Topologieoptimierung von eingebetteten Kommunikationsnetzen

Herausforderungen und Lösungsansätze

Jörg Sommer joerg.sommer@ikr.uni-stuttgart.de 13. November 2009

Universität Stuttgart Institut für Kommunikationsnetze und Rechnersysteme (IKR) Prof. Dr.-Ing. Andreas Kirstädter

Gliederung

Einordnung Eingebettete Kommunikationssysteme

Motivation "Warum Ethernet?"

Herausforderungen und Lösungsansätze

Platzierung von Switches und Bündelungspunkten

Ressourcendimensionierung und Ausfallsicherheit

Zusammenfassung und Ausblick

Eingebettete Kommunikationssyteme

Definition

"Kommunikationssystem, das in ein anderes (technisches) System oder in einen Prozess eingebettet ist und nach außen nicht direkt als Kommunikationssystem erkennbar ist."

Anwendungsfelder

- Transportmittel: Kraftfahrzeuge, Flugzeuge, Züge
- Industrielles Umfeld: Automatisierungstechnik, Fertigungsprozesse, ...
- Gebäudeautomatisierung ("Smart buildings")
- Medizinische Systeme (z. B. Computertomographen)
- Militärische Anwendungen
- Raumfahrt (z. B. Satelliten)

Motivation

Warum Ethernet?

- Verfügbare Bandbreite (100 Mbps bis 10 Gbps und mehr)
- Vielzahl an Mechanismen und Erweiterungen (VLAN, QoS, Plug-n-play, Echtzeitfähigkeit, ...)
- Unterstützung unterschiedlicher Übertragungsmedien
- Etablierung in vielen Anwendungsbereichen (LAN, Zugangsnetz, ...)
- Rückwärtskompatibilität und lange "Lebensdauer"
- Einfache Koppelung mit anderen Technologien
- Vielzahl an Herstellern
 - → Wettbewerb führt zu "billigen" Standard-(Massenmarkt-)Komponenten
 - → Geringe Kosten
- Flexibilität beim Netzentwurf (Stern, Daisy-Chain, ...)
- → Ethernet auch in eingebetteten Bereichen (bereits im Flugzeug, "bald" im Fahrzeug)

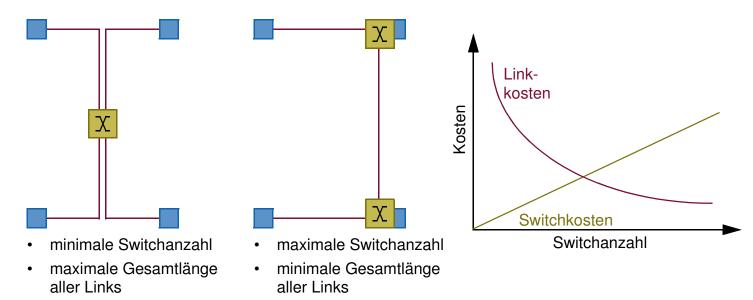
Ethernet als "Eierlegende Wollmilchsau"?

Randbedingungen

Ethernet heute bedeutet

- Segmentierung zur Vermeidung von Kollisionen (kein "Shared medium")
- Zusätzliche Komponenten (Switches)
- Zusätzliche Verkabelung für die Punkt-zu-Punkt Verbindungen (zwischen Kommunikationsteilnehmern und Switches sowie den Switches untereinander)
- → Erhöhter Platzbedarf und zusätzliche Kosten

Aber


- Begrenzter Bauraum und Gewichtslimitierung (z. B. in Flugzeugen)
- Extreme Kostensensitivität (z. B. im Automobilbereich)

Herausforderung

Minimierung der Kosten und des benötigten Bauraumes

Minimierung der Kosten

- (Installations-)Kosten abhängig von der Switchanzahl und der Linkkosten
- Trade-off zwischen Komponenten- und Linkkosten

• Ansatz: Minimierung der Linkkosten (Gesamtlänge) für eine gegebene Switchanzahl

Minimierung der Linkkosten

Problemdefinition

Ziel

"Es sollen *m* Switches so positioniert werden, dass die Gesamtlänge aller Links minimiert und jeder Knoten einer gegebenen Knotenmenge mit einem Switch verbunden wird und die Switches untereinander verbunden werden.

- Annahmen
 - 2-dimensionale Ebene
 - Manhatten Distanz zwischen zwei Punkten i und j $d_{i,j} = |x_i x_j| + |y_i y_j|$
- Nebenbedingungen
 - Jeder Knoten wird mit exakt einem Switch verbunden
 - Konnektivität zwischen den Switches bilden einen Baum ("Loop-free topology")
- Unterschied zu "traditonellen" Dimensionierungsproblemen Switchpositionen sind gegeben und die Verbindungen werden berechnet ("Network dimensioning")
- Herausforderung

Finden der optimalen Positionen einer gegebenen Anzahl an Switches (Platzierung von Switches)

Platzierung von Switches

(In den Knoten) integrierte Switches	Beliebige Switchpositionen
Switch	Switch
+ Keine zusätzliche Verkabelung für Strom- und Spannungsversorgung	+ Höherer Freiheitsgrad bei der Optimierung
+ Geringer Bauraum	
Näherungsverfahren: Simulated Annealing (SA)	Näherungsverfahren: Simulated Annealing (SA)
Exakt: Mixed Integer Linear Program (MILP)	Exakt: Mixed Integer Linear Program (MILP)
Geeignet für "kleine" Probleminstanzen	Geeignet für "kleine" Probleminstanzen
Exakt: Minimum Spanning Tree (MST)	Exakt: Steiner Tree (ST)
 Keinen Einfluss auf die Switchanzahl 	- Keinen Einfluss auf die Switchanzahl
– Algorithmen: Prim's und Kruskal's	

Minimierung der Linkkosten

Vergleich MILP, ST und SA

Szenario mit 15, 20 Knoten und beliebigen Switchpositionen

# Knoten		2 Switches		3 Switches		5 Switches		max = # Knoten – 2	
		MILP	SA	MILP	SA	MILP	SA	ST	SA
15	I	139.5	139.5	122.0	122.0	107.0	107.0	83.0	83.0
	t	< 1	< 1	≅ 4	< 1	> 7 <i>d</i>	< 1	< 1	< 1
20	1	164.5	164.5	132.0	132.0	111.5	111.5	83.0	83.0 [*]
•	t	< 1	< 1	≅ 1 7	< 1	> 7 <i>d</i>	< 1	< 1	< 1

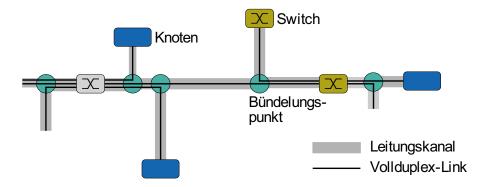
I Gesamtlänge aller Links

→ SA findet (nahe-)optimale Lösung **und** ist geeignet für "große" Ethernet Netze

Ergebnisse **SA** berechnet mit der **TopOptim Bibliothek** (Instituts-eigene Bibliothek zur Topologieoptimierung)
Ergebnisse **MILP** berechnet mit **SCIP** (Solving Constraint Integer Programs) http://scip.zib.de
Ergebnisse **ST** berechnet mit dem **GeoSteiner package** http://www.diku.dk/hjemmesider/ansatte/martinz/geosteiner

t Berechnungszeit [min]

^{*} Post-Processing zur Minimierung der Switch-Anzahl: nur 17 Switches benötigt


Leitungsbaum-Optimierung

Zusammenlegen von (Vollduplex-) Links in Leitungskanälen

 \rightarrow Leitungsbaum

Vorteile

- Einfache Verbaubarkeit (z. B. in der Produktion)
- Gemeinsame Isolierung mehrerer Links (gegen Hitze, Schmutz, ...)
- → Kostenersparnis

Leitungsbaum-Optimierung

Problemdefinition

Ziel

"Es sollen *m* Switches und eine beliebige Anzahl von Bündelungspunkten so positioniert werden, dass die Gesamtlänge aller Links Linkkosten minimiert und jeder Knoten einer gegebenen Knotenmenge mit einem Switch verbunden wird und die Switches untereinander verbunden werden.

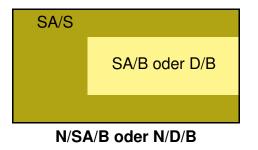
Annahme

- Kosten für n Links in einem Kanal sind geringer als n einzelne Links
 - → Bündelungsgewinn
- → Lineare (relative) Kostenfunktion

$$C_{i,j} = (\alpha \cdot n + c) \cdot d_{i,j}$$
 mit $n = \text{Anzahl der Links und } \alpha + c = 1$

Herausforderungen

- Finden der optimalen Positionen einer gegebenen Anzahl von Switches
- Finden der optimalen Anzahl von Bündelungspunkten und deren Positionen
- Wann "lohnt" sich ein Umweg?
 Abhängig von der Kostenfunktion und der Anzahl der Links innerhalb eines Kanals
 - → "Henne-Ei-Problem"


Platzierung von Switches und Bündelungspunkten

Dekomposition des Optimierungsproblems in zwei Ebenen

- 1. Ebene: Finden der optimalen Positionen für eine gegebene Anzahl an Switches (**S**) mit Simulated Annealing (**SA**) Algorithmus
- 2. Ebene: Finden der optimalen Anzahl an Bündelungspunkten (**B**) und deren Position mit Simulated Annealing (**SA**) Algorithmus oder ein Descending Algorithmus (**D**)

Konfigurationen

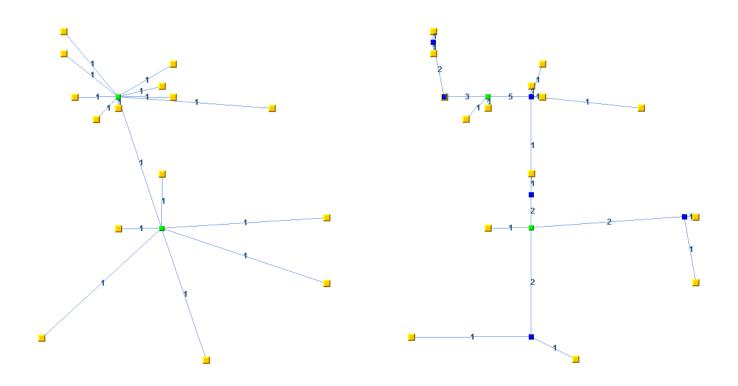
- "Nested" (N): Algorithmus für die Bündelungspunkte (B) ist in den Algorithmus für die Switches (S) eingenistet
- Sequentiell (S): Sequentielle Ausführung der beiden Algorithmen (zuerst S, dann B)

Leitungsbaum-Optimierung

Vergleich SA/S, S/D/B und S/SA/B

Szenario mit 10 Knoten, c = 0.8, $\alpha = 0.2$ und sequentieller Ausführung

Variante	# Switches	SA/S	S/D/B		S/SA/B		Kosten-
		С	С	# B	С	# B	reduzierung [%]
Beliebige Switch- positionen	1	111.25	74.40	8	73.80	7	33.7
	2	82.75	64.45	8	63.45	4	23.3
	5	63.81	59.42	4	58.82	2	7.8
	8	57.19	57.19	0	57.19	1	0.0
Integrierte Switches	1	119.32	71.14	5	70.77	5	40.7
	2	92.20	67.57	4	66.86	5	27.5
	5	67.84	62.62	3	62.38	3	8.0
	8	66.26	66.02 [*]	2	66.02 [*]	2	0.4


C Gesamtkosen

→ Kostenreduzierung durch Bündelungseffekt abhängig von der Anzahl der Switches

B Bündelungspunkte

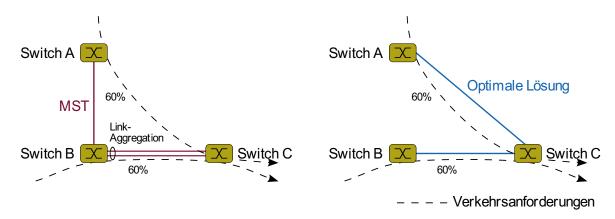
^{*} Post-Processing zur Minimierung der Switch-Anzahl: nur 7 (anstatt 8) Switches benötigt

Demo

Einordnung Eingebettete Kommunikationssysteme

Motivation "Warum Ethernet?"

Herausforderungen und Lösungsansätze


Platzierung von Switches und Bündelungspunkten

Ressourcendimensionierung und Ausfallsicherheit

Zusammenfassung und Ausblick

Ressourcenverfügbarkeit

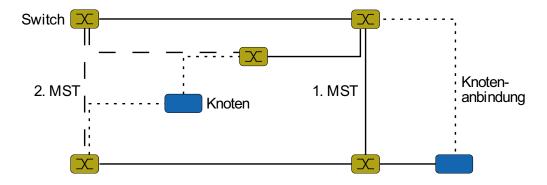
- Bisher: Optimierung der Netzstruktur ohne Berücksichtigung höher-schichtiger Anforderungen (nur "Physical Layer")
- Aber: Berücksichtigung von Verkehrsanforderungen und Dimensionierung der Ressourcen (Linkkapazitäten) beim Entwurf der Netzstruktur notwendig
- Vorgehen bei der Verkabelung bisher: Kostengünstigste Anbindung der Knoten, MST zwischen den Switches und Bündelungspunkten und Schrittweise Erhöhung der Linkkapazitäten (mittels Link-Aggregation)

→ Vorgehen kann zu sub-optimalen Lösungen führen

Ressourcendimensionierung

Herausforderungen

Finden eines *Optimal Communication Spanning Tree* (OCST) (Baum mit minimalen Kosten, der die Verkehrsanforderungen erfüllt)


- Optimale Lösung sehr nahe am MST (aus der Literatur bekannt)
- Lösungsansatz (Work-in-Progress)
 - Initiale Lösung: Kostengünstigste Anbindung der Knoten und MST zwischen den Switches und Bündelungspunkten
 - 2. Berechnen der benötigten Linkkapazitäten
 - 3. Näherungsverfahren (SA und LocalSearch) zur schrittweisen Verbesserung der initialen Lösung
 - → Bewertung des Lösungsansatzes (mit geeigneten Verkehrsanforderungen)

Ausfallsicherheit

Herausforderung

Finden einer Verkabelung mit minimalen Kosten und mit redundanten, unabhängigen Pfaden zwischen den Knoten (*two-connected*)

- Lösungsansatz (Work-in-Progress)
 - 1. Redundante Anbindung der Knoten
 - 2. 2-facher MST zwischen den Switches (und Bündelungspunkten) als initiale Lösung
 - 3. Näherungsverfahren zur schrittweisen Verbesserung der initialen Lösung
 - → Bewertung des Lösungsansatzes

Zusammenfassung

Herausforderungen und Lösungsansätze

- Ziel: Topologieoptimierung durch Minimierung der Kosten
- Platzierung von Switches und Bündelungspunkten
 - → Finden der optimalen Positionen einer gegebenen Anzahl von Switches Lösungsansätze: MILP, MST, ST, SA Algorithmus
 - → Finden der optimalen Anzahl von Bündelungspunkten und deren Positionen Lösungsansätze: Descending Algorithmus und SA Algorithmus
- Ressourcendimensionierung und Ausfallsicherheit
 - → Finden eines Optimal Communication Spanning Tree (OCST)
 Lösungsansatz: MST und Verfeinerung mittels Näherungsverfahren
 - → Finden einer Topologie mit minimalen Kosten und redundanten, unabhängigen Pfaden Lösungsansatz: "2-facher MST" und Verfeinerung mittels Näherungsverfahren

Nächste Schritte

- Entwurf und Bewertung von Verfahren zur Erzeugung eines OCST (Work-in-Progress)
- Entwurf und Bewertung von Verfahren zur Erzeugung ausfallsicherer Topologien mit mininalen Kosten (Work-in-Progress)

Anhang

Veröffentlichungen zu diesem Vortrag

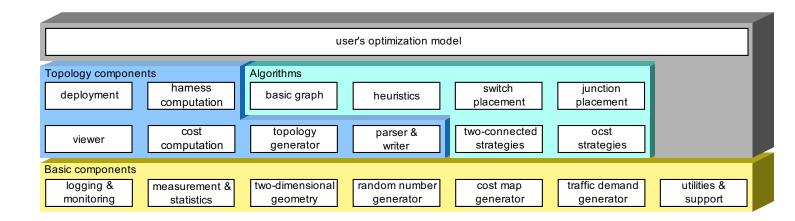
Überblick über die Anwendungsbereiche von Ethernet und Begriffsdiskussion

[1] Sommer, J.; Gunreben, S.; Mifdaoui, A.; Feller, F.; Köhn, M.; Sass, D.; Scharf, J.: *Ethernet – A Survey on its Fields of Application*, wird erscheinen in IEEE Communications Surveys & Tutorials, Second issue 2010

Topologieoptimierung unter Berücksichtigung von orts-abhängigen Kosten

[2] Sommer, J.; Doumith, E.A.; A. Reifert: Cost-based Topology Optimization of Embedded Ethernet Networks, wird erscheinen in Journal of Embedded and Real-Time Communication Systems (IJERTCS), 2010

Optimierung von Leitungsbäumen (für Ethernet-basierte Kommunikationsnetze)

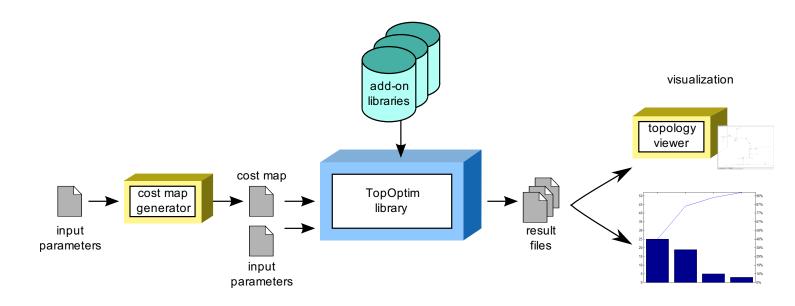

[3] Sommer, J.; Doumith, E.A.; Duval, Q.: *On Link Harness Optimization of Embedded Ethernet Networks*, Proceedings of the IEEE Symposium on Industrial Embedded Systems (SIES 2009), Lausanne, 2009

Exaktes Verfahren (MILP) und Näherungsverfahren (SA) zur Platzierung von Switches

[4] Sommer, J.; Doumith, E.A.: *Topology Optimization of In-vehicle Multimedia Communication Systems*, Proceedings of the First Annual International Symposium on Vehicular Computing Systems (ISVCS 2008), Dublin, 2008

Anhang

Struktur der TopOptim Bibliothek



Bibliothek geeignet für

- Optimierung von Topologien (mit/ohne Bündelungspunkte, mit/ohne Kostenmodell, mit/ohne Verkehrsanforderungen, mit/ohne Ausfallsicherheit)
- Kostenvergleich unterschiedlicher Ausstattungen (Anzahl der Switches, etc.)
- Entwurf und Vergleich unterschiedlicher Heuristiken (hinsichtlich der Qualität der gefundenen Lösung und der Laufzeit)

Anhang

Ablauf einer Optimierungs-Studie

