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The Internet

• A highly decentralized, imperfect, and extremely successfull system

• Design principles

- End-to-end argument

- Resource management by TCP congestion control (no QoS!)
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Motivation: Current and Future Internet
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Internet Applications
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Further Details: Michael Scharf, "Future Internet Transport Layer - Heading towards a Post-TCP Era?",
Future Internet Design Workshop, ECOC, Sept. 2007
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Design Principles of the Internet Congestion Control
• Sender-side control of data rate by TCP congestion window

• Greedy probing of available bandwidth on path (window increase)

• Implicit congestion feedback by packet loss (window decrease)

➥ Basics almost unchanged since V. Jacobson’s proposal from 1988

Challenges
• Broadband wide area networks

- Large bandwidth-delay product

- Extreme variety and dynamics (sensor networks to highspeed photonics)

• Fairness (network neutrality debate)

• Network demanding applications

• ...

Further details: Michael Welzl, Dimitri Papadimitriou, Michael Scharf, "Open Research Issues in
Internet Congestion Control", IETF internet draft, work in progress, July 2007, draft-irtf-iccrg-welzl-
congestion-control-open-research-00.txt

Motivation: Current and Future Internet
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Recent TCP Research and Standardization

➥ Lots of ongoing work!
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Motivation: Current and Future Internet
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The "Credibility Gap" of Internet Simulations
• TCP is the basic Internet transport protocol... and inherently complex

• How to investigate new network and transport protocols?

- Real development in testbeds not always possible

- Faster "time-to-paper" of simulations

• However: Lack of accurate (TCP) simulators

- Many missing features
• Unidirectional transfer only

• Constant packet size

• No flow control

• ...

- Seldomly validated

- Real-world stacks always differ to specs and permanently evolve

➥ Possible remedy: Direct execution of real TCP/IP stack code in
simulations

Towards Accurate Simulators
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Recent Research Efforts

− NCTUns (Chiao Tung/− Various tools, often
   Matlab based

− Separate code basis

   (flow control, conn.
   management, ...)

− Plain ns−2 simulator − NS−2 TCP Linux
   (Caltech, since 2006)

− Simplified functions

− Hybrid code basis

− Only parts directly
   affecting performance

− Synthetic app. models

   (cong. control)

− Greedy sources

− High−level behavior,

− Synthetic app. models − Synthetic app. models

− Kernel or user space
   emulation

   cation of host kernel
− May require modifi−

− Real applications

− Network stack ported
   to sim. environment

   or Linux kernel
− Based on FreeBSD

− Various other special

   as OPNET, ...

− NSC (U. of Waikato, 
   since 2003)    Harvard, since 1999)

− UML Simulator (2003)

− dummynet, NIST Net,
   netem, ...

− OppBSD (Karlsruhe,
   since 2004)

− Lunar (Virginia Tech, 
   2004)

− Mathematical model

   e. g. fluid−flow model

   TCP simulators, such

− IKR tcplib

Code extraction Stack integration Runtime emulationAbstract model Reimplementation

Difference from real code

Complexity/cost

Towards Accurate Simulators
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Challenges of the Direct Code Execution Approach
• Moving code from kernel-space to user-space

- No priviliged CPU instructions

- Many kernel subsystems not needed (e. g., memory management)

• Multiple stack instances in simulators

- No global variables

- Multi-tasking, threading, and scheduler difficult to model

• Simulator interface

- Virtual time: Timer interrupt replaced by simulator events

- Full packets transport, instead of function calls

- Byte-stream socket interface vs. message-oriented simulators

- Programming language mismatch (e. g., C vs. C++ code)

Towards Accurate Simulators
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Comparison of Recent Solutions
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Towards Accurate Simulators
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Overview
• Developed by Sam Jansen at University of Waikato, Hamilton, New

Zealand, since 2003

• Supports TCP stacks of Linux (2.4, 2.6.14.2), FreeBSD, OpenBSD, lwIP

• Frontend to ns-2 simulator

Features
• Powerfull automatic C parser

- Substitution of global variables

- Can be adapted to new stacks

• Supports execution of different stacks
in parallel

• Good documentation

• Well validated

Socket interface

TCP/IP stack code
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Timer interrupt

Application
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Network Simulation Cradle (NSC)
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Simulator Structure

Extensions
• Flexible towards other simulators

➥ Implementation of new frontend to IKR simlib with rather limited effort

• Integration of new protocol stacks

➥ Can be quite time-consuming

Sim. program NS−2 Sim. program
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Network Simulation Cradle (NSC)
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Scenario 1: Goodput of Greedy Source

Scenario 2: Head-of-Line Blocking (HOL) in Signaling

➥ Scenarios similar to validation tests of Sam Jansen

Linux Linux

Data

ACKs

Source Sink

10 Mbit/s, 50ms

10 Mbit/s, 50ms

loss
Packet

Goodput

• One TCP connection with greedy source

• Ethernet with MTU of 1500 byte

• Buffer size of 1000 packets

• Simulation: Linux 2.6.14.2

• Measurement: Linux 2.6.20.20 on P4 PC,
"netem" network emulation

Linux Linux

64 byte

100 Mbit/s, 10ms loss
Packet

Echo app.

100 Mbit/s, 10msPacket
loss

64 byte data

data

Sign. app.

time
Response

• One TCP connection

• Request-response of 64 byte messages
with neg.-exp. IAT of 10 ms

• Ethernet with MTU 1500 byte

• Buffer size of 1000 packets

• Socket option "NODELAY"

• Simulation: Linux 2.6.14.2

• Measurement: Linux 2.6.20.20 on P4 PC,
"netem" network emulation

Accuracy and Performance Tests
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Result Scenario 1: Goodput of Greedy Source

➥ High accuracy, also for new congestion control algorithms
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Result Scenario 2: HOL in Signaling

➥ Response time in simulations less than in reality

➥ Reasons: Kernel scheduler delays, network emulation errors

Further Details: Michael Scharf, Sebastian Kiesel: "Head-of-Line Blocking in TCP and SCTP: Analysis
and Measurements", Proc. IEEE Globecom, San Francisco, CA, USA, Nov. 2006
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Overhead and Cost

• Significant overhead of NSC compared to abstract simulators

• Improvement possible

- Decrease timer interrupt frequency

- Usage of pseudo data as payload of packets
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Virtual vs. real-time Memory requirement

About 69 MB for
shared library,
ca. 400 KiB per
stack

Scenario: Test case 1 at 0.1% loss; Plattform: Intel P4 2.8 Ghz, 2 GB RAM, Ubuntu 7.04

Accuracy and Performance Tests
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Quick-Start TCP Extension (RFC 4782)

• Speeds up interactive WAN applications

- After connection setup or idle periods

- For large bandwidth-delay products

• Reality check

- Requires support in all routers

- Some open (research) issues

➥ May be an option for future broadband IP networks

Quick-Start:

- Recent experimental TCP extension
- (Almost) immediately use large window

Slow-Start:

- One pillar of TCP congestion control
- Exponential window growth
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Work-in-Progress



Institute of Communication Networks and Computer Engineering University of Stuttgart

Required Linux Kernel Modifications

Further details: Michael Scharf, Haiko Strotbek, "Experiences with Implementing Quick-Start in the
Linux Kernel", Presentation at IETF 69, TSVAREA, Chicago, IL, USA, July 2007

Typical flow of packets

Config

Device driver
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Kernel space

User space

TCP

ip_rcv
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Routing

ip_local_deliver

Analysis

Socket interface

Sysctl config

Sysctl config
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tcp_send_msg
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tcp_write_xmit

tcp_v4_rcv Send ACK tcp_transmit_skb

ip_forward_finish

ip_queue_xmit

ip_forward

Fast/slow path State

do_tcp_setsockopt

Handle SYN Cong.
control

send_packet
ip_build_and_

Work-in-Progress
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Required Linux Kernel Modifications

Further details: Michael Scharf, Haiko Strotbek, "Experiences with Implementing Quick-Start in the
Linux Kernel", Presentation at IETF 69, TSVAREA, Chicago, IL, USA, July 2007
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Config

Device driver

IP

Application

Kernel space

User space

TCP

ip_rcv

net_rx_action

Routing

ip_local_deliver

Analysis

Socket interface

Sysctl config

Sysctl config

ip_finish_output

tcp_send_msg

dev_queue_xmit

tcp_write_xmit

tcp_v4_rcv Send ACK tcp_transmit_skb

ip_forward_finish

ip_queue_xmit

ip_forward

Fast/slow path State

do_tcp_setsockopt

Handle SYN Cong.
control

send_packet
ip_build_and_

Options Options Options

Flow control

New sysctlActivate QS

Traffic metering,
adm. control

Rate
pacing

Metering, adm.

Hist.

QS TTL decr.

Work-in-Progress
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Measurement vs. Simulation

➥ Support of kernel prototype software development
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Scenario

• 10 Mbps Ethernet

• 100 ms RTT

• Simulation: Linux
2.6.14.2, Reno congestion
control

• Measurement: Linux
2.6.20.20, Reno
congestion control,
"netem" network
emulation

• (Almost) same kernel
patch

• Quick-Start request for
5.12 Mbit/s

Work-in-Progress
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Conclusions
• Simulating TCP/IP networks is challenging

• (More) Accurate simulators by direct execution of TCP/IP stack code

• Promising solution: Network Simulation Cradle

- Extensible, supports many stacks

- Frontends to different simulators possible (ns-2, IKR simlib)

- Can support experimental protocol development

• Limitation: Less scalable than abstract simulators

Future Work
• Adaptation to newest stack versions

• Improvement of scalability and addition of features

• Better models for applications, kernel schedulers, ...

Conclusions and Future Work
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