

Future Internet Transport Layer -Heading towards a Post-TCP Era?

Michael Scharf

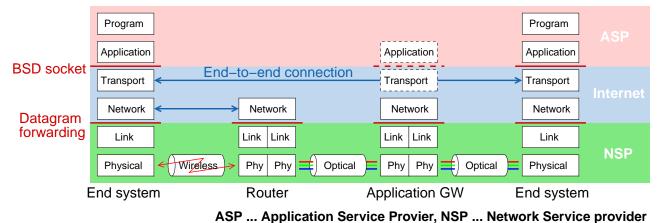
Institute of Communication Networks and Computer Engineering University of Stuttgart michael.scharf@ikr.uni-stuttgart.de

ECOC Workshop "Future Internet Design" - September 16, 2007

This work is partly funded by the German Research Foundation (DFG) through the Center of Excellence (SFB) 627 "Nexus".

Outline

Status quo


- Internet
- Internet transport layer
- TCP/IP midlife crisis
- Transport "layer" future
 - Evolution
 - Revolution
- Conclusions and outlook

Status Quo - Internet

Never standardized, still evolving...

Internet TCP/IP-"Architecture"

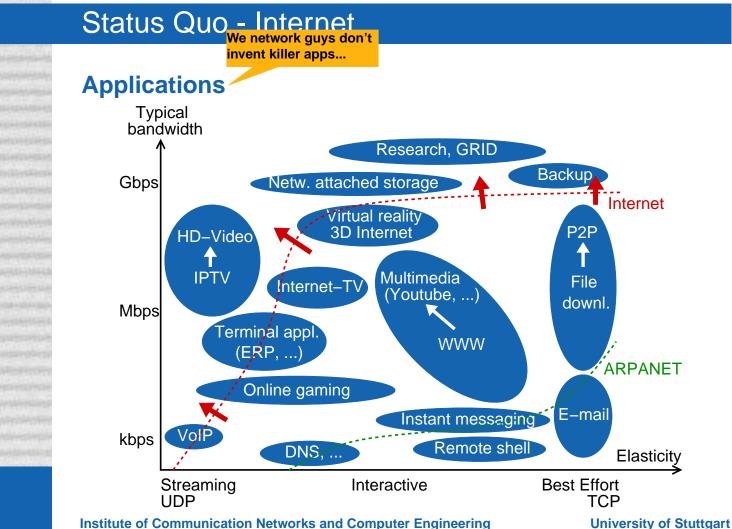
- Current Internet := layer 2.9 to layer 4.5
 - Network layer: Addressing, routing, peering
 - Transport layer: End-to-end interconnection of intelligent hosts
- Narrow APIs, no control-plane
- ➡ TCP/IP as "spanning" layer

Institute of Communication Networks and Computer Engineering

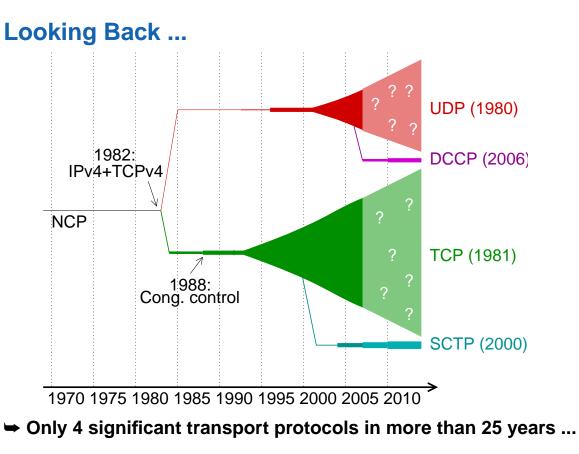
Status Quo - Internet

Internet Arpanet Design Paradigms

Design objectives

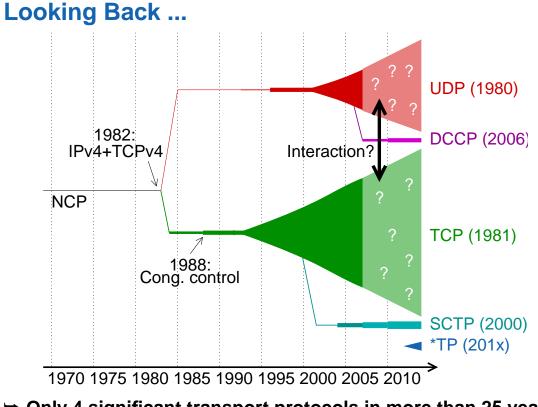

- 1. Communication must continue despite loss of networks or gateways
- 2. Multiple types of communications services
- 3. Accomodate a variety of networks
- 4. Distributed management of its resources
- 5. Cost effective
- 6. Host attachment with a low level of effort
- 7. Resources must be accountable

Paradigms


- 1. Packet switching
- 2. Layering (with simple APIs)
- 3. A network of collaborating networks (IP spanning layer)
- 4. Intelligence in end systems (end-to-end principle)

From D. Clark, "The Design Philosophy of the DARPA Internet Protocols", Proc. SIGCOMM 1988, Sept. 1988

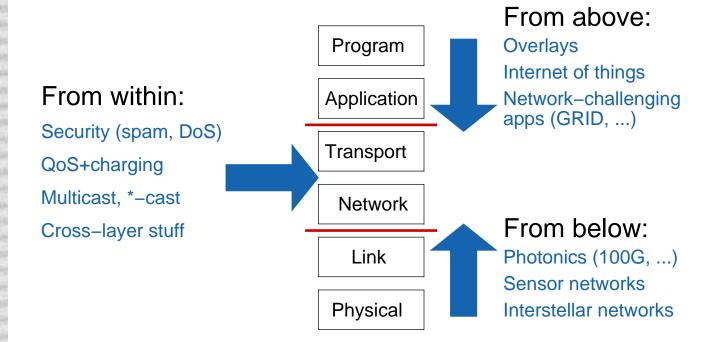
- ➡ TCP/IP heavily influenced by these paradigms
- → New paradigms? Other protocol architecture!



Status Quo - Internet Transport Layer

Institute of Communication Networks and Computer Engineering

Status Quo - Internet Transport Layer



➡ Only 4 significant transport protocols in more than 25 years ...

Institute of Communication Networks and Computer Engineering

Midlife Crisis

New (and Old) Requirements

➡ "Future Internet: Just more QoS and multicast?" (H. Schulzrinne)

Midlife Crisis I: Congestion Control

Design Principles of V. Jacobson's Congestion Control

- Sender-side control of data rate by congestion window
- Greedy probing of available bandwidth on path (window increase)
- Implicit congestion feedback by packet loss (window decrease)

Characteristics

Just putting more bandwidth might not help ...

- Key impact on application performance
- Best effort, elastic applications only, no QoS
- Vague notion of fairness (unfair to connections with larger RTT)
- ➡ Never perfect, but usually good enough

However ...

- Network characteristics changed a lot since 1988
- More and more network-demanding applications
- Fairness may become an issue (e.g., network neutrality debate)

Midlife Crisis I: Congestion Control

Example: High-Speed WANs

Problem: Large bandwidth-delay products

- Standard TCP congestion control not well suited for large window sizes
 - Example: 10 Gbit/s TCP throughput with MTU=1500-byte, RTT=100 ms requires
 - Average congestion window of 83,333 segments
 - At most one drop/mark every 5 bill. packets (one drop every 1 2/3 hours)
- Long convergence times and significant unfairness
- Solution approaches
 - 1. Increase MTU
 - 2. UDP-based protocols (with some application-level congestion control)
 - 3. Modification of TCP congestion control in sender
 - More aggressive window increase functions
 - Delay-based congestion control
 - ➡ Multitude of proposals (Highspeed TCP, Scalable TCP, HTCP, FAST TCP, BIC TCP, CUBIC TCP, Compound TCP, ...)
- ➡ Next challenge: 100 Gbit/s links?

Midlife Crisis I: Congestion Control

Open Issues

• Extrem variety of networks

From sensor networks to high-speed optical networks

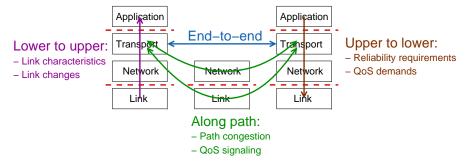
• Large range of application requirements

Many non-elastic applications (e.g., multimedia, pseudo-wires)

• TCP-unfriendly path characteristics

Variable link capacities, corruption packet loss, packet reordering, ...

Multi-domain operation


Misbehaving senders, receivers, and applications

- Fairness
- ...
- ► Any chance for *one* Internet congestion control?

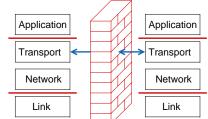
Further details in: Michael Welzl, Dimitri Papadimitriou, Michael Scharf, "Open Research Issues in Internet Congestion Control", IETF internet draft, work in progress, July 2007, draft-irtf-iccrg-welzl-congestion-control-open-research-00.txt

Midlife Crisis II: Cross-Layer Issues

Cross-Layer Information Exchange

Significant potential for optimization

Challenges


- Host local: Standardized interfaces (device OS application)
- Remote along path
 - Protocol extensions or new protocols (in-band or out-of-band)
 - Interaction with routing, IP tunnels, ...
 - Security issues (AAA, DoS prevention, ...)
- Internet control plane?

Institute of Communication Networks and Computer Engineering

Midlife Crisis III: End-to-end Paradigm

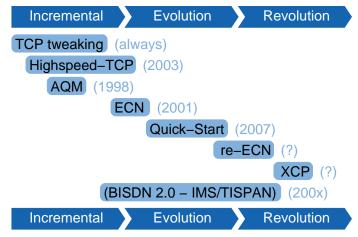
The Raise of Application Gateways

- Intermediaries break up end-to-end semantics
- Many functions
 - Security, information hiding (NAT/firewalls, session border controllers, ...)
 - Performance optimization (Web caches, WAN accelorators, ...)

Application GW

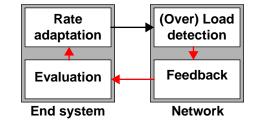
- Content processing (compression, virus checking, transcoding, ...)
- Facilitate rendezvous and/or forwarding (SIP proxies, SMTP relays, ...)

Problems


- May become single point of failure
- May hinder/limit communication and/or new protocol extensions
- May require certain trust relationships
- End-to-end vs. "balkanization" of the Internet?

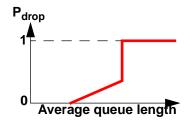
Institute of Communication Networks and Computer Engineering

A bug, or a feature?


Transport "Layer" Future

Recent TCP Research+Standardization

- Major focus: Congestion control
- Main objectives
 - Optimize performance for high-speed and wireless networks
 - Increase fairness
- ➡ Question: Role of network, i. e., routers?


Institute of Communication Networks and Computer Engineering

Transport Layer Evolution: Examples

Active Queue Management (AQM) - RFC 2309 (1998)

- Replace drop-tail buffers in routers
 - Avoids synchronization effects
 - Improves fairness
- Reality check
 - Enabled in some routers
 - No single optimal parameter set

Simple idea, but still too complex for the real world?

Explicit Congestion Notification (ECN) - RFC 3168 (2001)

- Congested router sets bits in IP header instead of dropping packets
- Reality check
 - Support by major operating systems, but not enabled by default
 - Deployment problems with buggy routers and middleboxes
- Chicken-egg deployment problem and no pressing need?

Transport Layer Evolution: Examples

Quick-Start TCP Extension - RFC 4782 (2007)

Slow-Start:

- One pillar of TCP congestion control
- Exponential window growth

• Speeds up interactive WAN applications

- After connection setup or idle periods
- For large bandwidth-delay products
- Reality check
 - Requires support in all routers
 - Some open (research) issues
- Short-term deployment in puplic Internet unrealistic

Institute of Communication Networks and Computer Engineering

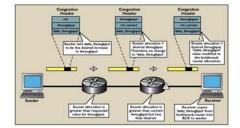
Quick-Start:

- Recent experimental TCP extension
- (Almost) immediately use large window

Transport Layer Evolution: Examples

eXplicit Control Protocol (XCP) - RFC 5xxx

• Explicit congestion feedback from routers


- Some congestion state in packets
- Feedback on rate increment/decrement
- Routers do some per-packet calculations (but no per-flow state)

Potential advantages

- High link utilization for high-speed WANs
- Fair bandwidth allocation

Reality check

- Complexity: Requires per-packet computations in routers
- Unsolved issues with short-lived flows
- Only a congestion control framework no transport protocol (so far)
- ➡ Revolutionary research ...

Source: A. Falk et. al., "Transport Protocols for High Performance"

Transport "Layer" Revolution

Internet Arpanet Design Paradigms

Design objectives

- 1. Communication must continue despite loss of networks or gateways
- 2. Multiple types of communications services
- 3. Accomodate a variety of networks
- 4. Distributed management of its resources
- 5. Cost effective
- 6. Host attachment with a low level of effort
- 7. Resources must be accountable

Paradigms

- 1. Packet switching
- 2. Layering (with simple APIs)
- 3. A network of collaborating networks (IP spanning layer)
- 4. Intelligence in end systems (end-to-end principle)

From D. Clark, "The Design Philosophy of the DARPA Internet Protocols", Proc. SIGCOMM 1988, Sept. 1988

Transport "Layer" Revolution

Internet Arpanet Design Paradigms

Design objectives

- 1. Communication must continue despite loss of networks or gateways
- 2. Multiple types of communications services
- 3. Accomodate a variety of networks
- 4. Distributed management of its resources
- 5. Cost effective
- 6. Host attachment with a low level of effort
- 7. Resources must be accountable

Paradigms

- 1. Packet switching
- 2 Layering (with simple APIs)
- 3. A network of collaborating networks (IP spanning layer)
- 4. Intelligence in end systems (end-to-end principle)

From D. Clark, "The Design Philosophy of the DARPA Internet Protocols", Proc. SIGCOMM 1988, Sept. 1988

But, any internetwork architecture has to provide

That's what transport layer is about ...

communication between various applications on end-systems

... not necessarily a "layer" with service primitives we have today

Institute of Communication Networks and Computer Engineering

Transport "Layer" Revolution

Actually, a network layer problem!

Design Space for Congestion Control

Implicit network feedback	or	Explicit network feedback
Loss-based, delay-based, bandwidth estimation techniques		In-band signaling Out-of-band signaling
No state in routers ("end-to-end")	or	Some state/processing in routers (per packet/per RTT/)
TCP friendly	or	More/less aggressive/fair/ than TCP
Best effort	or	Support of precedence/QoS

Design Space for Transport Functions

see SCTP and DCCP

Reliable transfer	or	Also partial reliable/unreliable transfer
Single stream	or	Multiple streams
.		•
Single path	or	Multiple (disjoint) paths
Unicast only	or	*cast support

(adapted from: S. Shalunov et. al., "Design Space for a Bulk Transport Tool")

Revolution - Food For Thought (1)

About Layering

Program	Connection-oriented (e.g., WS-*)
Application	Connection–less (HTTP)
Transport	Connection-oriented (TCP)
Network	Connection-less (IP)
Link	Connection–oriented (MPLS, ATM, UMTS,) Connection–less (Ethernet,)
Physical	Connection-oriented???

- Reduce "self-similarity" in stack?
- Get rid of static layering?
- Transport layer functions in user space, instead of kernel space?
 - Higher performance (locking, caching)
 - Less complexity, more flexibility
- What about better support for tunneling?

Revolution - Food For Thought (2)

About Granularity

- What is the minimum granularity of data exchange? What timescales?
- What are the communication primitives (in particular, for non-bulk-data transport)?
- Role of photonics (e.g., dynamic establishment transparent optical paths)?

Optical circuit	
Virtual path	
Connection	
Message	
Bit	

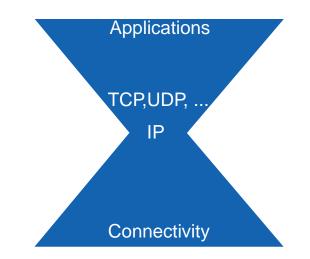
About Performance

- Where (and how) to handle resource sharing?
- Traffic engineering per aggregate/flow/connection/message/...? Centralized or distributed?
- What levels of reliability, availability, resilience?
- What about self-optimization?

Revolution - Food For Thought (3)

About Addressing

- Anything more intelligent than port numbers?
- Incorporate security and access control features?
- Handle heterogenity in naming and addressing?
- Connection-centric vs. data-centric?
- Support discovery and rendevous services?

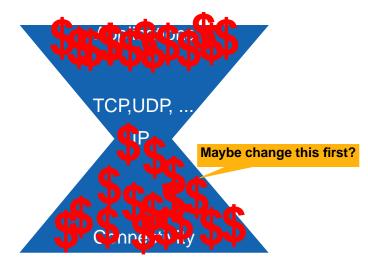

About Interfaces

- What degree of transparency?
- What interaction between data/control/management plane?
- What about peering interfaces? Role of business issues?

Conclusions and Outlook

Heading towards a Post-TCP Era?

- Transport layer functions are a key challenge for any "Future Internet"
- Evolution vs. revolution?
 - Short-term: TCP's shortcomings become more and more evident
 - Mid-term: Role and functions of routers to be rediscussed
 - Long-term: We will design Post-TCP once we know the "Future Internet"
- However ...



Institute of Communication Networks and Computer Engineering

Conclusions and Outlook

Heading towards a Post-TCP Era?

- Transport layer functions are a key challenge for any "Future Internet"
- Evolution vs. revolution?
 - Short-term: TCP's shortcomings become more and more evident
 - Mid-term: Role and functions of routers to be rediscussed
 - Long-term: We will design Post-TCP once we know the "Future Internet"
- However ...

Institute of Communication Networks and Computer Engineering