

Modeling and Performance Evaluation of a Manual Logon System for Electronic Fee Collection

VDE/ITG-Workshop: Communication Applications for Logistics: Maut, Telematics & More VDE/ITG FA 5.2., Bremen, January 26^{th.}, 2006

Joerg Sommer, Hanna Zündel, Christoph Gauger University of Stuttgart, Institut für Kommunikationsnetze und Rechnersysteme sommer@ikr.uni-stuttgart.de

> Steffen Tacke DaimlerChrysler AG, Research and Technology steffen.tacke@daimlerchrysler.com

Contents

TollCollect's logon process and system architecture

- □ Modeling aspects
- Performance evaluation
- Backoff Algorithm

Institute of Communication Networks and Computer Engineering

pulpholinaline

German Toll Collection System "TollCollect"

- 2005, Germany introduced an Electronic Fee Collection System (EFC)
- Global navigation satellite system and cellular network (GNSS/CN)
- Currently > 700,000 registered users
 By 2012, might grow to over 9 million in Europe
- Three approaches for payment

Automatic Logon	Manual Logon	
On-board unit	Internet and Call Centre	Toll-Station Terminal
• > 460,000 (July 2005)		approx. 3600 terminals
 approx. 80% revenue 	 marginal and declining 	 approx. 400 frequently used terminals approx. 400 rarely used terminals

pulpinalinaline

TollCollect's Manual Logon Process for EFC

Institute of Communication Networks and Computer Engineering

pulping and a second

TollCollect's Manual Logon Process for EFC

- Billing data records have to be transferred quickly for enforcement
- System behavior after failure or outage is critical

Institute of Communication Networks and Computer Engineering

Manual Logon Process

Challenging Scenarios

• System failure or breakdown of key components

- Billing and Data Centre
- Remote Access Server (RAS)

• Overload situation

- Breakdown of the automatic GNSS/CN EFC system
- Specific and unexpected peaks

► Financial losses and negative standing for the operator

Aim of this work

- Model and evaluate the overall manual logon process regarding performance and scalability
- Optimize the algorithm and parameters for transmission of billing data records after system outage

Terminal-based EFC system architecture

Normal operational mode

Failure-free billing data records (BDR) delivering

Institute of Communication Networks and Computer Engineering

Autonomous mode

Erroneous connection establishment

Institute of Communication Networks and Computer Engineering

Autonomous mode

Billing data records (BDR) delivering

Parameters

- AutoReconnectInterval ARI
- AutoSendInterval ASI
- Number of delivered BDRs n
- Time to transfer one BDR t_{BDR}

Relations

$$n = \begin{cases} 1 & \text{ASI} < t_{\text{BDR}} \\ \frac{\text{ASI}}{t_{\text{BDR}}} & \text{ASI} \ge t_{\text{BDR}} \end{cases}$$

Institute of Communication Networks and Computer Engineering

Modeling the terminal-based EFC system

Open queueing network

- Frontend comprises the terminals and the RAS
- *Backend* represents the BDM as a M/D/k-Multi-Server-Delay-System

Institute of Communication Networks and Computer Engineering

Scenario

Institute of Communication Networks and Computer Engineering

Scenario

Institute of Communication Networks and Computer Engineering

Scenario

Institute of Communication Networks and Computer Engineering

CDF of the queue processing (n = 1)

• With default configuration (ARI = 150 s) approximately $T_{recovery} = 2.5 h$

Institute of Communication Networks and Computer Engineering

CDF of the queue processing (n = 1)

→ Decreasing ARI values reduce T_{recovery}

Institute of Communication Networks and Computer Engineering

BDM utilization (n = 1)

• ARI = 150 s can not utilize the BDM continuously

Institute of Communication Networks and Computer Engineering

BDM utilization (n = 1)

Smaller ARI values are feasible due to RAS boundary

Institute of Communication Networks and Computer Engineering

Backoff Algorithm (1)

So far, deterministic approach

- ARI and n are constant values for all terminals
- Periodic system behavior \rightarrow possible instability
- Default of the recovery algorithm is too restrictive
 - ➡ The parameters after an outage are not optimal
- ← Challenge: improvement and optimization of the algorithm and parameters
- Aim: minimization of the recovery duration with controlled BDM load

Backoff Algorithm (2)

New approach for the backoff algorithm

Initial configuration in the autonomous mode $ARI_0=150$ s, $n_0=2$ *Failure-free case* Connection to RAS could be established successfully

$$ARI_{i+1} = ARI_0 + \frac{ARI_i}{2} \qquad \qquad n_{i+1} = \begin{cases} n_i \cdot 2 & \text{if } 2n \leq q_1 \\ q_1 & \text{else} \end{cases}$$

Failure case Connection to RAS could not be established

$$ARI_{i+1} = \begin{cases} ARI_i - \frac{ARI_i}{2} & \text{if } \left(ARI_i - \frac{ARI_i}{2}\right) \ge ARI_0 \\ ARI_0 & \text{else} \end{cases}$$
$$n_{i+1} = \begin{cases} \frac{n_i}{2} & \text{if } \frac{n_i}{2} \ge n_0 \\ n_0 & \text{else} \end{cases}$$

Institute of Communication Networks and Computer Engineering

Conclusion and outlook

- Modeled the manual logon process (users and system)
- Evaluated the recovery process in the autonomous mode
- Introduced a new approach for the backoff resolution
- Default manual logon process works stable, but is restrictive after an outage

- System behaviour depending on different downtime scenarios
- Optimization of the Backoff Algorithm to minimize RAS and BDM utilization
- Make the Backoff Algorithm dependant on state of
 - terminal queue
 - BDM
- Evaluate heterogeneous scenarios

Institute of Communication Networks and Computer Engineering

Modeling and Performance Evaluation of a Manual Logon System for Electronic Fee Collection

VDE/ITG-Workshop: Communication Applications for Logistics: Maut, Telematics & More VDE/ITG FA 5.2., Bremen, January 26^{th.}, 2006

Joerg Sommer, Hanna Zündel, Christoph Gauger University of Stuttgart, Institut für Kommunikationsnetze und Rechnersysteme sommer@ikr.uni-stuttgart.de

> Steffen Tacke DaimlerChrysler AG, Research and Technology steffen.tacke@daimlerchrysler.com