
Speeding up the 3D Web:
A Case for Fast Startup Congestion Control

Michael Scharf1, Mike Eissele2, Christian Mueller1, Thomas Ertl2
University of Stuttgart

1 Institute of Communication Networks and Computer Engineering (IKR)
2 Visualization and Interactive Systems Group (VIS)

michael.scharf@ikr.uni-stuttgart.de

ABSTRACT
More and more Web applications interactively display three
dimensional (3D) real or virtual worlds. These applications
typically require broadband network connectivity, since vo-
luminous content must be transported over the Internet in
a timely fashion. This paper studies how transport proto-
cols can be optimized to support such network-demanding
3D Web applications. A review of the state-of-the-art shows
that they differ from traditional Web applications. We dis-
cuss typical characteristics of these applications and high-
light where and how they can benefit from enhancements of
the Transmission Control Protocol (TCP). Our main con-
clusion is that 3D visualization applications can be an im-
portant use case for new fast startup congestion control
mechanisms, such as the Quick-Start TCP extension and
the Jump-Start proposal. Our claim is backed by experi-
ments that combine a prototypical 3D visualization appli-
cation with fast startup congestion control schemes imple-
mented in the Linux network stack. As expected, our mea-
surement results confirm significant performance benefits of
Jump-Start and Quick-Start TCP.

1. INTRODUCTION
In the last years new 3D applications have emerged, which
provide rich visualizations and graphical renderings of real
or virtual worlds. Applications such as Google Earth or Mi-
crosoft’s Virtual Earth foreshadow a new class of networked,
multi-purpose, interactive 3D applications. Many ongoing
research and development activities are driven by the vi-
sion that it will be possible to create a new “World Wide
Space” [1] or “3D Web” [2] that offers ubiquitous access to
detailed representations of the real [3] or virtual world [4]
and that combine 3D city models with other data sources,
location-based services, and potentially even live data.

Several problems have still to be solved in order to realize
such a 3D Web. One challenge are the communication char-
acteristics: The interactive 3D visualization usually does not

solely operate on offline content, but instead retrieves data
online in a streaming-like fashion over the Internet. Due to
the data volumes of the 3D models and the interactivity of
the applications, this communication is network-demanding
and typically requires broadband Internet connectivity.

The timely and reliable transport of large volumes of data
imposes challenges for the Internet transport protocols, in
particular the Transmission Control Protocol (TCP). This
paper analyzes the transport layer implications of interactive
3D applications, which have hardly been surveyed systemat-
ically so far. We discuss whether new protocol mechanisms
would be useful, in particular new Internet congestion con-
trol mechanisms [5]. Specifically, we show that the emerging
3D Web would be a relevant use case for new fast startup
congestion mechanisms, such as the Quick-Start TCP ex-
tension [6, 7] or Jump-Start [8]. Our motivation is to study
these enhancements from the perspective of such new types
of applications, given that TCP’s Slow-Start is known to
perform reasonably well for many current Web usage scenar-
ios [9]. Our experimental results have been obtained with a
prototypical interactive 3D visualization application and our
Linux network stack implementations of fast startup conges-
tion control schemes.

The rest of this paper is structured as follows. Section 2 re-
views 3D Web technologies. Section 3 surveys related work
concerning transport mechanisms for 3D content. In Sec-
tion 4 we analyze the requirements of interactive 3D visual-
ization and discuss the implications on transport protocols.
Section 5 presents experimental results that show the ben-
efit of fast startup congestion control for an interactive 3D
visualization tool. Finally, Section 6 concludes the paper.

2. TOWARDS THE 3DWEB

2.1 3D Visualization Technologies
3D content plays an important role in several emerging ap-
plications. On modern desktop systems, high-speed 3D
hardware acceleration is state-of-the-art and extensively
used, in particular by computer games. Mobile devices
have more limitations in screen sizes, computation, electri-
cal power, and memory. Still, more and more mobile de-
vices have enough resources to locally perform 3D rendering
tasks by using hardware-accelerated 3D graphics. An ex-
ample for a visualization on a mobile device can be seen in
Fig. 1. Most visualization applications are interactive, i. e.,
users can change the visualized scenery, move around, rotate
objects, or zoom in/out.



Figure 1: High-quality rendering of a 3D city model

on an O2 XDA Flame. The textured model has 23k

polygons and renders at 5 frames per second.

There are different standards to describe and store 3D geo-
metrical models. Descriptive textual formats to encode ge-
ometric 3D models are widely used, in particular based on
Extensible Markup Language (XML) formats [3]. Exam-
ples include X3D, GML/CityGML, KML, or Collada. The
main advantages of the XML formats are the ease of use
and the extensibility. They are therefore preferred for data
exchange in heterogeneous environments. However, their
flexibility comes at the cost of huge data sizes. The descrip-
tion of physical scenarios also typically covers several levels
of detail (cf. Figures 1 and 2).

In contrast to the standardized 3D storage formats, the
transport of 3D models between servers and clients is of-
ten realized with proprietary, application-specific, or even
encrypted formats and protocols. 3D content has also been
considered by video standardization bodies [10], envision-
ing an integration of video streams and 3D virtual worlds.
But this has not gained much acceptance so far. Similar to
multi-layer video codecs, 3D models could also be streamed
by using the concept of progressive meshes [11]. The idea
of progressive meshes is to first transport a coarse object
description, which allows an initial rendering. As more data
becomes available, the visualization is refined.

2.2 Application and System Architectures
3D Web applications are typically realized as a client-server
solution with a viewer application on the client and a back-
end server infrastructure [2]. The rendering of 3D models is
a computationally complex process and can be realized by
two different approaches: Local rendering and remote ren-
dering [12]. Traditionally, 3D graphics pipelines are realized
as local rendering. The client device generates images of
the 3D scenery and therefore must have sufficient graphic
processing power. All content to be visualized has to be
available at the client, i. e., it must be requested from the
server first and temporally stored on the client. Once all
required data is available on the client, it can be visualized
in a highly interactive and flexible way.

An alternative solution is remote rendering. In this case, the
complex rendering of 3D scenes is performed on a server.
Any user interaction is sent to the server, triggers a new
rendering, and the result is transmitted back to the client
and is displayed there. This communication can be realized
either by a download of a still image or by video streaming.
Actually, remote rendering is quite similar to video stream-
ing, except that the content is interactively created on the
server. The advantage of remote rendering is that even com-
plex 3D scenarios can be visualized on simple devices with-
out 3D hardware acceleration. However, this comes at the
cost of high server-side processing demands and an inherent

Figure 2: Same 3D model without texture images

delay lag between user interactions and the visualization. It
depends on the content and user activity patterns whether
the network traffic compared to local rendering is reduced
or increased. This trade-off is highly application-specific.

3. SURVEY OF EXISTING APPROACHES

3.1 Classification
A multitude of interactive 3D visualization applications ex-
ists in many application areas. Concerning the realization
of the data transport, two different classes can be distin-
guished: Web-like schemes basically use the World Wide
Web (WWW) technology with Hypertext Transfer Proto-
col (HTTP) request-response communication using one or
multiple parallel TCP connections. Its main advantage is
the ubiquitous availability. In contrast, other solutions are
close to linear multimedia streaming, which is often realized
by specific protocols on top of the User Datagram Proto-
col (UDP), in particular if timely arrival of data is more
important than reliable transport.

An interesting aspect of 3D virtual worlds is that they
combine characteristics of traditional Web and multimedia
streaming. A survey of different solutions in Table 1 illus-
trates that both communication paradigms are used by ap-
plications dealing with 3D models. This table focuses in
particular on 3D city models and is by far not a comprehen-
sive list of all related work. For instance, application types
with similar characteristics exist in the field of telemedicine
or massively multiplayer online games, too.

3.2 Usage of Transport Protocols
Almost all transport protocol usage patterns have been pro-
posed or are in use by 3D visualization applications: For
instance, Google Earth is one out of several popular virtual
worlds that visualize high-resolution aerial images in com-
bination with other data, such as 3D city models. The ap-
plication is realized as a typical client-server Web solution,
i. e., the content is retrieved by HTTP over multiple TCP
connections, using ZIP compression. Related approaches,
such as Microsoft’s Virtual Earth or NASA World Wind,
have similar characteristics. There are also ongoing efforts
to realize 3D city model visualizations on mobile devices.
One example is the m-LOMA project [13], which addresses
the rather low bandwidth of cellular networks by a server-
side preprocessing of content, sophisticated caching schemes
in the client, and a view-dependent, hierarchical streaming
of partial 3D models in a proprietary binary format over a
single TCP connection. The Nexus project at the Univer-
sity of Stuttgart [1] has also developed similar visualization
applications, e. g., for 3D city models (cf. Section 5.2).



Table 1: Comparison of selected approaches to transport and visualize 3D worlds

Example Target environment System architecture Transport protocol usage

Web-like

Google Earth, Microsoft
Virtual Earth, etc.

Standalone clients or
browser plugins

Local rendering e. g. of Keyhole
Markup Language (KML) content

HTTP over multiple TCP conn.
ZIP data compression

m-LOMA project [13] Smart phones with
OpenGL ES support

Local rendering with server-side
preprocessing

One TCP connection
Compact binary transport format

Nexus example application
(see Section 5.2)

Standalone client Local rendering with server-side
preprocessing

One TCP connection
Binary transport format

Streaming-like

Remote visualization
(e. g., [14])

Mobile devices (PDAs) Remote rendering MPEG-2 stream over UDP
Separate TCP control channel

IP multimedia subsystem
(IMS) usage (e. g., [15])

IMS-enabled mobile
devices

Local rendering plus video content
Textures with different qualities

HTTP over TCP transport
QoS negotiation by SIP signaling

Communication
middleware (e. g., [16])

Mobile devices Local rendering
Progressive mesh encoding

Middleware over TCP and UDP
Intelligent selection of TCP/UDP

Concerning streaming-like solutions, several research
projects have developed remote visualization solutions,
which mostly use UDP transport (see [12,14] and references
therein). Given the similarity to video streaming, the usage
of network Quality-of-Service (QoS) mechanisms has been
investigated. For instance, [15] demonstrates that 3D vi-
sualization applications could use bandwidth reservations
in combination with application-level adaptation, includ-
ing textures with different levels of detail. There is also
work on middlewares that dynamically select whether to
use a reliable transport protocol (TCP) or an unreliable one
(UDP) [16]. These mechanisms could be used in combina-
tion with progressive meshes, since then certain parts of the
3D content could be transported unreliably.

4. TRANSPORT LAYER IMPLICATIONS

4.1 3D Application Requirements
Online 3D visualization applications are network-
demanding: On the one hand, the user activities can
frequently trigger downloads of content. As visualization
lags can be immediately noticed by users, the responsiveness
of the application is a key usability requirement. In the
best case, new content is displayed almost instantaneously.
On the other hand, encoding of complex 3D structures and
texture images can sum up to large amounts of data, in
particular if XML descriptions are used.

Thus, the vision of the 3D Web implies new non-linear mul-
timedia applications. They are adaptive, but they require
that rather large amounts of data are transported with small
delays. There are two differences to other multimedia types
like audio or video streams: First, the traffic is not a contin-
uous stream, but can instead be bursty, since data retrieval
is mainly triggered by user actions. And second, the data
transport of complex 3D world descriptions usually has to
be reliable, in particular when XML-encoded content is lo-
cally rendered at the client. In contrast, multimedia codecs
are often loss-tolerant.

4.2 Workload Characteristics
The description of a complex 3D scenery can be orders of
magnitude larger than a typical Web site. The part of a 3D
city model shown in Fig. 1 consists of about 23,000 polygons.
A compact binary representation of the model, including the
compressed textures, requires 16MB of storage. The size
and complexity of a 3D model can usually be reduced at
cost of quality. For example, a significant size reduction can
be achieved by omitting textures, as shown in Fig. 2. The
same scene without textures requires only 950 kB. A further
reduction would be possible by reducing the level of detail
of the 3D structures. Still, even then the scenery would be
much larger than most of today’s Web sites. A similar effect
has also been observed for 2D maps [17].

The delay-sensitive transport of large amounts of data re-
quires broadband connectivity. Of course, there are several
well-known mechanisms to reduce the bandwidth demand
and to minimize communication. One mechanism is caching
at the client. Another one is to use optimized encoding
schemes. Plain-text XML is widely used to encode 3D con-
tent, but the XML representation of floating-point numbers
is space-consuming. Plain text 3D formats are 4–14 times
larger than binary representations. To some extent, loss-
less compression techniques can reduce the size of models
and textures. Still, browsing interactively through complex,
high-quality 3D scenarios retrieved from the Internet will
always result in large and bursty data transfers.

4.3 A Case for TCP Enhancements?
The voluminous and time-critical communication raises the
question whether the existing transport protocols offer op-
timal solutions for this class of applications. The various
UDP-based application protocols indicate that TCP might
not always be a perfect fit. From an application developer’s
perspective, 3D visualization applications could benefit from
several features that the existing transport protocol imple-
mentations do not provide:



Figure 3: Screenshot of the Nexus application,

showing a detailed 3D city model of Stuttgart

Cross-layer adaptation interfaces: 3D visualization applica-
tions have a multitude of possibilities to control their com-
munication behavior. They can present less level of de-
tail (simpler 3D structures, smaller visibility range, etc.),
or adapt the presentation (simpler textures, smaller frame
rates, less requests for dynamic content, etc.). The adapta-
tion decisions inside the application require knowledge about
the network characteristics, such as the available bandwidth
or an estimate how long the transport of a certain amount
of data will probably last [18]. Such information might be
available in the network stack, but the realization of corre-
sponding application interfaces [19] is still an open issue.

Controlled reliability : Most parts of a 3D scenery is de-
scribed by complex data structures that require reliable data
delivery [18]. However, for dynamic status updates in-time
delivery is more important than reliability. Enhanced en-
coding schemes do not necessarily require reliable transport
of certain optional model parts. This could be a use case for
transport protocols with partial reliability [20].

Advanced congestion control : Interactive 3D visualization
applications could benefit from more flexible congestion con-
trol mechanisms. The required bandwidth easily reaches the
operational area of state-of-the-art high-speed congestion
control algorithms. Furthermore, more fine-grained differ-
entiation or prioritization mechanisms among different flows
between the same application instances could be used [18].
Congestion control protocols with some form of short-term
predictability could be useful. And, last but not least, min-
imizing transport delays is a highly desirable feature, too.
In this context, the Slow-Start of TCP’s congestion control
has been identified as an issue, e. g., by [13].

Some of these features can be realized by extensions of TCP,
whereas others require other transport protocols. In the
remainder of this paper we focus on the question how the
congestion control can be optimized for the 3D Web.

5. FAST STARTUP SCHEMES

5.1 Fast Startup: What and Why?
The objective of fast startup congestion control is to use
almost instantaneously the available bandwidth of a path.
This requires a more aggressive behavior than the exist-
ing Slow-Start in the TCP congestion control, which may
require a substantial amount of time until a path is fully
utilized. Several fast startup schemes have been proposed.
They can be roughly subdivided into end-to-end mechanisms
that mainly affect the sender side and network-assisted con-
gestion control mechanisms that assume additional process-
ing inside routers. An example for the former class is Jump-
Start [8]. In contrast, Quick-Start [6, 7] is an experimental

cache
Local

TCP/IP stack

control

3D processing

3D rendering

TCP/IP stackTCP connection

control
Client Server

Client Server Data sources

Context update

(Emulated) WAN

models
3D

models
3D

Cache
Scenegraph

Scenegraph

Preprocessing

Figure 4: Client-server application architecture

TCP extension that uses additional network feedback. Due
to the resulting deployment challenges, Quick-Start is cur-
rently not intended for the global Internet [6]. Both schemes
have been evaluated extensively by simulations [7, 8]. They
have also been implemented and compared by synthetic ex-
periments (see [9] and references therein).

It is well-known that a significant speedup compared to
Slow-Start is possible for “mid-sized” transfer sizes in the
range of few dozens of kilobytes to several megabytes [7].
However, it has been questioned whether this specific range
indeed represents relevant use cases, given that most Inter-
net traffic either consists of mice or elephant flows. Only
few studies with real applications have indeed demonstrated
the theoretically predicted speedups. One purpose of this
paper is to substantiate that such “mid-sized” transfer sizes
are common if 3D models are incrementally transported.

5.2 Example of an 3D Application
As example we use an interactive 3D visualization appli-
cation that has been developed within the Nexus project
(see [1]). A screenshot is shown in Fig. 3. This application
has the advantage that it is Linux-based and that it offers
full access to the source code of both client and server, which
facilitates instrumentation and experiments in controlled en-
vironments. The client application can visualize 3D city
models using Open GL graphics acceleration. In order to
retrieve the model data, the client periodically synchronizes
its context with the server. If the user changes the visual-
ization perspective, missing 3D model parts are retrieved.
The data transport is realized over a single persistent TCP
connection using a binary encoding format. The overall ap-
plication architecture is sketched in Fig. 4. The architecture
is open to other data sources, as the server can query dif-
ferent external databases to retrieve various 3D models that
are available in XML formats.

5.3 Measurement Methodology
Both client and server run on state-of-the-art computers
with an Ubuntu Linux and kernel version 2.6.24, which has
been patched to implement either Jump-Start or Quick-
Start TCP. We use basically the default stack configuration
with the “Cubic” congestion control. The socket buffer sizes
have been increased to 8MB in order to avoid limitations by
the TCP flow control. Client and server are interconnected
by a 1Gbit/s Ethernet segment. This represents a capac-
ity over-provisioning scenario, since the applications cannot
process the content at this speed. We use the Linux network
emulation “NetEm” to enforce a minimum round-trip-time
(RTT) of 200ms. Such a large RTT could easily occur if the
servers providing the 3D models are distributed around the
world.



0

100

200

300

400

D
a

ta
 r

a
te

 [
M

b
it
/s

]
Standard TCP (Cubic)

Jump-Start TCP

40 60 80 100 120 140 160 180 200 220 240 260

Time [s]

0

5

10

15

20

R
e

s
p

o
n

s
e

 t
im

e
 [

s
]

12.6 MB 2.16 MB

84.3 MB

47.0 MB

Data volume:

Figure 5: Traces for Jump-Start

We have instrumented client and server to measure the re-
sponse times, being defined as the time between the sending
of a context update of the client and the complete recep-
tion of the corresponding new scenegraphs as illustrated in
Fig. 4. Furthermore, we analyze the communication by cap-
turing “tcpdump” traces. In order to reproduce the results
we measure with a recorded sequence of user interactions
that browses through a couple of different locations where
3D city models are available. At the beginning of each mea-
surement, the client cache is empty, i. e., the complete 3D
scenery must be retrieved from the server.

5.4 Performance Results
Figure 5 shows one example of a resulting trace. The upper
part of the diagram depicts the observed data rate between
server and client as a function of the time in the recorded
sequence of user interactions. The lower part reports the
response times measured by the client application. Each
measurement point refers to the delay between the complete
download of a new 3D scenegraph object and the client mes-
sage that triggered that transfer. Obviously, as long as the
3D scenery does not change, no data transfers occur. Due
to the size of the displayed 3D models, the total amount of
data exchanged during one measurement run is large. For in-
stance, after about 150 s, a city model of Frankfurt is loaded
and displayed, which includes many buildings. All objects of
this model part sum up to more than 80MB. Of course, this
communication pattern is somehow futuristic since the large
bandwidth required for interactive usage is hardly available
end-to-end in the current Internet.

In Fig. 5 one can observe the typical TCP Slow-Start be-
havior, i. e., the sender starts to send with a small data rate,
which then ramps up exponentially. As shown in the lower
part, it can last up to 20 s until all parts of a new 3D model
are retrieved, even though the link has a vast amount of
free capacity. For this communication pattern, a congestion
control with Slow-Start is apparently sub-optimal.

The performance of Jump-Start is also included in Fig. 5.
With the selected parametrization, depending on the queued
amount of application data, up to 65,535 bytes are played

0

100

200

300

400

D
a

ta
 r

a
te

 [
M

b
it
/s

]

Standard TCP (Cubic)

Quick-Start TCP (adm. threshold 1 Gbit/s)

Quick-Start TCP (adm. threshold 10 Mbit/s)

40 60 80 100 120 140 160 180 200 220 240 260

Time [s]

0

5

10

15

20

R
e

s
p

o
n

s
e

 t
im

e
 [

s
]

Figure 6: Traces for Quick-Start

out during the first round-trip time [9]. Our implementation
also automatically reactivates the Jump-Start mechanism
after long idle times. In this experiment, the usage of Jump-
Start significantly reduces the response times whenever data
is transferred. In the best case, the model loading delay is
reduced by over 10 s, which is a very significant reduction.

We have also repeated the same experiment with the Quick-
Start TCP extension. Different to end-to-end schemes such
as Jump-Start, Quick-Start is only activated if there is free
capacity on the path, which reduces the risk of unfairness
due to a fast startup [9]. Fig. 6 shows results for two config-
urations: In the first case it is assumed that the total link
capacity is available to Quick-Start requests, while in the
second case the“target algorithm”admission control [7] only
approves Quick-Start requests up to an admission threshold
of 10Mbit/s. In both setups, the server asks for an initial
sending rate of 82Mbit/s, which is a reasonable value to
transfer even large models within few seconds.

If the admission threshold is high, all Quick-Start requests
throughout the experiment are approved, i. e., the initial
sending rate is always of the order of 100Mbit/s. Fig. 6
shows that in this case the content download times are in-
deed reduced to few seconds only and even smaller than
the Jump-Start results. If the admission threshold is only
10Mbit/s, the Quick-Start requests are reduced in the net-
work stack. They could even be denied if there was cross-
traffic. The corresponding results in Fig. 6 still show a per-
formance improvement, i. e., it is sufficient to grant only a
certain share of the link capacity to Quick-Start requests.
But, of course, the maximum achievable speedup is then
smaller. In the given scenario, the performance with a
small admission threshold is worse than the performance
with Jump-Start.

We also performed experiments with other high-speed con-
gestion control algorithms. They revealed very similar re-
sults as long as the standard Slow-Start algorithm is used.
Furthermore, we also repeated the experiment with smaller
RTTs, such as 50ms. As to be expected, the potential re-
sponse time reduction by a fast startup scheme is then much
smaller and hardly exceeds one second.



5.5 Discussion
One could argue that RTTs of the order of 200ms may not
be an important scenario for 3D virtual worlds, since large
RTTs could be avoided by hosting the content inside a Con-
tent Delivery Network (CDN). However, it is currently un-
clear whether CDNs will indeed be able to deliver complex
and potentially dynamic 3D models, in particular once they
get synchronized with the real world. One could also con-
sider the use of multiple parallel TCP connections, which is
a well-known technique to circumvent the Slow-Start limi-
tations. So far, our application does not use multiple con-
nections, and our measurement results are therefore some-
how provisional. We certainly do not claim that our results
are universally valid for all types of online 3D visualization
applications. Still, they probably illustrate typical commu-
nication patterns. Our experiments are also rudimentary in
the sense that the interaction with application adaptation
mechanisms and an intelligent application control of the fast
startup activation are not considered so far. For example,
request rates could be selected as a function of object sizes,
but this is left for further study.

6. CONCLUSIONS AND OUTLOOK
3D Web applications exhibit communication patterns that
are distinct from other application classes such as classic
Web or video streaming applications. Their bandwidth re-
quirements can be very high and latency is a critical pa-
rameter directly affecting usability. This paper studies the
implications of such network-challenging applications. We
identify a couple of transport protocol features that would
be beneficial for online 3D visualization. As a specific exam-
ple we study fast startup congestion control schemes, such
as Jump-Start and Quick-Start TCP. We show with a proto-
type tool that applications dealing with 3D content can have
characteristics that make fast startup schemes indeed use-
ful. Depending on the scenario, speedups of up to 10 s can
be achieved. Our results highlight that fast startup mech-
anisms should be considered in the future evolution of the
Internet congestion control.

The main intention of this paper is to raise awareness of the
demands of emerging 3D Web applications and to discuss
their potential implications on transport protocols. It nei-
ther claims to be a complete survey of all communication
issues concerning 3D worlds, nor to be a universal evalua-
tion of the usefulness and risks of fast startup congestion
control. Further work is required in both fields.

7. ACKNOWLEDGMENT
This work is funded by the German Research Foundation
(DFG) through the Center of Excellence “Nexus – Spatial
World Models for Mobile Context-Aware Applications”.

8. REFERENCES
[1] R. Lange, N. Cipriani, L. Geiger, M. Großmann,

H. Weinschrott, A. Brodt, M. Wieland, S. Rizou, and
K. Rothermel, “Making the world wide space happen:
New challenges for the Nexus context platform,” in
Proc. IEEE PerCom, Mar. 2009.

[2] N. Leavitt, “Browsing the 3D Web,” Computer,
vol. 39, no. 9, pp. 18–21, 2006.

[3] A. Altmaier and T. H. Kolbe, “Applications and
solutions for interoperable 3D geo-visualization,” in
Proc. Photogrammetric Week, 2003.

[4] S. Kumar, J. Chhugani, C. Kim, D. Kim, A. Nguyen,
P. Dubey, C. Bienia, and Y. Kim, “Second life and the
new generation of virtual worlds,” Computer, vol. 41,
no. 9, pp. 46–53, 2008.

[5] M. Welzl, D. Papadimitriou, M. Scharf, and
B. Briscoe, “Open research issues in Internet
congestion control,” IRTF Internet Draft, Apr. 2009.

[6] S. Floyd, M. Allman, A. Jain, and P. Sarolahti,
“Quick-Start for TCP and IP,” IETF RFC 4782
(experimental), Jan. 2007.

[7] P. Sarolahti, M. Allman, and S. Floyd, “Determining
an appropriate sending rate over an underutilized
network path,” Computer Networks, vol. 51, no. 7, pp.
1815–1832, 2007.

[8] D. Liu, M. Allman, S. Jin, and L. Wang, “Congestion
control without a startup phase,” in Proc. PFLDnet,
Feb. 2007.

[9] M. Scharf, “Work in progress: Performance evaluation
of fast startup congestion control schemes,” in Proc.
Networking 2009, LNCS 5550, May 2009, pp. 716–727.

[10] M. Hosseini and N. D. Georganas, “MPEG-4 BIFS
streaming of large virtual environments and their
animation on the Web,” in Proc. ACM Web3D, 2002,
pp. 19–25.

[11] H. Hoppe, “Progressive meshes,” in Proc. ACM
SIGGRAPH, 1996, pp. 99–108.

[12] S. Stegmaier, J. Diepstraten, M. Weiler, and T. Ertl,
“Widening the remote visualization bottleneck,” in
Proc. ISPA, 2003, pp. 1–6.

[13] A. Nurminen, “Mobile, hardware-accelerated urban 3D
maps in 3G networks,” in Proc. ACM Web3D, 2007,
pp. 7–16.

[14] F. Lamberti and A. Sanna, “A streaming-based
solution for remote visualization of 3D graphics on
mobile devices,” IEEE Trans. on Visualization and
Computer Graphics, vol. 13, no. 2, pp. 247–260, 2007.

[15] L. Skorin-Kapov, M. Mosmondor, O. Dobrijevic, and
M. Matijasevic, “Application-level QoS negotiation
and signaling for advanced multimedia services in the
IMS,” IEEE Communications Magazine, vol. 45,
no. 87, pp. 108–116, 2007.

[16] H. Li, M. Li, and B. Prabhakaran, “Middleware for
streaming 3D progressive meshes over lossy networks,”
ACM Trans. Multimedia Comput. Commun. Appl.,
vol. 2, no. 4, pp. 282–317, 2006.

[17] F. Schneider, S. Agarwal, T. Alpcan, and
A. Feldmann, “The new Web: Characterizing AJAX
traffic,” in Proc. Passive and Active Network
Measurement, Springer LNCS 4979, 2008, pp. 31–40.

[18] I. M. Boier-Martin, “Adaptive graphics,” IEEE Comp.
Graphics and Appl., vol. 23, no. 1, pp. 6–10, 2003.

[19] L. Eggert and W. M. Eddy, “Towards more expressive
transport-layer interfaces,” in Proc. ACM/IEEE
MobiArch, 2006, pp. 71–74.

[20] K.-J. Grinnemo, J. Garcia, and A. Brunstrom,
“Taxonomy and survey of retransmission-based
partially reliable transport protocols,” Computer
Communications, vol. 27, no. 15, pp. 1441–1452, 2004.


