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Abstract—Router-assisted congestion control schemes are con-
sidered to be one potential solution to improve the transport
protocol performance in high-speed wide-area networks. The
experimental Quick-Start TCP extension uses explicit router
feedback to avoid the standard Slow-Start mechanism. This
allows a TCP connection to almost immediately utilize a high-
speed path and can significantly speed up broadband interactive
applications. Similar to other recently proposed new congestion
control approaches, Quick-Start requires modifications both in
TCP connection endpoints as well as in routers.
While the theoretical performance benefit of Quick-Start is

evident, its implementation and usage in practice has rarely been
addressed so far. This paper gives an overview of our Quick-
Start implementation efforts and real-world experiments. First,
we report from our experiences with an implementation in the
Linux protocol stack, which has been extended to offer full Quick-
Start functionality. Another implementation of the new router
functions on a network processor shows that fast path processing
of Quick-Start is technically feasible at very high line speeds.
Second, our measurements show how Quick-Start performs in
practice, and they quantify the benefit compared to the existing
TCP congestion control. Finally, we determine the performance
costs of using Quick-Start. Our measurements suggest that the
Quick-Start processing overhead is very moderate.

I. INTRODUCTION

The Transmission Control Protocol (TCP) is the default

transport protocol for reliable, elastic traffic in the Internet.

The TCP congestion control continuously probes the available

resources on the path. However, the standard algorithms are

not well suited for paths with a large bandwidth-delay product

that require large congestion windows to be fully utilized. New

high-speed TCP extensions have been proposed to overcome

this problem, but there are still situations that are challenging

for any pure end-to-end congestion control [1]. One example

is the beginning of a connection when any information about

the path characteristics is missing. Most existing TCP variants

use V. Jacobson’s Slow-Start heuristic [2] in this case.

One solution to overcome this lack of information is explicit

feedback from routers. Quick-Start TCP [3] is an experimental

TCP extension that defines such a feedback: It allows end-

systems to determine an initial sending rate in cooperation

with the routers on the path, in particular at the beginning

of data transfers. Senders can then start to send with a much

higher data rate than the Slow-Start would allow. Technically,

this is realized by a new Internet Protocol (IP) option that the

routers have to process. This results in significant deployment

challenges. However, Quick-Start is still a lightweight, evolu-

tionary approach compared to other explicit signaling schemes

that completely substitute the TCP congestion control.

A detailed description of the Quick-Start mechanism is

given in [3]. Also, simulation studies such as [4], [5] have

demonstrated that Quick-Start could significantly speed up

best effort data transfers in underutilized high-speed networks.

There are several other alternatives to overcome the TCP Slow-

Start, which are surveyed e. g. in [6]. Most of them are less

robust and potentially much more aggressive than Quick-Start.

The implementation of Quick-Start in existing TCP/IP pro-

tocol stacks, as well as experiments under real constraints,

have hardly been addressed so far. This makes it difficult to

comprehensively evaluate the usefulness of Quick-Start. And it

also prevents a detailed comparison with other related router-

assisted congestion control schemes, such as the eXplicit

Control Protocol (XCP) or the Rate Control Protocol (RCP),

for which implementations do exist [7]–[9].

This paper addresses the question how Quick-Start support

can be realized in practice and summarizes our experiences

from real-world tests. We have developed a Linux kernel patch

that adds Quick-Start support to the TCP/IP stack, which is

also described in [10]. Furthermore, we have implemented the

Quick-Start router function in an Intel IXP network processor

in order to demonstrate that the required processing of IP

options is possible in high-speed networks with full line

speed [11]. In this paper, we analyze and compare both

implementations. We study the benefits and costs of the Quick-

Start mechanism in several testbed setups, and we identify

issues that are challenging in the practical use.

The rest of this paper is structured as follows: Section II

gives an overview of our Linux implementation and addresses

some of the lessons learnt, extending the documentation

in [10]. In Section III, we briefly show how Quick-Start

support can be added to a network processor, summariz-

ing the results of [11]. Section IV presents several testbed

measurements with both implementations. The results prove

that Quick-Start TCP can significantly speed up applications

compared to the traditional congestion control. Section V then

studies the processing overhead caused by the Quick-Start

support. Finally, Section VI concludes the paper.

II. LINUX IMPLEMENTATION OF QUICK-START

A. Required Functions

The Quick-Start TCP extension requires both modifications

in the connection endpoints and in the routers along the path.

Endpoint modifications: In order to support Quick-Start,

end-systems have first to be able to handle the new IP and

TCP options. A Quick-Start originator must be able to add
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Fig. 1. Realization of Quick-Start in the Linux networking stack (cf. [10])

a “Quick-Start request” option to the header of IP packets,

which includes the desired sending rate. If this option arrives

at the receiving end-system, it must be processed and the

contained data rate must be echoed back by a TCP option

(“Quick-Start response”). Second, the handling of the TCP

congestion window must be changed if a Quick-Start request

is successful. Since standard TCP is not able to send with a

defined data rate, a rate pacing mechanism has to be added.

Finally, further changes are required in several other TCP

functions, for instance concerning the flow control [12].

Router support: Quick-Start requires three additional func-

tions in the routers: (1) Routers have to determine the capacity

of the outgoing links and to keep track of their utilization.

(2) The new IP option must be processed, which requires a

couple of simple operations. And (3), an admission control

logic is needed that decides which rate to grant to requests.

None of these functions requires per flow state in routers.

B. Implementation Overview

We have developed a patch for the Linux kernel (currently

based on version 2.6.24) that adds the Quick-Start functions

to the IPv4 and TCP layer. An illustration of the required

changes in the Linux networking stack [13] is given in

Fig. 1. The IP layer is mainly extended by the processing

of the new IP option for outgoing and forwarded packets.

It implements the “target algorithm” admission control [4].

The actual Quick-Start logic is realized by modifications of

the TCP implementation. We have added several heuristics

that can automatically issue a Quick-Start request during the

connection setup, or when a connection has been idle for a

longer time. Alternatively, an application can explicitly acti-

vate Quick-Start by setting a new socket option. The important

parameters can be configured by additional “sysctl” variables,

“ioctl” calls, or modified userspace tools. For instance, the

following command enables Quick-Start on a certain interface

with a maximum grantable data rate of 100Mbit/s:

$ ifconfig eth0 capacity 100000000

Further implementation details can be found in [10].

A TCP modification such as Quick-Start affects only a small

part of the TCP/IP stack. Our patch adds or modifies less than

2000 lines of code. However, minor changes are required at

many different places, which results in some ugly code and

interface extensions. For instance, the Linux stack is not well

prepared for sporadically added IP options and the thereby

required reduction of the TCP maximum segment size.

An open issue that requires further work is the question how

a Quick-Start enabled router can automatically determine the

capacity of potential bottleneck links. The Linux kernel offers

interfaces to network device drivers that can provide some

information, but there is no “one-fits-all” solution. This issue

is inherent to most router-assisted congestion control schemes.

Another unsolved question is what data rate Quick-Start shall

request for. Currently, we assume that either the applications

can specify a reasonable rate, or that a system-wide default

value can be defined (e. g., the local interface capacity).

III. QUICK-START ROUTER IN A NETWORK PROCESSOR

A. High-Speed Router Realization

Any router-assisted congestion control scheme requires sup-

port in the core routers, which massively use hardware com-

ponents for fast path packet switching in order to achieve line

rates of multiple Gbit/s. Network processors are an increas-

ingly popular technology for realizing flexible routers. They

usually consist of several specialized processors, a general

purpose processor, and fast memory and line interfaces. The

specialized processors are optimized for packet processing

tasks. Network processors are also extensively used for in-

vestigating new experimental Internet protocols (e. g., [9]).

B. Implementation Overview

In order to study Quick-Start in high-speed hardware com-

ponents we have implemented the required router functions

in a network processor. Our solution is based on the Intel

IXP 2400 network processor, which features eight specialized

processors and one general purpose processor. We extended

the standard router application provided by the manufacturer’s

software framework. As illustrated in Fig. 2, the router func-

tions are divided into several functional pipeline stages.

Current routers typically process packets with IP options

in the slow path without hardware support. The slow path

has only a limited processing capacity and may significantly

delay packets. A slow path processing of the Quick-Start IP

options would not be an optimal solution if they were widely

used, even if the options are typically only set in few packets.

Fig. 2. Network processor based router with Quick-Start (QS) support
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Therefore, our implementation processes the new options in

the fast path. This means that changes were mainly required in

the microcode for the specialized processors. The processing

of the Quick-Start requests was added to the pipeline stage

that performs the IP processing (e. g., route lookup, classi-

fication, modification). Furthermore, the management of the

available spare capacity on the output links was added to the

functionality of the general purpose processor. A more detailed

description of our implementation, as well as resulting issues

concerning the parallel processing on multiple processors, can

be found in [11].

IV. QUICK-START PERFORMANCE MEASUREMENTS

A. Measurement Methodology

We tested our Quick-Start implementations with a client-

server communication as illustrated in Fig. 3. Both client and

server are straightforward C programs under Linux that use

standard socket calls. The client typically sends a small request

(100 byte), and the server’s response has a configurable size

(from 1 kbyte to 100Mbyte). If Quick-Start support is enabled,

the kernel-internal heuristics in the server can automatically

issue a request during the connection setup. In some tests the

client application also sends further requests after some idle

time, reusing the established connection. If the idle time is

long, the congestion window validation [14] can significantly

reduce the congestion window. When the kernel detects such

a situation, it can automatically send a new request.

Client and server were interconnected in two different net-

work setups: First, the two personal computers were connected

back-to-back with a 100 Mbit/s Ethernet link. Second, we used
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Fig. 5. Testbed with the network processor and several computers

a more complex network topology with two routers as shown

in Fig. 5. One router is realized by the network processor.

In both setups, the Linux “NetEm” mechanism was used to

enforce a minimum round-trip time (RTT) of either 100ms or

200ms. In some cases, we also added constant-bitrate UDP

cross-traffic to the links, using the “iperf” tool. The Linux

machines utilize the “Cubic” congestion control variant [15],

which is the default choice in the used Ubuntu 7.04 distri-

bution. Most other IP and TCP stack parameters were set

to their default values, except for increased socket buffers

(8Mbyte) and disabled connection statistics caching. During

most measurements we captured “tcpdump” traces at the

client. Furthermore, we measured the server response time as

an application performance metric (cf. Fig. 3).

B. Verification of the Quick-Start Endpoint Functions

Figures 4 and 6 show traces of the beginning of a download

from the server, both with the Slow-Start and with the Quick-

Start mechanism. In both diagrams, the data rates have been

obtained by averaging the amount of received data per RTT.

The server either sends a Quick-Start requests of 81.92Mbit/s

or asks for a lower value of 5.12Mbit/s only. Furthermore,

we distinguish between two different strategies to handle the

Slow-Start threshold (“ssthresh”): After a successful Quick-

Start request, we either leave the threshold unchanged, i. e.,

it remains at its default initial value, which is equal to the

maximum integer value in recent Linux kernels. Alternatively,

the threshold is reduced to the approved Quick-Start window,

i. e., the sender enters the congestion avoidance phase after a

Quick-Start. Both variants are possible according to [3].
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Fig. 7. Communication over a persistent connection without cross-traffic

The traces in Figures 4 and 6 confirm that a sufficiently

high Quick-Start request allows the connection to almost

immediately utilize the link capacity of 100Mbit/s. In contrast,

the Slow-Start forces a sender to send initially with a much

lower rate, and it requires at least one second to achieve

the full link speed. But the traces also reveal that Quick-

Start does not necessarily result in faster data transfers: If the

requested rate is smaller than the available bandwidth, and if

“ssthresh” is adapted according to the approved Quick-Start

bandwidth, the sender enters the congestion avoidance phase

too early and increases the data rate rather slowly. Then the

sending rate grows only slowly beyond the requested Quick-

Start rate of 81.92Mbit/s or 5.12Mbit/s, respectively. If a

“Reno” congestion control [3] was used instead of “Cubic”, it

would even take minutes to reach full link speed. This suggests

that not reducing the threshold after a successful Quick-Start

is a superior strategy. Therefore, our default choice in the

following is not to reduce “ssthresh”, unless stated otherwise.

C. Tests of the Quick-Start Router Functions

In order to validate the router functions both in the Linux

implementation as well in the network processor based router,

we studied the topology sketched in Fig. 5. As application

example, the client here downloads three times a data volume

of 10Mbyte over a persistent TCP connection, with 5 s idle

time. The entities were configured with a Quick-Start admis-

sion threshold [3] of 100Mbit/s. In the routers, the currently

carried traffic and the Quick-Start request history has been

extracted from (optional) system log messages.

Fig. 7 shows the resulting communication as observed both

by the client and router 1 when there is no other competing

traffic. The traces in the upper part of Fig. 7 confirm that, as to

be expected, all three Quick-Start requests get approved. All

three downloads start almost immediately with the requested

rate of 81.92Mbit/s. Afterwards, the rate increases only slowly

because the “ssthresh” reduction strategy has been used in this

setup. The router also precisely estimates the resulting traffic.

The lower part of Fig. 7 lists the sequence numbers received

by the client. This gives some insight into the impact of the idle

time: As congestion window validation is enabled, the sender

can start the second and third transfer only with the small
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default initial window of three segments. The Quick-Start

request is piggy-packed to first packet, i. e., the high-speed

data transfer starts once the corresponding acknowledgement

with the Quick-Start response has arrived after one RTT.

In order to illustrate the impact of the Quick-Start admission

control, in the following the experiment is repeated, but now

with additional inelastic traffic on the output links of the

routers. As shown in Fig. 5, a cross traffic of 30Mbit/s inter-

feres with the first download, and during the third download

there is a background load of 100Mbit/s. Fig. 8 reveals that

router 1 indeed measures a carried traffic of 30Mbit/s when

the first Quick-Start request arrives. Due to the admission

threshold of 100Mbit/s, it can only approve 40.96Mbit/s. As a

consequence, the data transfer starts with this rate. In contrast,

the output link of router 1 is idle when the third Quick-Start re-

quest arrives. Therefore, it approves and reserves 81.92Mbit/s.

However, now the admission control at router 2 denies the

request, since the load on its outgoing interface exceeds the

Quick-Start admission threshold. As a consequence, the third

download uses a Slow-Start, and router 1 spuriously reserves

Quick-Start capacity for some time (two slots of 200ms).

D. Parametrization of the Admission Control

Our admission control and traffic metering functions operate

on fixed time intervals (“slots”). The utilized bandwidth u on

an interface is calculated for slots of duration D. Furthermore,

a history of approved Quick-Start requests is stored for a

certain number of slotsH , in order to avoid an over-granting of

capacity. If there are many requests, the parameters D and H

have a considerable impact on the capacity that can be granted.

Both must be chosen carefully according to the maximum

expected RTT [5] . In theory, if q is the Quick-Start admission

threshold of the “target algorithm” [4], the maximum capacity

that can be granted per second is q−u

D·H
. This relationship is

confirmed by the measurement results in Fig. 9. The diagram

has been obtained by flooding a Linux-based router with

many Quick-Start requests (200 req/s for 5.12Mbit/s each).

Evidently, the larger the slot D duration and/or the length of

the reservation history H , the more conservative is the admis-

sion control. In the default configuration of our implementation

we use a rather careful setting of D = 1000ms and H = 2.
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E. Speedup of Interactive Applications

One of the most interesting questions is how much Quick-

Start can improve application performance. Simulations [4]

and analytical models [5] predict that the transfer times of

moderate-sized files can be improved by several hundred

percent. This can be verified with our implementation: Fig. 10

quantifies the relative performance improvement by Quick-

Start for a client-server communication, i. e., the server re-

sponse time with Slow-Start divided by the one with Quick-

Start. The measurement results, which correspond to the

analytical model in [5], reveal a significant speedup for data

transfers between 10 kB and 10Mbyte. In this range, the Slow-

Start has a delaying effect. Smaller amounts of data can be

sent out immediately with the initial window, and for long

bulk data transfers the Slow-Start has only a marginal impact.

Furthermore, the performance benefit significantly depends on

the RTT. The larger the RTT, the higher the potential speedup.

We also performed experiments with real HTTP downloads,

using a “lighttpd” web server and a modified “surge” load

generator. The latter can issue requests using HTTP/1.0,

HTTP/1.1, and HTTP/1.1+pipelining. Of course, the perfor-

mance benefit of Quick-Start depends a lot on the charac-

teristics of the Web pages. For small pages of the order of

10 kbyte, there is hardly any performance benefit. However,

recent measurement studies such as [16] reveal that there are

emerging new Web applications that frequently query objects

with a size of 100 kbyte or more (high-resolution images,

complex 3D data, etc.). For object sizes of this order of

magnitude, Quick-Start can be of significant benefit.

Table I compares the Web page loading durations for two

Web models. On the one hand, we use the well-known “surge”

model [17], where most objects are rather small. On the

other hand, we use a customized model with larger page

sizes (see also [10]). We assume a mean object size of

250 kbyte, which is consistent with some findings of [16].

The most significant improvement in Table I can be observed

for HTTP/1.0 transfers and large object sizes. This is to be

expected, since HTTP/1.0 transfers each object over a new

connection with an initial Slow-Start. But Quick-Start can also

considerably speed up the loading times in the other cases.
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V. QUICK-START IMPLEMENTATION OVERHEAD

A. Impact of the Quick-Start Endpoint Functions

Of course, the support of Quick-Start TCP comes at some

cost, since it requires modifications both in the endpoints of a

connection as well as in the routers on the path. Concerning

the Linux end-system implementation, our experiments have

revealed that Quick-Start adds only little processing overhead.

All in all, the additional processing required by the Quick-

Start functionality is simple compared to the complexity of the

Linux TCP/IP stack as a whole. The main new functionality

in the TCP stack is the rate pacing, but this function is only

active for rather short periods of time. Thus, there must be

many parallel TCP connections to cause a significant impact.

B. Impact of the Quick-Start Router Functions

The key challenge of router-assisted congestion control is

the additional packet processing that is required in routers.

Fig. 11 and Table II give some insights into the impact of

Quick-Start on the router performance, using workloads with

different shares of packets that carry a Quick-Start request.

Concerning the peak throughput, i. e., the maximum packet

rate that can be transported without packet loss, our Quick-

Start implementations do not suffer from a significant degrada-

tion compared to a corresponding router without Quick-Start

support. As shown in Table II, the maximum packet rate of the

network processor is about 3.9Mpps without and with Quick-

Start support. These packet rates have been measured for a

workload with 50 byte sized IP packets, i. e., they correspond

to a throughput of multiple Gbit/s with typical packet size

TABLE I
COMPARISON OF THE AVERAGE WEB PAGE LOADING TIME WITH

SLOW-START (SS) AND QUICK-START(QS)

Small pages model Large pages model
HTTP variant SS QS SS QS

HTTP/1.0 0.97 s 0.70 s 2.97 s 1.47 s
HTTP/1.1 0.65 s 0.48 s 1.49 s 0.92 s
HTTP/1.1+p. 0.62 s 0.46 s 1.36 s 0.81 s

Setup: 100Mbit/s link, 200ms RTT, 5.12Mbit/s requests,
4 emulated users, 1h measurement time
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distributions. For very frequent Quick-Start requests there is a

small decrease that can be attributed to synchronization issues

among the fast path processing entities [11].

On a Linux PC with Intel Gbit/s Ethernet cards, the max-

imum achieved packet rate is about one order of magnitude

smaller. If every second packet includes a Quick-Start option,

the total system load of a router increases by about 15%,

mainly due to the recalculation of the random Quick-Start

nonces. However, such an occurrence of Quick-Start options

is only realistic in denial-of-service attacks. Interestingly, we

observed that in some cases the increased system load results

in a higher peak packet rate. This is probably a side effect

caused by the handling of soft and hard interrupts in the kernel.

We also measured the delay that packets experience when

traversing a router, using an Agilent J6800A network analyzer

for workload generation and high-precision tracing. Both the

mean values in Table II and the complementary cumulative

distribution function (CCDF) in Fig. 11 reveal that the Quick-

Start option processing causes an additional delay, but it is

less than 1µs. If the traffic estimation slot interval is short,

i. e., less than 1 s, the delay can be slightly larger due to the

frequent updates of the traffic statistics. Still, the impact on

the total delay inside a router is neglectible. This result shows

again that the overhead of Quick-Start is very small.

TABLE II
IMPLEMENTATION PERFORMANCE CHARACTERISTICS

Peak packet rate Linux PC, P4 2.8 GHz IXP 2400

(50 byte size) 1 Gbit/s Eth., PCI bus network processor

Original, 0% QS 0.33Mpps 3.9Mpps
QS-enabled, 0% QS 0.33Mpps 3.9Mpps
QS-enabled, 1% QS 0.33Mpps 3.9Mpps
QS-enabled, 50% QS 0.35Mpps 3.8Mpps

Mean packet delay Linux PC, P4 2.8 GHz IXP 2400
(50 byte size) 1 Gbit/s Eth., PCI bus network processor

at 0.3Mpps at 1.36Mpps

Original, 0% QS 50µs 16µs
QS-enabled, 0% QS 50µs 16µs
QS-enabled, 1% QS 50µs 16µs
QS-enabled, 50% QS 51µs 17µs

VI. CONCLUSION

Quick-Start is an experimental TCP extension that could

improve TCP performance over long-distance networks, pro-

vided that the required protocol stack modifications get widely

deployed. This paper gives an overview of our experiences

with implementing Quick-Start, both in the TCP/IP stack of

the Linux operating system as well as in a network processor.

Our software and hardware-supported implementations allow

to test Quick-Start in a wide range of scenarios. Our findings

demonstrate, on the one hand, that Quick-Start would be a

beneficial mechanism for broadband applications, in particular

if they interactively exchange large amounts of data. On the

other hand, our measurements suggest that Quick-Start support

causes only little overhead in end-systems and routers.

However, there are still challenges that require further work.

Open issues in our implementations include in particular the

design of interfaces towards lower protocol layers and also to-

wards applications. Another important aspect is to evaluate the

benefits and costs of Quick-Start compared to other congestion

control schemes using explicit router feedback.
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