
INSTITUT FÜR
NACHRICHTENVERMITTLUNG

UND DATENVERARBEITUNG
Prof. Dr.-Ing. Dr. h. c. mult. P. J. Kühn

Universität Stuttgart
INSTITUT FÜR

KOMMUNIKATIONSNETZE
UND RECHNERSYSTEME

Prof. Dr.-Ing. Dr. h. c. mult. P. J. Kühn

Universität Stuttgart

Experience with Simulating
Real TCP/IP-Protocol Stacks

Michael Scharf, Christina Zeeh
Institute of Communication Networks and Computer Engineering

University of Stuttgart
michael.scharf@ikr.uni-stuttgart.de

ITG Fachgruppe 5.2.1 Workshop "Network Engineering" - Essen, November 22, 2007

This work is partly funded by the German Research Foundation (DFG) through the Center of Excellence (SFB) 627 "Nexus".

Institute of Communication Networks and Computer Engineering University of Stuttgart

• Motivation: Current and future Internet

• Towards accurate simulators

• Network Simulation Cradle

• Accuracy and performance tests

• Work-in-progress

• Conclusion and future work

Outline

Institute of Communication Networks and Computer Engineering University of Stuttgart

The Internet

• A highly decentralized, imperfect, and extremely successfull system

• Design principles

- End-to-end argument

- Resource management by TCP congestion control (no QoS!)

IP

IP

IP

IP

IP

Potential

Router

Internet

congestion

Appl.

TCP
IP

Appl.

TCP
IP

Appl.

TCP
IP

Link

Link

Link

End system End system

End system

Motivation: Current and Future Internet

Institute of Communication Networks and Computer Engineering University of Stuttgart

Internet Applications

BW

U
til

ity

BW

U
til

ity

BW

U
til

ity

BW

U
til

ity

BW

U
til

ity

BW

U
til

ity

Streaming Best EffortInteractive

VoIP
Remote shell

P2P

File
downl.

Backup

Instant messaging

Multimedia
(Youtube, ...)

Netw. attached storage

IPTV

Virtual reality
3D Internet

(ERP, ...)

Online gaming

Research, GRID

WWW

DNS, ...

HD−Video

E−mail

Terminal appl.

Internet−TV

Gbps

kbps

Mbps

Elasticity

Typical
bandwidth UDP TCP

Internet

ARPANET

Motivation: Current and Future Internet

Further Details: Michael Scharf, "Future Internet Transport Layer - Heading towards a Post-TCP Era?",
Future Internet Design Workshop, ECOC, Sept. 2007

Institute of Communication Networks and Computer Engineering University of Stuttgart

Design Principles of the Internet Congestion Control
• Sender-side control of data rate by TCP congestion window

• Greedy probing of available bandwidth on path (window increase)

• Implicit congestion feedback by packet loss (window decrease)

➥ Basics almost unchanged since V. Jacobson’s proposal from 1988

Challenges
• Broadband wide area networks

- Large bandwidth-delay product

- Extreme variety and dynamics (sensor networks to highspeed photonics)

• Fairness (network neutrality debate)

• Network demanding applications

• ...

Further details: Michael Welzl, Dimitri Papadimitriou, Michael Scharf, "Open Research Issues in
Internet Congestion Control", IETF internet draft, work in progress, July 2007, draft-irtf-iccrg-welzl-
congestion-control-open-research-00.txt

Motivation: Current and Future Internet

Institute of Communication Networks and Computer Engineering University of Stuttgart

Recent TCP Research and Standardization

➥ Lots of ongoing work!

TCP tweaking

Highspeed−TCP

AQM

ECN

Quick−Start

re−ECN

XCP

(always)

(2003)

(1998)

(2001)

(2007)

(?)

(?)

Incremental Evolution Revolution

Motivation: Current and Future Internet

Institute of Communication Networks and Computer Engineering University of Stuttgart

The "Credibility Gap" of Internet Simulations
• TCP is the basic Internet transport protocol... and inherently complex

• How to investigate new network and transport protocols?

- Real development in testbeds not always possible

- Faster "time-to-paper" of simulations

• However: Lack of accurate (TCP) simulators

- Many missing features
• Unidirectional transfer only

• Constant packet size

• No flow control

• ...

- Seldomly validated

- Real-world stacks always differ to specs and permanently evolve

➥ Possible remedy: Direct execution of real TCP/IP stack code in
simulations

Towards Accurate Simulators

Institute of Communication Networks and Computer Engineering University of Stuttgart

Recent Research Efforts

− NCTUns (Chiao Tung/− Various tools, often
 Matlab based

− Separate code basis

 (flow control, conn.
 management, ...)

− Plain ns−2 simulator − NS−2 TCP Linux
 (Caltech, since 2006)

− Simplified functions

− Hybrid code basis

− Only parts directly
 affecting performance

− Synthetic app. models

 (cong. control)

− Greedy sources

− High−level behavior,

− Synthetic app. models − Synthetic app. models

− Kernel or user space
 emulation

 cation of host kernel
− May require modifi−

− Real applications

− Network stack ported
 to sim. environment

 or Linux kernel
− Based on FreeBSD

− Various other special

 as OPNET, ...

− NSC (U. of Waikato,
 since 2003) Harvard, since 1999)

− UML Simulator (2003)

− dummynet, NIST Net,
 netem, ...

− OppBSD (Karlsruhe,
 since 2004)

− Lunar (Virginia Tech,
 2004)

− Mathematical model

 e. g. fluid−flow model

 TCP simulators, such

− IKR tcplib

Code extraction Stack integration Runtime emulationAbstract model Reimplementation

Difference from real code

Complexity/cost

Towards Accurate Simulators

Institute of Communication Networks and Computer Engineering University of Stuttgart

Challenges of the Direct Code Execution Approach
• Moving code from kernel-space to user-space

- No priviliged CPU instructions

- Many kernel subsystems not needed (e. g., memory management)

• Multiple stack instances in simulators

- No global variables

- Multi-tasking, threading, and scheduler difficult to model

• Simulator interface

- Virtual time: Timer interrupt replaced by simulator events

- Full packets transport, instead of function calls

- Byte-stream socket interface vs. message-oriented simulators

- Programming language mismatch (e. g., C vs. C++ code)

Towards Accurate Simulators

Institute of Communication Networks and Computer Engineering University of Stuttgart

Comparison of Recent Solutions

oLinux 2.6.13+NS−2 TCP Linux

Linux, *BSD, ...NSC

oOppBSD for OMNeT++ FreeBSD 6.0

o ?Lunar Linux 2.4.3

+ o oNCTUns Linux/BSD

? oUMLSimulator User−mode Linux

+

+

+

o

+

+

+

+

+

+

−

−−

−

++

Performance ExtensibilityApproach Code basis AccuracyMaturity

Towards Accurate Simulators

Institute of Communication Networks and Computer Engineering University of Stuttgart

Overview
• Developed by Sam Jansen at University of Waikato, Hamilton, New

Zealand, since 2003

• Supports TCP stacks of Linux (2.4, 2.6.14.2), FreeBSD, OpenBSD, lwIP

• Frontend to ns-2 simulator

Features
• Powerfull automatic C parser

- Substitution of global variables

- Can be adapted to new stacks

• Supports execution of different stacks
in parallel

• Good documentation

• Well validated

Socket interface

TCP/IP stack code

C
ra

dl
e

Network

Config

Create

Timer interrupt

Application

Network interface

Network Simulation Cradle (NSC)

Institute of Communication Networks and Computer Engineering University of Stuttgart

Simulator Structure

Extensions
• Flexible towards other simulators

➥ Implementation of new frontend to IKR simlib with rather limited effort

• Integration of new protocol stacks

➥ Can be quite time-consuming

Sim. program NS−2 Sim. program

IKR Simlib entitiesNS−2 agent

IKR Simlib

NSC interface

Stack and Socket Classes (Wrapper)

Implemented

Kernel

functions

UnimplementedSupport functions

Kernel

functionsTCP/IP stack codeS
ha

re
d

lib
ra

ry

Stack−independent code

Simulator

Stack−specific code

Kernel code

Network Simulation Cradle (NSC)

Institute of Communication Networks and Computer Engineering University of Stuttgart

Scenario 1: Goodput of Greedy Source

Scenario 2: Head-of-Line Blocking (HOL) in Signaling

➥ Scenarios similar to validation tests of Sam Jansen

Linux Linux

Data

ACKs

Source Sink

10 Mbit/s, 50ms

10 Mbit/s, 50ms

loss
Packet

Goodput

• One TCP connection with greedy source

• Ethernet with MTU of 1500 byte

• Buffer size of 1000 packets

• Simulation: Linux 2.6.14.2

• Measurement: Linux 2.6.20.20 on P4 PC,
"netem" network emulation

Linux Linux

64 byte

100 Mbit/s, 10ms loss
Packet

Echo app.

100 Mbit/s, 10msPacket
loss

64 byte data

data

Sign. app.

time
Response

• One TCP connection

• Request-response of 64 byte messages
with neg.-exp. IAT of 10 ms

• Ethernet with MTU 1500 byte

• Buffer size of 1000 packets

• Socket option "NODELAY"

• Simulation: Linux 2.6.14.2

• Measurement: Linux 2.6.20.20 on P4 PC,
"netem" network emulation

Accuracy and Performance Tests

Institute of Communication Networks and Computer Engineering University of Stuttgart

Result Scenario 1: Goodput of Greedy Source

➥ High accuracy, also for new congestion control algorithms

0.001 0.01 0.1 1
Packet loss probability [%]

0

2

4

6

8

10
G

oo
dp

ut
 [M

bi
t/s

]

PFTK model
Measurement (Linux 2.6.20.20)
Simulation (NSC+IKR simlib)
Simulation (ns2-sack1)
Simulation (IKR tcplib)

Reno Bic/Cubic

Accuracy and Performance Tests

Institute of Communication Networks and Computer Engineering University of Stuttgart

Result Scenario 2: HOL in Signaling

➥ Response time in simulations less than in reality

➥ Reasons: Kernel scheduler delays, network emulation errors

Further Details: Michael Scharf, Sebastian Kiesel: "Head-of-Line Blocking in TCP and SCTP: Analysis
and Measurements", Proc. IEEE Globecom, San Francisco, CA, USA, Nov. 2006

0.1 1
Unidirectional packet loss probability [%]

0

20

40

60

80

100
M

ea
n

re
sp

on
se

 ti
m

e
[m

s]

Analytical lower bound
Measurement (Linux 2.6.20.20)
Simulation (NSC+IKR simlib)

Bic/

Reno

Analytical lower bound

Cubic

problems
Stability

0 50 100 150 200 250 300
Response time [ms]

10
-3

10
-2

10
-1

10
0

C
C

D
F

Measurement (Linux 2.6.20.20)
Simulation (NSC+IKR simlib)

Reno

Bic/Cubic

Distribution at 1% lossMean response time

Accuracy and Performance Tests

Institute of Communication Networks and Computer Engineering University of Stuttgart

Overhead and Cost

• Significant overhead of NSC compared to abstract simulators

• Improvement possible

- Decrease timer interrupt frequency

- Usage of pseudo data as payload of packets

NSC ns2-sack1 IKR tcplib
1

10

100

1000
S

pe
ed

up
 C

om
pa

re
d

to
 R

ea
lti

m
e

NSC ns2-sack1 IKR tcplib
0

20000

40000

60000

80000

100000

R
eq

ui
re

d
M

em
or

y
[K

iB
]

Virtual vs. real-time Memory requirement

About 69 MB for
shared library,
ca. 400 KiB per
stack

Scenario: Test case 1 at 0.1% loss; Plattform: Intel P4 2.8 Ghz, 2 GB RAM, Ubuntu 7.04

Accuracy and Performance Tests

Institute of Communication Networks and Computer Engineering University of Stuttgart

Quick-Start TCP Extension (RFC 4782)

• Speeds up interactive WAN applications

- After connection setup or idle periods

- For large bandwidth-delay products

• Reality check

- Requires support in all routers

- Some open (research) issues

➥ May be an option for future broadband IP networks

Quick-Start:

- Recent experimental TCP extension
- (Almost) immediately use large window

Slow-Start:

- One pillar of TCP congestion control
- Exponential window growth

C
on

ge
st

io
n

w
in

do
w

Time

Slow Start

Slow start threshold

Quick−Start

Time

Slow start threshold

C
on

ge
st

io
n

w
in

do
w

Router Router
SYN

pacing

Rate!

Rate?

Rate

Standard
algorithms

ACK
SYN,ACK

New ACK

Host 2Host 1

QS request

QS response

Work-in-Progress

Institute of Communication Networks and Computer Engineering University of Stuttgart

Required Linux Kernel Modifications

Further details: Michael Scharf, Haiko Strotbek, "Experiences with Implementing Quick-Start in the
Linux Kernel", Presentation at IETF 69, TSVAREA, Chicago, IL, USA, July 2007

Typical flow of packets

Config

Device driver

IP

Application

Kernel space

User space

TCP

ip_rcv

net_rx_action

Routing

ip_local_deliver

Analysis

Socket interface

Sysctl config

Sysctl config

ip_finish_output

tcp_send_msg

dev_queue_xmit

tcp_write_xmit

tcp_v4_rcv Send ACK tcp_transmit_skb

ip_forward_finish

ip_queue_xmit

ip_forward

Fast/slow path State

do_tcp_setsockopt

Handle SYN Cong.
control

send_packet
ip_build_and_

Work-in-Progress

Institute of Communication Networks and Computer Engineering University of Stuttgart

Required Linux Kernel Modifications

Further details: Michael Scharf, Haiko Strotbek, "Experiences with Implementing Quick-Start in the
Linux Kernel", Presentation at IETF 69, TSVAREA, Chicago, IL, USA, July 2007

Typical flow of packets

Config

Device driver

IP

Application

Kernel space

User space

TCP

ip_rcv

net_rx_action

Routing

ip_local_deliver

Analysis

Socket interface

Sysctl config

Sysctl config

ip_finish_output

tcp_send_msg

dev_queue_xmit

tcp_write_xmit

tcp_v4_rcv Send ACK tcp_transmit_skb

ip_forward_finish

ip_queue_xmit

ip_forward

Fast/slow path State

do_tcp_setsockopt

Handle SYN Cong.
control

send_packet
ip_build_and_

Options Options Options

Flow control

New sysctlActivate QS

Traffic metering,
adm. control

Rate
pacing

Metering, adm.

Hist.

QS TTL decr.

Work-in-Progress

Institute of Communication Networks and Computer Engineering University of Stuttgart

Measurement vs. Simulation

➥ Support of kernel prototype software development

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time [s]

0

2

4

6

8

10
D

at
a

ra
te

 [M
bi

t/s
]

Slow-Start (Measurement)
Quick-Start (Measurement)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time [s]

0

2

4

6

8

10

D
at

a
ra

te
 [M

bi
t/s

]

Slow-Start (Simulation)
Quick-Start (Simulation)

Scenario

• 10 Mbps Ethernet

• 100 ms RTT

• Simulation: Linux
2.6.14.2, Reno congestion
control

• Measurement: Linux
2.6.20.20, Reno
congestion control,
"netem" network
emulation

• (Almost) same kernel
patch

• Quick-Start request for
5.12 Mbit/s

Work-in-Progress

Institute of Communication Networks and Computer Engineering University of Stuttgart

Conclusions
• Simulating TCP/IP networks is challenging

• (More) Accurate simulators by direct execution of TCP/IP stack code

• Promising solution: Network Simulation Cradle

- Extensible, supports many stacks

- Frontends to different simulators possible (ns-2, IKR simlib)

- Can support experimental protocol development

• Limitation: Less scalable than abstract simulators

Future Work
• Adaptation to newest stack versions

• Improvement of scalability and addition of features

• Better models for applications, kernel schedulers, ...

Conclusions and Future Work

Institute of Communication Networks and Computer Engineering University of Stuttgart

Contributors
• Haiko Strotbek

• Sebastian Kiesel

• Marc Necker

• Sebastian Gunreben

The "Network Simulation Cradle" (NSC) is developed by Sam Jansen at
University of Waikato, Hamilton, New Zealand.

Acknowledgements

