1, . . . , |S|), and a given set of junction points
Ji(xi, yi) (i = 1, . . . , |J |). The objective is to find a
tree at minimum cost that satisfies the communication
demands and connects the nodes either directly or cross-
ing junction points to the switches, and interconnects
the switches either directly or crossing junction points.
For an instance of this problem, we define the following
matrices:

• Ψ = (ψi,j) is a |N |×(|S|+|J |) matrix representing
the existence of ducts between the nodes and the
switches or the nodes and the junction points where
ψi,j is a binary variable specifying the presence or
the absence of a duct between node Ni and switch
Sj (1 ≤ j ≤ |S|) or between node Ni and junction
point Jj−|S| (|S|+ 1 ≤ j ≤ |S|+ |J |).

ψi,j =

{
1 if Ni is connected to Sj or Jj−|S|,
0 otherwise.

(3)
Since we have a tree structure, there exists exactly
one duct between a node and either a switch or a
junction point. Thus, we have the following con-
straint:

|S|+|J |∑
j=1

ψi,j = 1, ∀i = 1, . . . , |N | (4)

• ∆ = (δi,j) is a |N |×(|S|+ |J |) matrix representing
the number of link segments between nodes and
switches or between nodes and junction points
respectively where δi,j is a non-negative integer
variable.

δi,j =

{
≥ 1 if Ni is connected to Sj /Jj−|S|,
0 otherwise.

(5)
• Υ = (υi,j) is a (|S| + |J |) × (|S| + |J |) matrix

representing the existence of ducts between the
switches and the junction points where φi,j is a bi-
nary variable specifying the presence or the absence
of a duct between switch Si/junction point Ji−|S|

and switch Sj /junction point Jj−|S|.

υi,j =

{
1 if Si/Ji−|S| is connected to Sj /Jj−|S|,
0 otherwise.

(6)
• Φ = (φi,j) is an (|S| + |J |) × (|S| + |J |) ma-

trix representing the number of link segments be-
tween switch Si/junction point Ji−|S| and switch
Sj /junction point Jj−|S| where φi,j is a non-negative
integer variable.

φi,j =

≥ 1
if Si/Ji−|S| is connected
to Sj /Jj−|S|,

0 otherwise.
(7)

The total communication cost C is defined as

C =
∑

i=1,...,|N |
j=1,...,|S|+|J |

ψi,j · θi,j(δi,j) +
∑

i=1,...,|S|+|J |−1
j=i+1,...,|S|+|J |

υi,j · θi,j(φi,j)

(8)
Throughout this paper, we denote an instance of

this problem as T that holds all the above mentioned
matrices. Furthermore, we denote the cost of an instance
as C(T) (cf. Equation 8).

Our OCST problem becomes the Minimum Spanning
Tree (MST) problem if we have in each duct exactly one
link segment (δi,j = 1 and φi,j = 1) or if the cost of a
single duct (cf. Equation 1) is independent of the number
of comprising links (λ = 0 and c = 1).

III. OCST ALGORITHMS

The OCST problem is to find a spanning tree that
connects the network entities and satisfies their commu-
nication demands at a minimum total cost [6]. Like other
constrained spanning tree problems, the OCST problem
is NP-hard [14]. Cayley’s formula identifies the number
of spanning trees in a graph with n vertexes as nn−2 [15].
In this section, we propose algorithms to find an OCST.
Since we do not prove the convergence behavior of the
algorithms, these are heuristics [16].

As mentioned in Section I, the traditional OCST
problem does not take into account that we bundle the
links together and install them inside ducts. In order
to compute the communication cost of an embedded
Ethernet network, two steps are necessary: First, deploy-
ing the ducts that connect all the nodes, switches, and
junction points. Second, deploying the full duplex links
required to satisfy the communication demands in the
ducts. Since we deploy links exclusively in ducts, we
have to compute the link deployment whenever the duct
deployment changes.

A. Grow Tree Algorithm

Assume that we have a set of empty ducts E that
connects all the switches S and junction points J and we
wish to grow it to a complete communication spanning
tree T . This tree connects all the entities, including the
nodes, and in each duct the number of links required
is deployed. In other words, we wish to compute the
variables of the matrices Ψ, ∆, Υ, and Φ. In this section,
we propose an algorithm that applies a greedy strategy to
connect the nodes as well as a greedy strategy to deploy
the links required.

In Algorithm 1, we first create and initialize an in-
stance T of a communication spanning tree (Line 1 in
Algorithm 1). Next, we compute the matrix Υ with a
given set of ducts E as an input (Line 2). Each duct
has a from node and a to node. Since E connects all
the switches S and junction points J , E induces the tree
GE = (S ∪ J,E).

Then, we have to connect the nodes. Thereby, we
connect each node to its nearest (minimum distance)
switch or junction point by deploying a duct (Lines 5
to 8) and compute the matrices Ψ, ∆, and Φ (Lines 9 to
11).

In order to compute the matrix ∆ based on the demand
matrix R, for each node we sum the traffic that goes from
it to all other nodes and the traffic that goes to it, choose
the maximum of these values, and round it up to the next
smallest integer value. According to this integer value,
we deploy the number of (parallel) links required on
the shortest path from this node to its connected switch.
Deploying parallel links means making use of Ethernet’s
link aggregation mechanism as mentioned in Section II-
B.

After deploying the node links, we compute the ma-
trix Φ, i.e., deploying the links required between the
switches. We first compute for each switch pair the short-
est path. Next, we compute a matrix that contains the
demand values between neighboring switches. Based on
this matrix, we finally calculate the number of (parallel)
links required between these switches.

B. Algorithms

In this section, we propose algorithms to find an
OCST. The principle idea of these algorithms is that they
iteratively examine a set of neighboring trees that differ
in one duct and choose the tree with the lowest cost.

Rothlauf [17] has shown that starting from a Mini-
mum Spanning Tree (MST) increases the quality of the
solution in comparison to start from a random solution.
Besides, as mentioned in Section II-D, if we have exactly

Algorithm 1 Grow Tree
Input: N,S, J,E,R
Output: T . Communication spanning tree
1: Create and initialize an instance T with |N |, |S|, |J |
2: Compute variables υi,j of T with E as an input
3: V ← S ∪ J
4: E′ ← ∅
5: for all u ∈ N do
6: v ← arg minv∈V (du,v)
7: E′ ← E′ ∪ {{u, v}}
8: end for
9: Compute variables ψi,j of T with E′ as an input

10: Compute variables δi,j of T with Ψ,Υ, R as an input
11: Compute variables φi,j of T with Ψ,Υ, R as an input
12: return T

one link segment in each duct, the problem becomes the
MST problem. Thus, we first create an MST as a starting
point for our algorithms.

1) MST: There are two commonly known algorithms
to compute an MST: Prim’s algorithm [18] and Kruskal’s
algorithm [19]. Both are greedy algorithms. Normally, a
weighted graph G with a set of edges is given. In our
case, the edges represent ducts and we can deploy ducts
arbitrarily. Thus, we may assume a fully meshed graph.
In Algorithm 2, we propose a simplified MST algorithm
based on Prim’s algorithm. This algorithm connects all
the switches S and junction points J together; but not the
nodes. We have to ensure that a node is not connected to
another node directly. This would be an invalid network
configuration. But this may happen with a traditional
MST algorithm. Thus, we connect each node with a
greedy strategy, as mentioned in Section III-A, to either
a switch or a junction point, while we grow the tree T
with the Grow Tree algorithm (cf. Algorithm 1).

The principle idea of our MST algorithm is that the
duct {u, v} added to the set of ducts E (Line 8 in
Algorithm 2) is always a least-distance duct connecting
the tree to an entity, either a switch or a junction point,
not in the tree. We first initialize an empty set of entities
V ′ that contains later the already connected entities.
After the initialization phase, the tree starts from an
arbitrary root entity u ∈ V (Line 4), and grows until the
ducts in E connect all the switches and junction points
in V . In each step, the duct at the minimum cost, i.e., the
minimum distance, is added to E. At the end, we return
E that induces the tree GE = (S ∪ J,E).

We now propose two local search algorithms and a
Greedy Search algorithm that try to find an OCST.

Algorithm 2 Minimum Spanning Tree
Input: S, J . Set of switches and junction points
Output: E . Set of ducts
1: V ← S ∪ J
2: V ′ ← ∅
3: E ← ∅
4: V ′ ← V ′ ∪ {u} with u ∈ V
5: V ← V \ {u}
6: while V 6= ∅ do
7: (u, v)← arg min(u,v)∈V ′×V (du,v)
8: E ← E ∪ {{u, v}}
9: V ′ ← V ′ ∪ {v}

10: V ← V \ {v}
11: end while
12: return E

a

b //

d

c

subtree

subtree

Fig. 2. Example of cutting a tree at duct {b, c} and all the
possible ducts {a, c}, {a, d}, {b, d} that would form a neighboring
tree (dashed lines).

2) Local Search I: The idea of the first local search
algorithm is that we cut an (initial) tree GE into two
disjoint subtrees by removing the duct ei from the set
of ducts E (Line 7 of Algorithm 3). Afterwards, we
discover in Line 8 the disjoint partition sets U and V
with U] V = S ∪ J .

Then, we examine the possible ducts that connect the
resulting subtrees ({u, v}|u ∈ U, v ∈ V). In Figure 2, we
give an example of this procedure. There, we remove
duct {b, c}. The disjoint partition sets are U = {a, b}
and V = {c, d}. The ducts {{a, c}, {a, d}, {b, d}} come
into consideration to connect the subtrees. We call the
resulting trees neighboring trees. The number of neigh-
bors of a tree with n vertexes depends on its structure
and varies between (n−1)(n−2) and 1/6 n (n−1)(n+
1)− n+ 1 [17].

For each set of ducts E′′ = E′ ∪ {{u, v}}, we
compute the communication spanning tree T ′ by calling
the function GROW-TREE. If this tree has lower cost

Algorithm 3 Local Search I
Input: N,S, J,R
Output: T . OCST
1: E ← MST(S, J)
2: T ← GROW-TREE(N,S, J,E,R)
3: i← 0
4: while i < |E| do
5: i← i+ 1
6: ei ← ith element of E
7: E′ ← E \ ei
8: Discover partition sets U and V of

GE′ = (S ∪ J,E′) with U] V = S ∪ J
9: for all (u, v) ∈ U × V do

10: E′′ ← E′ ∪ {{u, v}}
11: T ′ ← GROW-TREE(N,S, J,E′′, R)
12: if C(T ′) < C(T) then
13: T ← T ′

14: E ← E′′

15: i← 0
16: end if
17: end for
18: end while
19: return T

than the (current) tree T (Line 12), we accept T ′ as the
(current) OCST (Line 13), update the set of ducts E
(Line 14), and reset the index i (Line 15). At the end,
we return T (Line 19).

3) Local Search II: In Algorithm 4, we propose a
second version of a local search algorithm that starts
again with an (initial) tree T and repeats until this
tree cannot be improved any more. In principle, this
algorithm works similar to the previous local search
algorithm. Here, we examine all the neighboring trees
that grow from the set of ducts E′ and do not stop as soon
as we have found an improved solution as we did in the
previous version by resetting the index i. Consequently,
this version searches a larger portion of the solution
space, which may be very time-consuming.

4) Greedy Search: Finally, we present a Greedy
Search algorithm to find an OCST. This algorithm has
two additional input parameters: d that defines the depth
of the search and n that defines the number of neighbor-
ing trees that we wish to examine.

As the name implies, this algorithm follows a greedy
strategy as we cut the tree GE′′ by iteratively removing
the ith-expensive duct.

Thereby, we tag each duct of E with its cost
(cf. Equation 1), sort the ducts in a descending order by

Algorithm 4 Local Search II
Input: N,S, J,R
Output: T . OCST
1: E ← MST(S, J)
2: T ← GROW-TREE(N,S, J,E,R)
3: do
4: improvement ← FALSE
5: E′ ← E
6: for all e ∈ E′ do
7: E′′ ← E′ \ {e}
8: Discover partition sets U and V of

GE′ = (S ∪ J,E′) with U] V = S ∪ J
9: for all (u, v) ∈ U × V do

10: E′′′ ← E′′ ∪ {{u, v}}
11: T ′ ← GROW-TREE(N,S, J,E′′′, R)
12: if C(T ′) < C(T) then
13: T ← T ′

14: E ← E′′′

15: improvement ← TRUE
16: end if
17: end for
18: end for
19: while improvement
20: return T

their cost and store them in a working copy E′ (Line 8
and 9 of Algorithm 5). Next, we cut the tree GE′ by
removing a duct and store in N the ducts that would
connect the two resulting subtrees.

Next, we sort the ducts of N in an ascending order
by their length (Line 15), i.e., by their distance di,j
(cf. Equation 2). After sorting, we compute the com-
munication spanning tree T ′ for each of the n cheapest
neighboring trees by calling the function GROW-TREE.
If one of these trees has lower cost than the (current)
OCST, we accept it as the (current) OCST and update
E. We repeat this procedure until we do not achieve an
improvement. At the end, we return T .

IV. EVALUATION

In this section, we evaluate the algorithms’ perfor-
mance. We focus on the quality of the solution found as
well as on the computational cost. In terms of the compu-
tational cost, we evaluate the total number of neighboring
trees examined (#ngb trees). The more neighboring trees
we examine, the longer the computation time. Normally,
the computation time to find an OCST of an embedded
Ethernet network plays not an important role. This is
not true, if we aim to embed one of the algorithms in an

Algorithm 5 Greedy Search
Input: N,S, J,R, d, n
Output: T . OCST
1: E ← MST(S, J)
2: T ← GROW-TREE(N,S, J,E,R)
3: do
4: improvement ← FALSE
5: for all e ∈ E do
6: Tag e with its cost . cf. Equation 1
7: end for
8: Sort ducts of E by their cost

c(e1) ≥ c(e2) ≥ ... ≥ c(e|E|)
9: E′ ← E

10: for i ← 1 to min(d, |E|) do
11: ei ← ith element of E′

12: E′′ ← E′ \ ei
13: Discover partition sets U and V of

GE′′ = (S ∪ J,E′′) with U] V = S ∪ J
14: N ← {u, v}|(u, v) ∈ U × V

. N : Set of ducts to create neighboring trees
15: Sort ducts of N by their length

l(n1) ≤ l(n2) ≤ ... ≤ l(n|N |)
16: for j ← 1 to min(n, |N |) do
17: nj ← jth element of N
18: E′′′ ← E′′ ∪ nj
19: T ′ ← GROW-TREE(N,S, J,E′′′, R)
20: if C(T ′) < C(T) then
21: T ← T ′

22: E ← E′′′

23: improvement ← TRUE
24: end if
25: end for
26: end for
27: while improvement
28: return T

outer optimization algorithm that tries to find an overall
optimal solution with the optimal number of switches
and junction points as well as their positions as we did
in [20]–[22].

A. Comparison

In order to evaluate the algorithms, we examine differ-
ent problem sizes (number of nodes, of switches, and of
junction points) as shown in Table I. The network entities
are placed randomly on a grid with size 1000 × 1000
fields. For each problem size, we generate 100 random
problem instances with a randomly generated demand
matrix R and randomly placed entities (quasi Monte

Carlo simulation). Our demand matrix generator works
according to a Peer-to-Peer model in which each node
communicates with one or more nodes. The principle of
the demand generator is shown in the Appendix. Further-
more, we chose different values for λ (cf. Equation 1)
and µ (cf. Appendix). In all the cases, the number of data
streams s (cf. Appendix) is set to the number of nodes.
Besides, we parametrize the Greedy Search algorithm
with d = 10 and n = 10.

The column Initial solution of Table I contains the
cost of the initial communication spanning tree. This
corresponds to the cost of the initial tree that we compute
in Algorithm 3, 4, and 5 at Line 2. The column #ngb
trees contains the total number of neighboring trees
examined. The values in the columns C and #ngb trees
are mean values over the 100 experiments. The column
∆C contains the delta in percentage between the mean
costs (C) of the Local Search II (100%) and the Greedy
Search algorithm.

As expected, the algorithms improve the initial solu-
tion dramatically. As shown in Table I, the computational
cost of the algorithms increases with the network size.
However, the computational cost of the Greedy Search
algorithm does not increase as much as of the local
search algorithms. The Greedy Search algorithm keeps
its pace and is thus applicable for large embedded
Ethernet networks. On average, this algorithm examines
less than 1100 neighboring tress and runs in our imple-
mentation approximately 10 seconds per experiment.

The Local Search II algorithm considers a larger
solution space. Thus, its computational cost is higher
than that of the Local Search I algorithm and achieves
better mean cost.

In comparison to the local search algorithms and
taking into account the computational cost, the Greedy
Search algorithm performs excellently. Its mean costs C
are in many cases only 1% above these of the Local
Search II algorithm. The largest gap between the mean
cost of the Greedy Search algorithm and the Local
Search II algorithm is 11.86%. Thus, if we are interested
in a solution with a very high quality (low cost), we
should apply the Local Search II algorithm, otherwise
the Greedy Search algorithm. Especially, if we wish to
integrate one of the algorithms in an outer optimization
algorithm that tries to find an overall optimal solution
with the optimal number of switches and junction points
as well as their placement, the Greedy Search algorithm
is the first choice.

TABLE I
COMPARISON OF THE ALGORITHMS’ PERFORMANCE

|N | |S| |J | µ λ
Initial solution Local Search I Local Search II Greedy Search ∆C

C C #ngb trees C #ngb trees C #ngb trees [%]

25 5 10 0,01 0,2 8 359,3 7 989,9 994 7 982,4 1 643 7 985,4 371 0,04

0,4 9 561,1 8 817,1 1 035 8 807,3 1 873 8 814,8 438 0,09

0,8 11 964,6 10 313,4 1 096 10 304,4 2 268 10 332,4 527 0,27

0,1 0,2 8 390,9 8 032,7 981 8 023,1 1 651 8 025,9 376 0,03

0,4 9 624,2 8 882,5 1 030 8 878,3 1 896 8 886,4 448 0,09

0,8 12 091,0 10 429,9 1 070 10 410,0 2 269 10 456,3 530 0,44

50 10 10 0,01 0,2 12 497,9 12 075,3 2 699 12 068,8 4 354 12 093,2 394 0,20

0,4 13 963,0 13 045,9 2 979 13 040,0 5 214 13 073,4 482 0,26

0,8 16 893,3 14 837,2 2 954 14 825,8 6 482 14 912,5 584 0,58

0,1 0,2 12 776,5 12 331,8 2 758 12 324,9 4 521 12 353,2 417 0,23

0,4 14 520,2 13 519,8 2 959 13 509,2 5 462 13 556,9 515 0,35

0,8 18 007,7 15 722,6 2 912 15 665,2 6 492 15 827,1 623 1,03

50 10 25 0,01 0,2 12 615,0 11 514,2 18 331 11 505,3 39 469 11 724,8 586 1,91

0,4 15 073,1 12 896,4 19 166 12 884,4 46 807 13 173,8 729 2,25

0,8 19 989,2 15 337,3 18 267 15 328,9 56 294 15 905,1 892 3,76

0,1 0,2 12 858,4 11 773,4 18 264 11 754,8 38 309 11 976,6 616 1,89

0,4 15 559,7 13 373,4 18 924 13 331,2 45 917 13 701,1 722 2,77

0,8 20 962,5 16 181,0 19 008 16 114,2 55 088 16 905,6 861 4,91

100 25 25 0,01 0,2 17 050,9 16 285,7 64 937 16 274,0 119 799 16 516,8 555 1,49

0,4 19 106,1 17 564,8 73 928 17 559,7 146 991 17 932,1 653 2,12

0,8 23 216,7 19 892,1 66 690 19 877,0 181 351 20 532,5 844 3,30

0,1 0,2 17 984,1 17 093,7 60 265 17 072,6 116 836 17 354,1 586 1,65

0,4 20 972,8 19 053,3 67 015 19 017,4 139 060 19 564,6 724 2,88

0,8 26 950,1 22 572,4 62 415 22 488,1 169 181 23 777,0 837 5,73

100 25 50 0,01 0,2 17 759,0 15 817,6 270 757 15 812,2 622 287 16 387,3 771 3,64

0,4 21 168,8 17 410,8 259 470 17 393,0 725 817 18 269,9 910 5,04

0,8 27 988,4 20 158,3 231 145 20 125,3 828 552 21 897,0 1 035 8,80

0,1 0,2 18 633,6 16 595,0 255 718 16 566,9 580 304 17 247,0 792 4,11

0,4 22 917,9 18 845,8 247 671 18 766,8 661 868 19 978,4 930 6,46

0,8 31 486,6 22 726,7 221 827 22 615,4 735 741 25 297,4 1 032 11,86

0 10 20 30 40 50
1

1.5

2

2.5x 10
4

C
os

t

0 10 20 30 40 50
0

2000

4000

6000

8000

10000

12000

Number of neighboring trees examined in each iteration (n)

T
ot

al
 n

um
be

r
of

 n
ei

gh
bo

rin
g

tr
ee

s
ex

am
in

ed
 (

#n
gb

 tr
ee

s)

d =10, µ = 0.01, λ = 0.2
d =10, µ = 0.01, λ = 0.8
d =10, µ = 0.1, λ = 0.2
d =10, µ = 0.1, λ = 0.8
d =20, µ = 0.01, λ = 0.2
d =20, µ = 0.01, λ = 0.8
d =20, µ = 0.1, λ = 0.2
d =20, µ = 0.1, λ = 0.8

Cost

Fig. 3. The impact of the parameter n on the quality of the solution
found and the computational cost (total number of neighboring trees
examined).

0 10 20 30 40 50
1

1.5

2

2.5x 10
4

C
os

t

0 10 20 30 40 50
0

2000

4000

6000

8000

10000

12000

Depth (d)

T
ot

al
 n

um
be

r
of

 n
ei

gh
bo

rin
g

tr
ee

s
ex

am
in

ed
 (

#n
gb

 tr
ee

s)

n = 10, µ = 0.01, λ = 0.2
n = 10, µ = 0.01, λ = 0.8
n = 10, µ = 0.1, λ = 0.2
n = 10, µ = 0.1, λ = 0.8
n = 20, µ = 0.01, λ = 0.2
n = 20, µ = 0.01 , λ = 0.8
n = 20, µ = 0.1, λ = 0.2
n = 20, µ = 0.1, λ = 0.8

Cost

Fig. 4. The impact of the parameter d on the quality of the solution
found and the computational cost (total number of neighboring trees
examined).

B. Greedy Search Algorithm

In this section, we evaluate the impact of the pa-
rameters d and n on the Greedy Search algorithm on
the solution’s quality and the computational cost. For
this purpose, we pick out a network with 50 nodes, 10
switches, and 25 junction points. Again, in all the cases,
the number of data streams is set to the number of nodes.
We chose µ = 0.1 and 0.01 as well as λ = 0.2 and 0.8.

In Figure 3 and 4, the dashed lines show the cost
and the dash-dot lines show the computational cost
characteristics in terms of total number of neighboring
trees examined. As shown in Figure 3, with more than
10 neighboring trees examined we achieve only a small
improvement while the computational cost increases
nearly linear. Up to a certain threshold, the same holds
for the depth parameter d. As we see in Figure 4, in this
example, it makes no sense to choose the parameter d
larger than 35. As shown in Line 10 in Algorithm 5, we
choose the smaller value of the number of ducts (|E|)
and the parameter d. Since we investigate an Ethernet
network without redundant paths, the maximal number
of ducts |E| equals |S|+ |J | − 1; in this example 34.

V. CONCLUSION AND OUTLOOK

Today, Ethernet is the predominant LAN technology
and it becomes also an attractive option in embedded
environments, e.g., avionics and industrial domain. In
embedded environments, wire harnesses are used to con-
nect the network entities. The wires or bundles leave/join
ducts at various points. Since Ethernet evolved from a
bus topology to a micro segmented network, we have
full duplex links between each node and switch as well
as between the switches. By allowing multiple links
following the same path to be bundled together, the
optimal topology is no more obtained by using the paths
with the lowest cost.

In this paper, we proposed novel algorithms to find an
OCST of an embedded Ethernet network. Furthermore,
we introduced a mathematical model of the communi-
cation cost. We evaluated the algorithms’ performance
and discussed the trade-off between the quality of the
solution obtained and the computational cost. We have
shown that the Greedy Search algorithm finds high
quality solutions comparable to the results of the local
search algorithms while its computational cost is much
lower. Consequently, we can integrate this algorithm in
an outer optimization algorithm that tries to find an
overall optimal solution with the optimal number of
switches and junction points as well as their placement.

Furthermore, we have evaluated different parameter set-
tings of the Greedy Search algorithm.

The algorithms in this paper are not limited to opti-
mize the link harness of embedded Ethernet networks.
With minor modifications, they can be generalized and
can take into account, e.g., power wires.

In contrast to traditional LANs, embedded Ethernet
networks have to fulfill resilience requirements due to
safety reasons. In such a resilient Ethernet network each
node has to be connected at least to two switches. The
switches themselves have to be interconnected in a re-
silient structure. Currently, we are working on algorithms
that minimize the link harness cost of a resilient Ethernet
network.

ACKNOWLEDGMENT

The author would like to thank Benjamin Fischbach
for the implementation of the Greedy Search algorithm
and parts of the local search algorithms. The author
would also like to thank Andreas Reifert and Thomas
Werthmann for their reviews and for fruitful discussions.

REFERENCES

[1] J. Sommer, S. Gunreben, A. Mifdaoui, F. Feller, M. Köhn,
D. Saß, and J. Scharf, “Ethernet – A Survey on its Fields
of Application,” IEEE Communications Surveys & Tutorials,
vol. 12, no. 2, April 2010.

[2] ARINC 664, Aircraft Data Network, Part 7: Deterministic
Networks, 2003.

[3] J. Hillebrand, M. Rahmani, R. Bogenberger, and E. Steinbach,
“Coexistence of Time-Triggered and Event-Triggered Traffic
in Switched Full-Duplex Ethernet Networks,” in Proceedings
of the IEEE Second International Symposium on Industrial
Embedded Systems (SIES 2007), 2007, pp. 217–224.

[4] M. Rahmani, R. Steffen, K. Tappayuthpijarn, E. Steinbach,
and G. Giordano, “Performance analysis of different network
topologies for in-vehicle audio and video communication,” 4th
International Telecommunication Networking Workshop on QoS
in Multiservice IP Networks (IT-NEWS 2008), pp. 179–184,
February 2008.

[5] M. Rahmani, K. Tappayuthpijarn, B. Krebs, E. Steinbach,
and R. Bogenberger, “Traffic Shaping for Resource-Efficient
In-Vehicle Communication,” IEEE Transactions on Industrial
Informatics, 2009, accepted for publication.

[6] T. C. Hu, “Optimum Communication Spanning Trees,” SIAM
Journal on Computing, vol. 3, no. 3, pp. 188–195, September
1974. [Online]. Available: http://link.aip.org/link/?SMJ/3/188/1

[7] IEEE Computer Society, “802.3: IEEE Standard for Local and
Metropolitan Area Networks–Carrier sense multiple access with
collision detection (CSMA/CD) access method and physical
layer specifications,” 2005.

[8] ——, “P802.3ba: IEEE Standard for Local and Metropolitan
Area Networks–Carrier Sense Multiple Access with Collision
Detection (CSMA/CD) Access Method and Physical Layer
Specifications - Amendment: Media Access Control Parameters,
Physical Layers and Management Parameters for 40 Gb/s
and 100 Gb/s Operation,” 2008. [Online]. Available:
http://www.ieee802.org/3/ba/

[9] W. Takafumi, N. Masahiro, T. Hiroyasu, T. Otsuka, and
M. Koibuchi, “Impact of topology and link aggregation on a
PC cluster with Ethernet,” 2008 IEEE International Conference
on Cluster Computing, pp. 280–285, October 2008.

[10] J.-P. Thomesse, “Fieldbus technology in industrial automation,”
in Proceedings of the IEEE, vol. 93, no. 6. IEEE, June 2005,
pp. 1073 – 1101.

[11] IEEE Computer Society, “802.1Q: IEEE Standard for Local
and Metropolitan Area Networks–Virtual Bridged Local Area
Networks,” 2005.

[12] E. Aguirre and B. Raucent, “Performances of wire harness as-
sembly systems,” IEEE International Symposium on Industrial
Electronics (ISIE ’94), pp. 292–297, May 1994.

[13] P. E. Black, “Manhattan distance,” in Dictionary of
Algorithms and Data Structures. U.S. National Institute
of Standards and Technology, May 2006. [Online]. Available:
http://www.itl.nist.gov/

[14] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness. Freeman, April
1979.

[15] A. Cayley, The Collected Mathematical Papers of Arthur Cay-
leyGarey. BiblioBazaar, May 2009.

[16] H. Müller-Merbach, “Heuristics and their design: a survey,”
European Journal of Operational Research, vol. 8, no. 1, pp.
1–23, September 1981.

[17] F. Rothlauf, “On Optimal Solutions for the Optimal
Communication Spanning Tree Problem,” Operations Research,
vol. 57, no. 2, pp. 413–425, March 2009. [Online]. Available:
http://or.journal.informs.org/cgi/content/abstract/57/2/413

[18] R. Prim, “Shortest connection networks and some generaliza-
tions,” Bell System Technical Journal, vol. 36, pp. 1389–1401,
1957.

[19] J. B. Kruskal, “On the Shortest Spanning Subtree of a Graph and
the Traveling Salesman Problem,” Proceedings of the American
Mathematical Society, vol. 7, no. 1, pp. 48–50, February 1956.

[20] J. Sommer and E. A. Doumith, “Topology Optimization of In-
vehicle Multimedia Communication Systems,” in Proceedings
of the First Annual International Symposium on Vehicular
Computing Systems (ISVCS 2008), Dublin, July 2008.

[21] J. Sommer, E. A. Doumith, and Q. Duval, “On Link Harness
Optimization of Embedded Ethernet Networks,” in Proceedings
of the IEEE International Symposium on Industrial Embedded
Systems (SIES 2009), July 2009, pp. 191–200.

[22] J. Sommer, E. A. Doumith, and A. Reifert, “Cost-based Topol-
ogy Optimization of Embedded Ethernet Network,” Journal of
Embedded and Real-Time Communication Systems (IJERTCS),
2010, accepted for publication.

APPENDIX

The principle of the communication, or traffic, demand
generator is shown in Algorithm 6. This algorithm ex-
pects the following input parameters:
• |N |: A non-negative integer variable that defines the

size of the demand matrix.
• µ: A non-negative integer variable that defines the

mean traffic demand.
• s: A non-negative integer variable that defines the

number of data sources or streams.

Algorithm 6 Communication Demand Generator
Input: |N |, µ, s
Output: R . Communication demand matrix
1: Generate an empty |N | × |N | demand matrix R
2: for i ← 1 to |N | do
3: for j ← 1 to |N | do
4: if i 6= j then
5: ri,j ← ε
6: end if
7: end for
8: end for
9: for k ← 1 to s do

10: Generate distinct random numbers:
src,dest ∈ [1, |N |]

11: Generate random number: r ∈ [ε, 1] with mean µ
12: rsrc,dest ← rsrc,dest + r
13: rdest,src ← rdest,src + r · 0.05
14: end for
15: return R

At the beginning, we assign each node pair in each
direction a constant communication demand holding a
very small positive value ε (Line 5 in Algorithm 6). This
represents a small amount of traffic going from each
node to each other node (e.g., management traffic).

We use two streams of pseudo-random numbers: One
to draw the source (src) and destination nodes (dest),
and one to generate the traffic demands rsrc,dest. We draw
the source and destination nodes from a discrete uniform
distribution between 0 and |N |. The size of the quadratic
demand matrix R is equal to the number of nodes |N |.

The demand generator creates a number s of data
streams. In this paper, a stream is simply characterized
by an amount of traffic as well as exactly one source
and one destination node. We draw the amount of traffic
rsrc,dest randomly from a negative-exponential distribution
with mean value µ. In order to be more realistic, we
bound the values of the negative-exponential distribution.
This means if the random value is smaller than the lower
boundary (ε) or greater than the upper boundary (1), we
draw-out a new random number. This is done as long as
a value between lower and upper boundary is obtained.
Since we assume that for each stream is going some
traffic in the reverse direction, e.g., acknowledgment and
control messages, we add a small amount of traffic, in
that case 5%, that goes from the destination to the source
node (Line 13 in Algorithm 6).

