
Copyright Notice

c© 2009 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All

persons copying this information are expected to adhere to the terms and constraints invoked
by each author’s copyright. In most cases, these works may not be reposted without the

explicit permission of the copyright holder.

Institute of Communication Networks and Computer Engineering
University of Stuttgart

Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Phone: ++49-711-685-68026, Fax: ++49-711-685-67983

Email: mail@ikr.uni-stuttgart.de, http://www.ikr.uni-stuttgart.de



On Link Harness Optimization
of Embedded Ethernet Networks

Jörg Sommer, Elias A. Doumith1, Quentin Duval2

University of Stuttgart, Institute of Communication Networks and Computer Engineering (IKR)
Pfaffenwaldring 47, 70569 Stuttgart, Germany

Email: joerg.sommer@ikr.uni-stuttgart.de

Abstract— During the last decades, Ethernet progres-
sively became the most widely used Local Area Network
(LAN) technology. It evolved from a bus topology to a
micro-segmented network with full duplex links. Apart
from LAN installations, Ethernet became also attractive
for embedded application areas such as industrial, automo-
tive, and avionics. In these areas, the connectivity between
the devices and the switches results in link harnesses. These
harnesses can be bundled together and installed inside
ducts. Since all the links do not have the same endpoints,
some full duplex links may leave a duct at points referred
to as junction points.

In this paper, we propose a Simulated Annealing based
algorithm to optimize the topology design of embedded
Ethernet networks. This algorithm finds the (near-)optimal
positions of a given number of switches and their connec-
tions to a given set of nodes. When we take into account
that links are organized into link harnesses and installed
into ducts, we have to find also the number of junction
points required as well as their optimal positions. For this
purpose, we propose two algorithms and compare them in
terms of computation time and the quality of the obtained
solution. Finally, we highlight the cost benefits of bundling
links and installing them into ducts.

I. INTRODUCTION

TODAY, Ethernet is the predominant Local Area
Network (LAN) technology and is considered as

a de facto standard for network infrastructure. The
flexibility and the plug-and-play feature of Ethernet are
its keys to success. Thanks to the wide availability
of its components, its large bandwidth, its reliability,
and its backward compatibility, Ethernet has become an
attractive option in many application areas [1].

1From 2007 to 2009, Elias A. Doumith was at the IKR.
Now, he is with Telecom ParisTech, Paris, France. Email:
elias.doumith@telecom-paristech.fr

2At the time of writing, Quentin Duval was a student at the IKR.

A prominent example of Ethernet’s application area is
the industrial domain where Ethernet is gaining ground
over traditional fieldbuses. Another area is avionics,
where today’s Ethernet proved its ability to fulfill real-
time requirements needed in such an environment [2].
Last but not least, the automotive industry is investigat-
ing Ethernet as a suitable in-vehicle network technol-
ogy [3], [4].

A motivation to use Ethernet in embedded networks
is the use of commercial off-the-shelf components. This
allows manufactures to cut down the development cost
as well as the time needed to build new components.
Furthermore, the large number of Ethernet vendors and
the wide range of products promote the competition to
provide the best equipment at the lowest price.

In today’s embedded environments, wire harnesses are
used to interconnect all the network components/devices
and to supply them with power. By bundling the wires
and cables together and deploying them inside ducts,
they can be protected against various adverse effects such
as vibrations, moisture, and over-heat [5]. Moreover,
installing a wire/cable harness, as opposed to multiple
individual wires, reduces the installation time and con-
sequently the deployment cost. However, since all the
links do not have the same endpoints, some full duplex
links may leave a duct at some points referred to as
junction points or breakouts. At these junction points, a
bifurcation is created into the duct in order to protect
the leaving links as well as the remaining links in the
original link harness. In the sequel, we mainly focus on
the deployment of full duplex data links that interconnect
the devices and the switches of an embedded Ethernet
network. We do not consider the cables required to
supply these components with electrical power. Hence,
we use the term link harness to refer to the full duplex
links bundled and installed inside a duct. In Figure 1,
we give an example of such link harnesses.



Junction
point

Duct 

Node
Switch

Full duplex link

Fig. 1. Example of an embedded Ethernet topology design making
use of link harnesses.

When designing an embedded Ethernet network, we
have to optimize the number of switches used, their
positions, and their connections to a given set of nodes.
Moreover, we have to take into account that the links are
organized into link bundles and installed into ducts. For
this purpose, we have also to optimize the number of
junction points required as well as their positions. Thus,
the resulting problem is very challenging. In this paper,
we propose a Simulated Annealing (SA) based algorithm
to optimize the position of the switches. Concerning the
latter part of the problem, focusing on junction point
optimization, we propose a SA based algorithm and a
Descending algorithm.

The rest of the paper is organized as follows. First,
we model the environmental conditions by a cost map,
discuss the economy of scale of link harnesses and intro-
duce different network designs. Then, we present a link
harness cost model. In Section III, we propose algorithms
to optimize the link harness cost. In Section IV, we
evaluate the performance of the algorithms as well as
the cost benefit of link harnesses. Finally, we conclude
the paper in Section V and give an outlook for future
work.

II. CHARACTERISTICS AND MODELING

A. Cost Map

In contrast to traditional LANs, the environmental
conditions impose constraints on the network deploy-
ment. For instance, in aircrafts and cars, we have to
deploy at some places links with better shielding due
to electromagnetic interference or to deploy extra heat-
resisting links due to the environment temperature. At
other places, it might be extremely expensive or even
impossible to deploy a link. Such constraints add up to
the design complexity of an embedded network because
the cost of deploying a link depends on its position.

In order to take into account this cost variation, we
introduce the principle of a cost map. For this purpose,
we assume that the environment is reduced to a two-
dimensional plane of size u · v rasterized into small

width u = 30

he
ig

ht
 v

 =
 2

0

Fig. 2. An example of a 30× 20 cost map with an autocorrelation
structure.

areas or pixels. For a pixel at position I(xI , yI), we
assign a non-negative real value γxI ,yI

in the interval
[0, 1] that represents the cost of deploying a single link
segment inside a duct at that particular position. Thus,
the embedded environment can be represented by a
u × v matrix Γ = (γx,y) referred to as the cost map.
Based on this matrix, we compute the minimal cost ωI,J
required to deploy a single link within a duct between
the position I(xI , yI) and the position J(xJ , yJ) of the
embedded environment. The element ωI,J is a non-
negative real value computed by applying the Floyd-
Warshall algorithm [6] to the before-mentioned matrix
Γ. The minimal cost between any two positions of the
embedded environment is stored in a uv × uv matrix
noted Ω = (ωI,J).

Typically, we can derive the cost map from any envi-
ronment skeleton where preferred paths are represented
by pixels with lower cost. However, this information is
application specific and is, in most cases, proprietary
for the owner of the embedded environment. For this
reason, we chose to use randomly generated maps to
test our algorithm. We want to point out, though, that
the performance of our algorithm is independent of the
model used to create the cost map.

In embedded environments, low cost areas have in
most cases low cost neighboring areas. The same also
holds for high cost areas. Thus, pure random cost maps
are not sufficient, they must exhibit a certain autocorre-
lation structure given by an autocorrelation matrix. The
latter approach is borrowed from mobile radio network
simulators where shadowing or shadow fading effects are
modeled by a map with a given autocorrelation structure
[7]. For a detailed description of the cost map, the reader
can referred to [8] where we provide a method and a
mathematical proof for generating cost maps with a given
autocorrelation structure. Figure 2 shows an example of
such a cost map. The darker the pixels in the map, the
lower their corresponding values.



B. Harness Design

When designing embedded Ethernet networks without
considering the possibility of bundling links and deploy-
ing them inside ducts, we have to optimize the number
of switches used, their positions, and their connections
to a given number of nodes. For a given set of nodes and
given positions of the switches, the optimal topology is
obtained by connecting each node to its nearest switch
along the path with the lowest cost. As for the switches,
they are connected between them using a tree like
topology with the lowest cost obtained for example using
the Minimum Spanning Tree (MST) algorithm [9], [10].

By allowing multiple links following the same path to
be bundled together and installed within a single duct,
the optimal topology is no more obtained by using the
paths/tree with the lowest cost. In fact, by allowing some
links to be deployed along paths with higher cost, they
can be bundled together along a common path segment
and installed in a common duct. Thus, the cost penalty
due to the use of individual higher link costs can be
compensated by the cost benefit due to the use of a
common duct instead of separate ones. This holds if we
assume that the cost of φ links bundled together and
installed within a common duct is smaller than the sum
of the costs of the φ links deployed separately within
φ different ducts. Moreover, by binding multiple links
into a harness and installing them within a duct, they
can be better protected against the adverse effects of
heat, abrasions, and moisture. Since the installer has only
one link harness to install instead of multiple links, the
assembly time is decreased and the process can be easily
standardized.

According to the before-mentioned property, we define
the cost θI,J(φ) of a single duct comprising φ links be-
tween the position I(xI , yI) and the position J(xJ , yJ)
as:

θI,J(φ) = (λ · φ+ c) · ωI,J (1)

with λ + c = 1, λ
c is the ratio of the cost of a single

link to the cost of a single duct for a unit length, and
ωI,J is the minimal cost between I and J obtained from
the cost map Γ. This cost function can be generalized to
more complex functions without affecting the proposed
algorithms. Such generalization can reflects more general
assumptions such as the Economy of Scale where higher
number of links bundled together within one duct results
in lower cost per link.

Figure 3 illustrates the benefit of using junction points.
For simplicity, we assume a constant cost map with
γi,j = 1 (∀i = 1, · · · , u,∀j = 1, · · · , v). We also

Fig. 3. Different resulting link harnesses: Neglecting junction points
(dashed lines) and placing junction points (solid lines).

assume that the cost of a duct is four times more
expensive than the cost of a single link, thus we have
c = 0.8 and λ = 0.2. It should be noted that at the
endpoints, only half of the cost is required, and that
a link connecting two endpoints within the same area
has no cost. For instance, Node 1 is connected to the
Switch along the shortest path (upper dashed line). The
cost of the link and duct along this path is equal to
θNode 1, Switch(1) = 1/2 ·1+2 ·1+1/2 ·1 = 3. Similarly, the
cost of the duct and link along the shortest path between
Node 2 and the Switch (lower dashed line) is equal to
θNode 2, Switch(1) = 1/2 ·1+3 ·1+1/2 ·1 = 4. Consequently,
the total link cost of this topology is 3 + 4 = 7.

If we allow the connection between the nodes and the
Switch to take a more expensive path such as the one
through the Junction point (solid lines), the total cost of
this new topology is equal to 6.6. This comprises the
cost between the nodes and the Junction point plus the
cost between the Junction point and the Switch. Although
the connection between Node 1 and the Switch is more
expensive, allowing multiple links to be bundled and
installed within a duct results in lower total cost.

C. Network Designs

Besides determining the position of junction points,
we consider two network designs based on a tree topol-
ogy that differ in the acceptable positions of the switches:
• In the first design referred to as Integrated Switches,

the switches can be placed only at the same posi-
tions as the nodes (cf. Figure 4 a.)). This design
is motivated by the increasing number of devices
with a built-in switch available on the market. These
integrated switches use the same power supply as
the nodes and require minimal additional installa-
tion space.



a.)

Node

Switch

b.)

Fig. 4. Embedded Ethernet network designs: a.) Tree with integrated
switches and b.) Tree with self-contained switches.

• In the second design referred to as Self-contained
Switches, the switches can be placed anywhere in
the environment space (cf. Figure 4 b.)). Hence,
the position of the switches has a higher degree
of freedom and thus can achieve a reduced link
deployment cost.

It is up to the manufacturers to decide which design is
suitable for their embedded networks.

It is to be noted that the optimization of link harnesses
is harder to solve than traditional network dimension-
ing problems [11] where normally the position of the
switches is given and the connectivity between them has
to be optimized. Furthermore, traditional topology design
problems do not consider enhanced cost functions that
enforce link bundles. In our case, only the number of
the nodes’ and their positions are given as an input.
Consequently, we have to find, for a given number of
switches, the optimal position of these switches, and the
optimal number of junction points and their position as
well as the connectivity between the junction points, the
nodes, and the switches.

If we assume that each link is deployed in a separate
duct, and if we release the constraint on the limited
number of switches, the problem we are investigating
reduces to the standard Steiner Tree (ST) problem that is
known to be NP-complete [12]. Therefore, link harnesses
optimization is inherently more difficult than the well-
known NP-Complete ST problem.

D. Link Harness Cost

We have a given set of n nodes Ni(xi, yi) (i =
1, . . . , n), a number m of switches, and a number
l of junction points. As stated before, in an embed-
ded environment the link cost depends on its posi-
tion. Thus, our objective is to minimize the total link
cost C, also called link harness cost, by positioning
m switches Sj(xj , yj) (j = 1, . . . ,m) and l junction
points Bk(xk, yk) (k = 1, . . . , l), connecting the nodes
to the switches, and the switches between them either

directly or through junction points. For an instance of
this problem, we define the following matrices:
• Ψ = (ψi,j) is a n × (m + l) matrix representing

the existence of ducts between the nodes and the
switches or the nodes and the junction points where
ψi,j is a binary variable specifying the presence or
the absence of a duct between node Ni and switch
Sj (1 ≤ j ≤ m) or between node Ni and junction
point Bj−m (m+ 1 ≤ j ≤ m+ l).

ψi,j =

{
1 if Ni is connected to Sj or Bj−m,
0 otherwise.

(2)
Since we investigate an Ethernet network without
redundant paths, there exist exactly one duct be-
tween a node and either a switch or a junction point.
Thus, we have the following constraint:

m+l∑
j=1

ψi,j = 1, ∀i = 1, . . . , n (3)

It is to be noted that each of these ducts accommo-
dates exactly one link segment.

• Υ = (υi,j) is a (m+l)×(m+l) matrix representing
the existence of ducts between the switches and
the junction points where φi,j is a binary variable
specifying the presence or the absence of a duct
between switch Si/junction point Bi−m and switch
Sj /junction point Bj−m.

υi,j =

{
1 if Si/Bi−m is connected to Sj /Bj−m,
0 otherwise.

(4)
• Φ = (φi,j) is an (m+ l)×(m+ l) matrix represent-

ing the number of link segments between switch
Si/junction point Bi−m and switch Sj /junction
point Bj−m where φi,j is a non-negative integer
variable.

φi,j =

≥ 1
if Si/Bi−m is connected
to Sj /Bj−m,

0 otherwise.
(5)

After placing the switches and the junction points, we
calculate the cost of the ducts and the link segments:
• ∆ = (δi,j) is a n× (m+ l) matrix derived from the

matrix Ω. It contains the cost needed to deploy a
duct and a single link between nodes and switches
or between nodes and junction points respectively.
where δi,j is a non-negative real value equal to
the minimal cost between node Ni and switch
Sj /junction point Bj−m.



• Θ = (θi,j) is a (m+ l)× (m+ l) matrix containing
the minimal cost of the ducts and links between
the switches and the junction points where θi,j is
a non-negative real value. This matrix is derived
from the matrices Ω and Φ according to the cost
function given by Equation (1). For instance, the
minimal cost of a duct between ith switch at posi-
tion I(xI , yI) and the kth junction point at position
J(xJ , yJ) is

θi,k+m = θI,J(φi,k+m) (6)

The total link cost C of the harness results in

C =
∑

i=1,...,n
j=1,...,m+l

ψi,j · δi,j +
∑

i=1,...,m+l−1
j=i+1,...,m+l

υi,j · θi,j (7)

In the next section, we present algorithms to minimize
the link harness cost of embedded Ethernet networks.

III. ALGORITHMS

In this section, we present several algorithms that,
when combined, can solve the complex problem formu-
lated in the previous section. We propose a Simulated
Annealing (SA) based algorithm to find the optimal
positions of a given number of switches. It is commonly
known that SA is able to find a (near-)optimal solution
in a short time [13]. The basic idea of SA is to improve
a given initial solution iteratively by applying defined
rearrangement operations.

In order to find the optimal number of junction points
and their optimal positions, we present two algorithms:
A SA based algorithm and a Descending algorithm. In
order to solve the link harness problem, we combine the
optimization of the switches’ position and that of the
junction points’ position either sequentially or iteratively.

A. Simulated Annealing based Switch Positioning Algo-
rithm

In this section, we propose an SA based algorithm,
called SA/S, which is able to find the (near-)optimal
positions of a given number of switches. As an ini-
tial solution S0 of this algorithm, which is listed in
Algorithm 1, we place m switches randomly within a
pre-defined solution space, interconnect them applying
a MST algorithm [9], [10], and then connect each node
to its nearest switch, i.e., the switch that requires the
lowest cost. By (inter)connecting we mean installing a
duct. For given switches’ positions, such a link scheme
guarantees the minimal link cost. Let C0 be the cost
of this initial/current solution. By applying defined rear-
rangement operations, also called perturbations (Line 15

of Algorithm 1) to the current solution, a new solution
Sx of cost Cx is obtained. Based on the duct structure,
we are able to deploy the full duplex links between nodes
and switches and between switches themselves. Due to
the constraint defined in Equation (3) and applying a
MST algorithm to interconnect the switches, there exist
exactly one path between nodes and switches and exactly
one path between two switches.

In the case of integrated switches, the solution space
is restricted to the nodes’ position, and the perturbation
consists in moving a randomly selected switch from
its current node position to the position of another
randomly selected node. In contrast to this, in the case
of self-contained switches, the perturbation can move a
randomly selected switch to any other position on the
cost map. In both cases, the nodes are connected to their
nearest switch, while the switches are interconnected
using the MST algorithm.

New solutions with lower cost than the current solu-
tion are accepted automatically (Line 20 of Algorithm 1).
In order to avoid local minima, solutions with higher cost
than the current solutions are accepted with a probability
determined by a system control temperature T . However,
the probability that these more expensive solutions are
chosen decreases as the algorithm progresses in time to
simulate the cooling process associated with annealing.
This probability is based on a negative exponential
function and is inversely proportional to the difference
between the cost of the current solution and the cost of
the new solution (Line 30 of Algorithm 1). If the costs of
the new solution and the current solution are equal, one
can randomly choose to accept the new solution as the
current solution or rejected it (Line 27 of Algorithm 1).

By iteratively applying the rearrangement operations
and appropriately updating the current solution, the
SA/S algorithm searches the solution space for a solution
with minimal cost. The best solution obtained by the
algorithm during its run is stored. Let Sbest be this best
solution and Cbest its cost.

It is to be noted that we delete unnecessary switches
in a post-processing step. A switch is unnecessary, if its
non-existence does not affect the link harness cost. These
are switches to which are only two full duplex links are
connected ∀j = 1, . . . ,m:

n∑
i=1

ψi,j +
m∑
i=1

υi,j ≤ 2 (8)

Normally, it is possible to delete one or more switches
if the number of switches is close to the number of nodes
(m ' n).



Algorithm 1 SA based algorithm
1: define
2: mIter . maximum number of consecutive itera-

tions without any improvement
3: mImpr . maximum number of improvements
4: mAtmp . maximum number of attempts
5: T . initial temperature
6: p . cooling factor
7: end define
8: procedure SA({Ni(xi, yi)}, m, Ω))
9: Construct an initial solution S0; C0 ← COST(S0)
10: (Sbest, Cbest)← (S0, C0)
11: iter← 0
12: while iter < mIter do
13: impr← 0; atmp← 0
14: while (impr < mImpr)∧(atmp < mAtmp) do
15: Sx ← PERTURBATION(S0)
16: Cx ← COST(Sx)
17: atmp++
18: Generate a random number r ∈ [0, 1)
19: if Cx < C0 then . improved solution
20: (S0, C0)← (Sx, Cx)
21: impr++
22: if Cx < Cbest then
23: (Sbest, Cbest)← (Sx, Cx)
24: iter← 0
25: end if
26: else if Cx = C0 then . equivalent solution
27: if r < 0.5 then
28: (S0, C0)← (Sx, Cx)
29: end if
30: else if r < e−

(Cx−C0)
C0T then . worse solution

31: (S0, C0)← (Sx, Cx);
32: end if
33: end while
34: if atmp = mAtmp then . lot of attempts
35: iter++
36: end if
37: T ← pT
38: end while
39: return (Sbest, Cbest)
40: end procedure

B. Simulated Annealing based Junction Point Position-
ing Algorithm

1) Principle: In this section, we propose an SA based
algorithm, called SA/JP, which finds (near-)optimal po-
sitions of junction points. This algorithm works similar

to the one introduced in Section III-A. We also define
the parameters mIter, mImpr, mAtmp, T , and p. The
differences are the input parameters and the perturba-
tion. The former are a set of nodes and their posi-
tions {Nj(xi, yi)}, a set of switches and their positions
{Mj(xj , yj)} as well as the initial number of junction
points and the matrix Ω.

Similar to the SA/S algorithm, as an initial solution S0,
we position l junction points randomly. Then, we connect
each node to its nearest switch or its nearest junction
point and we interconnect the switches and the junction
points using a MST algorithm. By (inter)connecting
we mean installing a duct between two entities (node,
switch, or junction point).

By applying the perturbation to the current solution,
a new solution Sx with cost Cx is obtained. The new
solution Sx includes all the ducts. Based on this solution,
we are able to deploy the full duplex links between nodes
and switches and between switches themselves. Due to
the constraint defined in Equation (3), there exist exactly
one path between nodes and switches and exactly one
path between two switches. Based on this link harness
and the cost function, we compute the cost Cx of solution
Sx. The perturbation selects with a probability of 80%
a junction point randomly and moves this one from
its current position to another position also selected
randomly. With a probability of 10%, the perturbation
deletes a randomly selected junction point and with a
probability of 10%, the perturbation adds a new junction
point on a randomly selected position. In case of zero
junction points, the perturbation adds a new junction
point.

Since the perturbation removes and adds junction
points, the sizes of the matrices that we introduced in
Section II-D can vary from solution to solution.

In a post-processing step, the SA/JP algorithm deletes
unnecessary junction points. A junction point is un-
necessary, if its non-existence does not affect the total
cost. To delete unnecessary junction points, the algorithm
tests for each of them, if the deletion affects the cost
∀j = m+ 1, . . . ,m+ l:

n∑
i=1

ψi,j +
m+l∑

i=m+1

υi,j ≤ 2 (9)

2) Configuration:
a) Nested: We nest the SA/JP algorithm into the

SA/S algorithm (between Line 15 and Line 16 of Al-
gorithm 1), where the nested algorithm is responsible to
find the (near-)optimal positions of the junction points



a.) b.)

SA/J

SA/SSA/S

SA/J

Fig. 5. Possible Configurations: a.) Nested processing configuration,
called N/SA/JP and b.) Sequential processing, called S/SA/JP.

and the outer algorithm to find the (near-)optimal posi-
tions of the switches.

b) Sequential: Instead of nesting the SA/JP algo-
rithm into the SA/S algorithm, we run both algorithms
SA/S and SA/JP sequentially. Practically, we run the
SA/S algorithm that positions the switches without con-
sidering junction points in the topology and, afterwards,
we use this positioning as the input of the additional
SA/JP algorithm. Figure 5 depicts the two configurations.

C. Descending Junction Point Positioning Algorithm

1) Principle: In this section, we propose a Descend-
ing algorithm, called D/JP, which finds (near-)optimal
positions of junction points. The main difference with
respect to the previous SA based algorithm is in the
perturbation function.

As an initial solution S0, we position l junction points
randomly and save this solution as the best solution.
While the current number of iterations iter is smaller
than the maximum number of iterations mIter a new
perturbation is applied. It consists in always adding a
given number of new junction points to the current
solution. Each node is connected to its nearest switch or
its nearest junction point. The switches and the junction
points are interconnected using a MST algorithm.

Finally, we remove unnecessary junction points. By
this way, since the positions of the junction points of
the current best solution are kept in the newly con-
structed one, the link harness cost can only decrease or
remain unchanged. Thus, the Descending algorithm can
be viewed as a SA algorithm that only accepts better
solutions.

2) Configuration: As for the SA/JP algorithm, the
D/JP algorithm can be nested into the SA/S algorithm
(N/D/JP) or can be run sequentially (S/D/JP).

IV. EVALUATION

In the previous section, we presented algorithms to
minimize link harness cost of an embedded Ethernet
network. In this section, we investigate the benefit of
bundling links and installing them into ducts. Further-
more, we compare the performance of the algorithms

Algorithm 2 Descending algorithm
1: define
2: mIter . maximum number of iterations
3: end define
4: procedure SA({Ni(xi, yi)}, {Mi(xi, yi)}, l, Ω))
5: Construct an initial solution S0; C0 ← COST(S0)
6: (Sbest, Cbest)← (S0, C0)
7: iter← 0
8: while iter < mIter do
9: Sx ← PERTURBATION(Sbest)
10: Cx ← COST(Sx)
11: if Cx < Cbest then . improved solution
12: (Sbest, Cbest)← (Sx, Cx)
13: iter← 0
14: end if
15: iter++
16: end while
17: return (Sbest, Cbest)
18: end procedure

and the obtained final solution. In [1] and [14], we have
already evaluated the performance of the SA/S algorithm
by comparing its chosen solutions with the optimal
solutions found by a Mixed-Integer Linear Program
(MILP). Although in [14] we apply the SA/S algorithm
to optimize the topology of in-vehicle multimedia com-
munication systems, the algorithm is not domain specific
and can be applied to optimize any types of embedded
Ethernet networks. We have shown that this algorithm
achieves (near-)optimal solutions in short computation
time. In addition, we have shown that the computation
time of the MILP increases enormously with an increas-
ing number of switches, although we did not consider
junction points.

For the evaluation, we investigate several networks
with different number of nodes where we have to place
different number of switches. In all networks, we use
a 50 × 50 cost map with an autocorrelation structure
as well as a linear cost function (cf. II-B) with c =
0.8 (fixed duct cost) and λ = 0.2 (relative link cost).
The probability of finding an optimal solution decreases
with an increasing solution space, which results from
the size of the cost map, the number of nodes, the
number of switches, and if we consider junction points.
Consequently, the parameters of the algorithms should
depend on the solution space. Based on a large num-
ber of experiments and analytical approximations, we
use the following parameters for the SA/S algorithm:
mIter = 15 · ln(u · v), mAtmp = n · m · ln(u · v),



mImpr = 0.1 ·mAtmp, T = 0.5, and p = 0.9. For the
S/SA/JP algorithm, we use the same parameters as for
the SA/S algorithm. For the N/SA/JP algorithm, we use
a tenth of the values of the S/SA/JP algorithm. For the
N/D/JP algorithm, we use the same number of maximum
iterations as for the S/SA/JP algorithm. For comparable
in accuracy with the S/SA/JP algorithm, we double the
number of maximum iterations for the S/D/JP algorithm
(2 · mIter). We choose the initial number of junction
points equal to half the number of nodes (l = n/2).

A. Algorithms’ Performance

In this section, we compare the performance of the
SA/JP and the D/JP algorithm as well as both configu-
rations sequential and nested.

a) D/JP vs. SA/JP: Table I shows the minimal total
link cost C of solutions chosen by different algorithms.
The solutions of the SA/JP are most of the time better
than the one found by the D/JP with equivalent param-
eters (parameters that allow similar level of precision),
but require considerable longer computational time. For
example, for a network with 8 integrated switches and
15 nodes, the computation time is 385 times longer.
The D/JP algorithm is suitable if a quick answer is
preferred to the accuracy of the solution or if we drive
at comparing a large number of networks.

If we choose worse parameters for the SA/JP, as it
is, in the Table I, the case for the nested configuration,
the computational time is equivalent, but the D/JP finds
better solutions.

b) Configuration: Sequential vs. Nested: Generally,
the switches’ positions are not identical if we use junc-
tion points or not. Therefore, running the SA/JP or the
D/JP algorithm after finding optimized switches’ posi-
tions, i.e., using the sequential configuration, provides
generally only a sub-optimal solution, since we try to
find the optimal positions of the junction points based
on exactly one solution chosen by the SA/S algorithm.
On the contrary, nesting the SA/JP or the D/JP into the
SA/S considers a larger solution space by trying to find
the optimal positions of the junction points for different
settings of switches’ positions. This again influences
the switches’ positions. Thus, the chosen solutions have
generally lower cost in comparison to the sequential
configuration as shown in Table II. However, considering
a larger solution space leads to an enormously increasing
computation time, which is the major drawback of the
nested configuration.

Although, the sequential configuration considers a
smaller solution space, its chosen solution is not far

C
om

pu
ta

tio
n 

tim
e

Quality of solution

S/SA/JP

N/D/JP

N/SA/JP

S/D/JP

Fig. 6. Comparison of the algorithms’ performance.

away from the nested configuration. If we consider a
set of positions of switches and junction points, the sets
are similar in both cases. For example, if the nested
configuration finds a solution with two switches on
position S1(x1, y1) and S2(x2, y2), and one junction
point on position JP(x3, y3), the sequential configuration
finds normally a solution with S1(x′2, y

′
2), S2(x′3, y

′
3),

and JP(x′1, y
′
1), where xi ≈ x′i and yi ≈ y′i. Due to

the smaller solution space considered, the computation
time of the sequential configuration is in general shorter.
Consequently, we should use the sequential configuration
in order to find a good solution in a short time and to get
a feeling of the possible improvement of using junction
points.

Considering Table I and II, it might make more
sense to execute a number of independent runs with
the sequential configuration instead of using the nested
configuration. Figure 6 depicts the performance of the
algorithms. Normally, the S/SA/JP and S/D/JP algorithm
find an acceptable solution within a short computation
time, where the former performs better. If we are inter-
ested in solutions with a high quality (low cost), we have
to nest the algorithms into the SA/S; but the price is an
enormously increasing computation time.

B. Network Designs

In this section, we compare the network designs
mentioned in Section II-C. Without positioning junction
points, i.e., applying only the SA/S algorithm, the total
link cost of the design with self-contained switches is
smaller than the link cost with the integrated switches.
This is because the solution space of the latter design is
included in the former one.

As we mentioned before, the optimal switches’ posi-
tions are not the same with and without using junction
points. Consequently, positioning of the switches in a
post-processing step, i.e., sequential configuration, the
cost of the design with self-contained switches must not
to be mandatory less than the cost of the design with
integrated switches, although it is often the case. For



TABLE I
COMPARISON OF THE ALGORITHMS (WITH CONFIGURATION Sequential AND 10 INDEPENDENT RUNS).

Network
n m

SA/S S/D/JP S/SA/JP Cost
design C t [min] C l max(φ) t [min] C l max(φ) t [min] reduction [%]

Se
lf

-C
on

t.
Sw

itc
he

s

10

1 111.25 < 1 74.40 8 7 < 1 73.80 10 7 ' 10 33.7
2 82.75 < 1 64.45 8 4 < 1 63.45 11 4 ' 30 23.3
5 63.81 < 1 59.42 4 2 ' 1 58.82 7 2 ' 175 7.8
8 57.19 < 1 57.19 0 1 ' 1 57.19 0 1 ' 230 0.0

15

2 117.84 < 1 89.87 10 4 ' 2 88.62 15 5 ' 180 24.8
5 92.64 < 1 80.15 9 3 ' 8 80.06 14 4 ' 1300 13.6
8 83.02 < 1 78.12 6 2 ' 10 77.59 12 2 ' 3350 6.5

12 76.04 < 1 75.02 2 2 ' 8 75.412 4 2 ' 6100 0.8

In
te

gr
at

ed
Sw

itc
he

s

10

1 119.32 < 1 71.14 7 5 < 1 70.77 13 5 ' 7 40.7
2 92.20 < 1 67.57 6 4 < 1 66.86 11 5 ' 30 27.5
5 67.84 < 1 62.62 3 3 < 1 62.38 8 3 ' 135 8.0
8 66.26 < 1 66.021 1 2 ' 1 66.021 2 2 ' 300 0.4

15

2 124.35 < 1 88.60 11 4 ' 3 87.87 15 4 ' 240 29.3
5 99.02 < 1 83.57 8 3 ' 5 83.46 11 3 ' 1000 15.7
8 85.15 < 1 80.04 5 3 ' 7 79.84 8 3 ' 2700 6.2

12 83.50 < 1 80.892 3 2 ' 11 80.762 5 2 ' 6500 3.3
1 Post-processing switch deletion: 7 switches used instead of (given) 8.
2 Post-processing switch deletion: 10 switches used instead of (given) 12.

TABLE II
COMPARISON OF THE ALGORITHMS’ COMPUTATION TIME (FOR n =10 NODES AND WITH 1 INDEPENDENT RUN).

m
Sequential Nested

Network SA S/D/JP S/SA/JP N/D/JP N/SA/JP
design C t [min] C t [min] C t [min] C t [min] C t [min]

Self-Cont. 1 111.25 < 1 75.30 < 1 75.77 ' 1 69.54 ' 100 71.70 ' 70
Switches 2 82.75 < 1 65.30 < 1 64.08 ' 6 63.25 ' 800 64.98 ' 1000
Integrated 1 119.32 < 1 71.22 < 1 71.19 ' 1 70.77 ' 100 71.86 ' 100
Switches 2 92.20 < 1 69.21 < 1 67.06 ' 3 64.73 ' 500 65.62 ' 1000

example, in Table I, with 10 nodes and 1 switch, the
design with integrated switches achieves better results
with both algorithms SA/JP and D/JP.

Another reason that the design with integrated
switches achieves sometimes better results is that the
solution space is smaller compared to the design with
self-contained switches. If we execute the algorithms
with the same parameters, the probability to find a (near-
)optimal solution is a priori higher.

C. Harness Design

The objective of this paper is to optimize the total
link cost of an embedded Ethernet network by placing a
given number of switches as well as by deploying junc-
tion points and finding their (near-)optimal positions. In
section III-A, we introduce algorithms for this purpose.
As shown in Table I, by deploying additional switches,
we can reduce the harness cost. As higher the number
of switches, as lower the link harness cost.

As shown also in the Table I and II, by deploying
junction points, we are able to decrease further the
harness cost. As we can state from this table, the larger
the number of switches, the smaller the benefit of the
junction points. The reason is that the more switches
we have, the less we have useful possible junction
points spots to decrease the cost. Indeed the switches
and junction points are similar but for the multiplexing
property, that junction points do not share with switches
and thus, simplifying to the extreme situation, we can
say that one additional switch equals at least minus one
useful junction point. Besides the number of junction
points, also the maximum number of links in a duct
max(φ) decreases also if the number of switches in a
network increases. This confirms the statement that the
benefit of installing link bundles into ducts is smaller if
we deploy a large number of switches.

Eventually, passed a given number of switches, which
depends on the network, no more junction points are



needed, and the cost reduction goes to zero. Thus, as for
considering the link harness cost only, position junction
points is out performed by deploying additional switches
instead. However, this statement is wrong if we consider
the overall deployment cost, which include the cost of all
network components, and not only the link harness cost.
Indeed, adding a switch represents a non-negligible cost,
whereas adding a junction point does not (or significantly
lesser). Depending on this switch cost, both the optimal
number of switches and the improvement achieved by
link bundles vary. For example, by selecting a switch
cost of 10, and add this cost multiplied by the number of
switches to each line, we can conclude that the minimal
cost without junction points is 102.75 (10 nodes and 2
switches), and 79.54 with junction points (10 nodes and
1 switch), leading to a 22.6% cost reduction.

V. CONCLUSION AND OUTLOOK

During the last decade, apart from LAN installations,
Ethernet became also attractive for other application
areas such as industry and avionics. In these areas,
we have to consider additional constraints and environ-
mental conditions, while reducing the cost. Since link
harnesses have a number of advantages, in embedded
fields they are deployed instead of single links. In this
paper, we proposed algorithms to optimize link har-
nesses. We evaluated the performance of the algorithms
and discussed the trade-off between computation time
and the quality of the obtained solution. Furthermore,
we highlighted the cost benefits of bundling links and
installing them into ducts.

The algorithms in this paper are not limited to opti-
mize the link harness of embedded Ethernet networks.
With minor modifications, the algorithms can be gener-
alized and can take into account, e.g., power wires.

Currently, we are working on approaches to find
proper switch and junction point positions for the initial
solutions, instead of using randomly choosing positions.
This may further improve the results.

Until now, we focused on the link harnesses. We did
not take into account higher layer constraints. In the
future, we will extend the algorithms that we consider
a given traffic demand matrix, while optimizing the
network cost. The objective is that the resulting topology
fulfills the traffic demands of the network with minimal
cost. For this purpose, the algorithms take into account
the traffic demands and, if necessary, deploy additional
links.

ACKNOWLEDGMENT

The authors would like to thank Andreas Reifert for
many fruitful discussions. The author would also like to
thank the reviewers who have read and helped to improve
the quality of this paper.

REFERENCES

[1] J. Sommer, S. Gunreben, F. Feller, M. Köhn, A. Mifdaoui,
D. Saß, and J. Scharf, “Ethernet – A Survey on its Fields of
Application,” February 2009, accepted for publication in the
IEEE Communications Surveys and Tutorials.

[2] ARINC 664, Aircraft Data Network, Part 7: Deterministic
Networks, 2003.

[3] M. Rahmani, R. Steffen, K. Tappayuthpijarn, E. Steinbach,
and G. Giordano, “Performance Analysis of Different Network
Topologies for In-vehicle Audio and Video Communication,” in
4th. International Telecommunication Networking Workshop on
QoS in Multiservice IP Networks, February 2008, pp. 179–184.

[4] M. Rahmani, K. Tappayuthpijarn, B. Krebs, E. Steinbach,
and R. Bogenberger, “Traffic Shaping for Resource-Efficient
In-Vehicle Communication,” IEEE Transactions on Industrial
Informatics, 2009, accepted for future publication.

[5] E. Aguirre and B. Raucent, “Performances of wire harness as-
sembly systems,” IEEE International Symposium on Industrial
Electronics, ISIE ’94, pp. 292–297, May 1994.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, Second Edition. MIT Press,
September 2001.

[7] I. Forkel, M. Schinnenburg, and M. Ang, “Generation of two-
dimensional correlated shadowing for mobile radio network
simulation,” in Proceedings of The 7th International Symposium
on Wireless Personal Multimedia Communications, WPMC
2004, Abano Terme (Padova), Italy, September 2004, p. 5.

[8] J. Sommer, E. A. Doumith, and A. Reifert, “Cost-based Topol-
ogy Optimization of Embedded Ethernet Networks,” 2009,
submitted to the International Journal of Embedded and Real-
time Communication Systems (IJERTCS).

[9] J. J. B. Kruskal, “On the Shortest Spanning Subtree of a
Graph and the Traveling Salesman Problem,” Proceedings of
the American Mathematical Society, vol. 7, no. 1, pp. 48–50,
February 1956.

[10] R. Prim, “Shortest connection networks and some generaliza-
tions,” Bell System Technical Journal, vol. 36, pp. 1389–1401,
1957.

[11] M. Pióro and D. Mehdi, Routing, Flow, and Capacity Design in
Communication and Computer Networks. Morgan Kaufmann
Publishers, 2004.

[12] M. R. Garey, R. L. Graham, and D. Johnson, “The complexity
of computing Steiner minimal trees,” SIAM Journal on Applied
Mathematics, vol. 31, no. 4, pp. 835–859, June 1977.

[13] T. F. Gonzales, Ed., Handbook of Approximation Algorithms
and Metaheuristics. Chapman & Hall CRC, 2007.

[14] J. Sommer and E. A. Doumith, “Topology Optimization of In-
vehicle Multimedia Communication Systems,” in Proceedings
of the First Annual International Symposium on Vehicular
Computing Systems (ISVCS 2008), Dublin, July 2008.


