
Fast Startup Internet Congestion Control Mechanisms

for Broadband Interactive Applications

Von der Fakultät für Informatik, Elektrotechnik und Informationstechnik
der Universität Stuttgart zur Erlangung der Würde

eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

vorgelegt von

Michael Scharf

geb. in Darmstadt

Hauptberichter: Prof. Dr.-Ing. Dr. h. c. mult. Paul J. Kühn
Mitberichter: Prof. Anja Feldmann, Ph. D. (TU Berlin)

Prof. Dr.-Ing. Andreas Kirstädter

Tag der Einreichung: 6. November 2009
Tag der mündlichen Prüfung: 18. April 2011

Institut für Kommunikationsnetze und Rechnersysteme
der Universität Stuttgart

2011





Kurzfassung

Das Internet kann nie schnell genug sein. Reaktionsschnelligkeit ist und bleibt eine der wich-
tigsten Eigenschaften von Internet-Anwendungen. Die meisten Anwendungen im Internet nut-
zen das Transmission Control Protocol (TCP) für die gesicherte Datenübertragung ohne Leis-
tungszusicherungen. TCP ist ein reines Ende-zu-Ende-Transportschichtprotokoll und verwen-
det Überlastregelungsmechanismen, um die Senderate an die Eigenschaften des Pfades anzu-
passen. Eine fundamentale Herausforderung für eine derartige Ende-zu-Ende-Überlastregelung
ist die Startphase eines neuen Verkehrsflusses: Unmittelbar nach dem Verbindungsaufbau bzw.
nach längeren Leerlaufzeiten kann ein Sender nicht einfach eine angemessene Senderate ein-
stellen, da Informationen über den Pfad fehlen. Traditionell verwendet die Überlastregelung
von TCP in diesen Fällen die Slow-Start-Heuristik. Dieser Mechanismus funktioniert in vielen
Fällen gut, kann allerdings auch zu deutlichen Verzögerungen der Datenübermittlung führen.

Schnellstart-Überlastregelung stellt ein neues Netzparadigma dar, welches zum Ziel hat, diese
Unzulänglichkeit zu überwinden, die eine der verbleibenden ungelösten Fragen der Internet-
Architektur darstellt. Ein beschleunigter Startvorgang würde insbesondere breitbandigen inter-
aktiven Anwendungen nützen. Typische Vertreter dieser Anwendungsklasse sind Web-Anwen-
dungen, welche mit großen Datenmengen operieren, wie z. B. dreidimensionale Inhalte in realen
oder virtuellen Welten. Derartige Anwendungen reagieren sensibel auf Latenzen und erfordern
eine gesicherte Datenübertragung mit hohen Datenraten und minimalen Verzögerungszeiten.

Die grundsätzliche Herausforderung für jeden Mechanismus zum Starten eines Verkehrsflusses
ist die Ermittlung der verfügbaren Datenrate auf dem Pfad. Schnellstart-Mechanismen können
inkrementell durch neue Algorithmen innerhalb einer Ende-zu-Ende-Überlastregelung realisiert
werden, welche die Datenrate aggressiver als der existierende Slow-Start-Standardmechanis-
mus erhöhen. Dieses Vorgehen riskiert inhärent die Verursachung von Überlast. Eine vielver-
sprechende Alternative ist eine Netzunterstützung durch zusätzliche pfadgebundene Signalisie-
rung zwischen den Endsystemen und den Vermittlungsknoten. Eine derartige Signalisierung ist
ein bekannter Mechanismus in Dienstgüte-Architekturen. In letzter Zeit wurden jedoch auch
Schnellstart-Überlastregelungsverfahren mit Netzunterstützung entwickelt. Diese Ansätze ver-
wenden zusätzliche Rückmeldungen der Vermittlungsknoten auf dem Pfad. Dennoch sind sie
einfach und erfordern keine flussbezogene Zustandshaltung in den Netzkomponenten. Ein Bei-
spiel für diesen Ansatz ist die Quick-Start-TCP-Erweiterung, mit deren Hilfe Endsysteme eine
Datenrate anfordern können, die größer als die standardmäßig zulässige Anfangsrate ist. Dies
vermeidet den zeitintensiven Slow-Start, falls der Pfad nicht vollständig genutzt ist.

Diese Arbeit untersucht die Realisierung von Mechanismen zur Schnellstart-Überlastregelung.
Hierbei wird der Lösungsraum aufgearbeitet, Algorithmen entworfen und verglichen, Imple-
mentierungsaspekte in Protokollstapeln betrachtet, sowie der Nutzen und die Konsequenzen
bewertet, welche aus der Verwendung in breitbandigen interaktiven Anwendungen resultieren.

i



ii Kurzfassung

Mechanismen zum schnellen Fluss-Start wirken sich sowohl auf das Netz als auch auf Anwen-
dungen aus. Daher behandelt diese Arbeit beide Gesichtspunkte: Die ersten Kapitel führen in
paketvermittelte Netze allgemein und speziell deren Ressourcenverwaltung ein und analysie-
ren den Unterschied zwischen einer Ressourcenverwaltung durch Überlastregelung bzw. ande-
ren Verkehrssteuerungsmechanismen. Anschließend werden die Leistungsanforderungen inter-
aktiver Anwendungen betrachtet, sowie existierende Lösungen zur Verbesserung der Reakti-
onsschnelligkeit. Beide Herangehensweisen zeigen den möglichen Nutzen einer Schnellstart-
Überlastregelung auf. Der Hauptteil des Dokuments beinhaltet eine umfassende Analyse, wie
schnellere Startvorgänge für Verkehrsflüsse realisiert werden können. Dabei werden die grund-
legenden Konzepte und der Lösungsraum für Überlastregelung im Internet aufgearbeitet, die
bekannten Lösungsansätze klassifiziert, Erweiterungen und neuartige Kombination vorgeschla-
gen sowie ungelöste Fragen aufgezeigt.

Aus einer Vielzahl unterschiedlicher Möglichkeiten heraus werden vier TCP-Erweiterungen
genauer analysiert: Drei das Ende-zu-Ende-Prinzip beibehaltende Verfahren zur Schnellstart-
Überlastregelung unterscheiden sich in der Aggressivität und in der Verwendung von Ver-
fahren zur Verkehrsglättung. Ein weiterer Schwerpunkt ist die Quick-Start-TCP-Erweiterung,
welche auf Netzunterstützung basiert. Da Überlastregelung im Internet kein rein algorithmi-
sches Problem darstellt, wurden alle TCP-Erweiterungen in dem Protokollstapel des Linux-
Betriebssystems implementiert. Dies ermöglicht Experimente mit einem Protokollstapel auf
neustem Stand der Technik. Die durchgeführten Leistungsuntersuchungen basieren sowohl auf
Messungen wie auch auf Simulationsstudien mit dem Quelltext des realen Linux-Protokoll-
stapels, deren Ergebnisse gründlich validiert werden. Die Experimente werden noch ergänzt
durch die simulative Untersuchung zweier anderer, verwandter Rahmenwerke zur Überlastre-
gelung mit Netzunterstützung, welche im Rahmen von langfristigen Forschungsaktivitäten zur
Architektur des künftigen Internet entwickelt wurden.

Diese Arbeit stellt die erste veröffentlichte Vergleichsstudie zu Schnellstart-Überlastregelungs-
verfahren dar, welche entweder auf Ende-zu-Ende-Mechanismen oder auf Netzunterstützung
basieren. Sowohl Simulationsstudien als auch Messungen bestimmen die Leistungssteigerun-
gen, das Risiko der Verursachung von Überlast sowie die Vorteile einer Netzunterstützung. Alle
betrachteten TCP-Erweiterungen sind in der Lage, die Transportverzögerungen mittelgroßer
Datenmengen zu verringern, insbesondere im Fall breitbandiger Netze mit nicht vernachlässig-
baren Übertragungslatenzen. Der erzielbare Leistungsvorteil hängt jedoch von Anwendungs-
charakteristika ab, so dass nur ausgewählte Anwendungen einen erheblichen Nutzen haben.
Die Ergebnisse zeigen auch, dass Ende-zu-Ende-Verfahren nicht notwendigerweise übermäßig
aggressiv bzw. unfair sind, falls diese selektiv eingesetzt und entsprechend optimiert werden.
Zusätzliche pfadgekoppelte Signalisierung verringert das Risiko von Überlast auf Kosten einer
höheren Komplexität. Diese Arbeit zeigt dabei auch, dass netzunterstütze Überlastregelungsver-
fahren stark von der Richtigkeit der Informationen über die Eigenschaften eines Netzsegments
abhängen; fehlerhafte Information kann zu erheblichen Problemen führen.

Ein weiterer Beitrag dieser Arbeit sind verschiedene neue Algorithmen, beispielsweise zur Be-
willigung von Quick-Start-Anforderungen in Vermittlungsknoten. Diese zeigen eine bessere
Leistungsfähigkeit als bekannte Verfahren, insbesondere bezüglich Fairness, ohne dass hier-
für eine deutlicher Mehraufwand notwendig wäre. Darüber hinaus wird auch aufgezeigt, dass
das Quick-Start-Protokoll in jedem Fall Heuristiken in den Endsystemen voraussetzt, welche
unnötige Anforderungen vermeiden. Eine derartige Heuristik wird vorgeschlagen, und deren
Nutzen wird nachgewiesen. Netzunterstütze Überlastregelung erfordert sowohl Veränderungen



Kurzfassung iii

in den Protokollstapeln der Endsysteme als auch eine zusätzliche Paketverarbeitung in den Ver-
mittlungsknoten. Diese Arbeit weist nach, dass TCP-Erweiterungen für schnelle Fluss-Starts
leichtgewichtig und skalierbar sind und mit sehr begrenztem Aufwand realisiert werden kön-
nen, selbst wenn eine Netzunterstützung erforderlich ist. Die Verwendung von Ende-zu-Ende-
Mechanismen ist jedoch wesentlich einfacher. Die dieser Arbeit zugrunde liegenden Entwick-
lungsarbeiten haben auch verschiedene Implementierungsprobleme aufgezeigt, wie beispiels-
weise Wechselwirkungen mit der TCP-Datenfluss-Steuerung. Entsprechende Lösungsansätze
werden ebenfalls vorgestellt.
Schließlich verdeutlichen zwei Anwendungsstudien die Vorteile von Schnellstart-Überlastre-
gelung und deren Integration in reale Anwendungen: Erstens wird gezeigt, dass ein schneller
Start von Datenflüssen die Einhaltung von Leistungszielen auf Anwendungsschicht erleichtern
könnte, wie beispielsweise maximale Antwortzeiten. Es wird aufgezeigt, wie ein derartiger Me-
chanismus in Web-Anwendungen integriert werden könnte. Ein zweites Experiment zeigt mit
Hilfe einer prototypischen Anwendung, dass Schnellstart-Überlastregelung von erheblichem
Nutzen für Anwendungen ist, die mit dreidimensionalen Umgebungsmodellen operieren. Der-
artige breitbandige interaktive Anwendungen könnten damit als Wegbereiter für den Einsatz
von Schnellstart-Überlastregelung dienen.
Zusammenfassend zeigt diese Arbeit, dass Schnellstart-Überlastregelung einen vielversprechen-
den und unkomplizierten Mechanismus für die künftige Weiterentwicklung der Internet-Res-
sourcenverwaltung darstellt, auch wenn weitere Untersuchungen in realen Netzen erforderlich
sind, um die resultierenden Folgen auf das Internet als Gesamtsystem zu bewerten.





Abstract

The Internet can never be fast enough. Responsiveness continues to be one of the most important
properties of Internet applications. Most Internet applications use the Transmission Control
Protocol (TCP) for reliable, best effort transport. TCP is a pure end-to-end transport protocol
and uses congestion control in order to adapt the sending rate to the characteristics of a path.
A fundamental challenge for any end-to-end congestion control is the flow startup phase: After
connection setup or after long idle periods, a sender cannot easily determine an appropriate
sending rate due to lack of information about the path. Traditionally, TCP’s congestion control
uses the Slow-Start heuristic in these cases. This flow startup mechanism works well in many
cases, but it can significantly delay data delivery.

Fast startup congestion control is a new networking paradigm that aims at overcoming this lim-
itation, which is one of the remaining open issues of the Internet architecture. Such a speedup
would in particular be beneficial for broadband interactive applications. Typical representa-
tives of this class of applications are Web applications that deal with voluminous data, such as
three dimensional content in real or virtual worlds. These applications are latency-sensitive and
require reliable transport with high data rates and minimal transport delays.

The fundamental challenge for any flow startup scheme is the detection of the available band-
width on the path. Fast startups can be realized incrementally by new end-to-end congestion
control algorithms that increase the data rate more aggressively than the standard Slow-Start.
This approach inherently risks congestion. A promising alternative would be network support,
i. e., additional on-path signaling between the endsystems and the routers. Such signaling is a
well-known mechanism in Quality of Service architectures. However, recently several network-
supported fast startup congestion control schemes have been developed, too. These approaches
use additional feedback information from the routers on the path. Still, they are simple and
do not require per-flow state information in the network. One example is the Quick-Start TCP
extension. With Quick-Start, endsystems can request for a higher-than-default initial sending
rate and avoid the time-consuming Slow-Start if the path is underutilized.

This thesis investigates the realization of fast startup congestion control. It discusses the design
space, proposes and compares algorithms, studies implementation issues in network stacks, and
evaluates the benefits and implications of its usage in broadband interactive applications.

Fast startup mechanisms affect both the network and applications. Therefore, this document
bridges the gap between both aspects. The first chapters introduce packet networks and their
resource management and review the differences between congestion control and other traffic
management approaches. Subsequently, the performance requirements of interactive applica-
tions are addressed, as well as existing solutions to improve their responsiveness. Both ap-
proaches reveal the need of fast startup congestion control. The main part of this thesis is a

v



vi Abstract

comprehensive analysis how fast startups could be realized. It presents the fundamental con-
cepts and the design space of the Internet congestion control, classifies the known fast startup
schemes, proposes new extensions and combinations, and also lists the open issues.
Out of a large number of possibilities, four TCP extensions are analyzed in detail: Three end-
to-end fast startup congestion control schemes differ in the aggressiveness and in the use of rate
pacing. A further focus is the Quick-Start TCP extension, which uses network support. Since
Internet congestion control is not a purely algorithmic problem, all TCP extensions have been
implemented in the Linux networking stack so that experiments can be performed with a state-
of-the-art stack. The performance evaluation studies are based on both measurements and sim-
ulations with real network stack code, and the simulation results are thoroughly validated. The
experiments are complemented by simulations studies with two other related network-supported
congestion control frameworks that originate from ongoing clean-slate research activities on the
architecture of the future Internet.
This thesis is the first published comparative study of end-to-end and network supported fast
startup mechanisms. Both simulation and measurement experiments quantify the performance
improvement, the risk of congestion, and the benefits of network support. All considered TCP
extensions can significantly reduce the transport delay of mid-sized data transfers, in particu-
lar over broadband networks with a non-negligible latency. But the performance improvement
depends on the application characteristics, and only selected applications indeed benefit sig-
nificantly. The results reveal that end-to-end fast startup schemes are not necessarily overly
aggressive and unfair if they are selectively used and carefully tuned. Additional signaling
along the path reduces the risk of congestion at the cost of a higher complexity. This thesis also
shows that network-supported congestion control depends on correct information about link
characteristics; erroneous information can result in significant problems.
Further contributions of this thesis are several new algorithms, e. g., for the approval for Quick-
Start requests in routers. These algorithms outperform the known ones in particular with respect
to fairness without resulting in much overhead in routers. Also, it is shown that the Quick-Start
protocol crucially depends on heuristics in the endsystems that avoid unnecessary requests.
Such a heuristic is proposed, and its usefulness is demonstrated. Network-supported congestion
control requires modifications in the protocol stacks of endsystems as well as some additional
packet processing in routers. This work shows that fast startup TCP extensions are a lightweight
and scalable mechanism that can be implemented with very limited processing overhead even
if they use network support. Still, end-to-end mechanisms are much simpler to use and to
deploy. The implementation work has also revealed several other realization challenges, such
as interactions with the TCP flow control. The corresponding solutions are presented, too.
Finally, two case studies illustrate the benefits of fast startup congestion control and the in-
tegration in real applications: First, fast startups could facilitate compliance with application
performance targets, such as response time deadlines. This document outlines how this mecha-
nism could be integrated in Web applications. A second experiment shows by proof-of-concept
that application dealing with three dimensional world models could indeed significantly benefit
from fast startup TCP enhancements. Such broadband interactive applications could thus be an
enabler for the deployment of fast startup congestion control mechanisms.
In summary, this work shows that fast startups would be a promising and uncomplicated mech-
anism for the future evolution of the Internet resource management, even though further exper-
iments in real networks are needed in order to evaluate the implications on the whole Internet.



Contents

Kurzfassung i

Abstract v

Contents vii

List of figures xi

List of tables xv

Abbreviations and symbols xvii

1 Introduction 1
1.1 The Internet and its future evolution . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem statement and contributions of this thesis . . . . . . . . . . . . . . . . 2
1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Communication network architectures 7
2.1 Packet networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Fundamentals and terminology . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Packet network technologies . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Performance and Quality of Service . . . . . . . . . . . . . . . . . . . 9
2.1.4 Network Quality of Service mechanisms . . . . . . . . . . . . . . . . 9

2.2 Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Historical evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Design principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.5 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.6 Network Quality of Service mechanisms . . . . . . . . . . . . . . . . 14

2.3 IP-based telecommunication networks . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Historical evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Design principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.4 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.5 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.6 Network Quality of Service mechanisms . . . . . . . . . . . . . . . . 19

vii



viii CONTENTS

2.4 Future evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Technological progress and trends . . . . . . . . . . . . . . . . . . . . 20
2.4.2 Architectural challenges for the Future Internet . . . . . . . . . . . . . 20
2.4.3 Research directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Performance of broadband interactive applications 23
3.1 Internet and Web applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Classification of applications . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Web application technologies . . . . . . . . . . . . . . . . . . . . . . 24
3.1.3 Performance requirements, metrics, and service level agreements . . . 26
3.1.4 Broadband interactive applications . . . . . . . . . . . . . . . . . . . . 28

3.2 Existing mechanisms for performance improvement and assurance . . . . . . . 29
3.2.1 Server mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Distribution mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Client mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Performance evaluation methodology . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 Role of performance evaluation . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Methods for performance modeling, prediction, and measurement . . . 35
3.3.3 Traffic and workload modeling . . . . . . . . . . . . . . . . . . . . . . 36
3.3.4 Accurate simulation of real network stacks . . . . . . . . . . . . . . . 38

4 Fast startup congestion control mechanisms 43
4.1 Systematic classification of congestion control methods . . . . . . . . . . . . . 43

4.1.1 Terminology and fundamentals . . . . . . . . . . . . . . . . . . . . . . 43
4.1.2 Congestion control requirements and design space . . . . . . . . . . . 47
4.1.3 Classification of end-to-end congestion control methods . . . . . . . . 49
4.1.4 Classification of network-supported congestion control methods . . . . 50
4.1.5 Differences to related mechanisms . . . . . . . . . . . . . . . . . . . . 53

4.2 State-of-the-art and open issues of Internet congestion control . . . . . . . . . 55
4.2.1 Internet standard solution . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Interaction with network entities . . . . . . . . . . . . . . . . . . . . . 59
4.2.3 Survey of experimental new algorithms and enhancements . . . . . . . 60
4.2.4 Impact of network stack implementations . . . . . . . . . . . . . . . . 65
4.2.5 Remaining open and unsolved issues . . . . . . . . . . . . . . . . . . 66

4.3 Fast startups: Definition, motivation, and design principles . . . . . . . . . . . 70
4.3.1 Definition of fast startup congestion control . . . . . . . . . . . . . . . 70
4.3.2 Motivation and challenges of fast startups . . . . . . . . . . . . . . . . 71
4.3.3 Design principles of fast startup congestion control . . . . . . . . . . . 74

4.4 End-to-end fast startup mechanisms . . . . . . . . . . . . . . . . . . . . . . . 76
4.4.1 Existing Slow-Start enhancements without speedup . . . . . . . . . . . 76
4.4.2 Existing optimistic fast startup mechanisms . . . . . . . . . . . . . . . 77
4.4.3 Design of enhanced and new optimistic fast startup schemes . . . . . . 79
4.4.4 Other approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Network-assisted fast startup mechanisms . . . . . . . . . . . . . . . . . . . . 82
4.5.1 Overview of the Quick-Start protocol . . . . . . . . . . . . . . . . . . 82
4.5.2 A new admission control concept: Approval control for Quick-Start . . 84
4.5.3 Design of improved approval control algorithms for Quick-Start . . . . 88



CONTENTS ix

4.5.4 Other approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.6 Network-controlled congestion control . . . . . . . . . . . . . . . . . . . . . . 92

4.6.1 Network control as a clean slate approach . . . . . . . . . . . . . . . . 92
4.6.2 Overview of the eXplicit Control Protocol (XCP) . . . . . . . . . . . . 93
4.6.3 Overview of the Rate Control Protocol (RCP) . . . . . . . . . . . . . . 94
4.6.4 Other approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.7 Functional comparison of fast startup schemes . . . . . . . . . . . . . . . . . . 96
4.7.1 Systematic comparison of Quick-Start, XCP, and RCP . . . . . . . . . 96
4.7.2 Other published comparative studies and related work . . . . . . . . . 100

5 Application integration and implementation issues and solutions 103
5.1 Solutions for the interface design . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1.1 Application interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.1.2 Network interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 Proposed mechanisms to avoid interactions with flow control . . . . . . . . . . 109
5.2.1 State-of-the-art receive window auto-tuning . . . . . . . . . . . . . . . 109
5.2.2 Possible interactions with fast startup congestion control . . . . . . . . 109
5.2.3 Proposed solution and its implications . . . . . . . . . . . . . . . . . . 111
5.2.4 More disruptive alternative solutions . . . . . . . . . . . . . . . . . . . 112

5.3 Realization complexity and feasibility . . . . . . . . . . . . . . . . . . . . . . 113
5.3.1 Overview of the implementation work . . . . . . . . . . . . . . . . . . 113
5.3.2 Implementation in endsystems . . . . . . . . . . . . . . . . . . . . . . 114
5.3.3 High-speed implementation in network components . . . . . . . . . . 117
5.3.4 Lessons learned from the case study . . . . . . . . . . . . . . . . . . . 118

6 Performance evaluation 121
6.1 Evaluation methodology and tools . . . . . . . . . . . . . . . . . . . . . . . . 121

6.1.1 Simulation scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.1.2 Measurement setups . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.1.3 Experiments in a test network . . . . . . . . . . . . . . . . . . . . . . 126

6.2 Simulation tool validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2.1 Scenario selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2.2 Validation scenario: Response function . . . . . . . . . . . . . . . . . 127
6.2.3 Validation scenario: Head-of-line blocking . . . . . . . . . . . . . . . 129
6.2.4 Summary of the validation experiments . . . . . . . . . . . . . . . . . 130

6.3 Study of functional design aspects of fast startups . . . . . . . . . . . . . . . . 131
6.3.1 Comparison of the startup behavior . . . . . . . . . . . . . . . . . . . 131
6.3.2 Differences in convergence and bandwidth sharing . . . . . . . . . . . 133
6.3.3 Design and evaluation of new algorithms for Quick-Start . . . . . . . . 135

6.4 Quantification of the potential performance improvement . . . . . . . . . . . . 141
6.4.1 New analytical model for fast startup performance . . . . . . . . . . . 141
6.4.2 Comparison of the potential speedup . . . . . . . . . . . . . . . . . . . 144
6.4.3 Bandwidth sharing properties . . . . . . . . . . . . . . . . . . . . . . 148
6.4.4 Studies with synthetic source-level Web models . . . . . . . . . . . . . 152
6.4.5 Studies with trace-based workloads . . . . . . . . . . . . . . . . . . . 153
6.4.6 Summary of the performance experiments . . . . . . . . . . . . . . . . 156

6.5 Robustness, fairness, and risk . . . . . . . . . . . . . . . . . . . . . . . . . . . 157



x CONTENTS

6.5.1 Dealing with small buffers . . . . . . . . . . . . . . . . . . . . . . . . 157
6.5.2 Fairness compared to TCP’s default congestion control . . . . . . . . . 158
6.5.3 Robustness against imprecise information . . . . . . . . . . . . . . . . 160

6.6 Complexity and costs of network support . . . . . . . . . . . . . . . . . . . . 163
6.6.1 Computational overhead of endsystem functions . . . . . . . . . . . . 163
6.6.2 Computational overhead of router functions . . . . . . . . . . . . . . . 164

7 Applicability case studies 167
7.1 A new Web performance requirement signaling architecture . . . . . . . . . . . 167

7.1.1 Congestion control with response time deadlines . . . . . . . . . . . . 167
7.1.2 Proof-of-concept realization . . . . . . . . . . . . . . . . . . . . . . . 169
7.1.3 Exemplary measurement results . . . . . . . . . . . . . . . . . . . . . 170

7.2 Speedup of 3D visualization applications . . . . . . . . . . . . . . . . . . . . . 171
7.2.1 Network challenges of interactive 3D applications . . . . . . . . . . . 171
7.2.2 Architecture of an interactive 3D visualization application . . . . . . . 172
7.2.3 Exemplary measurement results . . . . . . . . . . . . . . . . . . . . . 173

8 Conclusion 175
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

A Appendix: Mathematical background 183
A.1 Distribution functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

A.1.1 Exponential distribution . . . . . . . . . . . . . . . . . . . . . . . . . 183
A.1.2 Pareto distribution and variants . . . . . . . . . . . . . . . . . . . . . . 183
A.1.3 Log-normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . 184

A.2 Analytical lower bound for TCP resequencing delays . . . . . . . . . . . . . . 184
A.2.1 Scope of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
A.2.2 Model details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

B Appendix: Documentation of parameters 185
B.1 Measurement setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
B.2 General Linux kernel configuration . . . . . . . . . . . . . . . . . . . . . . . . 185
B.3 Default configuration of the fast startup schemes . . . . . . . . . . . . . . . . . 186

B.3.1 Jump-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
B.3.2 Initial-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
B.3.3 Mega-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
B.3.4 Quick-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Bibliography 189



List of figures

2.1 Characteristics of selected packet network technologies . . . . . . . . . . . . . 8
2.2 QoS differentiation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 QoS assurance functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Illustration of different QoS signaling architectures . . . . . . . . . . . . . . . 10
2.5 Illustration of the Internet protocol stack . . . . . . . . . . . . . . . . . . . . . 12
2.6 Structure of a TCP segment encapsulated in an IP packet . . . . . . . . . . . . 13
2.7 Comparison of different services delivery principles . . . . . . . . . . . . . . . 14
2.8 Receiver-initiated QoS reservation (e. g., RSVP) . . . . . . . . . . . . . . . . . 15
2.9 Sender-initiated QoS reservation (e. g., NSIS sender-initiated mode) . . . . . . 15
2.10 Overview of the architecture of 3GPP IMS and ETSI TISPAN . . . . . . . . . 18
2.11 IMS session establishment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Internet application portfolio . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Client-server document retrieval by HTTP over TCP . . . . . . . . . . . . . . 25
3.3 Structure of a Web transaction composed of several requests . . . . . . . . . . 26
3.4 Example for a Web Service Level Agreement . . . . . . . . . . . . . . . . . . 28
3.5 Multi-process architecture of a Web server . . . . . . . . . . . . . . . . . . . . 29
3.6 Classification of alternatives for building scalable Web systems . . . . . . . . . 31
3.7 Fundamental architecture of a two-tier/three-tier Web cluster . . . . . . . . . . 31
3.8 Basic structure of a content delivery network . . . . . . . . . . . . . . . . . . . 32
3.9 A performance enhancement proxy splitting a TCP connection . . . . . . . . . 32
3.10 Capacity planning workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.11 Simple queueing model of a Web server . . . . . . . . . . . . . . . . . . . . . 35
3.12 Example of an open fork/join queueing network . . . . . . . . . . . . . . . . . 35
3.13 Model for the message exchange in a TCP connection . . . . . . . . . . . . . . 37
3.14 Observed request and response size distribution in the used workload traces . . 38
3.15 Observed connection IAT distribution in the used workload traces . . . . . . . 38
3.16 Architecture of a simulation tool with the Network Simulation Cradle (NSC) . 42

4.1 Congestion in a network caused by competing connections . . . . . . . . . . . 44
4.2 Pipe model of a three-hop path with different narrow and tight links . . . . . . 44
4.3 Overview of different resource management principles and examples . . . . . . 50
4.4 Simplified Congestion Window evolution of an AIMD algorithm . . . . . . . . 51
4.5 Chiu/Jain vector diagram showing AIMD’s convergence to fairness . . . . . . . 51
4.6 Different realization alternatives for explicit feedback from the network . . . . 53
4.7 IETF specifications related to TCP’s congestion control . . . . . . . . . . . . . 57
4.8 Traces of CUBIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xi



xii List of Figures

4.9 Traces of Compound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.10 Classification of Internet applications . . . . . . . . . . . . . . . . . . . . . . 64
4.11 Principle operation of re-ECN . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.12 Illustration of a flow startup and a flow restart . . . . . . . . . . . . . . . . . . 70
4.13 Scope of fast startup congestion control . . . . . . . . . . . . . . . . . . . . . 71
4.14 Classification of applications that benefit from fast startup schemes . . . . . . . 73
4.15 Cross-layer signaling of application and network characteristics . . . . . . . . 73
4.16 Overview of the design space of flow startup mechanisms . . . . . . . . . . . . 75
4.17 Main phases of a fast startup mechanism . . . . . . . . . . . . . . . . . . . . . 76
4.18 Modified Jump-Start with upper bounds for data rate and outstanding data . . . 80
4.19 Initial rate of Jump-Start in the workload traces . . . . . . . . . . . . . . . . . 80
4.20 Quick-Start signaling during TCP connection setup . . . . . . . . . . . . . . . 83
4.21 New TCP functions required by Quick-Start . . . . . . . . . . . . . . . . . . . 84
4.22 New IP functions required by Quick-Start . . . . . . . . . . . . . . . . . . . . 84
4.23 Classification of different approval control algorithms . . . . . . . . . . . . . . 86
4.24 Illustration of the Quick-Start approval control and recent request storage . . . 87
4.25 Quick-Start approval control by the “target algorithm” . . . . . . . . . . . . . 89
4.26 Illustration of the approval control by the “fair algorithm” . . . . . . . . . . . . 90
4.27 RTT estimation method for Quick-Start . . . . . . . . . . . . . . . . . . . . . 90
4.28 Operation of XCP and RCP with a new congestion header . . . . . . . . . . . 93

5.1 Explicit fast startup control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2 Implicit fast startup control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3 Querying fast startup parameters from a network information service . . . . . . 105
5.4 Using signaling in order to obtain a rate recommendation . . . . . . . . . . . . 105
5.5 Explicit application interface example . . . . . . . . . . . . . . . . . . . . . . 107
5.6 Early activation of Quick-Start . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.7 Late activation of Quick-Start . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.8 Example for the manual command line configuration of the interface capacity . 108
5.9 Illustration of the difference of congestion control vs. flow control . . . . . . . 109
5.10 Illustration of receive window auto-tuning that assumes a Slow-Start . . . . . . 109
5.11 Example for the receive window auto-tuning used by Linux . . . . . . . . . . . 110
5.12 Illustration of the interaction between a fast startup and flow control . . . . . . 110
5.13 Message sequence chart of the workaround to prevent interactions . . . . . . . 112
5.14 Explanation why the RWND could be ignored during the flow startup . . . . . 113
5.15 Rate pacing with a constant timer granularity . . . . . . . . . . . . . . . . . . 114
5.16 Simplified Jump-Start sender state engine . . . . . . . . . . . . . . . . . . . . 115
5.17 Simplified Quick-Start sender state engine . . . . . . . . . . . . . . . . . . . . 115
5.18 Illustration of the Quick-Start TCP implementation in the Linux network stack . 116
5.19 Illustration of a Quick-Start implementation in a network processor . . . . . . . 117

6.1 Workflow of simulations with real network stack code . . . . . . . . . . . . . . 122
6.2 Dumb-bell simulation topology with a central bottleneck . . . . . . . . . . . . 122
6.3 Alternative dumb-bell simulation topology with different RTTs . . . . . . . . . 122
6.4 Quick-Start dispatcher in the “Wireshark” tool that displays traces . . . . . . . 125
6.5 Experimental lab setup with several computers . . . . . . . . . . . . . . . . . 125
6.6 Illustration of the experimental path used in some experiments . . . . . . . . . 125
6.7 Setup of the validation scenario that studies the response function . . . . . . . 126



List of Figures xiii

6.8 Setup of the validation scenario for Head-of-Line blocking . . . . . . . . . . . 126
6.9 Simulated Reno response functions vs. models and measurements . . . . . . . 127
6.10 Simulated CUBIC response functions vs. models and measurements . . . . . . 127
6.11 Simulated Compound response functions vs. models and measurements . . . . 128
6.12 Runtime performance comparison of the different simulation tools . . . . . . . 128
6.13 Comparison of the impact of HOL in simulation and measurements . . . . . . 130
6.14 Response time distribution resulting from HOL . . . . . . . . . . . . . . . . . 130
6.15 Fast startup and fast restart of different end-to-end mechanisms . . . . . . . . . 131
6.16 Fast startup and fast restart of different network-supported mechanisms . . . . 131
6.17 Behavior of competing flows using Slow-Start without and with RED . . . . . 133
6.18 Behavior of competing flow using Jump-Start or Mega-Start . . . . . . . . . . 133
6.19 Behavior of competing flows using Quick-Start with limited buffer . . . . . . . 134
6.20 Behavior of competing flows using XCP or RCP with unlimited buffer . . . . . 134
6.21 Client-server communication with early QS activation . . . . . . . . . . . . . . 135
6.22 Quick-Start testbed with different router implementations . . . . . . . . . . . . 135
6.23 Quick-Start with different SST adaptation strategies on a 10Mbit/s path . . . . 136
6.24 Quick-Start with different SST adaptation strategies on a 100Mbit/s path . . . . 136
6.25 Quick-Start on an emulated path with several routers without cross-traffic . . . 137
6.26 Quick-Start on an emulated path with several routers with cross-traffic . . . . . 137
6.27 Quick-Start approval control with the target algorithm using the peak or EWMA

rate estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.28 Quick-Start approval control with the fair or optimistic algorithm in combina-

tion with the peak rate estimator . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.29 Quick-Start approval control load test . . . . . . . . . . . . . . . . . . . . . . 139
6.30 Efficiency of different approval control algorithms . . . . . . . . . . . . . . . . 140
6.31 Fairness of different approval control algorithms . . . . . . . . . . . . . . . . . 140
6.32 Simplified path model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.33 Fast startup with rate pacing . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.34 Benefit of Jump-Start as a function of the transfer size . . . . . . . . . . . . . . 145
6.35 Benefit of other end-to-end schemes as a function of the transfer size . . . . . . 145
6.36 Benefit of Quick-Start as a function of the transfer size . . . . . . . . . . . . . 145
6.37 Benefit of network-controlled schemes as a function of the transfer size . . . . 145
6.38 Relative performance improvement of Jump-Start as a function of the RTT . . . 147
6.39 Relative performance improvement of Quick-Start as a function of the RTT . . 147
6.40 Benefit of selected schemes for higher path capacities . . . . . . . . . . . . . . 147
6.41 Measured speedup on a real 1Gbit/s path with different QS request rates . . . . 147
6.42 Impact of an increased load on Jump-Start . . . . . . . . . . . . . . . . . . . . 149
6.43 Impact of an increased load on other end-to-end schemes . . . . . . . . . . . . 149
6.44 Impact of an increased load on Quick-Start . . . . . . . . . . . . . . . . . . . 150
6.45 Impact of an increased load on XCP/RCP . . . . . . . . . . . . . . . . . . . . 150
6.46 Load dependency of different QS approval control algorithms . . . . . . . . . . 150
6.47 Benefit of activating Quick-Start only for larger transfers . . . . . . . . . . . . 150
6.48 Comparison of the measured page download times for one user . . . . . . . . . 153
6.49 Measurement of the impact of an increased load . . . . . . . . . . . . . . . . . 153
6.50 Distribution of the epoch time duration for end-to-end fast startups . . . . . . . 154
6.51 Distribution of the epoch time duration for network-supported fast startups . . . 154
6.52 Breakdown of the performance depending on transfer sizes (load 6%) . . . . . 155



xiv List of Figures

6.53 Breakdown of the performance depending on transfer sizes (load 35%) . . . . . 155
6.54 Speedup vs. packet loss for end-to-end schemes . . . . . . . . . . . . . . . . . 156
6.55 Speedup vs. packet loss for network-supported schemes . . . . . . . . . . . . . 156
6.56 Influence of the buffer size on end-to-end schemes (load 35%) . . . . . . . . . 157
6.57 Influence of the buffer size on Quick-Start (load of 35%) . . . . . . . . . . . . 157
6.58 Mixed usage of default and end-to-end fast startup congestion control . . . . . 159
6.59 Mixed usage of default and Quick-Start congestion control . . . . . . . . . . . 159
6.60 Impact of capacity estimation errors on Quick-Start . . . . . . . . . . . . . . . 161
6.61 Impact of capacity estimation errors on XCP and RCP . . . . . . . . . . . . . 161
6.62 Impact of Quick-Start capacity overgranting over the experimental path . . . . 162
6.63 Server-side processing effort in the Linux stack obtained by kernel profiling . . 162
6.64 Setup of the load test for Quick-Start routers . . . . . . . . . . . . . . . . . . . 164
6.65 Delay distribution of packets through a router under load . . . . . . . . . . . . 164

7.1 HTTP-based signaling of response time requirements . . . . . . . . . . . . . . 168
7.2 Web application with deadline compliance extensions . . . . . . . . . . . . . . 169
7.3 Screenshot of the enhanced “Firefox” Web browser . . . . . . . . . . . . . . . 169
7.4 Compliance to a signaled response time deadline for a single object . . . . . . 170
7.5 Influence of the deadline on the “OpenStreetMap” Web page loading time . . . 170
7.6 Client-server architecture of an interactive 3D visualization application . . . . . 173
7.7 Traces from a 3D visualization tool with Slow-Start vs. Jump-Start . . . . . . . 174
7.8 Traces from a 3D visualization tool with Slow-Start vs. Quick-Start . . . . . . 174

8.1 Classification of the congestion control mechanisms considered in this work . . 176



List of tables

2.1 Comparison of the service classes defined by IETF, IEEE, and ITU-T . . . . . 16

3.1 Classification of network stack simulation approaches . . . . . . . . . . . . . . 40

4.1 Congestion control design space . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Design space of network-supported congestion control . . . . . . . . . . . . . 52
4.3 Classification and comparison of important TCP congestion control variants . . 61
4.4 Known characteristics of popular TCP stacks . . . . . . . . . . . . . . . . . . 65
4.5 General transport protocol design space . . . . . . . . . . . . . . . . . . . . . 69
4.6 Arguments for and against fast startup congestion control . . . . . . . . . . . . 72
4.7 Comparison of selected end-to-end Slow-Start enhancements . . . . . . . . . . 76
4.8 Comparison of selected fast startup TCP enhancements . . . . . . . . . . . . . 92
4.9 Comparison of network-supported congestion control schemes . . . . . . . . . 97
4.10 Reported implementations of network-supported congestion control schemes . 101

5.1 Proposed fast startup application interface extensions . . . . . . . . . . . . . . 106
5.2 Comparison of the implementation complexity of fast startup schemes . . . . . 116

6.1 Response time equations for different startup schemes . . . . . . . . . . . . . . 144
6.2 Important parameters of the used Web workload models . . . . . . . . . . . . . 152
6.3 Consequences of false capacity assumptions in network components . . . . . . 160
6.4 Quick-Start implementation performance characteristics . . . . . . . . . . . . 165

8.1 Summary of the properties of fast startup schemes . . . . . . . . . . . . . . . . 177

xv





Abbreviations and symbols

Abbreviations

3D Three-dimensional 167

3GPP 3rd Generation Partnership Project 17

AAA Authentication, Authorization, Accounting 16

ABR Available Bit Rate 96

ADSL Asymmetric Digital Subscriber Line 8

AIMD Additive Increase Multiplicative Decrease 50

AJAX Asynchronous JavaScript and XML 25

ALG Application Level Gateway 12

API Application Programming Interface 25

AQM Active Queue Management 59

AS Application Server 18

ASIC Application-Specific Integrated Circuit 117

ATM Asynchronous Transfer Mode 96

BDP Bandwidth-Delay Product 8

BGP Border Gateway Protocol 13

BSD Berkeley Software Distribution 40

BTC Bulk Transfer Capacity 45

CA Congestion Avoidance 56

CCDF Complementary Cumulative Distribution Function 38

CCID Congestion Control Identifier 14

xvii



xviii Abbreviations

CDN Content Delivery Network 31

CPU Central Processing Unit 117

CSCF Call Session Control Function 18

CWND Congestion Window 50

DBMS Database Management System 30

DCCP Datagram Congestion Control Protocol 14

DNS Domain Name System 14

DoS Denial-of-Service 19

DPI Deep Packet Inspection 17

DSCP DiffServ Code Point 16

DUT Device Under Test 36

ECN Explicit Congestion Notification 59

ERP Enterprise Resource Planning 26

ETSI European Telecommunications Standards Institute 17

EWMA Exponentially Weighted Moving Average 86

FCFS First Come First Served 10

FIFO First In First Out 10

FPGA Field Programmable Gate Array 101

GUI Graphic User Interface 24

HOL Head-of-Line Blocking 74

HSS Home Subscription Server 18

HTML Hypertext Markup Language 24

HTTP Hypertext Transfer Protocol 14

IAT Inter-Arrival Time 36

ICMP Internet Control Message Protocol 14

IEEE Institute of Electrical and Electronics Engineers 16

IETF Internet Engineering Task Force 3

IKR Institut für Kommunikationsnetze und Rechnersysteme 40



Abbreviations xix

IMS IP Multimedia Subsystem 18

IP Internet Protocol 1

IPTV Internet Protocol Television 19

IS Initial-Start 78

ISO International Organization for Standardization 12

ISP Internet Service Provider 13

IT Information Technology 20

ITU International Telecommunications Union 16

JS Jump-Start 79

LAN Local Area Network 8

MAC Media Access Control 62

MAN Metropolitan Area Network 8

MBAC Measurement-Based Admission Control 54

MPLS Multiprotocol Label Switching 17

MS Mega-Start 82

MSS Maximum Segment Size 13

MTU Maximum Transmission Unit 13

NAT Network Address Translation 15

NGN Next Generation Network 4

NNI Network Network Interface 18

NS-2 Network Simulator version 2 40

NSC Network Simulation Cradle 41

NSIS Next Steps in Signaling 15

OAM Operations, Administration, and Management 11

OS Operating System 30

OSI Open Systems Interconnection 12

OSM OpenStreetMap 167

P2P Peer-to-Peer 14



xx Abbreviations

PC Personal Computer 124

PCN Pre-Congestion Notification 65

PDF Policy Decision Function 10

PEF Policy Enforcement Function 10

PEP Performance Enhancement Proxy 33

PHB Per Hop Behavior 16

PPS Packets Per Second 164

PS Processor Sharing 148

PSTN Public Switched Telephone Network 17

QoS Quality of Service 4

QS Quick-Start 82

RCP Rate Control Protocol 3

RED Random Early Detection 59

REST Representational State Transfer 25

RFC Request for Comment 5

RPC Remote Procedure Call 25

RSVP Resource Reservation Protocol 15

RTO Retransmission Timeout 56

RTT Round-Trip Time 1

RWND Receive Window 56

SACK Selective Acknowledgment 41

SBC Session Border Controller 19

SCTP Stream Control Transmission Protocol 14

SDL Specification and Description Language 35

SDP Session Description Protocol 19

SIP Session Initiation Protocol 18

SLA Service Level Agreement 9

SOAP Simple Object Access Protocol 25



Abbreviations xxi

SQL Structured Query Language 30

SS Slow-Start 56

SST Slow-Start Threshold 56

SURGE Scalable Uniform Resource Locator Reference Generator 36

T/TCP Transaction TCP 82

TCP Transmission Control Protocol 1

TFRC TCP Friendly Rate Control 64

TISPAN Telecommunications and Internet Converged Services and Protocols
for Advanced Networks 18

UDP User Datagram Protocol 13

UE User Equipment 18

UML Unified Modeling Language 35

UNI User Network Interface 18

URI Uniform Resource Identifier 14

VoIP Voice-over-IP 14

WAN Wide Area Network 8

WWW World Wide Web 1

XCP eXplicit Control Protocol 3

XML Extensible Markup Language 25



xxii Symbols

Symbols

A Routing matrix 46

aQS Unused bandwidth available for Quick-Start 88

aRCP Feedback calculated by the RCP scheme 95

aXCP Feedback calculated by the XCP scheme 94

B Buffer size (in packets) 59

b Instantaneous queue length 95

bpersist Persistent queue length 94

BTC Bulk Transfer Capacity 45

c Assumed link capacity 88

d Measured Round-Trip Time 58

davg Average Round-Trip Time 94

dmax Maximum Round-Trip Time 62

E Epoch in a connection vector of the form (ai,bi, ti) or (ai, ta,i,bi, tb,i) 37

F(·) Distribution function 183

f (·) Probability density function, or placeholder for a function 46

FI Fairness index 48

G Throughput 45

h Link price function 46

H Entry in a ring buffer for storage of information 88

HZ Interrupt frequency of the operating system (e. g., Linux) 114

i, j,k Index variables 24

Kdata Upper limit on the amount of data played out by the Jump-Start scheme 81

kpareto Location parameter of the pareto distribution 183

Krate Upper limit on the initial sending rate used by the Jump-Start scheme 81

Kpareto Maximum value of the truncated pareto distribution 183

L Maximum Segment Size 57

M Accumulated amount of data tranfered in Slow-Start 142



Symbols xxiii

m Mean value 148

MTU Maximum Transmission Unit 57

n Number of entities 48

Nchunk Chunk size during rate pacing 115

Nhops Number of hops on a path 45

Nhosts Number of hosts (either clients or servers) 123

Npacing Number of segments sent during the rate pacing phase 80

Npeak Number of samples used by the peak estimator 86

Nqueued Number of queued segments during Head-of-Line blocking 184

Nrtx Number of segments that are retransmitted after the rate pacing phase 80

Ntimer Number of timers during a rate pacing phase 115

p Link price 46

p Packet loss probability 58

papprov Quick-Start request approval probability 151

q Aggregated link price 46

Q Initial sending rate at transport layer 81

q Initial sending rate at network layer 83

qapproved Granted rate of a Quick-Start approval control 88

qfair Rate determined by a Quick-Start approval control (fair algorithm) 90

qoptimistic Rate determined by a Quick-Start approval control (optimistic algorithm) 89

Qreq Requested sending rate at transport layer 81

qreq Requested sending rate at network layer 83

qtarget Rate determined by a Quick-Start approval control (target algorithm) 88

r Link capacity vector 46

r Link or path capacity 45

R TCP path capacity 141

rA Link capacity of the access links in the dumb-bell topology 123

rC Link capacity of the central bottleneck in the dumb-bell topology 123



xxiv Symbols

s Application data to be transfered 81

t Time 61

t0 Start time 90

Tdet Packet loss detection time 184

Tepoch Duration of an epoch 154

TFCT Flow completion time 26

To Duration of the retransmission timeout 58

Tpage Page download time 26

Treact Reaction time 26

Tresp Response time 26

Tresp,min Minimum response time 148

Tround Duration of a Slow-Start round 142

Ttarget Response time target 168

Ttrans Transaction time 26

Thol Mean waiting time due to Head-of-Line blocking 184

u Used bandwidth 86

U Utility function of an application 24

v Available bandwidth 45

V Connection vector consisting of epochs 37

w Initial Congestion Window 56, 110

W Congestion Window 50

Wmax Maximum Congestion Window 58

Wplayout Maximum Congestion Window during the rate pacing phase 115

Wqs Quick-Start Congestion Window 83

Wrecov Congestion Window after error recovery 80

x Sending rate vector 46

x Sending or data rate 24

y Link rate vector 46



Symbols xxv

Z Ramdom variable 183

z Variable 183

αewma Weight factor of the exponential moving average estimator 86

αincr Window increase factor 50

αpareto Shape factor of the pareto distribution 38

αRCP Weight factor of the RCP scheme 95

αXCP Weight factor of the XCP scheme 94

βdecr Window decrease factor 50

βRCP Weight factor of the RCP scheme 95

βXCP Weight factor of the XCP scheme 94

γ Slow-Start acceleration factor 142

Γ Data transfer time 142

∆ Control interval duration 86

δ Inter-Arrival Time 129

ε Processing time overhead 129

η Number of segments acknowledged in one received ACK 58

θ Threshold up to which a link is considered underutilized 88

Θ Acceptable unfairness threshold of a Quick-Start approval control 90

κ Index of the last round in a flow startup 142

L Set of links 46

µlognorm Parameter of the log-normal distribution 184

ν Index of the last round in a flow startup 142

Ξ Maximum bandwidth granted by the approval control per second 139

ρ Utilization 45

S Set of sources 46

σlognorm Parameter of the lognormal distribution 184

τ Minimum Round-Trip Time 58



xxvi Symbols

χ Activation threshold for Quick-Start 91

ψ Index of the last round in a flow startup that is completely used 142

Ω Size of a ring buffer for the storage of information 87

Ωopt Optimal size of a ring buffer for the storage of information 88

ω Waiting time of a segment 184

Nomenclature:
x denotes a scalar, X a set, x a vector or a matrix, and x(·) a function
Data rates offered by a link layer techology are generally refered to by a lower case symbol,
whereas data rates at transport layer are identified by symbols in capital letters.
This document uses the symbols “KiB” for kibibyte (1024B) and “Mi” for mebibyte (1024 ·
1024B), which are standardized by the Institute of Electrical and Electronics Engineers (IEEE).



1 Introduction

1.1 The Internet and its future evolution

The Internet has revolutionized the computer and communications world. Originating from an
academic and military community, the Internet was never foreseen to become the ubiquitous and
commercial global network that it is today. And it is still evolving rapidly. The most important
Internet service is the World Wide Web (WWW), which is changing from a simple client-server
browsing infrastructure to a complex medium for multimedia content, personalized services
(Web 2.0), and Rich Internet Applications that basically behave like locally installed software.
Therefore, fast Internet access is a crucial prerequisite for the future information society.

Computer networks traditionally use connectionless store-and-forward packet switching with-
out resource reservation. As a consequence, congestion, i. e., temporary overload of network
components, is an inevitable effect. The Internet globally interconnects computer networks by
the Internet Protocol (IP) and thus has to cope with such overload situations. Congestion control
mechanisms detect and react to congestion in order to minimize its impact. Congestion control
is an integral part of the Transmission Control Protocol (TCP), which is the default transport
protocol for reliable, elastic traffic in the Internet. TCP is used by most Internet applications.

Since TCP is a pure end-to-end protocol, the congestion control mechanisms must continu-
ously probe the available bandwidth on the path in order to adapt the sending rate. These
algorithms are challenged by paths with a large available bandwidth and/or delay. In a net-
work spanning the globe there are inherent minimum communication delays, in particular if
the communication path traverses broadband long-distance links or cellular networks. If the
Round-Trip Time (RTT) is not negligible, TCP’s algorithms have a significant influence on the
user-perceived performance of networked applications.

Over the years, more and more efficient congestion control methods have been developed and
integrated into TCP. However, after the connection setup or after long idle periods it is difficult
to determine an appropriate sending rate due to lack of information about the path. Tradi-
tionally, the TCP congestion control uses the Slow-Start heuristic in these cases, but this is
a time-consuming process that may require many RTTs until an appropriate sending rate is
reached. This gap between increasing bandwidths but constant delays is particularly critical for
emerging broadband interactive applications, which are delay-sensitive applications that inter-
actively exchange potentially large amounts of data. They are most likely to be realized as Web
applications with direct user interactions and a client-server system architecture.

The existing TCP congestion control methods have not been designed for such latency-sensitive
applications. The Slow-Start can significantly delay data delivery and thus reduce the utility
of broadband interactive applications. The flow startup is also one of only few situations in
which even advanced TCP congestion control algorithms have a suboptimal performance and

1



2 Chapter 1. Introduction

there is still room for improvement. This has motivated the design of new congestion control
mechanisms that are optimized for interactive usage. This new class of algorithms and protocols
can be summarized by the term fast startup congestion control. Potential solutions range from
incremental TCP enhancements to completely new congestion control frameworks that would
require a revision of the Internet architecture. Yet, designing a new flow startup scheme is a
difficult problem, and several open research issues have not been completely solved so far.

1.2 Problem statement and contributions of this thesis

This thesis motivates the use of fast startup congestion control, discusses the complete design
space, proposes and compares algorithms, studies implementation issues in network stacks, and
evaluates the benefits and implications of its usage in broadband interactive applications.
Fast startups are a new mechanism and currently not widely used in the Internet. This raises the
question: How could fast startups be realized, and what would be the consequences? Answer-
ing this question is non-trivial and has to address three fundamental challenges:

1. Detection of space capacity: Congestion control must estimate the available bandwidth
on the path through the network. No method can instantaneously determine this informa-
tion. A congestion control scheme can either use probing, but this approach inherently
risks congestion. Alternatively, there could be signaling between the endsystems and the
network. While signaling along the path is a well-known mechanism to realize Quality
of Service, new lightweight signaling could also enhance the congestion control without
requiring per-flow state in the network. Both methods have advantages and drawbacks,
which have hardly been comprehensively compared so far.

2. Trade-off between performance improvement and risk of congestion: Any flow startup
scheme can cause congestion. Even if it was possible to determine the load of all net-
work components on a path, this information would already be out-dated once it would
reach the source of a flow. Whatever flow startup scheme is used, the load situation on
a resource may have completely changed when the flow indeed arrives. As a result, one
has to weight the aggressiveness of a startup scheme against the increased risk of conges-
tion. The current Internet design philosophy is to be conservative, but it is more and more
argued that a more aggressive scheme could be feasible.

3. Internet performance evaluation challenges: The Internet and its protocols are very het-
erogeneous and complex. This makes it extremely difficult to forecast the impact of new
protocol mechanisms before they actually get deployed.

This thesis addresses these challenges as follows: First, different classes of fast startup con-
gestion control mechanisms are analyzed and compared. They include both existing and new
end-to-end solutions that have been designed or enhanced by the author, as well as network-
supported schemes, which use additional signaling to overcome the lack of information. Sec-
ond, extensive experiments have been performed in order to study the trade-off between speedup
and packet loss. A specific focus is the transaction-oriented communication of Web-like appli-
cations that could benefit most from new flow startup schemes. Third, the performance evalu-
ation is based on a mix of analytical models, simulations, and some real-world measurements.
Instead of simplified models, this thesis uses simulations with real network stack code. Most
considered protocol mechanisms have been implemented in real network stacks in order to ob-
tain realistic results. Also, a significant effort is spent on the validation of the simulation results
against testbed measurements.



1.2 Problem statement and contributions of this thesis 3

This thesis is the first comparative study of new end-to-end and network-supported fast startup
congestion control schemes and includes the following novel contributions:

- The author has designed new or enhanced end-to-end fast startup algorithms for TCP. As
an alternative, the Quick-Start extension is considered, which is an experimental network-
supported fast startup scheme specified by the Internet Engineering Task Force (IETF).
The author proposes several new algorithms for Quick-Start. In particular, this thesis
shows that the resource management in routers can either follow the oversubscription or
the bandwidth pooling principle, and both solutions are compared. The novel approval
control algorithms outperform existing proposals, in particular with respect to fairness.

- This thesis studies the required TCP enhancements with new implementations in real
network stacks. In particular, the first reported full implementation of the Quick-Start
TCP extension has been realized as a part of this work. The author has also first published
results on the complexity and implementation challenges of this as well as other fast
startup mechanisms. For instance, the author has shown that there are interactions of
fast startup mechanisms and the TCP flow control and proposes a backward-compatible
solution to this problem, which has been overlooked by all related work.

- The implications of network-supported congestion control are comprehensively discussed,
including the proposal of a precise terminology and a complete analysis of open issues.
This thesis compares Quick-Start TCP with two other well-known network-supported
congestion control schemes: eXplicit Control Protocol (XCP) and Rate Control Proto-
col (RCP). Despite significant research efforts in the context of XCP and RCP, the simi-
larities and differences to Quick-Start are not addressed by any other published work.

- The performance assessment of different solutions compares both end-to-end and net-
work supported schemes and is based on new analytical models, simulation results, and
measurement data. Thereby, this study is unique. Both for Quick-Start TCP as well as for
other end-to-end fast startup schemes there are no other published results that have been
obtained with a full-featured TCP implementation under realistic constraints. The exper-
iments in this work are the first ones that use bi-directional, application-limited transfers
that are typical for client-server applications.

- Several fast startup variants require new interfaces between applications and the transport
layer. Such interfaces are designed in this thesis, and their usage is demonstrated by
proof-of-concept experiments with real applications.

Internet research is not a pure academic topic and must also consider real-world constraints
and non-technical issues. This thesis bridges the gap between fundamental theoretical work
and practical relevance. An important, yet not entirely scientific contribution of this work is
the proof-of-concept that fast startup congestion control is indeed feasible with limited imple-
mentation complexity. The considered fast startup TCP extensions have been prototyped in real
network stacks and have been thoroughly tested under realistic constraints. It is good news and
an important, albeit not entirely scientifically interesting result that only few hard problems have
been identified – and solved. These findings have also contributed to the ongoing discussions
on the future evolution of Internet transport protocols.

The main results of this work have been published in the several peer-reviewed papers [199,
203, 204, 205, 207] as well as in other closely related publications of the author [198, 200, 202,
206]. The author is also a main contributor to several other peer-reviewed papers [84, 181]
and a comprehensive survey document [172], which are all closely related to this thesis. Other



4 Chapter 1. Introduction

peer-reviewed publications broadly within the scope of this work include the references [195,
196, 162, 197, 238, 116]. The protocol implementations have partly been realized in student
projects [253, 223, 226, 180] under guidance of the author.

1.3 Thesis structure

This thesis deals with novel transport protocol mechanisms that are located on the boundary
between applications and the network. Fast startup congestion control cannot be discussed as
a pure transport layer problem only, but must be analyzed in the context of network and appli-
cation architectures. This thesis addresses both the network and the application implications of
fast startup congestion control and is therefore structured in the following chapters:

Chapter 2 introduces IP-based network architectures. Both the Internet as well as other IP-
based network architectures are considered. As congestion control has both similarities and
fundamental difference to network Quality of Service (QoS) mechanisms, a specific focus of
this chapter is the potential realization of such traffic control mechanisms, for instance in Next
Generation Networks (NGNs). But this chapter also argues why the future Internet evolution
will not necessarily be based on NGN technologies, and it outlines how enhanced congestion
control mechanisms could continue to be an alternative in the Future Internet.

Chapter 3 deals with the performance of interactive applications, in particular in the WWW.
It shows why responsiveness is a key user requirement, in particular for broadband interactive
applications. The chapter reviews the state-of-the-art techniques for the realization of delay-
sensitive interactive applications and shows that all known techniques have shortcomings as
well, which could be overcome by fast startup congestion control. A further focus is the evalu-
ation methodology for interactive applications. Suitable modeling techniques both for network
and application aspects are reviewed. Finally, this chapter motivates and introduces the method
of simulation with real network stack code, which is used throughout this work.

The purpose of Chapter 4 is to comprehensively discuss fast startup congestion control mecha-
nisms. It starts by an introduction of the fundamental concepts of congestion control and then
surveys the current realization in the Internet, which is a multi-faceted topic. The major part of
the chapter presents the design space of fast startup congestion control and reviews the known
proposals. The survey starts by end-to-end modifications of the Slow-Start. In addition to just
increasing the initial window, a promising approach is the Jump-Start scheme that uses rate
pacing with a high initial sending rate that depends on the application sending pattern. Next,
different network supported approaches are analyzed. A specific focus is the Quick-Start TCP
extension, which queries the routers along the path in order to start a data transfer with a high
initial sending rate. As the algorithms used by the routers have a crucial impact on the perfor-
mance, the published algorithms are analyzed and new extensions are proposed. The author also
suggests a new fast startup scheme that combines the principles of Jump-Start and Quick-Start.
Finally, other related clean-slate frameworks are presented, such as XCP and RCP. The chapter
concludes with a discussion of the open issues of such network support.

Chapter 5 discusses realization aspects of fast startup congestion control, which are hardly
addressed by other related work. The first considered aspect is the design of new interfaces
between applications and the network stack, which could for instance be used to activate a fast
startup. Second, it is shown that fast startup congestion control may require modifications in
the TCP flow control and in the receive buffer allocation strategies. And third, the realization



1.3 Thesis structure 5

complexity of end-to-end and network-supported schemes is compared. Both classes of fast
startup schemes have been implemented in the network stack of the Linux operating system,
which is a state-of-the-art TCP/IP stack that is widely used in experimental research. The
results confirm that end-to-end fast startup schemes only require small extensions in a state-
of-the-art network stack, even if they use rate-pacing. Furthermore, it is demonstrated that
network-supported mechanism such as Quick-Start can also be implemented with relatively
small overhead both in endsystems and routers. Finally, this chapter briefly summarizes the
findings of another case study with a hardware-supported Quick-Start router implementation,
which has proved that the processing of the signaling is possible with full line speed in high-
speed network components.
In Chapter 6, the benefits and risks of several fast startup congestion control alternatives are
extensively studied by analytical analysis, simulation studies, and testbed measurements. The
author has placed emphasis on the validation of the simulation results by comparison to ana-
lytical calculations and testbed measurements, as far as this is possible. In order to study the
usefulness of fast startup congestion control, experiments are performed in different application
and network scenarios. On the one hand, the results confirm previously known results by more
realistic experiments: Fast startup congestion control can significantly reduce the transfer times
of mid-sized data transfers, in particular if the path has a large available bandwidth and if the
RTT is larger than 100ms. The potential speedup depends on the realization of the fast startup,
but it can easily be of the order of several hundred percent. The benefit also depends very much
on the application workload characteristics, and is not necessarily very large for existing Web
applications. On the other hand, there are several new findings: The experiments show that the
performance of Quick-Start depends on the interplay between the algorithms in the endsystems
and in the routers. In order to be useful, intelligent activation and usage strategies are required.
Furthermore, it is shown that other network-supported schemes such as XCP or RCP are much
less robust than Quick-Start and crucially depend on accurate information about link capaci-
ties. Finally, the processing overhead in the developed implementations is measured. The data
proves that Quick-Start is an uncomplicated protocol that could be processed even at line speeds
of multiple Gbit/s.
Chapter 7 presents two short applicability case studies: It presents a new concept how fast
startup control could be used in order to meet given application performance objectives, such
as response time limits. Furthermore, it provides empirical evidence that interactive 3D vi-
sualization applications are one promising use case of fast startup congestion control. Such
applications are one example of broadband interactive applications. This claim is backed by ex-
periments with a prototypical 3D visualization application that confirm significant performance
benefits of fast startup schemes compared to the default TCP congestion control.
Finally, Chapter 8 concludes this thesis and summarizes the major results. It also presents an
outlook on potential work items beyond this thesis. Two appendixes complement the document
by some additional mathematical background material and a list of configuration parameters
that are used in the experiments.
This thesis addresses functional and performance aspects of core Internet protocols, and is thus
related to many standardization documents and Internet research efforts. The literature refer-
ences have been strictly limited to either ground-breaking, fundamental publications, or recent
related work. Standard documents, such as Request for Comments (RFCs), are only cited if they
are of particular importance to this work.





2 Communication network architectures

This chapter introduces the architectures and protocols of packet-switched communication net-
works. After a review of the fundamental concepts, the Internet as well as IP-based telecommu-
nication network architectures are presented. A specific focus is the realization of the resource
management. Furthermore, the expected future evolution of the Internet is addressed.

2.1 Packet networks

2.1.1 Fundamentals and terminology

Modern communication technologies use the principle of packet switching. In packet-switched
networks, packets are multiplexed in network elements and processed by store and forward
mechanisms. A network consists of nodes, links, and paths. Nodes can be defined as network
components where the input and output links can have different characteristics. A link is a
connection between two of these network nodes. A path is defined as a series of links connecting
a sequence of nodes.

Protocols define the behavior required by any entity participating in the exchange of informa-
tion. Communication in packet switched networks can be connection oriented or connection-
less. A connection can be defined as a logical relationship between two or more endpoints
that exchange data, and it is also known as virtual channel connection. A connection can be
either uni-directional or bi-directional, and either point-to-point or point-to-multipoint. A flow
denotes a unidirectional sequence of packets, and a session is an abstract temporary association
between entities. In general, a session can include several connections, and each bi-directional
connection results in at least two flows.

Synchronization is needed to keep the state in different nodes consistent. Signaling is de-
fined as the exchange of information for control. Signaling may be realized in-band or out-of-
band [140]. In the former case, signaling data is part of the associated data traffic and typically
transported in header fields of the data packets. In contrast, out-of-band signaling messages are
separated from the associated data traffic. Out-of-band signaling can be on-path or off-path. In
the on-path case (also labeled data-coupled or path-coupled signaling), signaling messages take
the same path like data packets. Off-path signaling (also data-decoupled or path-decoupled sig-
naling) refers to signaling messages that are routed through nodes that are not assumed to be on
the data path. Out-of-band signaling typically uses different protocols for the exchange of data
and control messages. There is a fundamental trade-off between putting control information in
the packet and associating more state information with the protocol [54]. The former approach
consumes more bandwidth, whereas the latter one requires more memory in network nodes.
The state kept in entities can be either soft state or hard state. Hard state is explicitly created
and removed by messages. Soft state is non-permanent and expires unless it is refreshed.

7



8 Chapter 2. Communication network architectures

Delay

Bandwidth

Product (BDP)

1B 10 B 100 B 1 kB 10 kB 100 kB 1 MB

10 MB

100 MB

1 GB

analog

modem

PSTN

Legend:

ADSL: Asymmetric Digital Subscriber Line

GPRS: General Packet Radio Service

HSPA: High Speed Packet Access

ISDN: Integrated Services Digital Network

LTE: 3GPP Long Term Evolution

PSTN: Public Switched Telephone Network

UMTS: Universal Mobile Telecommunications System

VDSL: Very High Speed Digital Subscriber Line

WLAN: Wireless Local Area Network

EDGE: Enhanced Data Rates for GSM Evolution

100 kbit/s 1 Mbit/s 10 Mbit/s 100 Mbit/s 1 Gbit/s 10 Gbit/s

1 ms

10 ms

100 ms

1 s

10 kbit/s

ISDN

Cable modem

WLAN

Ethernet LAN

HSPA

UMTS

Satellite link

Link capacity

Optical WAN link

LTE

Optical MAN link

100   sµ

ADSL/VDSL

GPRS/EDGE

One−way delay

Figure 2.1: Characteristics of selected packet network technologies

One of the most fundamental design patterns in the architecture of packet networks is layering.
A protocol layer provides an abstraction, i. e., it hides the complexity of the layer below, and it
provides a service to the layer above. The mapping of protocol functions to layers is defined by
the network architecture, which is a set of high-level design principles that guides the technical
design of the network, especially the engineering of its protocols and algorithms.

2.1.2 Packet network technologies

A large variety of network technologies can transport packets in Local Area Networks (LANs),
Metropolitan Area Networks (MANs), and Wide Area Networks (WANs). Figure 2.1 gives an
overview of the characteristics of today’s important packet transport technologies, both in fixed
and in wireless networks. Circuit-switched time-division multiplex technologies have been
omitted if they are not designed for packet transport.
There are several major broadband packet transport technologies: Ethernet is the dominating
LAN technology, and its frame format is increasingly also used in MANs and WANs. Broad-
band fixed access networks mostly use Asymmetric Digital Subscriber Line (ADSL) or cable
modem technology. Due to a significant technological progress of radio technology there are
also more and more wireless networks that allow high-speed packet transfers.
In this thesis, the most important characteristics of packet network technologies are the capacity
that they offer, their delay, and potential fluctuations of both metrics. The order of magnitude of
the capacity and the one-way delay is illustrated in Figure 2.1. Many access network technolo-
gies have an inherent minimum latency that results for instance from transmission encoding.
Third-generation cellular networks have a minimum one-way delay of the order of 100ms. In
optical WANs, the one-way delay mainly depends on the path length and is about 1ms per
200km fiber length. In state-of-the-art network components, the processing delays can often
be neglected [16]. For a given path, an important further metric is the Bandwidth-Delay Prod-
uct (BDP), which is the available bandwidth multiplied by the Round-Trip Time. The RTT is
the delay between the sending of a packet and the reception of a corresponding response. It
consists of the sum of the two one-way packet delays and the processing times in both endsys-
tems. Figure 2.1 also shows the order of magnitude of the BDP. For instance, a path with an
available bandwidth of 1Gbit/s and an RTT of 200ms has a BDP of about 25MB.



2.1 Packet networks 9

OutputInput

Classifier Scheduler

Buffer management

Drop policy

Figure 2.2: QoS differentiation functions

Policy decision function

Policy enforcement function

Admission control

Traffic conditioning

Signaling

Data

Resource

reservation

Figure 2.3: QoS assurance functions

2.1.3 Performance and Quality of Service

Packet networks use the principle of statistical multiplexing. As a consequence, the service
provided by a packet network depends on many factors, and it may, or may not, meet the ex-
pectations of the users. Specific mechanisms can be used to improve the Quality of Service
of a network. Quality of Service (QoS) can be defined as the “collective effect of service per-
formance which determines the degree of satisfaction of a user of the service” [E.800]. This
definition highlights operational aspects and is rather vague. This thesis focuses on the quan-
titative performance aspects of communications QoS [G.1000] as a quality measure. The term
Quality of Service is therefore used as a synonym for the level of QoS offered by the service
provider [G.1000]. Quality of Service mechanisms refer to control functions that provide re-
source assurance and/or service differentiation as shown in Figure 2.2 and Figure 2.3.

A Service Level Agreement (SLA) is a contract between a customer and a provider of a ser-
vice. It contains both technical and non-technical service level specifications. An SLA defines
the service, performance metrics, acceptable and unacceptable service levels, liabilities, as well
as actions to be taken in specific circumstances, e. g., the compensation in case of SLA viola-
tion. A network SLA may specify QoS objectives and then requires deterministic or statistical
guarantees. In the latter case, guarantees are allowed to be violated in certain cases.

The simplest service level is best effort. It means that the network does its best to deliver data as
efficiently as possible, but it does not offer any guarantees. If there are enough resources, a best
effort service can satisfy all customers. The resource provisioning scheme that dimensions the
network according to the expected demand is called rightsizing or overprovisioning. However,
dimensioning alone cannot avoid that the demand temporarily exceeds the available resources
and that congestion occurs. Formal definitions of congestion are provided in Section 4.1.1.1.

Two different traffic management solutions deal with scarce network resources: Traffic con-
trol and congestion control. Traffic control refers to all network actions aiming to meet the
negotiated performance objectives and to allow the avoidance of congested situations, whereas
congestion control refers to all network actions to minimize the intensity, spread and duration
of congestion [Y.1221]. Both approaches are mostly orthogonal, since they can be used inde-
pendently, but there are interactions and similarities. The following sections introduce possible
network architectures for traffic control. Congestion control is comprehensively addressed in
Section 4, and the specific differences to traffic control are analyzed in Section 4.1.5.2.

2.1.4 Network Quality of Service mechanisms

QoS provisioning in packet networks requires a set of generic network mechanisms [Y.1291].
In the following, these fundamental architectural requirements are briefly introduced. For sim-



10 Chapter 2. Communication network architectures

QoS signaling

Session signaling

Data transport

PEF PEF PEF

PDF PDF

Interm. node Interm. node Interm. nodeEndsystem Endsystem

Control entity Control entity

(2)

(5)

(6)

(1)

(4)

(3)

PEF

PDF

PEF

PDF

PEF

PDF

EndsystemInterm. node Interm. nodeEndsystem Interm. node
(1)

(2) (4)(3) (5)

"Pull" model

"Push" model

Figure 2.4: Illustration of different QoS signaling architectures and their interaction with ses-
sion signaling. The typical steps of establishing a session are numbered.

plicity, this section only discusses unicast flows. The same principles can also be applied to
connections, sessions, or whole traffic aggregates. Corresponding surveys can be found in ref-
erences [62, 140, 24, 138], as well as in standard literature on packet networks (e. g., [95]).

The fundamental basis is the ability to differentiate between different QoS requirements (service
differentiation). The differentiation in network nodes requires mechanisms for classification,
marking, queue management, and scheduling. The principle node architecture is shown in
Figure 2.2. A classifier is an entity that selects and potentially also marks packets according
to defined rules. The queue management deals with packets that await processing. There are
different schemes that mainly differ in the criteria for dropping packets if the queue fills. The
most common strategy is drop tail (see also Section 4.2.2.2). A scheduler allocates the capacity
of a shared resource among multiple competing users. There are many different scheduling
disciplines: The First In First Out (FIFO) strategy, which is also known as First Come First
Served (FCFS), simply serves packets in the order of their arrival. More advanced scheduling
algorithms include Static Priority, (Weighted) Round Robin, and Weighted Fair Queueing. The
concept of service differentiation can be applied to individual flows, or to aggregates. In the
latter case, a service class represents a subset of the traffic that requires specific delay, loss,
and/or jitter characteristics from the network.

Service differentiation only offers relative guarantees, but no absolute guarantees, i. e., an iso-
lation of different traffic types. Absolute guarantees require four further mechanisms that are
depicted in Figure 2.3: Traffic conditioning, admission control, resource reservation, and sig-
naling. Traffic conditioning ensures that a flow adheres to its traffic profile and defined policies.
This Policy Enforcement Function (PEF) may include metering, policing, shaping, and packet
marking. When a new flow is set up, the admission control decides whether there are enough
resources available for the new flow, and if it complies to given polices. The admission control
is part of the Policy Decision Function (PDF). If the flow is admitted, the resource reservation
mechanism sets aside the required network resources.

Furthermore, a signaling mechanism is needed to establish, modify, and tear down reservations.
A reservation request has to provide a description of the traffic parameters and the desired



2.2 Internet 11

service parameters (traffic contract). Figure 2.4 shows that there are different alternatives for
realizing the QoS signaling: In the pull model an endsystem requests the required network re-
sources from the network. The request travels through the network node by node. In contrast, in
the push model, additional entities in the network manage the resources and issue QoS requests.
In combination with session signaling the push model requires less signaling because of simpler
authorization mechanisms [117].

The provisioning of QoS requires traffic engineering, i. e., dimensioning resources, configur-
ing components, and optimizing routing functions so that performance requirements can be
fulfilled. Resource dimensioning forms part of the long-term network planning and capacity
planing process. Further Operations, Administration, and Management (OAM) procedures are
required to negotiate and monitor SLAs.

2.2 Internet

2.2.1 Historical evolution

Many aspects of the Internet are coined by its historical evolution. The Internet developed
out of research efforts on packet networks that were performed by universities and the Defense
Research Projects Agency in the United States in the 1960s and 1970s [129]. By the mid-1970s,
early versions of the Transmission Control Protocol were developed for the “ARPANET” by
Cerf and Kahn [43]. The base TCP/IP protocol suite was deployed in 1983 and has remained
unchanged in many aspects since then. The Internet emerged out of the interconnection of more
and more packet networks. In the early 1990s, the World Wide Web (WWW) began to take
off, and the Internet became a global information infrastructure interconnecting many hundred
millions of endsystems and users.

In 1986, the Internet encountered a major crisis, the so-called “congestion collapse” [RFC 896].
Congested links resulted in long delays that caused timeouts and retransmissions, which made
the problem worse. By that time, TCP had flow control mechanisms only. There where discus-
sions to realize congestion control by feedback from the congested network components [54].
However, this would have meant to give up the connectionless model to some extent. In 1988,
Jacobson proposed a congestion control scheme to be inserted into TCP [98]. His solution was
easily deployable because it required changes in the TCP implementation only. As discussed in
Section 4.2, the principles of Jacobson’s congestion control are still in use today.

2.2.2 Design principles

The TCP/IP protocol suite has evolved over a period of 30 years through repeated design phases
and implementation and testing efforts. It still evolves. Internet standards are developed by the
Internet Engineering Task Force (IETF) and are published as Request For Comment (RFC).

From a retrospective view there have been several goals and design principles of the Internet
architecture and its protocols (adapted from [50]):

- Survivability/robustness, i. e., communication continues despite loss of networks or nodes
- Service generality, i. e., support of multiple types of communication services
- Accommodation of a variety of heterogeneous networks
- Distributed management of resources without central control



12 Chapter 2. Communication network architectures

Router EndsystemEndsystem

1

2

3

4
End−to−end transport

5−7

Hourglass model

Sockets
interface

Datagram
interface

Appl. level gatewayLayer

Physical

Link

Network

Transport

Link

Phy. Phy.

Link

Phy. Phy.

Link Link

Transport

Link

Network

Physical

ApplicationApplicationApplication Multimedia
...

TCP UDP

IP

WWW
E−mail

Fiber

Copper
Wireless

Figure 2.5: Illustration of the Internet protocol stack

The Internet has been designed as a connectionless packet switched network that interconnects
collaborating networks and administrative domains. Key design guidelines of the TCP/IP proto-
col suite are self-describing datagrams, layering, and the end-to-end principle of system design.
The end-to-end principle (or end-to-end argument) states that functions shall not be performed
by the communication system if they can “completely and correctly be implemented only with
the knowledge and help of the application standing at the end points of the communication
system” [188]. It is closely related to the fate-sharing principle, which mandates that “the in-
termediate packet switching nodes, or gateways, must not have any essential state information
about on-going connections” [50]. Furthermore, “end-to-end protocol design should not rely on
the maintenance of state (i. e., information about the state of the end-to-end communication) in-
side the network” [RFC 1958]. The Internet philosophy is to provide services at the endsystems,
whereas the network only realizes packet transport [RFC 1958].

2.2.3 Network architecture

The Internet protocol stack distinguishes five layers that are depicted in Figure 2.5:

1. The physical layer includes mechanisms required to transmit bits over a physical medium.
2. The link layer aggregates bits to frames and transmits the frames between network nodes.

Link layer protocols may also provide error correction and flow control.
3. The network layer (also called Internet layer or Internet Protocol layer or internetwork

layer) forwards packets through a network of links.
4. The transport layer manages the end-to-end transport of data.
5. The application layer consist of protocols for application-specific communication.

The Open Systems Interconnection (OSI) reference model [ISO 7498] developed by the Interna-
tional Organization for Standardization (ISO) uses in total seven layers. The application layer
in the Internet stack corresponds to the upper three OSI layers. However, these three layers can
hardly be mapped directly to the existing application protocol functionalities [54].
The Internet stack is often illustrated by the hourglass model as depicted in Figure 2.5, since the
network layer is a convergence layer over many heterogeneous link layer technologies, with a
large variety of applications being realized on top of it. End-to-end transport between applica-
tion instances is realized at the transport layer. In this thesis, the endpoints of a connection are
named endsystems in order to avoid the ambiguous term hosts. Interworking nodes that process
IP packets are labeled routers. Application Level Gateways (ALGs) transparently process trans-
port and/or application protocols. The term packet is used for network layer data units, whereas
segment refers to transport layer data units.



2.2 Internet 13

option(s)

IPMandatory IP

header fields

Mandatory TCP

header fields option(s)

TCP

IP version 4 header TCP header

max. 40 B20 B 20 B max. MSS

TCP payload

Maximum transmission unit (MTU)

Appl. data byte stream

Figure 2.6: Structure of a TCP segment encapsulated in an IP packet, including length indica-
tions. The shaded fields are optional.

The network layer requires only a simple interface to the link layer and just assumes that data-
grams can be transported. Network and transport layer are closely linked. The de facto standard
interface between transport and application layer is the sockets interface [1003.1]. This in-
terface originates from Unix operating systems and has later been adopted by other operating
systems as well. A socket is a special type of a file handle. There are two main transport ser-
vices: Unreliable datagram and reliable byte stream-oriented transport. The sockets interface
also separates the kernel space from the user space in many operating systems.

2.2.4 Protocols

In the following, the Internet protocols are briefly introduced as far as they are relevant for this
thesis. Further details can be found in computer network literature (e. g., [95]).

In the network layer, the Internet Protocol (IP) [RFC 791] layer offers an unreliable, connection-
less delivery service for variable-size packets. Routers forward IP packets according to routing
tables, which are either statically configured or dynamically learned from routing protocols. In
the Internet, inter-domain routing between Internet Service Providers (ISPs) is controlled by the
Border Gateway Protocol (BGP). The network interfaces are identified by IP addresses, which
are 32-bit numbers in IP version 4.

Traditionally, there have been two transport layer protocols in the Internet: The Transmission
Control Protocol (TCP) and the User Datagram Protocol (UDP). UDP offers connectionless,
unreliable transport of datagrams and is basically a multiplexing layer on top of IP.

The Transmission Control Protocol (TCP) is a connection-oriented, bidirectional, point-to-point
transport protocol with reliable, in-order data delivery. TCP transports a serial byte stream (a
“byte-pipe”) between applications and manages the recovery from erroneous, lost, or dupli-
cate segments. In the source, the byte stream is fragmented into appropriately sized segments
with a Maximum Segment Size (MSS) according to the Maximum Transmission Unit (MTU) of
the path. The resulting packets are passed to the IP layer and reassembled at the destination.
Figure 2.6 sketches the resulting structure of an application byte stream that is transported in
a TCP segment and encapsulated in an IP packet. The TCP header, as well as the IP header,
can be extended by header options. TCP options are frequently used, in particular during the
initial state synchronization by the three-way handshake. TCP is a window based protocol that
realizes both flow control and congestion control. These functions are detailed in Section 4.2.

TCP was originally standardized in [RFC 793]. As TCP has evolved over the years, many
other documents have become part of the accepted standard for TCP. A large number of more
experimental modifications to TCP have also been published in the RFC series, along with



14 Chapter 2. Communication network architectures

Server

farm

Server
Server

Client

IP network

(a) Client-server paradigm

Peer

Peer

Peer Peer

IP network

(b) Peer-to-peer paradigm

Terminal

control

Communication

Terminal

IP network

(c) Telecommunication paradigm

Figure 2.7: Comparison of different services delivery principles

informational notes, case studies, and other advice [RFC 4614]. As a consequence, there has
never been a unique standardized protocol description. Instead, details have been left to the
implementers, and this trend continues as TCP evolves.

Another protocol on top of IP is the Internet Control Message Protocol (ICMP). Two further
transport protocols are the Stream Control Transmission Protocol (SCTP) and the Datagram
Congestion Control Protocol (DCCP). SCTP has been developed for signaling applications, but
it is a general purpose protocol. It provides a reliable datagram service with an additional mul-
tiplexing layer and it supports multi-homing. The error recovery, flow control and congestion
control mechanisms are similar to those of TCP. The Datagram Congestion Control Protocol
(DCCP) provides bidirectional, unicast, unreliable, congestion-controlled datagram service and
is intended for streaming media applications. In DCCP, an application has a choice of conges-
tion control mechanisms, each specified by a Congestion Control Identifier (CCID). CCID 2
defines a TCP-like congestion control, whereas CCID 3 is a rate-based TCP friendly congestion
control mechanism. Until now, neither SCTP nor DCCP are widely used in the Internet.

In the application layer, a large variety of protocols exists. One core protocol is the Hypertext
Transfer Protocol (HTTP) [RFC 2616]. Furthermore, the Domain Name System (DNS) pro-
vides address mapping from Uniform Resource Identifier (URI) in text format to numerical IP
addresses. Their usage in interactive applications is presented in Section 3.1.2.

2.2.5 Services

The Internet offers a large set of services including the WWW, e-mail, file transfer, gaming,
etc. Websites also integrate more and more multimedia content such as audio and video clips.
The combination of the TCP and HTTP is the de facto standard in the WWW. As illustrated
in Figure 2.7(a), the WWW is a global client-server system. The clients are Web browsers
that communicate with Web servers over the Internet. An alternative to client-server applica-
tions is the Peer-to-Peer (P2P) paradigm that uses no or only few centralized infrastructure (cf.
Figure 2.7(b)). Peer-to-peer applications are widely used for file sharing, and also in Voice-over-
IP (VoIP) and Internet Television platforms. The vast majority of the Internet traffic results from
the bulk data transport of peer-to-peer file sharing platforms.

2.2.6 Network Quality of Service mechanisms

The TCP/IP protocol suite, originating from academic and military networks, does not incorpo-
rate Quality of Service mechanisms. The Internet traditionally transports traffic on a best effort



2.2 Internet 15

Endsystem Router EndsystemRouter

Path

Path

Path

Reserve

Reserve

Reserve

Resources reserved

Figure 2.8: Receiver-initiated QoS reserva-
tion (e. g., RSVP)

Endsystem Router EndsystemRouter

Reserve

Resources reserved

Response

Reserve

Reserve

Response

Response

Figure 2.9: Sender-initiated QoS reservation
(e. g., NSIS sender-initiated mode)

basis in combination with endsystem-based congestion control. The underlying assumption is
that all applications are elastic [212]. As the Internet is becoming a critical infrastructure for
the society, it has been observed that a certain subset of the traffic may need performance guar-
antees [RFC 1287]. The IETF has developed and standardized several QoS architectures that
are briefly summarized below. Long surveys can be found in the references [62, 24, 138].

The Integrated Services (IntServ) [RFC 1633] architecture has been developed in order to pro-
vide absolute QoS guarantees to individual flows. IntServ uses resource reservation according
to the pull model and three classes of service: guaranteed service, controlled load service, and
best effort service. The guaranteed service assures a minimum bandwidth and upper bounds on
the delay. Controlled load refers to a service that is equivalent to best effort in a lightly loaded
network. Admission control and traffic policing is used to achieve low delays and avoid packet
losses, but there are no quantitative assurances, and resources may be oversubscribed.

In the IntServ architecture, routers on the path of a flow maintain soft state about the allocated
resources. The corresponding signaling protocol is Resource Reservation Protocol (RSVP).
RSVP is an on-path, receiver-initiated protocol for the setup of unidirectional resource reserva-
tions for unicast or multicast flows. As shown in Figure 2.8, RSVP uses a two-way message
exchange with two main messages types: The path messages originates from the flow source.
It is routed towards the destination by the IP routing protocols and includes a router alert IP
option. Each RSVP router processes the message and creates routing path state. The reserve
messages are sent back along the path and request for resources. The routers analyze the in-
cluded flow specification and either accept or reject the request. In order to update the soft state,
the messages are repeated periodically.

RSVP suffers from several limitations such as the overhead due to the multicast-driven design
and the lack of security mechanisms [RFC 4094]. This is why the IETF Next Steps in Sig-
naling (NSIS) working group develops a successor protocol [74]. The objective is a general
purpose, extensible, on-path signaling protocol suite for control of network entities. The mod-
ular design consists of a transport layer and a signaling layer. A signaling protocol has been
standardized for QoS resource reservation. It enables both sender and receiver initiated reserva-
tions (see Figure 2.9) and is more flexible than RSVP. There are also protocols for the control of
middleboxes such as firewalls or entities performing Network Address Translation (NAT) [117].

Some inherent problems of the IntServ architecture cannot be solved by improved protocols:
Keeping per-flow state in network nodes results in a significant processing effort and does not
scale to a large number of flows. The usage of the router alert option in the IP header also
raises concerns since it affects the router performance. Furthermore, IntServ only specifies
the resource management. Separate protocols and mechanisms are required for Authentication,



16 Chapter 2. Communication network architectures

Table 2.1: Comparison of the service classes defined by IETF, IEEE, and ITU-T

Service class according to Application Tolerance to . . .
IETF IEEE ITU-T example Loss Delay Jitter

[RFC 4594] [802.1D] [Y.1541]
Network Network — Network routing Low Low Yes
control control

Telephony Voice Class 0 IP telephony bearer, Very Very Very
circuit emulation low low low

Signaling Class 2 IP telephony signaling Low Low Yes

Real-time Class 0 Video conferencing, Low Very Low
interactive interactive gaming low
Multimedia Class 0 (Adaptive) video Low – Very Low

conferencing conferencing medium low
Broadcast Video Class 1 Broadcast television Very Medium Low

video and live events low
Multimedia Controlled Class 4 Streaming video and Low – Medium Yes
streaming load (equiv.) audio on demand medium

Low-latency Excellent Class 3 Client/server trans., Low Low – Yes
data effort e-commerce medium

OAM Class 3 OAM for configuration Low Medium Yes
and management

High-throughput Class 4 Store and forward Low Medium Yes
data applications – high

Standard Best effort Class 5 Undifferentiated Not specified
applications

Low-priority Background — Flows that need no High High Yes
data bandwidth assurance

Authorization, Accounting (AAA) and other signaling tasks. Applications have to know a priory
their traffic profile and have to wait until the reservation is complete. This may delay the data
delivery and becomes problematic for short-lived sessions.

The Differentiated Services Framework (DiffServ) [RFC 2475] has been developed to overcome
the scalability problems and operational issues of IntServ. DiffServ provides service differentia-
tion between several traffic classes, which receive a well-defined Per Hop Behavior (PHB) with
different priorities at each DiffServ router. Packets are classified according to the DiffServ Code
Point (DSCP) in the IP header. The DiffServ classification, aggregation, and traffic conditioning
is typically realized by edge routers, while the priority mechanisms must also be implemented
by the core routers within a domain. In addition to the basic default forwarding for best ef-
fort, DiffServ routers provide two types of PHB: expedited forwarding and assured forwarding.
The former is the highest DiffServ priority class and emulates a virtual leased line. The latter
defines twelve classes with different queue management schemes and scheduling priorities. Ta-
ble 2.1 lists the DiffServ service classes and compares them to service classes that have been
defined by the Institute of Electrical and Electronics Engineers (IEEE) and the International
Telecommunications Union (ITU). As DiffServ deals with aggregates rather than single flows,
no per-flow state and no out-of-band signaling is required. Therefore, the architecture scales
better than IntServ, at the cost of a less stringent QoS assurance.



2.3 IP-based telecommunication networks 17

In the current Internet, DiffServ is deployed within certain domains, but not globally supported.
In many domains, some service differentiation is realized below IP: Since many link layer
technologies distinguish between a number of traffic classes, the Diffserv classes can be mapped
to these service levels (cf. Table 2.1). There are also attempts to implicitly classify flows by
Deep Packet Inspection (DPI). Multiprotocol Label Switching (MPLS) is widely used, too. It
offers a virtual circuit model below IP and enables service differentiation and guarantees. The
utilization of these techniques across different administrative domains is an unsolved issue.

2.3 IP-based telecommunication networks

2.3.1 Historical evolution

Telecommunication networks such as the Public Switched Telephone Network (PSTN) are much
older than packet networks. The PSTN is a circuit-switched network that guarantees a high ser-
vice quality. However, compared to circuit switching, packet switching proved to be a cheaper
and more flexible technology for network interconnection. This is why telecommunication
services are more and more realized with the available IP technology. Still, the open design
philosophy of the Internet differs significantly from the classical telecommunication network
architecture with managed services, dumb terminals, and an intelligent network [54]. This
also implies that the existing telecommunication business models and revenue streams of the
network operators do not work well in the Internet with its different network interconnection
arrangements [144]. To cope with this trend, telecommunication standardization bodies develop
Next Generation Networks (NGNs) as a new, alternative architecture for IP networks.

2.3.2 Design principles

The term Next Generation Network can be defined as a “packet-based network able to pro-
vide telecommunication services and able to make use of multiple broadband, QoS-enabled
transport technologies and in which service-related functions are independent from underlying
transport-related technologies” [Y.2001]. The NGN involves various standardization bodies,
including the International Telecommunications Union (ITU), the 3rd Generation Partnership
Project (3GPP), the European Telecommunications Standards Institute (ETSI), as well as stan-
dardization bodies for ADSL and cable networks, and other national organizations. Since the
NGN uses IP technology, many IETF protocols are adapted. The objective is to build man-
aged IP networks that can provide QoS guarantees and security through resource management
and user authentication. These functions are provided by stateful application layer entities in
the network (see Figure 2.7(c)). Even if the NGN interfaces use standardized protocols, the
architecture results in closed networks, which are also named “walled gardens”.

2.3.3 Network architecture

NGN architectures separate services from transport [Y.2011] and can be subdivided into a trans-
port stratum, which provides connectivity and data transfer functions, and a service stratum,
which includes functions that control user services. It is also common to introduce a third ap-
plication stratum for application-level Service Delivery Platforms [174], which are not entirely
standardized. Each stratum comprises one or more layers, where each layer is conceptually
composed of a data plane (or user plane), a control plane, and a management plane.



18 Chapter 2. Communication network architectures

Application stratum

Transport stratum

Service stratum

Core transp. networkAccess transp. netw.

SBC

PDF MRFP

NASS RACS

MRFC

Charging

C−BGF I−BGF

I−CSCF

MGF

MGCFBGCF

IBCFS−CSCF

AS

P−CSCF

HSS

SLF

Legend:

BGCF: Breakout Gateway Control Function

C−BGF: Access to Core Border Gateway Function

CSCF: Call Session Control Function

HSS: Home Subscription Server

IBCF: Interconnection Border Control Function

I−CSCF: Interrogating CSCF

I−BGF: Interconnection Border Gateway Function

MGCF: Media Gateway Control Function

MGF: Media Gateway Function

MRFC: Media Resource Function Controller

MRFP: Media Resource Function Processor

NASS: Network Attachment Subsystem

P−CSCF: Proxy CSCF

RACS: Resource and Admission Control Subsystem

S−CSCF: Serving CSCF

SLF: Subscriber Locator Function

Reference points: SIP

DIAMETER

Other protocols (e. g., H.248)

UE

IMS (Core IMS)

TISPAN

Other

Functions: Not shown: PSTN emulation, IPTV subsystem,

location and presence functions,

non−3GPP network interworking

Other

NGN

PSTN

Other

netw.

IP

UNI NNI

Figure 2.10: Overview of the architecture of 3GPP IMS and ETSI TISPAN. In order to simplify
the picture, several details have been omitted.

The core of the current NGN standards is the IP Multimedia Subsystem (IMS), which has
originally been developed by 3GPP for cellular networks [TS 23.228]. The IMS is an access-
independent, IP-based service control architecture that enables various types of mobile multime-
dia services, such as audio streaming, presence, messaging, push-to-talk, and conferences. The
original IMS was later adopted by other standardization bodies, in particular ETSI and ITU-T.
ETSI’s Telecommunications and Internet Converged Services and Protocols for Advanced Net-
works (TISPAN) [ES 282 001] extends the IMS for use of non-3GPP and fixed access networks.
The IMS is also the core of the ITU-T NGN architecture [Y.2011]. The different standards differ
in some details and also use a slightly different terminology.

The IMS standardizes functional blocks and interfaces for session control, subscriber data man-
agement, interworking, and charging. Figure 2.10 provides a simplified overview of the IMS
architecture and its TISPAN extensions. The core of the architecture are different types of Call
Session Control Functions (CSCFs). They handle the registration of the User Equipment (UE),
i. e., the endsystem, and the session signaling. The Home Subscription Server (HSS) is the
main database and contains user identities, profiles, and authentication and authorization in-
formation. Value-added services are executed by Application Servers (ASs). IMS also defines
reference points for offline and online charging. There can also be further service-related func-
tions for multimedia resources and interworking with other IP networks or the PSTN. Several
books give a complete overview of the functions and reference points [40, 178].

TISPAN extends the IMS by two subsystems: The Network Attachment Subsystem includes
functions to identify and authorize customers and to configure the subscriber line. The Resource
and Admission Control Subsystem is responsible for policy control, resource reservation, and
admission control. Another extension are border elements for network interconnection.

2.3.4 Protocols

The IMS uses the Session Initiation Protocol (SIP) for session signaling at internal reference
points, at the User Network Interface (UNI), and at the Network Network Interface (NNI). IMS



2.3 IP-based telecommunication networks 19

also utilizes further IETF protocols, such as the Session Description Protocol (SDP) or the
DIAMETER protocol (cf. [40, 178]). In IETF terminology, the CSCF and AS are basically
combinations of SIP user agents, SIP proxies and SIP back-to-back user agents. The border
gateway functions correspond to entities that are known as Session Border Controllers (SBCs),
which provide a variety of functions to enable or enhance session-based multimedia services,
including access control, topology hiding, Denial-of-Service (DoS) detection and prevention,
NAT traversal, application-layer protocol interworking, and traffic management [85, 117].

2.3.5 Services

The main driver for the NGN development is convergence, i. e., the integration of telecommu-
nication, multimedia and other data services in a unified service control platform. The vision
is that network operators offer service delivery platforms that support a wide range of services
and interfaces to the operational support systems and business support systems, as well as stan-
dardized interfaces for third-party providers. Important components are content portals and
provisioning systems, access control and security functions, customer relationship management
and subscriber data storage, and pre-paid/post-paid billing systems. With such platforms, net-
work operators could play a central role in service provisioning and offer more than simple
“bit pipes”. An example is the converged provisioning of telephony services, Internet Protocol
Television (IPTV), and Internet access (“triple play”). Other examples are new platforms for
music and gaming, which are among the top requested mobile applications [174].

With few exceptions, the NGN standards of 3GPP, ETSI, and ITU-T do not define these ser-
vices, but only service enablers, such as access to presence or location information, single-sign-
on mechanisms, AAA, or QoS mechanisms. Actual service definitions exist mainly for linear
multimedia services, in particular for IP-based telephony and IPTV. Concerning telephony, the
objective of TISPAN is to realize PSTN simulation, i. e., PSTN-like services for IP telephones,
but no backward compatibility (PSTN emulation). There are also activities to realize IPTV over
IMS, as well as efforts to realize Web-like applications within the IMS (e. g., [217]).

2.3.6 Network Quality of Service mechanisms

The ability to offer predictable end-to-end service quality is an important design objective of
NGN platforms. The original 3GPP IMS only covers QoS guarantees in the access networks.
For 3GPP cellular networks, four different QoS classes are defined [TS 23.107]: The conversa-
tional, streaming, interactive, and background class have different link layer attributes, includ-
ing the maximum rate and a guaranteed rate. The IMS offers interfaces to the corresponding
link layer resource management.

In contrast, ETSI TISPAN has the objective to provide end-to-end QoS guarantees. TISPAN’s
Resource and Admission Control Subsystem standardizes QoS policy decision and policy en-
forcement functions that can realize traffic control. Different to the IETF QoS architectures,
TISPAN focuses on the push model. Figure 2.11 illustrates the integration of the QoS and ses-
sion signaling, assuming a multimedia application. In order to establish a session, the UE sends
a SIP message to the responsible CSCF. After capabilities and media parameters have been
negotiated, the IMS can reserve suitable resources. However, Figure 2.11 also reveals that a
significant number of signaling messages is required before a session is established. A timely
session setup requires therefore a very fast processing of signaling messages [238].



20 Chapter 2. Communication network architectures

CSCF CSCF ASUE

OK

Resource reservation procedure

Completion of session establishment

Codec selection

Codec selection

Policy check

Authorization

Invite

(SDP offer)

Invite

(SDP offer)
Invite

(SDP offer)

Progress

(SDP answer)

Prov. Ack

(SDP offer)

OK

UpdateUpdate

OK

Update

(SDP offer)

Prov. Ack

(SDP answer)

Progress

Progress

(SDP answer)

Prov. Ack

(SDP offer)

Figure 2.11: Example of a SIP session establishment in the IMS (adapted from [217]). Addi-
tional signaling handshakes may be required within the shaded fields.

2.4 Future evolution

2.4.1 Technological progress and trends

The world has changed since the original design of the Internet, driven by several technological
and socio-economic trends [142]: First, due to the technical progress in transmission and router
technology, the bandwidth of Internet links has increased by many orders of magnitude, and
it continues to grow rapidly. Broadband Internet connectivity is more and more the norm. At
the same time, the Internet traffic has increased exponentially as well. New information-centric
application areas emerge, e. g., in the health sector, and new bandwidth-demanding applications
continue to create an insatiable demand for bandwidth. Second, the mobile Internet is becoming
ubiquitous, as more and more smart and powerful mobile devices can conveniently access the
Internet and WWW. Third, the base of Internet users, their preferences, and their usage patterns
have shifted towards personalization of services (social networks) and user generated content
(Web 2.0). The World Wide Web is today a large commercial platform that allows online access
to more and more of the world’s information.

Unlike the telecommunication sector, the Internet world was able to embrace these trends due its
open environment, its large community of Information Technology (IT) application developers,
and its fast, low cost development cycles favored by the end-to-end design. Most commercially
deployed service delivery platforms are in fact IT-based systems and not telecommunication
service control frameworks [174]. Further reasons for the slow market penetration of NGN
platforms are the complexity of the architecture, unsolved inter-domain interoperability issues,
the slow standardization process, the lack of applications and suitable client devices, as well
as the fundamental architectural contradiction between network-based service control and the
decoupling of applications and network that is inherent to the TCP/IP protocol suite.

2.4.2 Architectural challenges for the Future Internet

The Internet was never designed to be a critical part of an economy’s infrastructure [142]. In the
early 1990ies discussions started about the development towards a Future Internet [RFC 1287].



2.4 Future evolution 21

The motivation was the shortage of IP version 4 addresses, which triggered the development of
IP version 6. Since then, further problems have been identified [51, 19, 142, 67]:

- Security: The Internet suffers from many security vulnerabilities, including unwanted
traffic (e. g., e-mail spam, DoS attacks), distribution of viruses, identity thefts, and privacy
infringements. The original Internet architecture was primarily designed for a benign and
trustworthy environment, with little or no consideration of security issues [19].

- Addressing and routing: The routing system faces significant scalability challenges, which
are manifested by a rapid increase of routes injected by BGP. The hierarchical aggrega-
tion of prefixes is considered to be broken due to provider-independent addressing, site
multi-homing, and traffic engineering. There is a semantic overloading of the IP address,
which serves as endpoint identifier, endpoint locator, and forwarding identifier, which in-
herently conflicts with mobility and multi-homing [142]. A related problem is the sockets
interface, since applications have to be aware of both IP addresses and DNS names.

- Dependability and robustness: Internet services have a typical downtime of several hours
per year, which is by far worse than the PSTN availability of about 99.999%. Further-
more, the robustness is affected by long BGP convergence times [156].

- Lack of flexibility of the end-to-end protocols: It is questioned whether the design of the
TCP/IP suite and in particular TCP as default Internet transport protocol is indeed future-
proof [12]. This question is addressed more in detail in Chapter 4. Furthermore, the
Internet end-to-end design and layering is increasingly violated by middleboxes (NATs,
SBCs, . . . ) and intermediate layers [51]. The required interworking increase operational
complexity and cause many problems for applications.

Additional research challenges are network management (monitoring and diagnosability) [19,
67], the support for autonomic operation [142], better support for mobile applications [142, 67],
other semantics and alternatives to strict protocol layering [51], and accountability [51, 142].
Making the Internet more viable and profitable is also mentioned as a design goal [67]. There
are also arguments in favor of circuit switching in particular in optical core networks [156].
The lack of Quality of Service support could be seen as a key problem of today’s Internet. How-
ever, the opinions vastly diverge [RFC 5290], and there are several non-architectural reasons for
the lack of QoS provisioning in today’s Internet:1

- Insufficient benefits: Even multimedia applications such as video streaming do not inher-
ently require QoS mechanisms. As argued for instance in references [167, 144], only few
conversational services such as voice and video telephony actually require data delivery
with hard deadlines. These applications create only a small fraction of the total traffic
in the Internet, and a weighted congestion control can achieve a prioritization without
network support (see Section 4.2.3.2). Other multimedia applications, such as audio and
video streaming, can use adaptive codecs and buffering in the receiver [208]. The content
can be progressively downloaded with faster-than-real-time transfer, e. g., using HTTP
over TCP. Even live television can be delivered by faster-than-real-time transfers when a
small delay lag of one or two seconds can be tolerated [167, 144].

- Standardization issues: Further standardization and agreement among providers is needed,
since common service class definitions and mappings as well as commonly agreed per-
formance measurement approaches and metrics are missing [97]. Also, extensions of the
Internet interdomain routing protocols and interfaces would have to be standardized.

1Network layer multicast, which is sometimes also listed as a desired Internet feature, faces similar challenges.



22 Chapter 2. Communication network architectures

- Deployment challenges: End-to-end QoS support shares two characteristics with other
slow-deploying functions: The incremental deployment properties are poor, since there is
only limited benefit until it is widely deployed. And it requires cooperation among a large
number of organizations. This results in few incentives to start an initial deployment.

- Economic aspects: Service differentiation is a business issue. End users have varying
views of which applications should be prioritized, and most customers are not willing
to pay for a performance difference that they cannot perceive. In a rightsized network,
best effort transport is sufficient most of the time. This makes it difficult to create a busi-
ness case in the consumer market. In order to be meaningful, QoS guarantees must be
authorized and charged and thus cause economic challenges in the network interconnec-
tion [144]. Network operators also have no incentive to prioritize certain Internet traffic
such as VoIP to ensure a high service quality, given that these Internet applications com-
pete with their comparable NGN services. QoS mechanisms also raise the question of
network neutrality [167]. A strong opposition against traffic differentiation mechanisms
is caused by the fear that differentiation may result in discrimination and censorship.

2.4.3 Research directions

It is commonly agreed that more research is needed to overcome the open issues of security,
addressing/routing and dependability in the Internet. Most of the design limitations of the Inter-
net cannot be removed by incremental evolutionary enhancements. This motivated the research
community to rethink the fundamental design principles and to explore potentially disruptive
alternatives in order to answer the question how a network would look like if the design could
start “from scratch” [51, 19]. Even though the design objectives and principles of such a clean
slate network architecture are unclear, there are many research activities, which are surveyed
e. g. by Feldmann [67]. The bottom line of most work is that the most of the Internet design
principles (cf. Section 2.2.2) can remain unchanged.
But it is also believed that today’s Internet is too inflexible to allow the deployment of new inno-
vations. A major focus of Future Internet research is building experimental research platforms
that enable large-scale experiments. They are motivated by significant differences between the-
oretical paper studies and real experiences [177]. Although theoretical analysis, simulation, or
emulation can be useful tools to evaluate a new concept, experiments with real implementations
are necessary as well in order to test interaction with unexpected events in a realistic envi-
ronment. There are several ongoing activities to build the required experimentation platforms,
which use programmable network components, virtualization, federation, and slice-based ex-
perimentation so that even disruptive technologies can be tested at global scale.
The work presented in the following chapters is inspired by these trends in Future Internet re-
search. The hypothesis is that many further Web applications will emerge, that broadband best
effort connectivity will be the norm, and that congestion control instead of NGN technologies
will be the cornerstone of the global network resource management. Under these constraints
the clean slate thinking requires to question whether the existing Internet congestion control
principles are still valid, or whether alternative schemes could be possible. The design of the
flow startup is one of the core open problems [12]. The following chapters study the constraints
and implications of such alternative mechanisms and thereby contribute to the “Post-TCP” re-
search [198], i. e., the question how end-to-end transport could be realized in future.



3 Performance of broadband interactive
applications

Networked applications, in particular in the WWW, are realized by a complex interplay of
functions in the endsystems and their communication. The user experience is determined by
the application performance (Quality of Experience). Network performance alone, as presented
in the previous chapter, is not sufficient to achieve a high user satisfaction. This chapter fo-
cuses on the application-level performance of interactive applications in the WWW. It starts by
a brief review of realization techniques for Web applications and a definition of the term broad-
band interactive application. The next section reviews the state-of-the-art methods to achieve
and assure reasonable application performance, which range from mechanisms in endsystems
to global distribution mechanisms. These application QoS techniques have similarities with
network QoS mechanisms, but also fundamental differences. Finally, the chapter discusses
methods for the evaluation of the performance and scalability of interactive applications.

3.1 Internet and Web applications

3.1.1 Classification of applications

Networked applications can be classified along various dimensions. The transported data can
be continuous linear data streams, e. g., in conversational audio or video communication, or it
can consist of discrete downloadable content. Unlike downloadable content, a data stream is a
continuous sequence of data without predetermined end. Streaming traffic is typical for play-
back applications. Interactive applications usually use downloadable content that is transported
in form of transactions. One further difference between these two classes is the required relia-
bility: The codecs for media streams can often tolerate some moderate amount of lost packets,
while data-oriented applications are error-intolerant and require a reliable transport [G.1010].

Another fundamental criterion for classifying applications is the elasticity, i. e., their ability
to adapt their communication parameters to the available resources. Even though different
classes of applications exist, there is no agreed terminology: Shenker distinguishes between
real-time, adaptive, and elastic applications [212]. The former class is characterized by hard
delay bounds for data delivery, whereas the latter class is rather tolerant to delays. Adaptive
applications are between both extremes, i. e., they are tolerant to delay jitter, but they have in-
trinsic bandwidth requirements. Another taxonomy of applications [RFC 1633] uses the terms
delay intolerant playback, tolerant playback, and elastic applications. [G.1010] divides appli-
cations into four different delay tolerance categories, namely, interactive, responsive, timely,
and non-critical. Finally, reference [62] distinguishes between the dimensions (non)interactive,
(in)elastic, (in)tolerant, and (non)adaptive.

23



24 Chapter 3. Performance of broadband interactive applications

Typically TCP

Typically UDP

VoIP

In
s
ta

n
t 

m
e

s
s
a

g
in

g

IPTV

Multimedia
Virtual

reality

3D Web

File download P2PE−mail

R
e

m
o

te
 s

h
e

ll
S

ig
n

a
lin

g
 (

D
N

S
)

Grid

computing

Online

backup

clips

WWW

Network

attached

storage

High defintion

Typical

bandwidth

Online

gaming Internet TV

Terminal

appl.

telephony

Video

Rich Internet

applications

100 kbit/s 1 Mbit/s 100 Mbit/s 1 Gbit/s10 kbit/s

Elasticity

10 Mbit/s 10 Gbit/s

Real−time

Responsive

Elastic

U
ti
lit

y

Bandwidth

U
ti
lit

y

Bandwidth

U
ti
lit

y

Bandwidth

U
ti
lit

y

Bandwidth

U
ti
lit

y

Bandwidth

U
ti
lit

y

Bandwidth

applications
interactive
Broadband

InternetARPANET

Figure 3.1: Internet application portfolio (originally presented in [198]). The shape and a min-
imum threshold of the utility function are used as dimensions. Broadband Internet connectivity
enables new interactive applications in the center and in the right part of the portfolio.

This thesis uses a modified version of the taxonomy of [212] and distinguishes between real-
time, responsive, and elastic applications. The expression adaptive is avoided because it also
refers to functional aspects and is thus ambiguous: The dynamic change of communication pa-
rameters actually realizes a parametric adaptation only, whereas an application can also change
its functional structure and behavior during run-time (compositional adaption) [149]. The pro-
posed classification can be formalized by help of the utility function Ui(xi), which quantifies the
utility Ui of an application as a function of the available bandwidth xi (see also Section 4.1.1.4).
Different degrees of elasticity result in a different shape and gradient of that function. Most
applications also require a minimum bandwidth to be useful, i. e., to exceed a minimum utility.
The combination of the shape and the minimum classifies applications in a two-dimensional
portfolio that is depicted in Figure 3.1. This classification is also closely related to the usage of
transport protocols; most applications in the upper part of the portfolio use TCP transport.

3.1.2 Web application technologies

Web applications are a special form of client-server applications. The client is typically a Web
browser that provides the Graphic User Interface (GUI), realizes the user interactions, and
retrieves data from Web servers. The basic interaction is a request, which consists of the query of
a client and the server’s response. In traditional Web applications, a user issues requests for Web
pages, which are multipart hypertext documents. In the simplest case, a base Hypertext Markup
Language (HTML) file describes the page layout and refers to embedded objects. The page
is retrieved using multiple Hypertext Transfer Protocol (HTTP) requests, potentially involving
several servers. The term Web transaction refers to the sequence of requests that starts when
the user sends the first request and ends when the last object is retrieved.



3.1 Internet and Web applications 25

Client Server

SYN−ACK

ACK

HTTP/1.1 200 OK

Content−Type: text/html

Content−Length: ...

Request

Response

GET /index.html HTTP/1.1

Host: www.example.com

Accept: text/html

Connection: keep−alive

...

SYN

TCP segments

Figure 3.2: Client-server document retrieval by HTTP over TCP

The Hypertext Transfer Protocol (HTTP) [RFC 2616] is a stateless request-response protocol.
The first steps of a Web page request are sketched in Figure 3.2. After the DNS resolution of
the Uniform Resource Identifier (URI), the client establishes a TCP connection to the server and
sends a HTTP request. The document is then delivered by the server. The subsequent interac-
tions depend on the HTTP version. In version 1.0, the client fetches each object over a separate
TCP connection. This is inefficient if a Web page refers to many objects. HTTP version 1.1
supports persistent connections, i. e., subsequent requests can share the same TCP connection.
The use of persistent connections can significantly outperform HTTP version 1.0 [88, 165]. A
further feature of HTTP version 1.1 is pipelining. With this extension, multiple requests can
be sent simultaneously, but it is not widely used. Instead, Web browsers use multiple persistent
connections to overcome idle times. According to [RFC 2616], a client should not maintain
more than two connections to a server or proxy. State-of-the-art Web browsers open between
2 and 6 concurrent TCP connections to a server. Studies revealed that the optimal number is
within this range [65, 45].

Advanced Web applications do not query static objects only. During the last decade, a vast
amount of powerful Web technologies have emerged. Additional application logic can be ex-
ecuted either at the server or at the client. Server-side technologies for dynamic Websites can
use various script or programming languages or complete Web application frameworks. There
are also several options to execute code inside Web browsers using the JavaScript program-
ming language. Furthermore, browser plugins are widely used to integrate vector graphics and
multimedia clips in Websites. A further trend is that data is encoded in Extensible Markup
Language (XML). It is used for instance in combination with Asynchronous JavaScript and
XML (AJAX), which realizes asynchronous communication with a server without reloading a
page.

These new Web technologies are in particular used by emerging Rich Internet Applications.
They are client-server applications that run within a Web browser, but they have many fea-
tures and functions like classic desktop software, including responsive user interfaces and asyn-
chronous communication without user interactions [126]. Their key advantage is that no instal-
lation and management of local software is required. They are universally accessible through
the Web. But the dependence on the network also results in limitations. Due to the frequent
communication, Rich Internet Applications typically require broadband Internet connectivity.

Another trend is the use of Web services, i. e., mechanisms for the interoperation amongst sepa-
rately developed, distributed applications. The Application Programming Interface (APIs) can
be realized by the lightweight Representational State Transfer (REST) method, which adapts
the semantic of HTTP, by Remote Procedure Call (RPC) middlewares, or by additional mes-
saging layers such as the Simple Object Access Protocol (SOAP) (see e. g. [149]).



26 Chapter 3. Performance of broadband interactive applications

Client

Transaction time

Server

Base file

Server

Client

Embedded objects

Embedded objects

Response timeResponse timeResponse time

Reaction time

Page download time

Processing time

Idle time

Time

TCP connection 2

TCP connection 1

Figure 3.3: Structure of a Web transaction composed of several requests

3.1.3 Performance requirements, metrics, and service level agreements

3.1.3.1 Measurable performance metrics

Performance is one of the most important non-functional aspects of any system. Responsive-
ness, availability, and scalability are very important properties of Web applications. The as-
surance of these properties is essential in order to avoid user dissatisfaction, loss of revenue,
or productivity, in particular in e-commerce and other mission-critical interactive Web applica-
tions, such as Enterprise Resource Planning (ERP). Several metrics can characterize the per-
formance of interactive applications. They are introduced in the following. There are also other
important non-functional characteristics, such as dependability, robustness, usability, security,
manageability, or costs. They are not specifically considered in this section.

In general, performance can be defined as a measure how well a system accomplishes its as-
signed task. There are various measurable metrics that evaluate the user-perceived performance
of interactive Web applications [151]: The availability measures the percentage of time cus-
tomers can access an applications. There are various other related availability metrics, such as
the service access success rate. Availability objectives typically depend on the type of applica-
tion. For instance, a “five-nine” availability of 99.999% requires a maximum downtime of five
minutes per year. An important system performance metric is the request throughput or trans-
action throughput, which is defined as the number of request or transactions that can be served
per second, respectively. For user interaction the key performance aspect is the responsiveness
or timeliness, which characterizes the speed of a system as seen by the user.

The responsiveness can be quantified by the response time Tresp, which is the elapsed time
between the sending and the complete reception of the response (also known as “time to last
byte”). One part is the reaction time Treact that refers to the time period between initial stimulus
and the first indication of a response (“time to first byte”). The transaction time Ttrans measures
the completion time of a transaction. For Web applications using only one TCP connection
this corresponds to the page download time or page loading time Tpage, which consists of the
download time of the base file and all embedded objects. The differences between these metrics
are highlighted in Figure 3.3. It is also possible to normalize the download time in a “fun factor”
that considers the object sizes and link speeds [46]. Another metric is the flow-completion time
TFCT, i. e., the time between sending the first packet of a flow and receiving the last packet [56].
There have also been efforts to isolate the network contribution to transaction time [G.1040].

The transaction time is the sum of many delay components [151]: Communication delays in-
clude the data transfer times, the network latency, queueing and processing delays, and transport



3.1 Internet and Web applications 27

protocol delays caused, e. g., by retransmissions or by congestion control. Waiting and process-
ing delays can also occur in the server at various stages, and again include communication
delays if further servers or databases must be queried. Finally, there are local processing times
in the client software, e. g., for parsing, rendering and visualizing the content. A significant
share of the total transaction time can be caused by processing delays inside servers. For exam-
ple, a study [16] found that Web servers can contribute to up to 80% of the response time, in
particular if the load is high. Similar results have also been reported for ERP systems [153].

3.1.3.2 Derived performance metrics

Certain system design objectives cannot be measured directly and, if at all, only be quantified
by derived metrics. An example is dependability, which encompasses attributes of availability,
reliability, safety, confidentiality, integrity, and maintainability. Another performance-related
system requirement is scalability. Scalability can be defined as the ability to operate efficiently
and with adequate performance over a given range of configurations [107]. Intuitively, a scal-
able system is able to support a large and potentially fast increasing number of users. Scalabil-
ity refers both to the functional requirement that a system must be extensible in size, as well
as to the non-functional aspect that increased system loads must be handled. Scalability is also
closely related to cost: A system does not scale if the additional cost of coping with a given in-
crease of the workload or if the size of the system is excessive. As a consequence, it is difficult
to quantify scalability in a measurable metric. Different scalability metrics have been developed
for multiprocessor problems, in particular the fixed size speedup (Amdahl’s law) and the fixed
time speedup (Gustafson’s law). However, such simple metrics cannot be applied to complex
distributed systems. A more sophisticated effort can be found in reference [107], which pro-
poses a derived metric based on the cost-effectiveness: The productivity is a function of the
system’s throughput, its mean response time and the running cost per second. A scalability
metric relating systems at two different scales is then defined as the ratio of their productivity
figures. However, such derived scalability metrics are only partly applicable in practice.

3.1.3.3 User requirements and service level agreements

Interactive applications require timely access to information. This design target is well para-
phrased by a statement of Odlyzko: “The purpose of data networks is to satisfy human impa-
tience” [167]. The impact of response times on users has been studied for a long time. In 1968,
a study described three threshold levels of human attention [155]: A response time of 0.1s is
viewed as instantaneous. If it is less than 1s, it is fast enough for a dialog interaction. Fur-
thermore, response times must stay below 10s to keep the user’s attention. These fundamental
constraints also apply to modern Web applications. Many studies confirm that long Web trans-
action times lead to user dissatisfaction. For instance, a large portion of customers shopping in
the Web waits no more than 4s for a page to render [108]. The abort probability of search re-
quests is typically 60% when the response time is 4−6s, and up to 95% if it exceeds 6s [151].
Similarly, average response times beyond 1− 3s are considered as unacceptable in enterprise
systems [153]. Achieving a reasonable user-perceived performance requires to keep response
times below these limits. Some Websites apparently even suffered from a loss of revenue after
the Web page loading times had increased by some hundred milliseconds only [75].

Due to the emergence of more and more commercial Web applications it is necessary to define
and guarantee such performance service level objectives in Service Level Agreements (SLAs).



28 Chapter 3. Performance of broadband interactive applications

<ServiceLevelObjective name="slo1">
<Obliged>ACMEProvider</Obliged> [...]
<Expression><Implies><Expression><Predicate xsi:type="Less">

<SLAParamter>Transactions</SLAParameter><Value>10000</Value>
</Predicate></Expression><Expression><Predicate xsi:type="Less">

<SLAParamter>AverageResponseTime</SLAParameter><Value>0.5</Value>
</Predicate></Expression></Implies></Expression> [...]

</ServiceLevelObjective>

Figure 3.4: Example for a Web Service Level Agreement encoded in XML (taken from [52]).
The service provider ACMEProvider guarantees that the parameter AverageResponseTime
is less than 0.5seconds if the value of Transactions is less than 10,000.

Application-level QoS targets typically cover availability and throughput targets. Response
time guarantees are typically expressed in form of a maximum average value or the 90% quan-
tile. There have been several attempts to standardize description frameworks for SLAs in Web
environments. An example for such a Web service SLA parameter specification is given in
Figure 3.4. Such standardized description languages would also be useful for the dynamic ne-
gotiation of service objectives and for Web service composition [196].

3.1.4 Broadband interactive applications

3.1.4.1 Definition

A key hypothesis of this work is that the trend towards higher bandwidths enables a new class
of applications with delay-sensitive user interactions. This application type can be located in
the center of the application portfolio of Figure 3.1. The author is not aware of a consistent
terminology and therefore suggests the following definition for this class of applications:

Definition 3.1 (Broadband interactive application): A broadband interactive applica-
tion is a responsive networked application that requires fast and reliable transport of po-
tentially large amounts of data. Typical representatives are network-challenging client-
server applications that interact by bursty request-response communication and signif-
icantly benefit from timely arrival of messages, even if there is no deterministic delay
deadline.

This definition is more precise than several other related nomenclatures: The term soft real-time
application is frequently used to classify QoS requirements (e. g., in [62]). However, the ex-
pression real-time is misleading since it is frequently used in a context where on-time arrival
of messages is more important than reliable data delivery. Another related term is high-priority
transaction service [G.1010], which should “provide a sense of immediacy to the user that the
transaction is proceeding smoothly, and a delay of no more than a few seconds is desirable.”
While this description clearly has a similar motivation, it lacks the requirement of broadband
connectivity. The same difference applies to the excellent effort class [802.1D], which is de-
scribed as “the best effort type services that an information service organization would deliver
to its most important customers”. The probably closest related concept is the DiffServ low-
latency data service class [RFC 4594] that targets at “elastic and responsive typically client-
server-based applications”. However, [RFC 4594] emphasizes the aspect of short-lived flows.
Broadband interactive applications do not necessarily only transport small amounts of data.



3.2 Existing mechanisms for performance improvement and assurance 29

Worker

processes

Main process

Classification/scheduling

Kernel space

Config.

files

User space

File system

No. of processes

Traffic shaping/scheduling

Service

level

agreements

Thresholds

Priorities

CPU scheduler
Listen queue

Queue length

Requests

Process priorities

Kernel space

Files

Scripts

Traffic parameters

QoS mechanisms 

(optional)

User space

Admission

control

Monitor and controller

Responses

To clients

Requests

Network interface

?

Web server

Figure 3.5: Multi-process architecture of a Web server and optional enhancements for
application-level QoS provisioning

3.1.4.2 Examples

Broadband interactive applications exchange potentially large amounts of structured data, such
as XML documents, still images, or other voluminous data. This type of application might
have some desired delivery deadline or a target transmission time, but they typically do not
require a deterministic guarantee, and they may also have own adaptation mechanisms. Such
use cases can be found in several emerging application domains, including Rich Internet Ap-
plications, Enterprise Resource Planning, Grid Computing, Cloud Computing, and potentially
also in certain financial and telemedicine applications. For instance, financial brokerage ap-
plications require that orders are transported with end-to-end latencies less than 50ms. One
specific focus in this work are emerging virtual worlds, i. e., 2D maps, virtual reality and 3D
Web applications that combine voluminous high-resolution images with three-dimensional data
and other context information. The paper [207] shows that online 3D visualization applica-
tions have characteristics that correspond to the definition of broadband interactive applications
(see also Section 7.2). Recent Web traffic measurements [209] focusing on new AJAX applica-
tions also reveal the traffic characteristics attributed to broadband interactive applications, i. e.,
some Websites require frequent, large HTTP transfers. The traffic is much more bursty than
the one of classic Web applications and less deterministic than multimedia streaming. Due to
the ongoing trend towards Rich Internet Applications, Cloud Computing, 3D Web, and other
new network-challenging traffic, one can expect the emergence of further broadband interac-
tive applications in near-term future. The following sections review existing application-level
techniques to support such applications.

3.2 Existing mechanisms for performance improvement and assurance

3.2.1 Server mechanisms

3.2.1.1 Server architecture and functions

A Web application may be served by a single server or by a complex Web system that is com-
posed of several tiers of servers, e. g., Web servers, application servers, and database servers.
A Web server itself is a complex software system that can be realized by different software ar-
chitectures, which range from one single process to the parallel execution of multiple processes
and/or threads. For example, the widely used Web server “Apache” uses by default one main



30 Chapter 3. Performance of broadband interactive applications

process that assigns requests to a pool of worker processes, as shown in Figure 3.5. Web sys-
tems often also include Database Management Systems (DBMSs) that provide efficient, durable
and structured storage of information. They can be queried using a high-level query language
such as Structured Query Language (SQL).

The performance tuning of a Web system can be a complicated task, in particular if databases
are involved [228]. Traditionally, Web servers handle incoming requests by an FCFS mech-
anism and use a trivial admission control: When the number of enqueued requests exceeds a
predefined threshold, additional incoming requests get dropped. These mechanisms, which ba-
sically correspond to an application-level best effort service, provide reasonable performance if
sufficient server processing capacity is available (rightsizing).

3.2.1.2 Application-level performance differentiation and assurance

A proper capacity planning alone is not sufficient to ensure that performance objectives or SLAs
are met. The overprovisioning of server capacity is expensive, in particular due to energy con-
sumption. Public Web applications are also subject to enormous demand variations, e. g., due
to “flash crowd” effects. Network QoS mechanism only do not solve this problem. Compli-
ance with SLAs also requires application-level QoS mechanisms. They can be subdivided into
differentiation mechanisms and assurance mechanisms and require support in servers.

A server that provides differentiated service is able to distinguish between different priorities
of requests, e. g., between a premium and a basic class, which may be subject to different
SLAs [52]. Differentiation requires mechanisms for request classification and resource control.
As shown by the optional building blocks in Figure 3.5, the differentiation can be realized in the
server software and/or in the network stack, i. e., inside the Operating System (OS). Kernel-level
differentiation mechanisms include admission control within the TCP listen queue [236], prior-
itization of certain server processes by the OS scheduler [7], and outgoing traffic shaping [83].
At the application layer, both class-based admission control and differentiation can be realized
when the requests are processed [7, 21]. The number and priority of worker processes can be
controlled [7]. An optimization may also be possible by a size-based scheduling algorithm, such
as Shortest Remaining Processing Time [83]. The classification of incoming HTTP requests and
the mapping to classes can either use network parameters only, i. e., IP addresses and TCP port
numbers, or it can consider application information such as the URI or cookies [21, 236].

In particular for commercial Web applications it would be desirable to provide a predictable ser-
vice that is independent of the demand and isolated from other services. Such application-level
QoS assurance mechanisms are challenging since complex software systems share many re-
sources without providing control over their allocation. One option are controllers that monitor
the end-to-end application performance and automatically adapt the configuration and alloca-
tion of server resources [243]. Of course, stringent deadlines cannot be met if they are smaller
than individual system response times [196]. Another fundamental challenge is that application-
level QoS mechanisms must not only be realized in the endsystems, but also interact with the
network. Guarantees for application throughput and/or response times require the availability
of corresponding network resources. Therefore, application-level QoS targets must be mapped
to network layer QoS mechanisms. In theory, such a mapping is possible [229], but mature
technical solutions are hardly available [62]. A simple alternative to application QoS assurance
mechanisms is presented in Section 7.1.



3.2 Existing mechanisms for performance improvement and assurance 31

Routing: DNS, HTTP redirect,

or URI rewriting

Dispatching: TCP or HTTP,

content−blind or −aware

Load balancing: Static or dynamic

Hardware upgrade/tuning Transparency: Single−site

Software update/tuning

Service differentiation

or mirrors

or application logic

Intelligence: Caching−only

Data management:

Replication or partitioning

Web system scalablility mechanisms

Scale−up

(single server)

Local scale−out

(server cluster)

Global scale−out

(Content Delivery Network)

Figure 3.6: Classification of alternatives for building scalable Web systems

3.2.2 Distribution mechanisms

3.2.2.1 Building scalable distributed Web systems

As the utilization of a Web system grows, the processing demands can exceed the capacity
of single servers and mandate system enhancements. The main architectural alternatives for
building scalable Web systems are classified in Figure 3.6. The simplest choice to improve the
performance of a Web system is the scale-up strategy, which can be subdivided into speeding
up or replacing components (hardware scale-up) and tuning the software (software scale-up).
If certain limits are exceeded, improving the processing power of a single server gets more
and more complex and expensive. Then, distribution is an alternative. This scale-out strategy
splits the load among several nodes. In case of local scale-out, the nodes reside at a single
location. They form a Web cluster that appears to the users as a single system. Global scale-
out refers to nodes that are located at different geographical locations (distributed Web system).
Global scale-out services in the Web are provided by Content Delivery Networks (CDNs). The
following sections review these technologies along the lines of a comprehensive survey [41].

3.2.2.2 Web clusters

A Web cluster is a collection of servers at a particular site that are managed by a single admin-
istrative entity. It is also referred to as a “Web farm”. Unlike in distributed Web systems, the
multiple servers are not necessarily visible to users. The high-level structure of a Web clus-
ter is depicted in Figure 3.7. A cluster consists of servers, one or more protocol mechanisms
to spread client requests among the nodes, and, if necessary, one or more devices that decide

1

2

N

1

2

M

server

DNS

Web server Application server

Client

Client

Client
Back−end

Database

Web cluster

Web switch

Figure 3.7: Fundamental architecture of a two-tier/three-tier Web cluster



32 Chapter 3. Performance of broadband interactive applications

Client Client

Client

Internet

Origin server

Surrogate

Redirect

server

Surrogate

Figure 3.8: Basic structure of a content de-
livery network

Client PEP Server

Conn. 1 Conn. 2

Phy. Phy. Physical

Link

IP IP IP

LinkLink

Physical

Link

TCP TCP

IP

TCPTCP

HTTP

Appl.

TCP

Appl.

HTTP

Appl.

HTTP

Appl.

HTTP

Figure 3.9: A performance enhancement
proxy splitting a TCP connection

to which server a request is assigned. The component that realizes this dispatching is also
named Web switch or load balancer, and it can be realized as a transport layer function (“layer-
4 Web switch”) or at application layer (“layer-7 Web switch”). The dispatching policy can be
content-blind or content-aware, and there are various further degrees of freedom concerning
its realization. Possible mechanisms include the HTTP redirection mechanism, URI rewriting,
and triangulation techniques. Alternatively, requests can be routed by DNS redirection, i. e., the
domain name servers dynamically return a different set of addresses according to policies.

The system architecture of Websites with dynamic content often consists of two or three tiers:
In the front tier, Web servers accept requests and return formatted responses. State is typically
stored in back-end DBMSs (data tier). In a three-tier architecture, there are also application
servers that realize application logic (middle tier). Two design choices exist for the data man-
agement and content placement: If replication is used, the system consists of replica clones that
all have the same software and data and that all can serve a request. Partitioning divides the
data among the nodes so that a request must be directed to the appropriate partition.

Web clusters have few scalability limits. Large-scale clusters can be built out of commodity
computer hardware in a cost-effective way [17]. A multi-tier architecture is also inherently
scalable in the front and middle tier, since the servers are mostly stateless and processing can
easily be parallelized. It is typically more difficult to scale the back-end tier because of the
complex transaction processing mechanisms. The most important scalability limits of clusters
with thousands of nodes are power supply and cooling.

3.2.2.3 Content Delivery Networks

Web content delivery at global scale is supported by Content Delivery Networks (CDNs), which
are distributed Web systems that are widely used by popular Websites [170]. CDNs are overlay
networks that consist of surrogate servers, which are typically located in the points of presence
of ISPs. The fundamental principle of CDNs is distributed caching: CDNs replicate content in
the surrogates. As illustrated in Figure 3.8, CDNs ensure that user requests are served from a
topologically close site. However, many technical details of commercial CDN platforms such
as replica and content placement, the request routing strategies, or consistency enforcement are
not published, even though some aspects can be derived by reverse engineering [224].

CDNs push Web content towards the network edges. This has several advantages: First, the
caches reduce the overall network traffic. Since the data is topologically closer to user, the



3.2 Existing mechanisms for performance improvement and assurance 33

risk of traversing congested WAN links or peering points is smaller. Second, CDNs reduce the
network latency and thereby also Web transaction times compared to obtaining content directly
from the origin server. Third, CDNs add redundancy and thereby improve the reliability of
content delivery. Finally, unlike a dedicated infrastructure, the load balancing in CDNs can
exploit the multiplexing gain of serving many Websites.
The traditional CDNs technology is challenged by new dynamic content in the Web. User-
generated content, multimedia streams, and Rich Internet Applications result in much more
complex client-server interactions. Furthermore, application service providers increasingly of-
fer processing power and storage capacity to end users (cloud computing). For such new ap-
plications a pure replication or caching of static files is less effective. It is an open question
whether the CDN technology will indeed be able to keep up with these trends.

3.2.2.4 Middleboxes

Another approach to improve the application performance are middleboxes that realize a Per-
formance Enhancement Proxy (PEP) [RFC 3135]. There are many different types of PEPs,
which are also known as WAN optimizers, WAN accelerators, HTTP proxies, etc. A common
characteristic is the interception of the communication between the two endsystems, either at
the transport layer (TCP PEP) or at the application layer (Application Level Gateways). A TCP
PEP intervenes in the TCP protocol operation, e. g., by adjustments of the TCP receive window
or by realizing a transparent proxy that splits the end-to-end connection (see Figure 3.9). An
important mechanism at application layer is caching. Caching can be realized by an HTTP
proxy, but there are also PEPs that try to optimize other application protocols. Several other
application-specific mechanisms can be used to boost the performance, including compression,
protocol modifications, traffic conditioning, and the usage of proprietary protocols between
gateways. In particular in mobile networks, proxy-based transcoding is also used in order to
adapt Websites to mobile devices, e. g., by reducing the resolution of images.
The performance of Web applications can be improved by PEPs in various ways. Transparent
TCP proxies split the end-to-end path into two connections that each have a smaller delay.
Due to the TCP protocol mechanisms (see Section 4.2.1.2), smaller delays speed up the error
recovery and the congestion control. When a client communicates with an HTTP proxy, it can
maintain persistent TCP connections to that proxy instead of opening many short connections
to different Web servers. This avoids the overhead of connection setups and the connections
are less likely to be limited by the TCP Slow-Start [88]. Studies have shown that properly
configured PEPs can reduce Web page loading times, in particular in cellular networks [162].
However, PEPs violate the end-to-end design principle of the Internet and may hinder appli-
cation protocols that require end-to-end connectivity. They require additional processing and
storage capacity and have limited scalability. A PEP is also an additional source of errors and
may become a single point of failure. Since the end-to-end communication is broken, end users
have to trust that the PEP functions are correctly implemented. Moreover, PEPs are not com-
patible with encryption, digital signatures, and mobility mechanisms in the IP layer. This is
why [RFC 3135] disadvises proxies that automatically intervene in all communication.

3.2.3 Client mechanisms

The main client for Web applications is the Web browser, which typically consists of four main
components: The GUI, the browser control, the parsing engine, and the rendering engine. Web



34 Chapter 3. Performance of broadband interactive applications

Workload

model

Cost model

Development of

a cost model

Performance

model

Cost prediction

Understanding the environment

Workload characterization

Workload forcasting

Performance model calibration

Performance prediction

Cost/performance analysis

Workload model validation&calibration

Performance model development

Personnel planConfiguration plan Investment plan

Figure 3.10: Capacity planning workflow (according to [151])

browsers can optimize the performance by several techniques: Local caching is widely used
to avoid repeated retrieval of popular objects. The initial-screen response time can be reduced
by optimizing the request order and intelligent TCP connection management [45]. In addition,
on-the-fly compression can result in significant savings [165]. The performance can also be
increased by proactive pre-fetching of documents at the cost of an increased network load [209].
Finally, the client can negotiate suitable content formats with the server in order to perform
content adaptation, as realized for instance in [141].

3.3 Performance evaluation methodology

3.3.1 Role of performance evaluation

Performance evaluation is a scientific method in the field of systems engineering that analyzes,
predicts, or optimizes quantitative parameters of a technical system. It can either be applied
to real systems or to a model, which is an abstract description of a system encompassing its
components, their interaction, and the interactions with the environment. The behavior of a
complex system also depends on its internal configuration, which might not be entirely known.
Building models that accurately represent a complex system is a challenging task.

Several scientific disciplines focus on specific aspects of performance evaluation: Performance
analysis investigates the quantitative characteristics of a system, e. g., by measurements, perfor-
mance tuning improves the system, and performance prediction forecasts the behavior outside
the known range of operation. Their combination is a part of the performance engineering
process. In practice, the development processes often focus on functional aspects and consider
performance issues only at a rather late stage (“fix-it-later” approach) [216]. This workflow
typically also applies to the development of networked applications. Therefore, achieving rea-
sonable performance levels is often seen as a capacity planning and resource dimensioning
problem only. Capacity planning is an iterative process that is realized at several different time
scales. As shown in Figure 3.10, it encompasses different steps and both performance and
workload models, which are further detailed in the next sections.



3.3 Performance evaluation methodology 35

Network output

Requests

Responses
M/M/N/0

Server processesListen queue

Round−robin
pollingM/M/N/B

Figure 3.11: Simple queueing model of a
Web server according to [183]

Fork node

Tasks

Tasks

JobsJobs

Join node

Figure 3.12: Example of an open fork/join
queueing network

3.3.2 Methods for performance modeling, prediction, and measurement

3.3.2.1 Queueing theory models

Queueing theory provides a set of well-established mechanisms to analyze the performance of
computer and communication systems [86]. The simplest model component are single-server
queues, such as the M/M/N model with Poisson arrivals, exponential distributed service times,
FCFS discipline, and either infinite (M/M/N/∞) or finite buffers (M/M/N/B). For such models,
queueing theory provides elegant closed-form equations for several performance metrics.

Queueing theory can be used to model interactive applications. For instance, the internal struc-
ture of a server can be modeled by a queueing network as shown in Figure 3.11. Under certain
constraints (e. g., “BCMP networks” with product-form solution) either closed-form solutions
or very efficient numerical solution methods exist [27, 86]. A specific challenge are concurrent
processes. They can be modeled by fork/join queueing networks: As depicted in Figure 3.12,
a job is split into several tasks that are distributed over several parallel service units, and it can
only be finished when all tasks have completed service. This model is not part of the classic
queueing theory and can only be analyzed under certain conditions. Exact results are known for
some special cases [163], while more complex models can only be analyzed by approximations
(e. g., [119, 196]) or by decomposition approaches [13].

The assumptions required by queueing theory are often not realistic. The performance of appli-
cations results from a complicated interplay between a variety of components, such as hardware
platform, server software, operating system, protocols, network behavior, workload character-
istics, etc. Because of this complexity, it is difficult to derive queueing models for Web applica-
tions, and even if it is possible, the solutions are typically numerically non-trivial.

3.3.2.2 System performance engineering methods

Another method for performance prediction is software performance engineering, which advo-
cates the integration of performance analysis into the software development process in an early
stage [216]. The objective is to predict performance based on high-level structure and behavior
models, such as Unified Modeling Language (UML) diagrams or Specification and Descrip-
tion Language (SDL) message sequence charts. In addition to queueing or layered queueing
networks, there are several other methods for model-based performance prediction that use
stochastic petri-nets, process-algebra, or simulation [216]. An often underestimated problem is
the parametrization of such models. All known modeling approaches require the knowledge of
parameters that can only be obtained from a prototype or a complete implementation [216], i. e.,
when the software and hardware platform is already available. This model calibration problem
is hardly addressed by literature on software performance prediction – apart from [135].



36 Chapter 3. Performance of broadband interactive applications

An estimation of the internal performance characteristics can be realized either by instrumenta-
tion, i. e., by additional performance monitoring instructions in the code, or by profiling within a
debugging environment. An example for the application of both methods can be found in [238].
Such white box tests require a detailed knowledge of the internal system realization. Therefore,
white box tests are often either technically difficult or very intrusive.

In practice, the performance of software and hardware systems is often measured by bench-
marks. Benchmarks consist of systematic measurements of the performance of a Device Under
Test (DUT), using a well-defined environment and workload. Benchmarks are black box tests,
i. e., there are typically no or only few assumptions about the inner structure of the system.
One or several load generators offer stimulus to the DUT and measure its response. A typical
benchmark is a stress test that determines the capacity of a system. There are domain-specific
standardized benchmark suites that compare the performance of Web servers, databases, etc.
Due to the precise description of the setup and scenarios, such benchmarks facilitate the com-
parison of performance of different software and hardware systems.

Due to the limitations of other theoretical methods, this thesis studies the application perfor-
mance by a combination of black box and white box tests.

3.3.3 Traffic and workload modeling

3.3.3.1 Model types

There are many models for the statistical properties of network traffic and application work-
loads. Computer network traffic is known to be self-similar, i. e., there are long-term correla-
tions in the packet arrivals [132]. Therefore, Poisson processes are not well suited for modeling
traffic at packet level [176], which is known since the mid-1970s [54]. To some extent, the
self-similarity can be attributed to the behavior of the TCP congestion control [132, 176, 66].
Traffic models for aggregated traffic are hardly related to performance of individual applica-
tions. Therefore, the reader is referred to reference [65] for further details on traffic models.

Application workload models can be classified into synthetic source-level models and trace-
based workload models. Synthetic source-level models characterize the workload by a mathe-
matical model. The model parameters, such as Inter-Arrival Times (IATs) or object sizes, are
described by analytical distribution functions (parametric models) or by empirical distribution
functions (non-parametric models). Synthetic models are specific for an application type or a
mix of applications. They are typically composed of different levels: For instance, [151] sug-
gests a user level (user sessions), an application level (system functional aspects), a protocol
level (e. g., HTTP), and a network level. But there are also other possibilities [65]. Synthetic
source-level models have been developed for many popular Internet applications, in particular
in the WWW [65]. They are parametrized by the result of large empirical measurements. The
development and calibration of application-specific workload models is a complex process and
must be repeated each time the communication behavior changes. A further drawback is that
the analysis of measured traffic requires knowledge of the application protocols. As a con-
sequence, most existing synthetic source-level models only address few applications. Many
published models also lack behind the real workload characteristics in the Internet.

In the last decade, the Scalable Uniform Resource Locator Reference Generator (SURGE)
model and tools [15] have been a kind of de facto standard for Web workload modeling. SURGE
is a set of benchmark tools that imitate a fixed population of Web users modeled by on/off pro-
cesses. The workload is generated from empirically derived distribution functions for the file



3.3 Performance evaluation methodology 37

Time

1,196 B

329 B 403 B 356 B
0.12s 3.12s

Request 1 Request 2 Request 3

Response 3Response 2

25,821 B403 B

Response 1

Transaction 1 Transaction 2

(a,b,t) epoch Epoch duration

Figure 3.13: Model for the message exchange in a TCP connection (adapted from [244]). In
a-b-t syntax this corresponds to the vector [(329,403,0.12),(403,25821,3.12),(356,1198,0)].

size distribution at the server, the request size distribution, the relative file popularity, the em-
bedded file references, the temporal locality of references, and idle periods (think times) of
individual users. The parameters used by the latest version of the SURGE software slightly
differ to the original model [15].

An alternative to synthetic source-level models is trace-based workload modeling. The funda-
mental principle is to reconstruct application activities from captured network traffic. Replaying
the traces then reproduces the essential patterns of application read and write operations. In ref-
erence [244], such a source-level characterization is developed for TCP connections: Each TCP
connection is represented by a connection vector, which is a series of individual data exchanges
(epochs) between the TCP connection initiator and acceptor. The data units model application
messages. The application messages are separated by time intervals that represent application
processing times or think times. In each connection, the pattern of application message ex-
changes is represented by a connection vector V = [E1,E2, . . . ,E j], which consists of epochs
Ei = (ai,bi, ti). ai is the size of the i-th message sent from the connection initiator to the accep-
tor, bi the size of the i-th message in the reverse direction, and ti is the think time between the
receipt of the ith response and the transmission of the (i+1)-th request. An example is shown
in Figure 3.13. The a-b-t connection vector notation can also model application protocols that
omit one of the messages during the exchange by (ai,0, ti) or by (0,bi, ti). The model can also
be extended to 4-tuples of the form Ei = (ai, ta,i,bi, tb,i) in order to include server response
times. The workload description by connection vectors can be performed without any a priori
knowledge about the application protocols. It can also model the aggregated behavior of many
different applications. Yet, a drawback of trace-based workload modeling is that it is hard to
obtain insight into the system behavior and specific application performance metrics.

Workload models are implemented by load generators. There are two different load generation
principles: Open-loop generators inject data according a model of the arrival process, typically
assuming an infinite number of sources. Open-loop generators can specify an offered network
load, but they are insensitive to the network characteristics. In contrast, closed-loop models
take feedback loops into account, e. g., the impact of congestion control. As the network load
depends on the control loops, it is impossible to define an offered load. The trace-based TCP
workload modeling [244] is a hybrid approach: Each connection realizes a closed-loop model.
Still, the arrival process of connections is described by inter-arrival times, i. e., an open model.

3.3.3.2 Known Internet and WWW workload characteristics

The total workload in the WWW is subject to large fluctuations during one day and also during
the week with a sleep-wake pattern per day and less volume on weekends [70, 152, 231]. A
general trend is that the mean value of the transfer sizes increases, in particular for new Web ap-



38 Chapter 3. Performance of broadband interactive applications

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Size [B]

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

C
C

D
F

All traces: Request size (a)

All traces: Response size (b)

Trunc. pareto (α=1.1, k=132, K=1e7)

Lognormal distr. (µ=6.62, σ=2.48)

Trunc. pareto (α=1.1, k=2159, K=1e7)

Responses

Requests

Figure 3.14: Observed request and response
size distribution in the used workload traces

10
-5

10
-4

10
-3

10
-2

Connection vector inter-arrival time [s]

10
-4

10
-3

10
-2

10
-1

10
0

C
C

D
F

All traces
Exponential distribution (λ=0.000885)

Figure 3.15: Observed connection IAT dis-
tribution in the used workload traces

plications [209]. Concerning the distribution, some studies observe heavy-tailed distributions,
but there are also reports for other long-tailed shapes, in particular lognormal distributions [55].
A common approach is to model file sizes by combined distributions [15]. It is agreed that
the distribution of requested files follows Zipf’s law [15]. Furthermore, there is evidence that
user session arrivals can be modeled by Poisson processes [176, 66, 20]. Another known char-
acteristic of the Internet is that a large part of the overall traffic is created by a small number
of connections (“elephants”), while the vast majority of connections has only a short lifetime
(“mices”) [79]. Data about the internal performance of Web systems is hardly published, and
the available studies report different characteristics. For example, [153] observes lognormal re-
sponse time distributions in ERP systems. Some measurements of e-commerce workload [231]
argue that backend response times can be best described by a pareto distribution, and there are
also further indications of heavy-tailed server response times [65, 196]. Existing studies on the
WWW workload are comprehensively surveyed in [65].

In the following chapters, both synthetic and trace-based workload models are used. As recom-
mended by Andrew et al. [10], the trace-based workload models use data from traffic traces that
are publicly available [239]. These traffic traces have been measured on a university campus
in the year 2008, and the published data is already post-processed to describe TCP connec-
tion vectors. Figure 3.14 and Figure 3.15 show two exemplary Complementary Cumulative
Distribution Functions (CCDFs) for two statistical properties of these traces: The application
message size and the IAT of connection vectors. The response size distribution has a mean of
about 14kB and can be well approximated by a lognormal distribution. The average request
size is much smaller (1kB), and the distribution is rather unsteady. The distribution tails could
also be modeled by a truncated Pareto distribution with shape factor αpareto = 1.1. Figure 3.15
reveals that the inter-arrival time of vectors is almost exponentially distributed.

3.3.4 Accurate simulation of real network stacks

3.3.4.1 Advantages and drawbacks of performance evaluation by simulation

In networking research, protocols and systems are often developed and evaluated with help of
stochastic discrete-event simulation. This means that a simulation tool studies the implementa-



3.3 Performance evaluation methodology 39

tion of an abstract model in a virtual simulation time. Simulation fills a gap between theoretical
studies and experimentation: On the one hand, simulation can be used to predict the perfor-
mance of systems and protocols that are too complicated for a mathematical analysis. On the
other hand, a simulation study does not require a complete experimental setup. This is why sim-
ulation studies can explore new environments or architectures even if required technologies are
not available yet, or if access to the corresponding systems is not available. Simulation studies
can also easily scan large parameter ranges in a totally controlled environment.

However, unlike real measurements and experiments, simulation studies only explore a con-
structed, abstract model. Simulations are only useful if the real systems are accurately rep-
resented by this model. In the last years, it can been argued that there is a “deep crisis of
credibility” of simulation and that one cannot rely on the majority of published simulation
results [175]. Many simulation studies and tools lack comprehensive verification and valida-
tion efforts. Verification is a process to evaluate how faithfully the implementation of a model
matches the developer’s intent, as expressed by conceptual descriptions and specifications. Val-
idation is a process that evaluates how accurately a model reflects the real-world phenomenon
that it purports to represent [89]. A simulation tool must be verified and validated. It only sup-
ports the claims that are made if the simulation is (1) repeatable, (2) unbiased and not specific to
a scenario, (3) rigorous, i. e., if the aspect being studied is exercised, and (4) statistically sound.
If these requirements are fulfilled, simulations are a useful tool to systematically explore the
parameter space of a system. However, they cannot completely substitute real measurements,
which are anyway needed as a reality check and a validation of implicit assumptions.

Another serious problem is that the Internet has several properties that are difficult to charac-
terize and thus to simulate. Floyd states that “due to the heterogeneity and rapid change in the
Internet, there does not exist a single suite of simulation scenarios sufficient to demonstrate that
the proposed protocol or system will perform well in the future evolving Internet” [70]. Fur-
thermore, there is a tremendous variety of protocol implementations. Internet protocols and in
particular transport protocols are only specified to the level necessary to ensure successful com-
munication between nodes. This implies that many engineering decisions and optimizations are
left to implementers [89]. Possible remedies include the standardization of benchmarks [10]
and the use of simulators that accurately model real protocol implementations.

3.3.4.2 Possibilities to accurately simulate network stacks

One fundamental challenge of networking research is TCP modeling. Research on Internet ap-
plication performance requires accurate and validated TCP simulators. However, as described
in the next chapter, TCP is a complex protocol that is still evolving, i. e., new features are being
added over time. The behavior of TCP is also influenced by other components of the operat-
ing systems, such as the memory management, the process scheduler, and interrupt handling
(cf. Section 4.2.4). Many operating systems also implement specific, non-standardized proto-
col optimizations. Traditional network simulators neglect these aspects and use rather simple
models of TCP. However, many TCP enhancements, and even subtle implementation details,
significantly affect the achievable performance. As a consequence, the behavior of state-of-
the-art TCP/IP stacks differs substantially from the simplified models used by most simulation
frameworks.

There are different approaches how to simulate TCP/IP network stacks, which are classified
in Table 3.1. The table only includes simulation methods. There is also a multitude of net-



40 Chapter 3. Performance of broadband interactive applications

Table 3.1: Classification of network stack simulation approaches (presented in [200])

Type Modeling scope Real OS code Appl. models Examples of tools
Abstract model Mathematical No Greedy sources Any simulation

model only framework can be used
Reimplementation Simplified protocol No Synthetic models NS-2 [148],

functions or traces IKR Tcplib [24]
Code extraction Only the TCP Small parts Synthetic models NS-2 TCP-Linux [241]

congestion control only or traces
Stack integration Complete TCP/IP Network Synthetic models NSC [103], OppBSD [23],

network stack stack code or traces Lunar [118]
Runtime emulation Kernel or user space Complete OS Real applications NCTUns [237],

emulation with patches UML Simulator [8]

work emulation mechanisms, such as the Linux network emulation (“NetEm”) [90]. The main
difference between simulation and emulation is that simulation tools use a virtual time.

Abstract models characterize the fundamental macroscopic behavior of the TCP protocol and its
congestion control, e. g., by using fluid-flow models (see Section 4.2.1.3). All existing abstract
models are limited to simple network scenarios and straightforward workload models, in partic-
ular greedy sources. In order to enable studies of the microscopic TCP behavior, many network
simulators include simplified built-in TCP simulation modules. A very common simplification
is to implement only selected protocol functions and to support only one-way transport. The de
facto standard for Internet research is the Network Simulator version 2 (NS-2) [148]. Compared
to other network simulators, the TCP models of NS-2 offer a lot of features and they have been
validated extensively [89]. However, there are also a number of significant limitations: NS-2
does not implement the TCP flow control, i. e., the receive window, and connection establish-
ment and teardown is also not completely realized [148]. Other TCP simulation frameworks
have similar deficits. For instance, the IKR simulation library (“IKR Simlib”) [25] includes a
TCP simulation model (“IKR Tcplib”) [24, 138]. Like the standard edition of NS-2, it lacks
behind real TCP implementations that already support many new TCP enhancements, such as
new congestion control algorithms.

These shortcomings can be addressed by using the code of an existing, full-featured TCP imple-
mentation that originates from an open source operating systems, such as Linux or variants of
the Berkeley Software Distribution (BSD). An obvious advantage is that such code is inherently
validated and widely tested. Still, using kernel code in a user-space simulation tool requires
solutions for a couple of problems [200]:

- Differences between kernel-space and user-space environments: User space tools cannot
use privileged instructions and do not need many kernel subsystems, e. g., the kernel
memory management. Furthermore, there are name collisions and possibly a mismatch
between programming languages.

- Coexistence of multiple stack instances: Operating system code is not re-entrant, i. e., it
uses global variables that prevent multiple different instances of a stack to run concur-
rently within the same process space.



3.3 Performance evaluation methodology 41

- Simulator interface: The network and application interfaces must be adapted to the sim-
ulator. The kernel code must be forced to use the virtual time. Also, the simulation tool
must be able to deal with full packets that contain real headers and payload.

Table 3.1 lists several solutions that directly execute real network stack code in simulation tools.
The simplest approach is to use only small parts of the network stack. Reference [241] presents
a solution that integrates the pluggable TCP congestion control modules from Linux kernels in
NS-2 (“NS-2 TCP-Linux”). With this extension, NS-2 can use all TCP congestion control vari-
ants that are implemented in Linux. But there are still notable performance differences to the
real Linux stack because other parts of the TCP engine still use a highly simplified realization,
e. g., the loss detection module (“scoreboard”) and the processing of Selective Acknowledg-
ments (SACKs) [241].
The other direct code execution alternative is to integrate a complete TCP/IP stack into a simula-
tion environment: At the time of writing, the most elaborated solution is the Network Simulation
Cradle (NSC), which has been developed by Jansen [103]. The NSC enables the execution of
the network stacks of several Linux kernel versions and different BSD variants within simula-
tion frameworks. The NSC provides an own parser (globalizer) that preprocesses the operating
system source code and replaces global variables and their references by elements of arrays. As
a result, it requires only very limited manual modifications of the kernel source code [105]. The
NSC can be integrated in the NS-2 simulator, but its core is independent of a specific simulation
tool. The NSC has undergone significant validation and performance tests [103, 104].
There are also two other similar approaches: “OppBSD” [23] integrates the FreeBSD network
stack in the OMNeT++ simulator. “Lunar” [118] is a user-space library built from an old Linux
kernel. Unlike NSC, both approaches require significant manual editing of the kernel code, and
the underlying network stacks do not implement recent TCP enhancements.
Finally, runtime emulation or virtualization techniques use a complete operating system for
simulation-like purposes. “NCTUns” [237] realizes a combination of simulation and emulation.
The host operating system (BSD or Linux) is modified to run in a virtual time. By means of
tunnel interfaces, simulation tools can directly use the native TCP/IP protocol stack of the host
system. The “UML Simulator” [8] extends user-mode Linux virtualization with an event-driven
simulation engine. Both approaches can run almost unmodified applications in virtual time.
However, the required special support from the host operating system limits the applicability.
In addition, the simulation speed is low and the scalability in terms of stacks is very limited.

3.3.4.3 A new TCP/IP simulation framework

The investigation of the performance of Internet applications and of new transport protocol
mechanisms requires accurate models of the microscopic TCP behavior. This results in a prob-
lem: On the one hand, TCP models that behave like a given real implementation have to model
the implementation-specific design choices of that stack. As a consequence, the obtained results
may not be universally valid. Also, the more accurately TCP is modeled, the more complex are
the simulation tools, resulting in longer simulation execution times. On the other hand, sim-
plified models can hardly approximate the sophisticated algorithms of modern network stacks.
The direct code execution approach of the NSC is a reasonable trade-off between manageability
and accuracy if the network scenarios are not too large.
In order to perform the simulation studies presented in this thesis, the original NSC framework
has been enhanced and adapted to the IKR simulation library. The original port of NSC to the



42 Chapter 3. Performance of broadband interactive applications

Network interface

TCP/IP stack code

Socket interface

− Implemented

− Support

− Unimplemented

Kernel function calls:

Network model

Creation

Configuration

Timer interruptS
h

a
re

d
 l
ib

ra
ry

Host model Application model

Simulation program

Stack−specific code (C)

NSC

Simulation library

Stack−independent code (C++)

Kernel code

Figure 3.16: Architecture of a simulation tool with the Network Simulation Cradle (NSC)

IKR simulation library has been realized by Zeeh [253]. This implementation has also several
features that are not available in NS-2, e. g., a technique to reduce the memory requirements by
transporting only header parts through the simulation model. Tools within this framework have
been developed by Zeeh [253], Proebster [180], and the author of this thesis.
The structure of the simulation framework with the NSC is illustrated in Figure 3.16. The core
is the NSC version 3.0, which is able to simulate the network stack of Linux kernel 2.6.18, as
well as other stacks. The NSC has a part that is common to all stacks, which defines several
interfaces to the simulation tool. Each supported stack is complemented by implementations of
these interfaces as well as re-implemented kernel functions, i. e., unused kernel functions that
are replaced by user-space code. Since each network stack is contained in a shared dynamic
link library, a simulation tool can easily load multiple different stacks in parallel. Beside the
default Linux kernel, the NSC has also been patched by the author to run modified kernels (cf.
Section 6.1.1.1). Due to the sophisticated parser only a small amount of manual work is needed
to integrate a new kernel; adaptations are mainly limited to configuration interfaces.
The comparison of simulation and measurement results, which are presented later in Sec-
tion 6.2, shows that the usage of real stack code results in accurate results very close to mea-
surements in a real testbed. This is one of the main advantages compared to NS-2 and other
non-validated simulators such as [24, 138]. However, this comes at the cost of longer simulation
times and larger memory requirements. Furthermore, there are several issues that are difficult
to solve in a simulation tool that uses real network stack code. Since kernel code is not written
for a proper cleanup, it is very difficult to completely delete program objects that include a net-
work stack. Because of similar reasons, the complete realization of the connection teardowns
is non-trivial in the simulation, too. However, these issues hardly limit the practical usability of
the simulation framework.



4 Fast startup congestion control
mechanisms

The purpose of fast startup congestion control mechanisms is to almost immediately utilize a
given path. This chapter first reviews the fundamentals of congestion control and systematically
classifies the possible solutions in order to show how new congestion control mechanisms can be
designed. Then, a comprehensive survey of the state-of-the-art mechanisms and the remaining
open issues of the Internet congestion control is presented, which reveals that the flow startup
is still a problem that is not entirely solved. The second and main part of this chapter addresses
the question how fast startup congestion control could be realized. It completely reviews the
design principles and classifies all known solutions. A specific focus is the analysis whether
fast startup can be realized by an end-to-end congestion control, or whether network support
should be used. For both cases, the author motivates and develops new mechanisms: It is
shown that recently proposed end-to-end flow startup schemes must be enhanced in order to be
useful in practice. Within the class of network-supported approaches, the Quick-Start protocol
is extensively analyzed, and several enhancements and new algorithms are proposed. Finally,
this chapter also studies radically new network-supported congestion control frameworks that
originate from clean slate research projects, and it discusses their applicability compared to
more evolutionary fast startup TCP extensions.

Congestion control is a very broad topic with many facets. This chapter introduces only aspects
that are relevant for this work. In particular, only unicast traffic is considered. A survey of
multicast congestion control issues can be found in [248]. Many issues that are only briefly
mentioned in this chapter are also presented in more detail in Welzl’s book [246].

4.1 Systematic classification of congestion control methods

4.1.1 Terminology and fundamentals

4.1.1.1 Congestion

There have been various efforts to precisely define the term “congestion”, and the discussions
did not reach agreement. A common statement is that “congestion occurs in a computer net-
work when resource demands exceed the capacity” [100]. It is also common to consider a
network congested if, due to overload, excessive queueing delays and/or packet losses occur.
This definition is also used in this thesis. Keshav [115] claims that such definitions are not satis-
factory because these symptoms may be due to phenomena other than congestion, and suggests
a formal definition from the user’s point of view: “A network is said to be congested from the
perspective of a user if that user’s utility has decreased due to an increase in network load”. The
impact on performance is also emphasized by other references, such as [Y.1221], where con-

43



44 Chapter 4. Fast startup congestion control mechanisms

Transport

Network

Application

Link

Transport

Network

Application

Link

Transport

Network

Application

LinkEnd system

End system

congestion
Potential

End system

Figure 4.1: Congestion in a network caused
by competing connections

A
1C

1
C

2

A
2 A

3

C
3

Narrow link
Tight linkSmallest

capacity Smallest

available

bandwidth

Link 1

Link 2
Link 3

Figure 4.2: Pipe model of a three-hop path
with different narrow and tight links

gestion is defined “as a state of network elements (e. g. router, switches) in which the network is
not able to meet the network performance objectives and the negotiated QoS commitments for
the already established flow”. Recently, Briscoe et al. [32] suggest a probabilistic notation and
define the congestion at a resource as the probability that another packet will not be served to its
requirements. Strictly speaking, resources can be bit-congestible or packet-congestible [172].

Due to the temporal multiplexing, short term load imbalances are unavoidable in packet net-
works and have to be corrected by buffering. If a resource gets congested, queueing delays
increase, and packets must be dropped if the buffer size is exceeded. Without appropriate coun-
termeasures, a congestion collapse can occur, i. e., resources are either wasted by unnecessary
retransmissions or by packets that are dropped before reaching their destination [RFC 2914].

4.1.1.2 Congestion control

Congestion has to be avoided because it increases delays and wastes resources. The objective of
congestion control is to minimize the intensity, spread and duration of congestion [Y.1221]. This
requires two different functions: First, congestion control should prevent a source from sending
data that will get dropped on the path; this aspect is also called congestion avoidance [100].
Second, it must ensure that a network remains operational when congestion occurs and react
accordingly. As the name implies, congestion control is a control mechanism. Since the entity
that governs the resource usage is not necessarily identical to the resource that gets congested,
congestion control is an inherently distributed problem that requires some form of feedback and
a closed control loop. Therefore, congestion control can precisely be defined as “the feedback-
based adjustment of the rate at which data is sent into the network” [247]. In order to avoid
and handle overload situations, congestion control mechanisms must be able to decide on the
usage of resources at least to some extent. Thus, congestion control can also be understood as
an “algorithm to share network resources among competing traffic sources” [172].

As shown in Figure 4.1, congestion and its resolution may affect different entities. This inher-
ently results in fairness issues, which are discussed in the next sections. It must also be empha-
sized that resource management in packet networks is performed by several control loops on
different time scales. The reaction time of congestion control depends on RTT of the path and is
of the order of milliseconds. This is the main difference compared to other traffic management
and traffic engineering mechanisms, such as routing policies or capacity dimensioning, which
operate on longer time scales and often also depend on human interaction. Further control loops
may also exist inside applications, e. g., by application adaptation functions or by manual user
reactions. Such mechanisms typically work on time-scales longer than the path RTT, too.



4.1 Systematic classification of congestion control methods 45

In some references, the terms congestion control and flow control are used synonymously, or
one is regarded as a special case of the other. In the context of transport protocols, the two
terms refer to two different functions, even if they may use similar mechanisms. According
to [RFC 793], flow control is defined as “a means for the receiver to govern the amount of data
sent by the sender”. The objective is to ensure that a sender cannot continuously transmit data
faster than the receiver can absorb it. The difference to congestion control is stated precisely by
Jain [100]: “Flow control is an agreement between a source and a destination to limit the flow of
packets without taking into account the load on the network. It ensures that a packet arriving at
a destination will find a buffer there. Congestion control is primarily concerned with controlling
the traffic to reduce overload on the network. Flow control solves the problem of the destination
sources being the bottleneck while congestion control solves the problem of the routers and the
links being the bottleneck. Flow control is a biparty agreement. Congestion control is a social
(network-wide) law.” In a sliding window protocol, flow control can easily be realized by en-
suring that the source’s window is not larger than the free space in the sink’s buffer. Congestion
control is more complicated, since it involves many potentially uncooperative parties.

4.1.1.3 Network performance metrics

The purpose of congestion control is to use the capacity of a network efficiently. Defining
the capacity of a link or network path is not always straightforward. The encoding scheme,
framing, and media access results in a certain overhead and – depending on the technology –
a varying capacity. Therefore, the term capacity is only meaningful if it is defined relative to a
protocol layer, and it is not necessarily a constant value. In this document, resources are always
described at the network layer with the following commonly used terms and metrics [179]:

- Link capacity ri of link i: The maximum IP layer transfer rate is given by the maximum
number of IP layer bits that can be transmitted over the link during a specific time interval.
At IP layer, a link is also labeled hop.

- Path capacity r: The maximum possible transfer rate is the smallest link capacity along
that path r = min1,...,Nhops ri, where Nhops is the number of hops in the path.

- Link utilization ρi: The utilization is the fraction of the link usage, i. e., the number of
correctly received IP layer bits during a certain interval, and the link capacity ri.

- Available path capacity or available bandwidth v: The available bandwidth is the unused
(spare) capacity on a path, i. e., v = min1,...,Nhops vi, where vi = (1−ρi)ri is the available
link capacity of link i.

At the transport layer, further metrics are used:

- Throughput or goodput G: The data rate that an application achieves in a specific setting.
- Bulk transfer capacity BTC: BTC is the maximum long term average throughput obtain-

able by a single flow of a standard-compliant TCP connection over a path. Its value is
only defined for a given congestion control algorithm, and it may be different from G.

All given metrics may be time-varying. Therefore, the time and the length of the measurement
intervals are important parameters, too. As illustrated in Figure 4.2, a link i with the smallest
link capacity ri = r is called the narrow link of a path. A link j with the smallest available
link capacity v j = v is the tight link of the path. Furthermore, a link k can be defined as the
bottleneck link if it has a bulk transfer capacity BTCi = BTC. The narrow link, the tight link,
and the bottleneck do not have to be identical, and their position may change over time.



46 Chapter 4. Fast startup congestion control mechanisms

4.1.1.4 Review of congestion control theory

Since the early empirical development of the congestion control mechanisms by Jain, Jacobson,
and others, a significant progress has been achieved in the mathematical modeling of congestion
control. Suitable methods include optimization, control theory, probability, and concepts from
microeconomics [220]. An important theoretical concept are utility functions. In economics,
utility is a measure of the relative satisfaction from consumption of various goods and services.
Elastic applications can be described by a utility function Ui(xi) that is usually strictly concave,
i. e., the utility increases with the available bandwidth, even if there is little evidence about the
shape of the function [212].

Kelly formalized congestion control as a utility maximization problem under link capacity con-
straints [111, 112, 113]. In Kelly’s framework, which has become a kind of standard flow level
modeling of congestion control, L is the set of all links and S the set of all sources in the net-
work. Each user i ∈S sends packets with sending rate xi. The aggregate link rate is y = A x,
where A is the |S |× |L | routing matrix. In A, the entry at (i, j) is 1 if source i’s route passes
through link j, and it is 0 otherwise. Each link j ∈L is assumed to have a fixed capacity r j.
Based on the level of congestion, a link price p j = h j(y j) can be computed. This link price
information is sent back to each source with the aggregate price q = AT p.

Kelly formulated the congestion control problem as a static optimization and dynamic stabiliza-
tion problem: The static optimization problem computes the desired equilibrium by maximizing
the sum of the utility functions Ui(xi), while complying with capacity constraints of the links:

max
x≥0

∑
|S |
i=1 Ui(xi) subject to A x≤ r (4.1)

According to the optimization theory, this problem has a unique solution if Ui(xi) are strictly
concave functions. The dynamic problem is to solve this optimization problem in a distributed
way. This requires the design of a source algorithm that adapts the transmission rate xi in re-
sponse to congestion feedback signals qi, i. e., a source rate update law xi = f (qi). Furthermore,
a link algorithm must compute the price p j(y j) based on the aggregate link rate y j.

Kelly presents two optimal algorithms: The primal algorithm realizes a gradient controller.
It consists of a first order source update law for ẋi with a constant increase and a decrease
proportional to the aggregate price, and a static penalty function for p j, which enforce the link
capacity constraints. The primal algorithm assumes that the route price is conveyed back to the
source. It broadly corresponds to congestion control mechanisms where noisy feedback from
the network is averaged at endsystems, which use increase and decrease rules generalizing those
of the TCP congestion control [113]. The dual algorithm consists of a static source update law
for xi and a first order dynamic link price update ṗ j. The price function p j(y j) can intuitively
be interpreted as follows: If the link arrival rate is greater than the link capacity, the link price
increases, and it decreases if the arrival rate is less than the link capacity. Dual algorithms
broadly correspond to congestion control mechanisms where averaging at resources precedes
the feedback of more explicit information to the endpoints [113]. For both the primal and the
dual control laws, the unique equilibrium can be obtained, and their globally asymptotic stability
has been proved. Kelly also shows that the optimal control algorithms achieve proportional
fairness in bandwidth allocation if the utility functions are logarithmic [111].



4.1 Systematic classification of congestion control methods 47

4.1.2 Congestion control requirements and design space

4.1.2.1 Fundamental requirements

In general, congestion control algorithms have to satisfy the following major requirements:

1. Efficiency: The utilization of the available network resources should be high.

2. Responsiveness: The algorithm should respond promptly to changes in the congestion
conditions and transient events such as route changes or mobility events. The convergence
time to reach the operating point should be small.

3. Avoidance of heavy congestion and synchronization: Dropping many packets during con-
gestion events should be avoided. Congestion events may last longer than one RTT.

4. Network independence: The protocol should work well regardless of network character-
istics, such as router buffer sizes, queue management strategies, or the path MTU. Packet
networks encompass a large variety of heterogeneous networks that are realized by a
multitude of technologies, which result in a tremendous variety of link and path charac-
teristics: The link capacity can be either scarce in very slow speed radio links (several
kbps), or there may be an abundant supply in high-speed optical links (several gigabit per
second). Concerning latency, scenarios range from local interconnects (much less than a
millisecond) to certain wireless and satellite links with very large latencies (up to a sec-
ond). As a consequence, both the available bandwidth and the end-to-end delay may vary
over many orders of magnitude, and they can be subject to substantial changes within
short time frames. Congestion control mechanisms must also be able to deal with asym-
metric routing, i. e., situations in which the forward path and the reverse path are different
and potentially both congested.

5. Application independence: Congestion control has to deal with quite diverse application
sending behaviors. The amount of data that an application may send varies over many
orders of magnitude, and the arrival pattern may be arbitrary.

6. Robustness and stability: The mechanisms should be robust against noise in the con-
gestion signals. Oscillations should be avoided. Congestion control can be viewed as
a classic negative-feedback control problem with delayed feedback signals. Congestion
control aims at asymptotic stability, i. e., it should converge to a certain state irrespective
of the initial state of the network.

7. Scalability: The mechanism must work in a global network that interconnects potentially
billions of endsystems. This requires decentralization. With the currently available tech-
nology it is impossible to realize a centralized, per-flow resource management on global
scale, even if the corresponding business and legal aspects would be solved.

8. Simplicity: The implementation complexity and the amount of state in endsystems should
be moderate. Per-flow state in core network components should be avoided, since it can
hardly be realized with existing technology. Simple solutions are also more likely to
become a widely accepted standard.

9. Ability to deal with uncooperative entities: Any solution in a multi-domain environment
must consider potentially untrusted or malicious sources, sinks, and network entities on
the path, as well as outside attackers.



48 Chapter 4. Fast startup congestion control mechanisms

4.1.2.2 Fairness

A further requirement for resource sharing is fairness. A definition of fairness is non-trivial,
since it affects both technical and economic aspects. Numerous fairness concepts have been
proposed [246]. For bandwidth allocations, there are three formal definitions for the fairness of
a feasible allocation of data rates x among different connections:

- Max-min fairness: An allocation x of dimension n is max-min fair if and only if an in-
crease of any rate must be at the cost of a decrease of some already smaller rate. Formally,
for any other feasible allocation x′, if x′i > xi there must exist some j such that x j ≤ xi and
x′j < x′j. Depending on the network topology and the traffic matrix, a max-min fair allo-
cation may or may not exist. If it exists, the solution is unique.

- Proportional fairness: An allocation x is proportionally fair if and only if ∑
n
i=1

x′i−xi
xi
≤ 0

for any other feasible allocation x′. According to this fairness definition, which originates
from game theory, any change in the allocation must have a negative average change. In
a given setup there exists one unique proportionally fair allocation.

- Utility fairness or cost fairness: A utility fair allocation x maximizes a cost function that
depends on utility functions. Proportional fairness is one special case of utility fairness
with Ui(xi) = wi ln(xi).

The most well-known metric to quantify fairness is Jain’s fairness index [99]:

FI =
(∑n

i=1 xi)
2

n
(
∑

n
i=1 x2

i
) ∈ (0,1] (4.2)

An allocation with equal values is characterized by FI = 1, whereas a totally unequal allocation
has a fairness index of FI = 1/n.
In the Internet, two further fairness notions exist. The term TCP compatibility is defined
as follows: “A TCP-compatible flow is responsive to congestion notification, and in steady
state it uses no more bandwidth than a conforming TCP running under comparable condi-
tions” [RFC 2309]. Furthermore, a flow is considered TCP friendly [RFC 5348] if its through-
put is less or equal than the rate of a long-lived TCP connection, which is approximately given
by the Equation (4.7) that is introduced later in Section 4.2.1.3. Both definitions are not rig-
orous, and the terms are also not consistently used. Due to the design of the standard TCP
algorithms, which are discussed in Section 4.2.1.3, TCP compatibility inherently implies RTT
unfairness, i. e., connections with a shorter RTT will in average obtain a higher share of bottle-
neck bandwidth. Also, there can be unfairness with respect to packet sizes [172].
The TCP compatibility is subject to ongoing debates in research and standardization commu-
nities. It is accepted that in high-speed networks new congestion control algorithms may be
moderately more aggressive than standard TCP. But there is no consensus whether RTT fair-
ness is a desirable design goal. There is also disagreement about the right granularity of fair-
ness. The common goal of widely deployed mechanisms is equal bandwidth allocation among
flows. However, this flow rate fairness is biased towards users that use many parallel flows.
Briscoe [33] argues in favor of cost fairness, which takes into account the amount of congestion
caused by a user. Floyd et al. [RFC 5290] disagree and state that some form of rough flow rate
fairness is an appropriate goal for simple best-effort traffic.
Fairness is also an economic issue. Most congestion control schemes require the involved par-
ties to behave in a cooperative way. However, for an individual user it is not necessarily the



4.1 Systematic classification of congestion control methods 49

Table 4.1: Congestion control design space. The design choices of TCP are highlighted. Ex-
plicit network feedback is addressed separately in Table 4.2.

Design criteria Degrees or freedom
Location Sender vs. receiver vs. other entity
Protocol layer Transport layer vs. link/network/shim/application layer
Responsiveness Reactive vs. proactive vs. no congestion control
Network feedback Implicit vs. explicit
Congestion detection Loss-based vs. delay-based vs. hybrid
Playout control Window-based vs. rate-based
Granularity Per connection vs. per aggregate
Precedence Best effort vs. relative prioritization
Fairness Inter-protocol (“TCP friendly”) vs. intra-protocol vs. no fairness

Flow fairness vs. utility fairness

optimal strategy to reduce the sending rate upon detection of congestion. If users act in a self-
ish manner and try to improve their own position by using more resources, this will result in
a tragedy of commons problem. In economics, there are three fundamental approaches to deal
with congestion externalities: Social norms, rationing, and pricing. The first two reflect the
current situation in the Internet, where most endsystems use congestion control and there are
some network fairness enforcement mechanisms such as fair queueing and scheduling (cf. Sec-
tion 4.2.2.2). The latter approach would require congestion-based charging, which could theo-
retically be a basis for congestion control. However, due to the unpredictability of such mecha-
nisms there are serious reservations both by customers and by network operators [186].

4.1.2.3 Design space of congestion control methods

Congestion control can be realized by a multitude of methods. [RFC 2914] states that “any
form of congestion control that successfully avoids a high sending rate in the presence of a
high packet drop rate should be sufficient to avoid congestion collapse”. Table 4.1 provides an
overview of the large design space.

Figure 4.3 classifies the congestion control mechanisms that are further investigated in this
work. The most fundamental design choice is whether congestion control is realized end-to-end,
i. e., solely by the sender and/or the receiver, or network-supported. This difference also roughly
corresponds to Kelly’s distinction between primal and dual algorithms (cf. Section 4.1.1.4). In
an end-to-end scheme, the endsystems continuously monitor the path and increase or decrease
the sending rate based on implicit assumptions about the path. Network support is realized by
explicit signaling from network components that provide feedback concerning the congestion
on the path, or derived metrics, such as prices. The differences and implications of these two
designs are evaluated throughout the following sections.

4.1.3 Classification of end-to-end congestion control methods

Without network support, endsystems can detect congestion only by two signals: Packet loss
and/or delay. Loss-based congestion control interprets lost packets as sign for congestion and
reacts by reducing the sending rate. This corresponds to a binary feedback model. A fun-
damental drawback is that packet losses should be rare events and therefore provide a coarse



50 Chapter 4. Fast startup congestion control mechanisms

Distributed resource management

End−to−end congestion control Traffic control

Loss Delay Hybrid

Compound,

(implicit feedback) (reservation, admission, preemption)

RSVP, NSIS, PCN, etc.

(explicit feedback)

Network−supported congestion control

Reno,

CUBIC, ... FAST, ...

Vegas

...

Network assistance Network control

Binary

ECN

Multi−bit

Quick−Start

XCP, RCP, ...

or NGN platforms

Figure 4.3: Overview of different resource management principles and examples

information only. Loss-based congestion control saturates network buffers unless active queue
management schemes are used, which are introduced in Section 4.2.2.2. An alternative mech-
anism are delay-based congestion control algorithms that use the delay as primary congestion
signal. They determine the minimum RTT and interpret increasing delays as a congestion sig-
nal. Delay can be measured more frequently and with a finer granularity than loss. Delay-based
schemes can detect incipient congestion before buffers overflow. But they have to cope with
two problems: The noise in packet delays has to be filtered out, and it is inherently difficult to
distinguish between full and empty queues. As a consequence, realistic delay-based algorithms
require a loss-based component, too.
The most widely used class of congestion control mechanism is sender-oriented, end-to-end,
and loss-based. This class controls the sending rate by modification of a Congestion Win-
dow (CWND). A control law increases the Congestion Window if there is no sign of congestion,
and it decreases it when packet loss is detected. Chiu and Jain [48] developed a fundamental set
of algorithms that manipulate a CWND W as a reaction to the binary feedback:

Increase per packet in absence of congestion: W ←W +αincrW i (4.3)
Decrease on detection of congestion: W ←W −βdecrW j (4.4)

The most important class of algorithm uses i = −1 and j = 1, which corresponds to Additive
Increase Multiplicative Decrease (AIMD). The term additive is used since the CWND is in-
creased by the additive term αincr after one RTT. The resulting evolution of the CWND over
time is depicted in Figure 4.4. A fundamental property of AIMD is that it converges to the
optimum point of equal sharing if several competing flows share a bottleneck [48]. This charac-
teristic can be proved by regarding the system transitions as a trajectory through a vector space,
which is illustrated in Figure 4.5 for the case of two flows. Obviously, there are also several
alternatives to the AIMD control law [48], such as Multiplicative Increase Multiplicative De-
crease with i = 0 and j = 1. These other decision-making functions may not converge to equal
sharing in drop-tail networks [48].

4.1.4 Classification of network-supported congestion control methods

4.1.4.1 Terminology

Network components can be involved in congestion control in two ways: First, they can im-
plicitly optimize their functions in order to support the operation of an end-to-end conges-
tion control, e. g., by queue management and scheduling strategies, as introduced later in Sec-
tion 4.2.2.2. Second, network components can participate in congestion control via explicit



4.1 Systematic classification of congestion control methods 51

C
o

n
g

e
s
ti
o

n
 w

in
d

o
w

Maximum window W
max

Time

max

SST

Threshold (SST) is exceeded

Slow−Start, until Slow−Start

β
decr

*W

Figure 4.4: Simplified Congestion Window
evolution of an AIMD algorithm

T
h
ro

u
g
h
p
u
t 
o
f 
c
o
n
n
e
c
ti
o
n
 2

Throughput of connection 1

Equal sharing

AIMD trace

Path capacity

Optimal point

Figure 4.5: Chiu/Jain vector diagram show-
ing AIMD’s convergence to fairness

signaling mechanisms. A wide variety of terms are used to describe congestion control with
explicit feedback from network components, including terms such as “router-assisted”, “router-
supported”, “router-aided”, “explicit” congestion control, etc. They are not consistently used,
and the term “router” is misleading since some schemes do actually require support in all queues
along a path, which may also exist in link layer devices. The author suggests to precisely dis-
tinguish between the following three terms:

Definition 4.1 (Network-supported congestion control): Network-supported conges-
tion control schemes use explicit feedback from network components to the source of a
flow. The feedback signals state of congestion.

Definition 4.2 (Network-assisted congestion control): This class of network-supported
congestion control mechanism leaves the decision on sending rates to the sources. It can
operate even if the sources use another congestion control mechanism.

Definition 4.3 (Network-controlled congestion control): In this class of network-sup-
ported congestion control, the network components control the sending rate of flows with
a fine granularity. Sources are merely responsible for executing the control decisions.

These definitions use the term “network component” instead of “router”. All network-supported
congestion control schemes require a communication between network components and endsys-
tems. Since interconnection in the Internet is realized at the IP layer, signals can only be trans-
ported within the IP layer or in higher protocol layers. Only network components that process
IP packets can trigger such notifications. The following sections distinguish clearly between the
terms “network component” and “router”; the term “router” is used whenever the processing of
IP packets is explicitly required. One fundamental challenge of network-supported congestion
control is that typically not all network components along a path are routers [172].

The focus of network-supported congestion control is the improvement of the resource sharing
in networks that offer mainly a best effort service. Unlike network QoS mechanisms, network-
supported congestion control mechanisms are lightweight. They do not provide guarantees, but
they also do not require per-flow state in network components.



52 Chapter 4. Fast startup congestion control mechanisms

Table 4.2: Design space of network-supported congestion control

Design criteria Degrees of freedom
Signaling In-band vs. out-of-band
Indication extent Single metric vs. multiple metrics
Notification extent Single metric vs. multiple metrics
Ind./notif. transport IP header vs. shim layer vs. transport protocol header
Feedback direction End-to-end echoing vs. direct return vs. hop-by-hop (“back pressure”)
Feedback transport Shim layer vs. transport protocol header vs. separate protocol
Returned metric(s) Absolute rate vs. relative rate change vs.

derived metrics (e. g., price, congestion probability)
Granularity Binary vs. multi-bit vs. discrete steps vs. fine grained
Frequency Per packet vs. about once per RTT vs. event-triggered
Required support Some routers vs. all routers vs. all queues vs. off-path entities
Resource management Bandwidth pooling vs. oversubscription

4.1.4.2 Design space

Congestion control with explicit signaling has various advantages: Due to the explicit feedback,
connection endpoints can obtain accurate, fine-grained information about the current network
characteristics on the path. The buildup of queues and congestion situations can be detected
faster compared to any implicit, inference-based method. Network components can share lo-
cal knowledge about the available link capacity, which cannot easily be determined by any
end-to-end congestion control. Also, endsystems cannot rapidly detect whether an unknown
path is already congested. In order to be stable, any end-to-end congestion control must use
a conservative rate increase and an aggressive window decrement policy [250], which is inef-
ficient in environments with a large BDP. Network support thus allows sources to make more
informed decisions, which can improve the performance, reduce the probability of packet loss,
and help to improve fairness among different flows. However, there are also drawbacks, which
are addressed in Section 4.7.1.2.

There are several degrees of freedom concerning the involvement of network components in
congestion control. This design space is surveyed in Table 4.2. Any explicit feedback requires
signaling. As explained in Section 2.1.1, signaling can be realized either by in-band signaling
or by out-of-band signaling. The latter case requires additional protocols and a secure binding
between the signals and the packets they refer to. This is why most network-supported conges-
tion control mechanisms use in-band signaling. The protocol mechanisms can be implemented
at different protocol layers, in particular at the network layer and/or the transport layer. In both
cases, additional information can be transported by header options. A further alternative is to
introduce an additional intermediate shim layer between network and transport layer.

Network-supported congestion control protocols use three different types of information: The
indication is information provided by the sender about the traffic flow and its own capabilities.
Network elements provide information about their state in form of notifications. The infor-
mation that is finally provided to the sender is called feedback. There are also three different
possibilities how the feedback can be transported to the sender: Most proposed schemes use
end-to-end echoing as illustrated in Figure 4.6. In this case, the sink sends the feedback back to
the source, either by piggybacking it on transport protocol messages, or by a shim layer proto-
col. The feedback reflects the notification information accumulated over the path. Alternatively,



4.1 Systematic classification of congestion control methods 53

Transport

Network

Application

Link

Transport

Network

Application

Link

Sender Receiver

Indication

Final path

notification

Router

(congested)

Router

(congested)

Notification
Packet

or back pressure

Direct return

End−to−end echoing

Figure 4.6: Different realization alternatives for explicit feedback from the network

network elements could directly send messages back to the sender (direct return), or use a hob-
by-hop reverse channel if it is available (back pressure). However, the latter two mechanisms
have several disadvantages compared to end-to-end echoing:

- New messages are created on a congested path and may increase reverse path congestion.
- The information transported in the messages must be secured against packet loss.
- A security mechanism is required so that the source can verify that the messages indeed

originate from a network element on the path. Otherwise, third parties could attack arbi-
trary connections by forging feedback, either causing them unnecessarily to slow down,
or to increase their rate, which could be used as a Denial-of-Service attack [211].

Another important characteristic is the expressiveness of the network feedback, which refers to
the amount of information about the state of the network that is returned to the source. The
expressiveness depends on the granularity and frequency of the feedback. For example, binary
feedback schemes have a rather low level of expressiveness.

4.1.4.3 Network support and the end-to-end argument

Network support could be considered as a violation of the end-to-end argument [188] and the
fate-sharing principle [50], which are explained in Section 2.2.2. However, this is not neces-
sarily true. Congestion control cannot be realized as a pure end-to-end function only [157].
Congestion is an inherent network phenomenon and can only be resolved efficiently by some
cooperation of endsystems and the network. Congestion control in today’s Internet protocols
follows the end-to-end design principle insofar as only minimal feedback from the network is
used. The endsystems only decide how to react and how to avoid congestion. This suggests
that network assistance does not violate the end-to-end argument and the fate-sharing principle,
as long as per-flow behavior inside the network is avoided. In contrast, it is less clear whether
network-controlled congestion control is indeed compatible with the end-to-end argument.

4.1.5 Differences to related mechanisms

4.1.5.1 Congestion control vs. bandwidth estimation

There are two ways to estimate the capacity or available bandwidth of a path: Passive measure-
ments monitor ongoing data transport. This is what congestion control mechanisms do. Active
measurements inject additional probe traffic into the network and observe the response of the
network. There are different active measurement techniques [179]:

- Variable packet size probing estimates the capacity of individual hops by measuring the
RTT from the source to each hop on the path as a function of the probing packet size,



54 Chapter 4. Fast startup congestion control mechanisms

using for example ICMP error messages. The capacity is successively determined from
the relation of the minimum RTTs and the probe packet sizes.

- Packet dispersion methods estimate the end-to-end capacity. The basic mechanism is
packet pair probing, which sends two packets back-to-back. After traversing the narrow
link, the time dispersion between the packets is linearly related to the narrow link capacity.
Packet train probing uses multiple back-to-back packets. If tight and narrow link are
identical, it is also possible to estimate the available bandwidth (probe gap model).

- Self-loading probing (also known as probe rate model) uses self-induced congestion. The
available bandwidth is estimated by increasing the load on the path in several iterations.
Increasing delays indicate that the available bandwidth is exceeded. Two important meth-
ods are self-loading periodic streams and trains of packet pairs.

There are also further methods to measure the available bandwidth, in particular the trivial
mechanism to measure the data rate of a bulk data probing transfer. If the path capacity is ex-
plicitly known, fast direct probing methods can obtain the available bandwidth without iterative
probing. However, there is no currently known technique to measure the available bandwidth
of individual hops [179]. Many bandwidth estimation tools implement the algorithms presented
here, which are surveyed for example in reference [179].
A fundamental shortcoming of bandwidth estimation methods is that they have to trade off pre-
cision, speed, and intrusiveness. There is no known method to estimate the capacity or available
bandwidth with high accuracy, fast convergence, and with minimum intrusiveness [101, 214, 2].
Dispersion-based techniques are fast, but not very accurate, while self-loading probing is very
intrusive. The measurement duration of iterative methods is of the order of several dozens of
seconds. All bandwidth estimation methods assume that the path characteristics and average
rate of the cross-traffic remain almost constant during the measurement period.
Active bandwidth estimation tools are used for a variety of reasons, such as SLA verification,
fault detection, and the topology management of overlay networks. But as congestion control
requires detection times within few RTTs and minimal intrusiveness, active bandwidth estima-
tion is not considered to be reliable enough for congestion control purposes [246].

4.1.5.2 Congestion control vs. admission control

Traffic management can be either realized by proactive or reactive control [115]. Congestion
control is a reactive, closed-loop scheme that is applicable if traffic flows can adapt their rate.
Proactive or preventive schemes use admission control. Unlike congestion control, proactive
schemes can provide QoS guarantees if certain constraints are fulfilled (cf. Section 2.1.4), and
they do not require permanent feedback (open-loop). Admission control can be realized with a
centralized Policy Decision Function (PDF), a bandwidth broker, or a distributed solution.
There are many degrees of freedom how to design admission algorithms [249]. Parameter-
based admission control is based on worst case bounds derived from the traffic parameters that
are a priori provided by the source, such as average and peak bit rate. Stochastic mathematical
models can be used to estimate the effective bandwidth of the traffic. However, it is inherently
difficult to describe the self-similar, long-range dependent and time-varying traffic in packet
networks appropriately. Furthermore, parameter-based admission control algorithms require
the deployment of traffic conditioning mechanisms such as token bucket shapers.
The other solution is Measurement-Based Admission Control (MBAC) [29]. Network compo-
nents performing MBAC periodically estimate the available bandwidth by measurements or by



4.2 State-of-the-art and open issues of Internet congestion control 55

probing. Admission decisions are based on a worst-case traffic descriptor of the new flow, such
as the peak rate. Because MBAC scheme base admission control decision on the existing traffic
instead of worst-case bounds, they can achieve a higher link utilization. There is a plethora of
MBAC algorithms. However, due to the difficulty to predict future traffic, it has been found
that simple and complex MBAC algorithms have similar performance and that most schemes
do not meet statistical QoS targets [29], or they require excessive parameter tuning [78]. There
are also hybrid solutions between parameter-based and measurement-based admission control
that circumvent some problems by learning from the past experience [154].
A further concept is endpoint admission control [30]. In this case, admission control is entirely
performed by the endsystems without network support. Before starting a new flow, the source
probes the available bandwidth by one of the methods discussed in the previous section. It then
decides whether to admit the new flow based on statistics of probe traffic, e. g., the number
of lost packets. A fundamental drawback of endpoint admission control is that the probing
is intrusive and may result in rather long setup delay. This technique is hardly suitable for
applications where humans are waiting. Furthermore, flash crowd arrivals of flows can cause the
system into a thrashing regime, i. e., the cumulative probe traffic prevents further admissions.
Admission control and congestion control mechanisms are not mutually exclusive and can be
combined, as discussed in Section 4.5.2.3. Yet, an important difference is that admission control
policies deny access to a new flow, whereas congestion control mandates throttling for existing
flows. It is a very fundamental architectural question whether a network should deny access to
flows or not [212].

4.2 State-of-the-art and open issues of Internet congestion control

4.2.1 Internet standard solution

4.2.1.1 Principles and assumptions

The three traditional cornerstones of Internet control are peering and policy configuration (on
long timescales), routing path selection and traffic engineering (on medium timescales) and
congestion control (on short timescales). Congestion control is an indispensable mechanism for
maintaining the stability and avoiding a congestion collapse (cf. Section 2.2.1). The resource
allocation in the Internet is based on a number of fundamental architectural principles:

- End-to-end congestion control in transport protocols: The transport protocol instances in
endsystems are responsible for sensing congestion and reducing their sending rate when
appropriate. This design is aligned with the end-to-end principle (cf. Section 2.2.2).

- Trust in endsystems: It is assumed that most endsystems voluntarily respond to congestion
and that all important applications are adaptive.

- Round-Trip Time as fundamental time constant: The control algorithms react with a gran-
ularity of the order of the path RTT, which is the minimum feedback delay.

- Sufficient amount of buffering: There is enough buffering in network entities so that a
congestion control algorithm can operate with an RTT of control latency.

These Internet congestion control principles have evolved over time. Historically, it was pro-
posed to use ICMP Source Quench messages [RFC 896] to throttle sources in case of network
overload. This optional extension of the congestion control was based on the direct return prin-
ciple (see also Section 4.5.4). However, the end-to-end congestion control of Jacobson [98]



56 Chapter 4. Fast startup congestion control mechanisms

proved to be superior. Further improvements of the original algorithm lead to the so-called TCP
Reno congestion control, which is the current standard in the Internet [RFC 2581].

4.2.1.2 TCP Reno

Jacobson’s ground-breaking control algorithms [98] increase the send rate until congestion is
detected by packet loss, and then reduce the rate. The objective is to achieve an isarithmic
equilibrium [53] in which the number of packets in the path is approximately constant. This
conservation of packets principle can easily be realized by a sliding window.

The original TCP standard only specified flow control mechanisms. [RFC 793] mandates the
sender to use a sliding window mechanism with a maximum size given by the Receive Win-
dow (RWND), i. e., the most recently advertised receive window. Jacobson introduced a second
Congestion Window (CWND), which is an estimation of how much data can be outstanding in
the network without packets being lost. A TCP sender can transmit up to the minimum of the
CWND and RWND. The control algorithm published in [98] distinguished between two dif-
ferent phases: Slow-Start (SS) and Congestion Avoidance (CA). Later, Jacobson proposed an
improved algorithm that became known as TCP Reno and that is standardized in [RFC 2581].
It distinguishes between four different phases that are partly illustrated in Figure 4.4:

- Slow-Start: At the beginning of a transmission into a network with unknown conditions,
the Slow-Start algorithm is used to probe the network and to determine the available
bandwidth. After the connection setup, the size of Congestion Window W is set to the
initial window w. In Slow-Start, the sender may increment W by at most MSS bytes for
each received ACK that acknowledges new data. The Slow-Start ends when W reaches
or exceeds the Slow-Start Threshold (SST), or when congestion is observed.

- Congestion Avoidance: When W is equal or larger than the SST, W is incremented by one
full-sized segment per RTT. This phase continues until congestion is detected.

- Fast Retransmit and Fast Recovery: The sender can guess that a packet has been lost when
there are duplicate acknowledgments. By default, the arrival of three duplicate ACKs
triggers a Fast Retransmit. Then, the SST is set to approximately half of the flightsize,
i. e., the amount of outstanding data. W is set to the same value plus three MSS. After the
Fast Retransmit follows the Fast Recovery phase until the loss recovery ends.

- Retransmission Timeout (RTO): If the RTO expires, the SST is also set to approximately
half of the flightsize. W is set to one segment, and the sender continues in Slow-Start.

These algorithms continuously probe the available bandwidth and correspond to an AIMD con-
gestion control with αincr = 1 and βdecr = 1/2. According to Jacobson, the design rationale of
βdecr = 1/2 is that the sender falls back to a window that worked previously [98].

The Slow-Start heuristic is of particular importance for this thesis. The original idea can be
attributed to Jain [99], who suggested a linear window increase. Jacobson chose an exponential
increase, since this function opens the window “quickly enough to have a negligible effect on
performance, even on links with a large bandwidth-delay product” [98]. The Slow-Start has
two important roles: On the one hand, it has to find an appropriate sending rate for a network
path that is unknown, for instance, when the connection is set up. The algorithm probes the
available bandwidth of the path, and it guarantees that the source sends data at a rate that is at
most twice as large as the maximum possible rate on the path. On the other hand, it must also
start the self-clocking mechanism. In a window-based protocol, the transmission of new packets



4.2 State-of-the-art and open issues of Internet congestion control 57

2140 36492861
Congestion

validation
window

Control
block

3465
HighSpeed

TCP
Appropriate

byte
countinginterdependence

Cong.
man−
ager

3124

Slow−
Limited
3742 4015

Start

Spurious

Basics

RFC 793 1122

delayed ACKs
Nagle algo., RTO,

Cong. control,

1323

timestamps
seq. no. wrap,

Window scaling,
SACK
option

2018

Reno
congestion

control

2581

SACK
extension

2883 2988

calc.
RTO Limited

transmit

3042

ECN

3168

Increased
initial

window

3390

SACK
loss

recovery

3517

NewReno
congestion

control

3782

timeout
recovery

4138

detection
Spurious RTO

(F−RTO)

Standards / standards track

Experimental extensions

4653
Non−
cong.
events

4782
Quick−Start

1000 1500 2000 2500 3000 3500 4000 4500 5000 RFC

1981 1989 1992 1996 1997 1999 2000 2001 2002 2003 2004 2005 2006 2007 Year

Figure 4.7: IETF specifications related to TCP’s congestion control, covering both the stan-
dards track documents as well as selected experimental extensions

is controlled by the stream of received ACKs. When there are no packets in the network, this
process needs bootstrapping in order to limit the burstiness of the sent traffic.
If a sender has been idle for a relatively long period of time, new segments cannot be clocked out
by arriving ACKs. If the Congestion Window remained unchanged, a source could potentially
send a burst of the size of the CWND with full line rate. In order to prevent such bursts,
[RFC 2581] recommends to reset the Congestion Window to the restart window if TCP has not
sent data in an interval exceeding the retransmission timeout, i. e., it starts the transmission again
in the Slow-Start mode. The restart window is equal to the initial window. An experimental
extension [RFC 2861] describes an alternative Congestion Window Validation and suggests to
decay CWND roughly by factor two once per duration of the RTO, while using the SST to save
information about the previous value of CWND. [RFC 2861] also provides recommendations
for application-limited periods, i. e., when an application sends less data than the CWND allows.
Originally, the initial window was one MSS. Today, [RFC 3390] permits an initial window of

min(4L,max(2L,4380B)) , (4.5)

which depends on the MSS L and corresponds to wmax = 3 segments for MTU = 1500B, which
is the default MTU value in Ethernet and supported by most Internet paths.
This section can only give a brief overview of the TCP Reno algorithms, and it does not cover
all subtle aspects. Even the specification [RFC 2581] leaves open several details. For instance,
it does not specify an initial value for SST, which may be arbitrarily high. Congestion control
issues are also discussed in many other IETF documents. Figure 4.7 lists the important IETF
documents that affect the TCP congestion control. A complete survey, including transport pro-
tocols other than TCP, has been compiled by Welzl [247]. Further information about the status
of TCP standardization can also be found in [RFC 4614].

4.2.1.3 Performance of TCP Reno

The throughput of a TCP connection is determined by many factors:

- Path characteristics: The TCP throughput is always limited by the available path capacity.
Further network characteristics that can affect the performance include packet transmis-
sion errors, link failures, routing problems, packet reordering, or large variations of the
available bandwidth and/or delay [195].

- Sending and receiving applications: A TCP connection can only use the available band-
width if the sending application provides sufficient data, and if the receiving application
processes the data as fast as TCP delivers it. Applications that can always send data are
characterized as greedy; an example are bulk data file transfers. Application limitation
refers to the case that the sending or receiving application is the bottleneck.



58 Chapter 4. Fast startup congestion control mechanisms

- Socket buffers and flow control: Both the send and receive buffers may not be large
enough. On the sender side, the send buffer constraints the amount of unacknowledged
data (sender limitation). In order to allow retransmissions, the send buffer must be larger
than the BDP. The receive buffer limits the maximum amount of data that can be received
out-of-order. Therefore, the receive buffer should be larger than the BDP, too. Even if
buffer space is available, TCP’s flow control mechanisms can prevent the announcement
of a sufficiently large receive window, in particular, if the sink does not use the window
scaling. The latter cases are also named receiver limitation.

- Congestion control: If the Congestion Window is smaller than the BDP, the source cannot
fully utilize the available bandwidth.

Models for the performance impact of the Reno congestion control exist for two special cases:
Short flows and long flows. In the former case, the TCP Slow-Start has a significant influence,
which is studied in Section 6.4.1. Concerning bulk data transport, there are two well-known
analytical models for the throughput. The older model was developed by Mathis et al. [147]. It
predicts the TCP throughput as

G =

√
3

2η
· L

τ ·√p
, (4.6)

where L is the MSS and τ the minimum RTT without queueing delays. p is the segment loss
rate, and η is the number of segments acknowledged in one received ACK. This model assumes
that TCP can recover from all packet losses by fast recovery. Therefore, Equation (4.6) is only
valid if the loss rate is small. Because the TCP throughput is inversely proportional to the RTT
and the square root of the loss rate, this model is also known as “SQRT model”.

The more complex “PFTK model” is named after the initials of its inventors [168]. It takes into
account retransmission timeouts and a potential limitation by a maximum window Wmax. The
average send rate of a bulk data transfer is approximated by the formula

G = min

(
Wmax

τ
,

L

τ ·
√

2η p/3+ f (p)

)
with f (p) = To min

(
1, 3

√
3η p

8

)
p
(
1+32 p2) .

(4.7)
To is the duration of the retransmission timeout, which is usually dominated by its minimum
value [195]. The PFTK model captures the TCP Reno behavior over a large range of loss rates.

Both models have many limitations. They do not take into account the Slow-Start and make
many simplifying assumptions. Even errors in the derivation of Equation (4.7) have been iden-
tified, which result in a theoretical over-prediction of the send rate [47]. There are several model
extensions that consider further effects, but they result in a more complex formula (e. g., [59]).

Low [139] shows that the TCP Reno congestion control corresponds to a utility function

Ui(xi) = 1√
2/3·d

arctan
(√

2/3 ·d · xi

)
(4.8)

in Kelly’s optimization framework, which is introduced in Section 4.1.1.4. In Equation (4.8), d
is the effective RTT including the mean queueing delay.



4.2 State-of-the-art and open issues of Internet congestion control 59

4.2.2 Interaction with network entities

4.2.2.1 Buffer sizing

TCP’s AIMD strategy is designed to fill the buffer in front of the bottleneck. Therefore, the
buffer size in network components is a crucial factor. Buffer sizing is a multi-criteria optimiza-
tion problem with at least three objectives: First, buffers are required in packet networks in
order to absorb short-term traffic bursts. Such transient bursts are an inherent characteristic of
window-based protocols. Second, buffers must be large enough to ensure that the link utiliza-
tion is high, in particular for flows using an AIMD congestion control. But, third, buffers must
not be too large, since they can result in persistent queueing delays and implementation costs.

The dimensioning of router or switch buffers has long been considered a “black art”. Histori-
cally, the size is determined by the bandwidth-delay product rule-of-thumb [233]. This guide-
line states that the buffer size B (here, in bit) should be equal to the capacity r of the outgoing
link multiplied by the RTT τ of a connection that may be bottlenecked at that link. The rule
prevents throughput underflow if one TCP connection with βdecr = 1/2 traverses this link.

Newer research results suggest that the buffers of network interfaces can be made much smaller
if the number of flows is sufficiently large. Appenzeller et al. [11] argue that a buffer size
r ·τ/
√

n is sufficient to saturate a link when n independent, long lived and not synchronized TCP
connections share a bottleneck. According to this model, metro and core routers with a large
number of flows n need interface buffers much smaller than the worst-case BDP. BDP-sized
buffers are only useful if n� 100. Newer research results argue in favor of further reducing
buffer sizes and recommend buffers between 20 and 50 packets for core routers [234]. Refer-
ence [234] also comprehensively surveys other recently proposed buffer sizing strategies. Still,
there is no universal design guideline for buffer sizing so far. In general, larger buffers tend to
trade off a potential increase of throughput against larger delays and jitter. An optimal buffer
size can, if at all, only be derived for a specific network topology, congestion control algorithm,
and application workload, and it will not be optimal in other scenarios.

4.2.2.2 Queueing schemes

An alternative to FIFO drop tail buffering is Active Queue Management (AQM) [RFC 2309].
The combination of drop tail queueing schemes and TCP congestion control can cause two
problems: First, any loss-based congestion control operates on full queues and may thereby
cause significant queueing delay. And second, phase effects and lock-out phenomena can occur,
i. e., a small number of flows monopolizes the queue space, resulting in significant unfairness.

AQM avoids these problems by detecting queue buildup and notifying the sources before the
queue overflows, either by packet dropping or by Explicit Congestion Notification (ECN). The
original AQM scheme is Random Early Detection (RED) [RFC 2309]. RED estimates the aver-
age queue size and decides on packet markings or drops based on a stepwise defined function.
When the average queue size is between a minimum and a maximum queue size, the proba-
bility of marking or dropping varies between 0 and a maximum drop probability. Numerous
enhancements of this original RED design have been developed, which are surveyed for exam-
ple by Welzl [246]. A fundamental problem is the configuration, since the optimal parameter
set depends on the number and characteristics of the flows. This has lead to a plethora of AQM
parameter self-tuning mechanisms [246]. A further, orthogonal design question is whether to



60 Chapter 4. Fast startup congestion control mechanisms

use tail dropping or front dropping. While it is intuitive that front dropping could reduce delay
in some cases [252], it never got widely accepted.

One specific design target of AQM mechanisms is fairness improvement. There are two gen-
eral approaches to deal with “unfriendly” flows [222]: In case of the identification approach,
network elements detect flows, e. g., by DPI, and enforce special policies. The allocation ap-
proach isolates the flows and assigns bandwidth in a fair way. A straightforward mechanism is
to replace the single FIFO queue my multiple virtual queues, which are served in a round-robin
fashion. The flows are mapped to these bins by hash functions (e. g., [68]). Unresponsive flows
can be detected by monitoring the bins. Another well-known AQM mechanism that punishes
unresponsive flows and improves fairness simply compares an arriving packet randomly to a
queued packet and drops both if they belong to the same flow [171]. There are several further
mechanisms how fair queueing could be achieved without keeping per flow state [222].

There is empirical evidence that RED or other AQM can significantly improve performance
of Web applications. Experimental studies revealed that AQM can reduce the response times
compared to simple FIFO drop tail queues if the link load is high [127]. However, RED is still
only partly used in the Internet, and router vendors often do not enable it by default.

4.2.2.3 Explicit Congestion Notification (ECN)

Explicit Congestion Notification (ECN) [RFC 3168] has been standardized to signal congestion
back to senders by a one bit feedback. Instead of dropping packets, congested routers set the
congestion experienced codepoint in the IP header. The usage of ECN in combination with
TCP requires in total four bits – two in the IP header, and two in the transport protocol header.
ECN uses the two bits in the IP header to encode whether the endsystems are able to understand
ECN signaling and whether the packet experienced congestion. One bit in the transport protocol
header echos back the congestion experienced codepoint to the sender. The other flag is used
by the source to inform the sink that the CWND has been reduced, i. e., that the congestion
notification has indeed been received.

The main benefit of ECN is that packets do not have to be dropped during congestion. Routers
that support ECN must implement an AQM scheme, since ECN markings must be set before
a buffer overflows. ECN can be incrementally deployed in the Internet, as it does not require
support by all routers along a path. ECN is indeed implemented in several router platforms and
supported by modern TCP stacks. However, it is often not enabled by default, and therefore still
hardly used in practice. The main reasons are interworking problems with “blackholes” [247],
i. e., routers or firewalls that are misconfigured to discard packets with the ECN-capable bits set,
as well as erroneous middlebox implementations [219]. It has also been questioned whether
ECN indeed results in significant benefits. For instance, a study revealed that ECN does not
necessarily improve the performance of interactive applications [127].

4.2.3 Survey of experimental new algorithms and enhancements

4.2.3.1 Shortcomings of the TCP Reno algorithms

The standard TCP Reno algorithms do not scale well to networks that have a very high path
capacity r � 10Mbit/s and/or an RTT τ � 50ms. In order to fully utilize such paths, the
CWND must exceed the BDP r · τ , which may require window sizes of the order of thousands
of segments, or even larger. In order to sustain high steady state throughputs, TCP Reno requires



4.2 State-of-the-art and open issues of Internet congestion control 61

Table 4.3: Classification and comparison of important TCP congestion control variants

Algorithm Detect. Probing / backoff Parameters
Reno [RFC 2581] Loss AI / MD αincr = 1, βdecr = 1/2
HS-TCP [RFC 3649] Loss Convex AI / MD αincr = f (W ), βdecr = f (W )
Scalable TCP [114] Loss Multiplicative incr. / MD βdecr = 1/8
H-TCP [213] Loss Convex AI / MD αincr = f (t,τ), βdecr = f (G,dmax,τ)
CUBIC [184] Loss Concave-convex AI / MD αincr = f (t), βdecr = 0.2
Westwood+ [76] Loss AI / bandwidth estimation αincr = 1
Vegas [28] Delay Function of RTT Update law: Incr./decr. by 1 MSS per RTT
FAST [242] Delay Function of RTT Update law: W ← f (d,τ,W )
Hybla [39] Hybrid AI / MD αincr = f (d), βdecr = 1/2, Slow-Start modif.
Compound [227] Hybrid AI+delay component / MD Reno emulation with αincr = 1, βdecr = 1/2
Illinois [137] Hybrid Concave AI / MD αincr = f (d,τ), βdecr = f (d,τ)

Legend: AI: Additive Increase MD: Multiplicative Decrease

very low packet loss rates p� 10−6 according to Equation (4.6), which is an unrealistically low
value in IP networks [RFC 3649]. The reason is that the additive increase algorithm in Reno’s
congestion avoidance is rather slow when the BDP is large. Furthermore, a flow may not be
able to ramp up fast after a transient increase of the available bandwidth. In both cases, the path
may not be fully utilized.

4.2.3.2 High-speed TCP variants

Many alternatives to the Reno TCP congestion control have been proposed. The high-speed
TCP variants modify the algorithms that calculate the CWND, in particular when it is large.
The algorithms only require sender-side modifications and are thus incrementally deployable.
In the following, the most important variants (“flavors”) are briefly introduced. The discus-
sion is limited to algorithms that are generally applicable and that have a known and validated
implementation in a widely used network stack. Other comprehensive surveys can be found
in literature [246, 134]. Further domain-specific TCP enhancements have been proposed for
wireless networks [133].

The majority of proposals belongs to the class of loss-based congestion control algorithms like
Reno, but they use a window growth function other than AIMD. Most flavors only affect the
Congestion Avoidance; the Slow-start remains unaltered. In general, window growth func-
tions can be divided into three classes according to their shapes when being plotted over time:
(a) concave, (b) convex, and (c) concave-convex. The list of algorithms in Table 4.3 contains
representatives of all three cases. In literature there is disagreement concerning the optimal
shape. In principle, a convex growth function is needed to ramp up the congestion window
to very large values. But a convex function results in a very large window increment around
the point of saturation and can cause a large burst of packet losses. As a remedy, the CUBIC
congestion control [184] uses a concave-convex scheme.

Many high-speed congestion control algorithms behave like TCP Reno when being used in low-
speed and/or short-distance networks. Several proposals listed in Table 4.3 also use a window
growth functions that depends on the elapsed time t since the last loss event. This common
design pattern significantly reduces the RTT unfairness [213]. Furthermore, almost all proposals



62 Chapter 4. Fast startup congestion control mechanisms

set βdecr to a value smaller than 1/2, either dependent on the Congestion Window size W , the
throughput G, the minimum RTT τ , or the maximum delay dmax.

Another class of high-speed TCP approaches uses delay-based congestion control. They perma-
nently measure performance metrics such as the instantaneous RTT d, which includes potential
queueing delays, and they try to anticipate congestion before buffer overflows occurs. The con-
trol algorithm increase the CWND size if the delay d is not much larger than the minimum RTT
τ (base RTT), and they decrease the window if the delay increases. The advantage of delay-
based algorithms is that delay can be measured much more frequently than packet loss, which
provides a rather coarse information if the BDP is large. Furthermore, delay-based algorithms
do not completely fill bottleneck buffers. These advantages motivated the development of delay-
based high-speed congestion control algorithms [242]. However, delay-based algorithms suffer
from some inherent weaknesses. Delay is not a reliable congestion signal, in particular if there
is delay jitter due to other effects such as Media Access Control (MAC) or reverse path con-
gestion. Delay-based schemes also do not interoperate well with TCP Reno: Since delay-based
algorithms back off much earlier, they only get a small share of the bottleneck capacity when
competing with other flows using Reno. Recently, several hybrid congestion control schemes
have been developed, e. g., Compound TCP [227]. These hybrid schemes combine delay-based
and loss-based mechanisms (Reno emulation).

Another class of TCP congestion control algorithms, which is out of the scope of this work,
addresses low-priority background transport. The purpose of such a less-than best effort con-
gestion control is to realize the Low-Priority Data class [RFC 4594] or “scavenger service”
without any network support. If an application uses such a low extra-delay background trans-
port, it should be able to utilize excess bandwidth on a path without significantly perturbing
other TCP connections. Most known solutions use delay-based congestion control and back off
much more aggressively than Reno when detecting packet loss [232, 123]. A further option is
to use inline measurements of the available bandwidth [143].

4.2.3.3 Selected algorithms: CUBIC and Compound TCP

From a practical point of view, the two most important high-speed congestion control variants
are CUBIC [184] and Compound [227], since these two algorithms are enabled by default in
the network stacks of popular operating systems.

The CUBIC congestion control has been developed by Rhee et al. [184]. It is the default conges-
tion control in Linux since kernel version 2.6.18 and has been further developed since then [82].
CUBIC increases the CWND using a third-order polynomial function of the elapsed time from
the last congestion event. This results in a concave window curve until a reference point is
reached, which is the old maximum window size. If the reference point is exceeded, it con-
tinues with a convex window curve. This cubic function can be observed in the upper part
of Figure 4.8, which shows the CWND evolution of a single TCP connection in a simulated
scenario with a single bottleneck (cf. Section 6.1.1). The lower part of the figure presents the
corresponding queue length in front of the bottleneck. After a window reduction by βdecr = 0.2
due to packet loss, CUBIC stores the maximum window. In the following Congestion Avoid-
ance phase, the cubic function is then set to have its plateau at this maximum window. The
motivation for this concave-convex style of window adjustment is that the sender sends for
some time approximately with the previously available bandwidth and is not very aggressive at
this operational point, i. e., it achieves a high link utilization without risking burst packet losses.



4.2 State-of-the-art and open issues of Internet congestion control 63

0

50

100

150

200

250

300

C
o

n
g

. 
w

in
d

o
w

 [
s
e

g
.]

Reno
CUBIC

0 10 20 30 40 50 60

Time since SYN segment [s]

0

10

20

30

40

50

60

D
o

w
n

l.
 q

u
e

u
e

 [
p

a
c
k
e

ts
]

BDP

Incr. by cubic function

Maximum queue length

Figure 4.8: Traces of CUBIC (simulation,
r = 10Mbit/s, τ = 200ms, B = 50)

0

50

100

150

200

250

300

C
o

n
g

. 
w

in
d

o
w

 [
s
e

g
.]

Reno
Compound

0 10 20 30 40 50 60

Time since SYN segment [s]

0

10

20

30

40

50

60

D
o

w
n

l.
 q

u
e

u
e

 [
p

a
c
k
e

ts
]

BDP

Maximum queue length

Add. delay component Reno emulation

Figure 4.9: Traces of Compound (simula-
tion, r = 10Mbit/s, τ = 200ms, B = 50)

CUBIC has been excessively tested [184, 82]. It can efficiently utilize high-speed WAN paths
with RTTs of 200ms and more. Since the window growth function is independent of the RTT,
CUBIC has good RTT fairness characteristics, and it behaves similar like Reno if the BDP or
RTT is small. However, there are concerns about its fairness, since it has been observed that the
convergence speed can be slow [130]. This is a side effect of the small multiplicative window
decrease factor βdecr = 0.2. Other measurement results suggest that the convergence speed of
CUBIC is reasonable in environments with sufficient statistical multiplexing. The response
function of CUBIC, which is the equivalent of Equation (4.7), can be derived as follows [82]:

G = 1.17
L
τ

(
τ

p ·1 s

)3/4

(4.9)

Another important high-speed congestion control variant is Compound TCP [227], which is
enabled by default in a recent Microsoft Windows operating system. The key idea is to add
a delay-based component to the standard TCP Reno congestion avoidance algorithms. The
actual Congestion Window is set to the sum of a window adjusted by the Reno algorithms
and a new delay-based part (delay window). When the network is underutilized, the delay-
based part increases the window rapidly, but it falls back once queueing delays are detected.
As illustrated in Figure 4.9, the CWND is lower-bounded by its loss-based component, which
emulates the Reno congestion control.1 The algorithms estimate the number of backlogged
packets at the bottleneck queue and reduce the delay window if a threshold is exceeded, which
is automatically adjusted and has a maximum value of 30 segments [227]. One can observe in
Figure 4.9 that the sender reverts to Reno behavior once this limit is exceeded. Moreover, the
delay-based component is only used in Congestion Avoidance when the CWND has reached
a value of 41 segments. Compound TCP does not modify Reno’s Slow-Start algorithms. The
comparison of Figure 4.8 and Figure 4.9 shows that Compound, unlike CUBIC, results in a
rather small queue length in the buffer as long as it is governed by the delay-based algorithm.
Compound TCP is a rather new algorithm, but it has undergone many tests by different research
groups [227, 131]. The delay component of Compound is able to detect and effectively use

1The experiments in this work use an open-source patch that adds Compound TCP to the Linux kernel [9]. The
original close-source implementation may behave differently.



64 Chapter 4. Fast startup congestion control mechanisms

Using a transport protocol with

Elastic

congestion control (TCP, SCTP, DCCP)

Adaptive with

appl.−level cong. control

transport protocol

Using UDP as

Inelastic without any

congestion control

Adaptive with additional

Internet applications

adaptation mechanisms

Figure 4.10: Classification of Internet applications with respect to congestion control usage

spare bandwidth in situations with a large capacity and/or long delay. In case of congestion, it is
dominated by the loss-based component, which bounds the throughput to the value that would
be achieved by TCP Reno and is thus inherently TCP-compatible. While other delay-based
algorithms suffer from the problem that they only obtain a small throughput when competing
against loss-based algorithms, the loss part of TCP compound ensures inter-protocol fairness.
Because of these properties, it is assumed that Compound TCP can safely be deployed in the
Internet. The response function of Compound TCP is given by the following formula [227]:

G = 0.225
L
τ

1
p0.8 (4.10)

4.2.3.4 Performance comparison of different algorithms

The performance implications of high-speed congestion control algorithms is subject of ongo-
ing research work. Systematic studies [134, 80] compare several flavors under a wide range
of conditions that include mixes of long and short-lived flows, different bandwidths, laten-
cies and background traffic, as well as a range of router buffer sizes. All algorithms listed in
Table 4.3 improve the utilization in a relatively static environment with long-lived flows. How-
ever, many of the proposals exhibit poor responsiveness to changing network conditions. In
particular older algorithms [RFC 3649, 114] suffer from slow convergence times following the
startup of a new flow and also reveal a poor intra-protocol fairness. The different studies also
report RTT unfairness between competing flows with different latencies, but some results are
ambiguous [134, 80]. The recently developed hybrid loss/delay-based protocols are still under
evaluation, and remaining open issues have been identified [131].

4.2.3.5 Existing congestion control methods for non-TCP flows

The utilization of congestion control by the vast majority of flows is a fundamental requirement
for the stability of the Internet. As TCP continues to be used by most applications, it ensures
that most traffic is congestion-controlled. The alternative transport protocols SCTP and DCCP
use a TCP-compatible congestion control, too. Certain applications use UDP transport instead
of TCP. If these applications generate a substantial amount of traffic, they should use some kind
of application-level congestion control (cf. Figure 4.10). A standardized congestion control
framework for such applications is TCP Friendly Rate Control (TFRC) [RFC 5348]. TFRC
realized a rate-based congestion control by using a simplified version of Equation (4.7).
Multimedia streaming is one type of UDP-based applications that can generate large amounts
of data. The most important UDP-based audio and video streaming applications in the Internet
are responsive to congestion and TCP-compatible [164, 91]. Their rate adaptation is facilitated
by scalable video codecs [44]. As alternative, HTTP over TCP transport for multimedia content
is getting more and more popular, driven by the popularity of Websites with multimedia clips.



4.2 State-of-the-art and open issues of Internet congestion control 65

Table 4.4: Known characteristics of popular TCP stacks

TCP mechanism Linux kernel Microsoft Windows
(versions 2.6.18 or newer) (Windows Vista or newer)

Default congestion control CUBIC Reno (Windows Vista)
Reno (in some distributions) Compound (Windows 2008 Server)

Window scaling (RFC 1323) Enabled, up to 4 MiB Enabled, up to 16 MiB
Default scaling factor ca. 7 (depends on memory) 8 (but only 2 for HTTP)
Automatic buffer tuning Enabled Enabled
Delayed ACKs (RFC 2581) Not during Slow-Start Enabled
Initial SST value 2,147,483,647B 65,535B
Limited Slow-Start (RFC 3742) Supported, disabled Undocumented
Appr. byte counting (RFC 3465) Supported, disabled Enabled
Cong. Window Valid. (RFC 2861) Enabled Undocumented
Conn. state caching (RFC 2140) Enabled Undocumented
SACK (RFCs 2018, 2883, 3517) Enabled Enabled
Timestamps (RFC 1323) Enabled Supported, disabled
RTO calculation (RFC 2988) Not compliant (min. 200 ms) Compliant
ECN (RFC 3168) Supported, disabled Supported, disabled

Another use case of UDP is the high-speed transport of scientific data, e. g., in Grid comput-
ing. Several application protocols realize functions such as reliability and rate control on top
of UDP. They differ in many details from TCP and in some cases they do not implement a
TCP-compatible congestion control [87]. However, their usage is mostly limited to controlled
environments outside the Internet. Given the advancements in TCP’s congestion control mech-
anisms, such UDP-based protocols are only beneficial in very specific application fields.

Congestion control is not applicable to inelastic flows. An important use case of inelastic flows
are pseudowires that tunnel constant bitrate traffic over UDP. They cannot respond to conges-
tion in a TCP-compatible manner [36]. Then, overload situations must be handled by flow
admission and termination. This requires a corresponding control plane (cf. Section 2.2.6 and
Section 2.3.6), which does not exist in the global Internet. The new IETF Pre-Congestion No-
tification (PCN) architecture [RFC 5559] describes an architecture for protecting the Quality
of Service of inelastic flows within a DiffServ domain. It uses the ECN-codepoints in the IP
header. Within a domain, the rate of PCN traffic is metered on every links and packets are
marked when certain configured rates are exceeded. Per-flow state is required at the ingress
nodes of a PCN domain. The received ECN markings allow these boundary nodes to make
decisions about whether to admit or terminate flows. Thus, PCN is one example of a stateless
core admission control based on network feedback.

4.2.4 Impact of network stack implementations

Each operating system implements the TCP/IP stack in a different way, and the stacks are evolv-
ing over time [150]. As the specifications leave open many details, the TCP implementations
of different operating systems differ significantly, and may also change from version to version.
In general, the stacks in modern operating systems support more features and are better tuned.

There is a set of TCP enhancements that is supported by most endsystems in the current Internet.
Measurements [150] show that most stacks use an error recovery with Selective Acknowledg-



66 Chapter 4. Fast startup congestion control mechanisms

ments (SACKs). Also, the sizes of advertised receive windows have significantly increased:
While a few years ago maximum windows of 16 KiB or 64 KiB were common, modern stacks
support receive window scaling [189, 219]. Other proposed enhancements such as ECN get
deployed only very slowly. Table 4.4 lists important TCP extensions that are supported by
state-of-the-art stacks. It also illustrates some cases of different design choices. This list is not
comprehensive and may change concerning newer releases of the operating systems.
As already explained in Section 3.3.4.3, this work uses the Linux networking stack, which is
a powerful and highly optimized stack. Due to the availability of the source code, the Linux
stack is widely used in networking research. A comprehensive, yet partly out-dated survey of
the specifics of the Linux TCP implementation has been compiled by Sarolahti et al. [189]. A
general introduction can also be found in the book of Wehrle et al. [240].
The Linux kernel uses the concept of congestion control modules with a common interface
(cf. [241]). Since it is simple to design new congestion control modules, more than ten different
congestion control algorithms are implemented in newer Linux kernels. The system configura-
tion determines which module is used, and an application can overwrite this choice by a socket
option. CUBIC is the default algorithm unless the configuration is changed. Another feature of
the Linux stack is a sophisticated SACK processing engine that may even recover if retransmit-
ted segments get lost. As shown in Table 4.4, there are also several Linux-specific mechanisms.
Such an example are “QuickAcks”: A Linux receiver acknowledges every segment if it assumes
that the sender is in the Slow-Start phase. This disabling of the delayed acknowlegments, which
does not violate [RFC 2581], can speed up the data transport in Slow-Start. A heuristic decides
when to start to delay acknowlegments. The maximum number of QuickAcks is half of the
advertised receive window counted in segments with an upper bound of 16. Linux also imple-
ments Congestion Window Validation [RFC 2861]. The receive window auto-tuning used in
Linux and its implication are discussed in Section 5.2.1.
In addition to TCP algorithms, other mechanisms inside the operating system, including inter-
rupt handling, locking, and process scheduling can have a significant impact on the delays of
messages. Measurements have shown that delays inside the Linux operating system can be one
order of magnitude larger than processing delays inside applications [238].

4.2.5 Remaining open and unsolved issues

4.2.5.1 Challenges

Despite a large amount of research, the congestion control mechanisms in the Internet face
several challenges that have not been completely solved so far [172]:

- Heterogeneity: The congestion control algorithms have to deal with the variety and dy-
namics of path characteristics in the Internet, as well as with a large range of different
application characteristics. Even though Jacobson’s congestion control principles have
proved to work well in the Internet for almost two decades, there are still many situations
where today’s congestion control algorithms react in a suboptimal way, resulting in low
resource utilization, non-optimal congestion avoidance, or unfairness. The flow startup
by the Slow-Start heuristic is one of the cases in which the existing standard solution is
suboptimal. This open issue is addressed in the remainder of this work.

- Stability: The stability of congestion control algorithms have been studied extensively,
but it is still unclear if TCP’s algorithms are asymptotically stable under arbitrary network
conditions. Also, the stability impact of Slow-Start is not entirely clear.



4.2 State-of-the-art and open issues of Internet congestion control 67

- Fairness: As discussed in Section 4.1.2.2, the Internet lacks a general concept of fairness,
and there is no consensus whether TCP compatibility, RTT-fairness, flow-fairness, etc.
are a design goal, or not.

In addition to these challenges, there are also numerous specific issues that include the question
of network support, reaction to corruption loss, multi-domain operation, misbehaving senders
and receivers, etc. These challenges are generally considered to be open research topics [172].

4.2.5.2 Alternative congestion control principles

It is always possible to tune congestion control parameters based on some knowledge about the
environment, e. g., in specific wireless network technologies. In the Internet, the challenge is to
define congestion control mechanisms that operate reasonably well in the whole range of exist-
ing scenarios. Some improvements of congestion control could be realized by simple changes
of single functions in endsystem or network components. However, new mechanisms can also
require a fundamental redesign of the overall network architecture, and they may even affect the
design of applications. This can imply significant interoperability and backward compatibility
challenges and/or create network accessibility obstacles. There are a number of fundamental,
potentially disruptive alternatives to the current Internet congestion control principles:

Layer: Congestion control mechanisms can be placed in layer 3 or layer 4 [246]. The realization
in the transport layer is a design choice of the TCP/IP protocol suite. In contrast, the OSI
reference model [ISO 7498] explicitly lists congestion control as one of the functions to be
provided by layer 3. These two possibilities motivated the proposal of a new, intermediate shim
layer that handles congestion control (see Section 4.6).

New link-layer interfaces: The congestion control in existing transport protocols operates al-
most independently of lower and higher protocols. The efficiency could be improved by cross-
layer signaling from link layer to higher layers (link layer triggers): Possible triggers include
link connectivity changes (link up, link down, link bandwidth change), link-local congestion no-
tification from link layer flow control, information about non-congestion packet loss, or other
link characteristics (MTU, reordering). Such triggers would in particular be beneficial in highly
dynamic environments.

New application interfaces: The sockets interface between transport protocols and applications
consists of only few primitives [1003.1]. This could be extended in two directions: First, if more
expressive interfaces were available, the transport layer could expose information about current
network conditions to applications [61]. Second, applications could provide requirements and
traffic specifications to the transport layer, which could be used to optimize the congestion
control parameters and support differentiation (tailor-made congestion control).

No congestion control: It could be possible to build a network in which endsystems do not have
to respond to congestion, and just send at their respective line rates [182]. When packet losses
occur, the endsystems do not slow down sending rates. Instead, they increase their redundancy
rate via erasure correction codes, such as fountain codes. However, such a network architecture
would have numerous drawbacks: First, not using congestion control can be very inefficient
in certain network topologies [246]. Since packet loss is frequent, there are many needless
packet transmissions. Second, erasure encoding is not well suited for applications that only
send data sporadically. And third, the realization of many transport protocol mechanisms gets
more complicated. For instance, the reliable transport of control information is difficult when



68 Chapter 4. Fast startup congestion control mechanisms

Transport

Network

Application

Link

Transport

Network

Application

Link

Sender ReceiverCongestion Congestion

Path

Re−echoed blanking mark

Cong. experienced

Downstream congestion

Re−echo blanking

Cong. experienced

if congestion

p
a

c
k
e

ts Drop packets

exceeds
blanking

Possible
policer

Possible
dropper

F
ra

c
ti
o

n
 o

f

P D

re−ECN feedback

as blanking
Re−echo

Figure 4.11: Principle operation of re-ECN: Re-echoing the fraction of packets that experi-
enced congestion enables network-internal policing according to the downstream congestion

the packet loss probability is large [182]. There are also proposals to completely disable the
TCP congestion control in dedicated circuits with a known fixed capacity [159].

Aggressive congestion control: Recently, relentless congestion control [146] has been proposed.
Instead of using AIMD, the idea is to reduce the CWND just by the number of lost packets, i. e.,
to adhere strictly to the packet conservation principle. Such an algorithm is not TCP-compatible
and requires fairness or traffic control mechanisms in the network in order to function appro-
priately in a shared environment. But the simple design facilitates such traffic management.
Further research is required to study the implications of this disruptive idea. It is a general trend
in the transport layer research community that packet loss is considered to be less critical.

Re-feedback: A special case of signaling is re-feedback [32]. The idea of re-feedback is to
collect path information in packet header fields as packets traverse the path, return it to the
sender, which then reinserts this information in the packets sent along the path. Therefore, the
packets carry a view of the whole path. The re-feedback mechanism ensures that the end-to-
end performance metrics are visible to the network. As described in Figure 4.11, this allows
each network component on the path to predict the congestion on the remainder of the path.
For instance, policers can then detect malicious endsystems not using congestion control. Re-
feedback can be realized by an extension of ECN, termed re-ECN, which requires changes
in the ECN code points and one additional bit in the IP header [34]. Re-ECN improves the
accountability and could enable congestion-based charging.

4.2.5.3 New transport protocols

TCP, as well as other Internet transport protocols, represent only one specific realization of
the large transport protocol design space [96, 211, 87]. In the Internet architecture, transport
protocols combine three functional areas: Transport primitives/semantics, traffic management,
and multiplexing. All these mechanisms can be realized in many different ways [95]. Table 4.5
provides an overview of these different realization options. Some alternatives are:

- Multipath routing and multi-flow transport protocols would enable multiple subflows that
transport traffic among different routes [12], and also bandwidth aggregation among mul-
tiple interfaces of multihomed endsystems [93].

- Feature negotiation could either negotiate the use of a transport protocol during the con-
nection setup (“meta-SYN”), or the composition of specific mechanisms within a config-
urable and extensible transport protocol [31].



4.2 State-of-the-art and open issues of Internet congestion control 69

Table 4.5: General transport protocol design space. The service features of TCP are high-
lighted. The design space of congestion control is surveyed separately in Table 4.1.

Design criteria Degrees of freedom
Association type Connection oriented vs. connection less
Delineation Byte steam vs. message oriented
Encoding Raw transport vs. compression vs. advanced encoding
Direction Bidirectional vs. unidirectional
Ordering Ordered vs. partially ordered vs. unordered
Reliable delivery Reliable vs. partially reliable vs. unreliable
Aggregation Single stream vs. multiple streams
Path redundancy Single path vs. multiple paths
Dissemination mode Unicast vs. multicast vs. anycast
Security No security mechanisms vs. integrity/confidentiality protection
OS integration Kernel-space vs. user-space

- Partial reliability and/or partial ordering could be useful for applications that have own
reliability or ordering mechanisms [77, 116].

There have been many proposals for transport protocols that could replace TCP. Historically,
there have been many non-IP transport protocols [96]. For instance, the Xpress Transport Pro-
tocol had modes for both window-based and rate-based transport, and sender and receiver could
negotiate traffic specifications [96]. Furthermore, several new transport protocols on top of
UDP have been developed [87]. There are two recent proposals for TCP replacements: Allman
proposed an evolution of TCP to “TCPx2” [6]. The general idea is to double the size of the
TCP header, but retain the protocol semantics. This header extension would create more space
for port numbers, sequence numbers, the receive window, and also more reserved bits. This
additional flexibility could enable new protocol extension in the future. Other similar proposals
suggest to just extend the TCP option space. Unlike this evolutionary approach, Ford et al.
suggested a fundamentally new transport layer design, which replaces today’s TCP by three
protocol layers [72]: An endpoint layer that realizes multiplexing, a flow regulation layer that
offers more flexibility for realizing congestion control (hop-by-hop congestion control, multi-
path transport, . . . ), and a transport layer that provides semantic abstractions and flow control.
A pragmatic solution would be to use UDP as endpoint layer, because this allows immediate
deployment in the Internet. Ford also proposes structured streams [71], which realize a simple
management of streams within an association. With structured streams, applications could use
one stream per transaction instead of multiple TCP connection and avoid TCP’s connection es-
tablishment delays. The performance improvement of such a mechanism for Web applications
has also been shown at the example of SCTP [161].
Yet, none of these proposals has been successful so far. One reason is the difficulty to build
transport protocols that satisfy all requirements of all types of applications. A transport protocol
combines several mechanisms, and any combination is likely not to handle well one category
of traffic [54]. Another major obstacle is the widespread deployment of middleboxes in the
Internet, which only know TCP and UDP and block packets with other transport protocols.
Erroneous middlebox implementations even prevent the deployment of new standardized TCP
features [219]. As a result, it is unrealistic that transport protocols other than TCP and UDP
will be widely used in the Internet in short-term. As a consequence, the future evolution of TCP
and its protocol mechanisms is still one of the key questions of Internet research.



70 Chapter 4. Fast startup congestion control mechanisms

Application

Socket

TCP

Time

Time
Queue

Write data

CWND validation

Congestion window

Flow startup Flow restart

Figure 4.12: Illustration of a flow startup and a flow restart

4.3 Fast startups: Definition, motivation, and design principles

4.3.1 Definition of fast startup congestion control

The flow startup is one of the few cases that is not optimally solved by any existing Internet con-
gestion control method. The flow startup situation occurs whenever a connection is established.
The fundamental challenge for congestion control is that endsystems often have no information
about the characteristics of the path and about the available bandwidth. As depicted in Fig-
ure 4.12, a similar flow restart problem also occurs after relatively long idle times, since the
congestion control state then no longer reflects the current situation in the network. Both situa-
tions are not identical. A flow restart mechanism could assume that the path has not completely
changed after the last data transmission, whereas a flow startup to an unknown destination does
not have any information about the path.

As presented in Section 4.2.1.2, current TCP implementations use the Slow-Start mechanism
both for the flow startup and the flow restart. The Slow-Start must both find an appropriate
sending rate and establish the self-clocking mechanism. However, the Slow-Start is not optimal
in many situations: First, it can take quite a long time until a sender can fully utilize the available
bandwidth on a path. Second, the exponential increase may be too aggressive and cause multiple
packet drops if a large congestion window is reached (Slow-Start overshooting). And third, the
Slow-Start does not ensure that new flows converge quickly to a reasonable share of resources,
in particular if they compete with long-lived flows. This convergence problem may even worsen
if high-speed congestion control variants get widely used.

The flow startup is one of the remaining open issues of the Internet congestion control. The
Slow-Start heuristic and its interaction with the congestion avoidance phase was largely de-
signed by intuition [98]. In particular, one can question whether the Slow-Start should be used
for restart after periods of idleness, as recommended by [RFC 2581]. This mechanism actually
creates an incentive for applications to send unnecessary data during idle periods, just to keep
the CWND at a large value. As the Slow-Start mechanism has been designed 20 years ago,
it is more and more questioned whether it is still appropriate, since many online applications
would benefit from a faster acceleration [12]. Welzl describes this trend as follows: “conges-
tion control is about using the network as efficiently as possible. These days, networks are often
overprovisioned, and the underlying question has shifted from ‘how to eliminate congestion’ to
‘how to efficiently use all the available capacity”’ [246].

Fast startup congestion control is a new design principle that addresses the latter question. More
formally, the concept of fast startup congestion control is defined as follows in this work:



4.3 Fast startups: Definition, motivation, and design principles 71

End−to−end Traffic control

Amount of
S

ta
te

 i
n

n
o
d
e
s

signaling

Per−flow stateNo per−flow state in network components

Network controlNetwork assistance

Fast startup congestion control

Figure 4.13: Scope of fast startup congestion control

Definition 4.4 (Fast startup congestion control): A fast startup scheme is a congestion
control mechanism that permits a starting data transmission to use the available bandwidth
on a network path almost instantaneously, i. e., within a time frame of the order of one or
very few RTTs.

The Slow-Start algorithm fulfills this definition if the bandwidth-delay product is of the order
of some MTU sizes only, but not if the BDP is larger. As a consequence, a general fast startup
congestion control must be faster than the Slow-Start in networks with a large BDP, e. g., if the
communication path traverses long-distance links or cellular access networks.
As illustrated in Figure 4.13, fast startup congestion control can either be realized end-to-end,
or, alternatively, by network-assisted or network-controlled schemes, which have a higher com-
plexity. From a conceptual point, an interesting property of the latter class of solutions is the
hybrid combination of aspects both of end-to-end congestion control and QoS traffic control.
Substituting the Slow-Start mechanism is a non-trivial task. Any end-to-end flow startup ap-
proach has to cope with the inherent problem that endsystems lack precise information about
the path characteristics when they start a new data transfer. The root problem is the difficulty
to determine the available bandwidth. Network-supported schemes could reduce this uncer-
tainty by querying the network components along the path, but they are currently not usable
in the Internet. So far, little theory has been developed to understand the flow startup problem
and its implications on congestion control stability and fairness. There is also no established
methodology to evaluate whether new flow startup mechanisms are appropriate or not [172].

4.3.2 Motivation and challenges of fast startups

4.3.2.1 Overview of arguments

There are several reasons why fast startup congestion control is useful, but any solution also
has drawbacks. In the following, the arguments for and against fast startups are discussed in
the context of requirements of interactive applications, which are introduced in Section 3.1
and Section 3.2. The arguments are also summarized in Table 4.6. It must be noted that these
arguments are valid both for the flow startup and the flow restart situation. One further argument
in favor of fast restarts is that many Internet paths are rather stable on the time-scales less than
a minute, i. e., one could optimistically assume that the characteristics have not changed.

4.3.2.2 Speedup

The TCP Slow-Start dominates the performance of short and mid-sized data transfers, which
are very frequent in the WWW. Due to Slow-Start, their transport times mainly depend on the
RTT. The delaying effect on HTTP transfers, which is quantified in Section 6.4, is well-known



72 Chapter 4. Fast startup congestion control mechanisms

Table 4.6: Arguments for and against fast startup congestion control

Issue Pros Cons
Speedup Significant performance speedup Only beneficial for selected applications

- if RTT is large
- for mid-sized data transfers

Fairness Potentially improved fairness for RTT unfairness is an inherent TCP
- short/mid-sized flows design principle
- flows with large RTT

Predictability Startups should provide predictable Lack of corresponding APIs to
transport delays applications (sockets interface)

Congestion risk Only limited additional risks Increases the probability of congestion
- TCP stack efficiently handle packet loss - higher packet loss rate
- often per-user queues in bottlenecks - possible negative impact on other flows
- could be reduced by network support

since the emergence of the WWW [88, 165]. First workarounds have been developed very
early, such as reducing the content size by data compression [165]. It has also been observed
early that a faster startup would improve transaction times in the Web [16]. In the meantime,
the transfer sizes have increased significantly. As explained in Section 3.3.3.2, average transfer
size are typically of the order of dozens of kilobyte in today’s WWW. The available bandwidth
in the Internet has also increased by several orders of magnitude. Still, this capacity cannot
be efficiently used in the first RTTs of a data transfer. As explained in Section 3.1.4, new
interactive applications have emerged that transport larger amounts of data and require a small
latency. Given that the data rates are likely to increase further, while packet delays will not
significantly decrease, TCP Reno’s Slow-Start is not future-proof and a potential obstacle for
new broadband interactive applications.

However, the unnecessary delays caused by Slow-Start only affect selected applications. If data
transfers are very small and fit into the initial window, there is no potential for improvement.
For instance, in the data presented in Figure 3.14, the size of only 1 % of the requests and of
only 25 % of the responses exceeds an initial window of three MSS. From this follows that for
a majority of transfers TCP’s current flow startup mechanism is still optimal. But one must also
note that current delay-sensitive applications already optimize their TCP connection usage in
order to mitigate the Slow-Start delays, e. g., by splitting larger content into several, parallel
transfers. Fast startup congestion control mechanisms could achieve the same performance
with less complexity and thus enable simpler application designs. In general, a fast startup is
useful for all responsive applications that frequently transport “mid-sized” amounts of data,
i. e., neighter “mice” nor “elephants”.2 This specific range of application characteristics is also
illustrated in Figure 4.14.

4.3.2.3 Fairness and predictability

The Slow-Start favors flows with a small RTT, and it does not equally assign bandwidth to short-
lived and long-lived flows. Concerning RTT unfairness, it is debatable whether the flow startup
should depend on the RTT, or not. Removing the RTT unfairness has been a goal of many of

2The author suggests to use the term “cheetah” for this type of data transfers.



4.3 Fast startups: Definition, motivation, and design principles 73

Elasticity

1 B 1 kB 1 MB 1 GB

Available data within few RTTs

"Mice" "Elephants"

range

operational

startup

Fast

Elastic

Responsive

Real−time

Figure 4.14: Classification of applications
that benefit from fast startup schemes

Socket interface

Datagram interface

loop

Control

loop

Control

loop

Control

requirements

Application

characteristics

Link/network

Application

Physical

Link

IP

TCP

Figure 4.15: Cross-layer signaling of appli-
cation and network characteristics

the new high-speed TCP algorithms for the congestion avoidance phase that are surveyed in
Section 4.2.3.2. Several authors [79, 56, 35] have also pointed out that, according to scheduling
theory, short flows should actually be prioritized to optimize the average completion time.

The existing flow start algorithms are completely independent of application requirements – as
all TCP algorithms. An application can hardly predict the transfer time of a given amount of
data in Slow-Start. It depends on the RTT and other parameters, even if the path has a large
available bandwidth. This makes it difficult to define response time targets and SLAs as intro-
duced in Section 3.1.3.3. The unpredictability also imposes limits on application performance
differentiation and assurance mechanisms that are explained in Section 3.2.1.2. While it is
impossible to guarantee deterministic delay bounds without end-to-end network QoS mecha-
nisms, for many applications it might be useful if latency bounds could at least be met with a
high probability. Fast startup congestion control could be one mechanism to fulfill such target
transmission times [136]. More generally, more differentiated flow startup schemes would be
one possibility to better take into account application requirements within the TCP congestion
control. This requires additional application interfaces as illustrated in Figure 4.15. The syntax
and semantics of these interfaces is further detailed in Section 5.1.1 and Section 7.1. Also,
applications that are adaptive and have own control loops could benefit from a better control
over the transmission time of data, as this could be one control parameter of application adap-
tation [60, 141, 26].

4.3.2.4 Congestion risk

A very fundamental design trade-off in networking is the optimistic vs. pessimistic allocation of
resources. A small initial window pessimistically assumes that a path may always be congested.
Yet, one could also optimistically assume that most paths in the Internet are right-sized and
there is often a reasonable amount of available bandwidth. This could, on the one hand, reduce
transport delays. But, on the other hand, it also increases the risk of additional queueing delays
and packet losses. Obviously, an optimistic flow startup procedure can also have a negative
impact on other flows that share the same bottleneck.

One key principle of the Internet congestion control is to avoid useless work, i. e., to transmit
only data that can be expected to arrive at the receiver. This explains the conservative flow start
behavior of the Slow-Start. However, one can question whether this design choice is still correct
in an Internet with ubiquitous broadband connectivity. The risk of a congestion collapse by



74 Chapter 4. Fast startup congestion control mechanisms

retransmissions, as explained in Section 4.1.1.1, is minimal, since the SACK implementations in
today’s TCP stacks are almost work-conserving and hardly trigger any needless retransmission.
And there are further reasons why the congestion risk of a fast startup may be tolerable: In the
current Internet, bottlenecks are typically located in the access networks, where per-subscriber
buffers are not uncommon. In such cases, if a performance degradation of other flows would
occur, it would mostly be limited to the flows of one subscriber. Additionally, buffers with
AQM can absorb short bursts and enforce some level of flow fairness [136].

Finally, a network-supported flow startup scheme can reduce the risk of congestion, as it can
prevent an aggressive flow start if the path is already congested.

4.3.2.5 Shortcomings of alternative application-level solutions

There are several techniques that can mitigate the performance limitations of the Slow-Start
without requiring modifications of the transport protocols. However, all these techniques have
drawbacks as well and cannot completely substitute a fast startup congestion control.

First, many Web browsers open multiple parallel TCP connections to a Web server, as explained
in Section 3.1.2. When n parallel downloads are ongoing, each of them using a Slow-Start,
the aggregated bandwidth increases n times as fast as a single Slow-Start. In addition to this
speedup, the usage of several connections has also other advantages. As long as HTTP without
pipelining is used, a single connection suffers from Head-of-Line Blocking (HOL), which can
be avoided by concurrent requests over different connections. On a path with a large BDP, a
single connection could also be limited by the TCP flow control if the endsystems do not support
receive window scaling. High-speed bulk data transfers can better leverage multiple processors
in an endsystem if the parallel connections are assigned to different processors. However, the
use of multiple connections has numerous drawbacks, too. Each connection results in additional
control traffic and connection setup overhead, and it requires memory space for the TCP control
block in the operating system and potentially also table space in middleboxes such as NAT
devices or load balancers, which becomes increasingly a scarce resource in the Internet.

The second alternative are Performance Enhancement Proxies. As explained in Section 3.2.2.4,
a commonly used mechanism is to split end-to-end TCP connections. This splitting reduces the
RTT of each individual connection and thus speeds up the Slow-Start. However, this solution
violates the fate sharing principle (cf. Section 2.2.2) and causes many problems to applications
that rely on end-to-end connectivity.

Third, large RTTs can be avoided by fetching content from topologically near servers. This is
purpose of Content Delivery Networks (cf. Section 3.2.2.3). As already mentioned, CDNs are
challenged by more and more dynamic content that cannot easily be cached in surrogates, so
that the need for interactive downloads over paths with larger RTTs is likely to increase.

Finally, content pre-fetching is a technique that is increasingly used by modern Websites in
order to mask the network latency and transport delays from users [209]. But this method is
only successful if the prediction is indeed correct, and fails if content must be created on-the-fly.

4.3.3 Design principles of fast startup congestion control

There are numerous different possibilities how to start a flow. Figure 4.16 illustrates key de-
sign alternatives. From a protocol engineering point of view, end-to-end mechanisms have to



4.3 Fast startups: Definition, motivation, and design principles 75

Optimistic

fast startup

Bandwidth

estimation

SST

adaptation

Slow−Start

EnhancedStandard

Slow−Start

End−to−end congestion control

(implicit feedback)

Network assistance

(sporadic feedback)

Network control

(explicit feedback)

Network−supported congestion control

Flow startup approaches

(frequent feedback)

Reno, CUBIC, ...

Paced Start,

Hybrid SS, ...

rate pacing

Using

control

No burstiness

Larger

window

Swift−Start,

eXplicit ControlQuick−Start

Jump−Start,

Mega−Start, ...Initial−Start

Limited SS, ...

Protocol (XCP),

Rate Control

Protocol (RCP), ...

Figure 4.16: Overview of the design space of flow startup mechanisms. The approaches that
are studied in this work are highlighted.

be distinguished from network-supported mechanisms. There are different end-to-end enhance-
ments of Reno’s Slow-Start, which are surveyed in Section 4.4. Furthermore, several end-to-end
fast startup schemes have been proposed, which are one main focus of this thesis. These ap-
proaches are further detailed in Section 4.4, too. Another comprehensive survey can be found
in [RFC 4782].

End-to-end flow startup approaches cannot timely determine the available bandwidth on the
path at the beginning of a data transfer. Thus, network support has two key advantages:

- Signaling is faster than end-to-end measurements: By signaling, a source can get infor-
mation about the spare capacity within one RTT.

- Information from the network reduces the uncertainty: Determining the available band-
width by bandwidth estimation is error-prone (cf. Section 4.1.5.1). While any signaled
information can be wrong, too, network components can more easily determine the local
load situation.

Providing congestion information to endsystems can prevent them from starting flows with a
high rate, which would worsen an already existing congestion situation. Yet, signaling cannot
completely solve the flow startup problem: Even if a source knew exactly the available band-
width on a path, it would still not necessarily be safe to jump straight to that rate because the
information has been determined at least one RTT ago [172]. An endsystem cannot know how
much a change in its own rate will affect the path, and the path might become congested in less
than one RTT, too. Due to these effects it is impossible to design a perfect fast startup mecha-
nism that performs well in all possible situations. Still, several network-supported congestion
control mechanisms have been developed recently. Solutions range from TCP enhancements,
such as Quick-Start TCP [RFC 4782], to new congestion control frameworks for a Future Inter-
net. These protocols are presented in Section 4.5 and Section 4.6.

Most fast startup mechanisms can be characterized by four phases that are shown in Figure 4.17:
During the (optional) sensing phase, some path characteristics are determined, potentially using
signaling. Then the sender starts to send data (probing). The validation phase starts when
corresponding ACKs arrive. The sender can then determine whether the initial choice was
reasonable. Finally, the sender switches to the continuous congestion control (continuation),
typically after the last ACK for the initially sent data has been received. The following sections
analyze different realization alternatives of these phases.



76 Chapter 4. Fast startup congestion control mechanisms

TimeSender

Receiver

SYN Data Further data

SYN−ACK First ACK Last ACK

Sensing Pacing Validation Continuation

Figure 4.17: Main phases of a fast startup mechanism

4.4 End-to-end fast startup mechanisms

4.4.1 Existing Slow-Start enhancements without speedup

4.4.1.1 Improved transition to Congestion Avoidance

There are numerous proposals for Slow-Start enhancements that still start with a small initial
window, but subsequently change the behavior. The most important approaches are classified
in Figure 4.16; a more comprehensive list is given in Table 4.7.

The multiplicative increase of the Congestion Window during Slow-Start results in very large
increments when CWND is already large. If a connection is able to use CWNDs of thousands
of segments, the current Slow-Start procedure doubles this value in a single RTT. If the CWND
exceeds the BDP, this can result in thousands of segments being dropped (Slow-Start overshoot),
which is likely to trigger a retransmission timeout. In order to avoid this situation, “Limited
Slow-Start” has been developed as an experimental TCP extension [RFC 3742]. It consists of
a simple modification: If CWND exceeds a certain threshold, the sender limits the number of
segments by which CWND is increased. The recommended threshold is 100 MSS. Limited
Slow-Start thus subdivides the Slow-Start into an aggressive and a careful increase phase.

A drawback of this scheme is that it uses a fixed threshold. There have been various efforts
to design a more intelligent transition from Slow-Start to Congestion Avoidance. They try to
find the optimal transition point by bandwidth estimation techniques, taking advantage of the
Slow-Start rounds that are quite similar to packet trains (see Section 4.1.5.1). Reference [92]
proposes to use a packet pair bandwidth estimation for the first packets, and then to set the initial

Table 4.7: Comparison of selected end-to-end Slow-Start enhancements

Enhanced Slow-Start Optimistic fast startup
Lim- Paced Hybrid Initial- Rate- TCP Swift- TFRC Jump- Mega-
ited SS Start SS Start Based Fast Start Faster Start Start
[RFC Pacing Start Start
3742] [94] [81] [235] [169] [173] [120] [136]

Fast start No Poss. No Yes Yes Yes Yes No Yes Yes
Fast restart No Poss. No Yes Yes Yes Yes Yes Yes Yes
CA transit. Yes Yes Yes No No Poss. Yes No No No
Rate pacing No Yes No No Yes Yes Yes Yes Yes Yes
Bandw. est. No Yes Yes No No No Yes No No No



4.4 End-to-end fast startup mechanisms 77

value of the SST to the estimated BDP. A correctly estimated SST value would eliminate the
problem of numerous packet losses at the end of Slow-Start. Furthermore, Allman compared
different estimators for setting an initial value of SST [5]. But he observed that they all perform
poor due to effects caused by delayed acknowledgments and so-called “ACK compression”.

Another similar scheme is “Paced Start” [94]. During the Slow-Start, it uses packet train band-
width estimation. Once a reasonable estimation is found, the CWND and SST are set to the esti-
mated available bandwidth. This makes the transition to Congestion Avoidance faster than Reno
and can avoid the overshooting problem. The recently developed “Hybrid Slow-Start” [81] also
measures the arrival dates of ACKs and sets the SST to the estimated BDP. “Hybrid Slow-
Start” requires only small changes in the sender-side TCP implementation and is integrated in
new releases of the CUBIC congestion control in the Linux stack. There are also other similar
proposals such as the one in reference [121]. Corresponding surveys can be found in [94, 81].

4.4.1.2 Information sharing between connections

An endsystem maintains state information for each TCP connection in a data structure that is
called TCP control block. It contains information about the connection state, its associated
local process, and congestion control parameters. This information can be maintained for each
connection independently. But if there are several connections between the same endsystem, it
could make sense to share information. Information sharing can be performed in two different
ways: Temporal sharing reuses state variables of terminated connections, whereas ensemble
sharing reuses state variables of existing connections. The combination of both mechanisms
is known as TCP Control Block Interdependence [RFC 2140] and partly implemented in many
TCP stacks. For example, as mentioned in Table 4.4, the Linux stack implements temporal
sharing by a destination cache and stores the SST and RTT estimation variables. The cached
values are used when another connection is established to the same destination IP address [189].

The congestion manager [RFC 3124] extends this concept. It provides a framework for a single,
centralized entity in an endsystem that realizes congestion control on a per-host-pair rather than
a per-connection basis. The idea is to integrate the congestion control management across all
applications and all transport protocols. The congestion manager maintains the corresponding
parameters and provides an API that enables applications to learn about network characteris-
tics, to pass information to the congestion manager, to share congestion information with each
other, and to schedule data transmissions. With the congestion manager, a new TCP connection
could start with a high initial CWND if it shares the path with another TCP connection that
is controlled by the congestion manager and has already reached a large CWND. More recent
work has further extended this approach towards a common congestion controller that manages
ensembles of TCP connections [194]. However, the architecture and APIs of a congestion man-
ager entity have never been completely specified. As a result, congestion managers have never
been widely implemented and used so far.

4.4.2 Existing optimistic fast startup mechanisms

4.4.2.1 Design alternatives

The Slow-Start starts with a small initial window and then increases the window exponentially,
i. e., it starts carefully but is then very aggressive. This strategy can avoid multiple packet losses
if a path is congested, but it also results in inefficient delays if the path has a large available



78 Chapter 4. Fast startup congestion control mechanisms

bandwidth. In contrast, a disruptive end-to-end fast startup optimistically assumes that a path is
not severely congested by default. Such an end-to-end flow start startup mechanism could use
some of the following information that is often available in endsystems: The RTT, cached state
variables for this destination, observable application communication characteristics (such as the
amount of queued data in the socket), the local interface capacity, or application requirements.

4.4.2.2 Fast startup without burstiness control

The most trivial fast startup mechanism is just to increase the initial Congestion Window to a
larger value than allowed by [RFC 3390], without any further modifications of the TCP con-
gestion control. In this work, the approach of increasing the initial window is labeled Initial-
Start (IS). Depending on the value of the initial window, this scheme may also have to modify
the TCP flow control in order to be effective, as discussed in Section 5.2. There is some empir-
ical evidence that some Web servers indeed use such an increased initial window [150].

Larger initial windows can result in disadvantages both for the individual connections as well as
for the network [RFC 3390]. From the perspective of the endsystem, the risk of retransmission
timeouts increases if multiple packets get lost. In the network, the packet drop rate can increase,
in particular when drop-tail buffers are used, which have problems to absorb large packet bursts.
This can reduce the efficiency: Packets that get dropped at some bottleneck result in wasted
bandwidth on the path towards that congested network component. This is a problem if there are
multiple congested links on the path, but this is a rather rare situation [RFC 3390]. Obviously,
there can also be negative effects on other traffic that traverses the same bottleneck.

Another class of solutions starts with a small initial window, but then increases CWND much
faster. This idea has been discussed various times. For instance, the Hybla congestion control
flavor [39] suggest an increase algorithm that is independent of the RTT. For a baseline RTT
of 25 ms, the behavior corresponds to TCP Reno. The larger the RTT, the faster CWND is
increased during Slow-Start. This proposal specifically targets satellite environments and there-
fore does not address the interworking with other flow startup algorithms. It has not gained
wider acceptance so far.

4.4.2.3 Fast startup with rate pacing

A larger initial window inherently increases the burstiness of the traffic. A burst can formally be
defined as a sequence of consecutive packets with inter-packet gaps not greater than a specified
parameter. Being a window-based protocol, TCP inherently sends packets in small bursts, which
are also called micro-bursts [22]. Whether bursts cause problems or not depends on the burst-
tolerance of the links on a path. The maximum burst size defines the maximum amount of bytes
that a network component can absorb without dropping a packet. It largely depends on the
buffer size and management strategy. According to [RFC 3390], bursts of up to 4kB are not
considered to be problematic. Empirical Internet measurements [22] show that larger bursts of
the order of ten consecutive segments are not very frequent, and that the probability of losing
one of these segments is low. This indicates that moderate burst sizes are unlikely to cause
problems in the Internet.

Micro-bursts can be mitigated by rate pacing, which evenly spreads the transmission of a win-
dow of segments across a certain duration of time. Motivated by the fine timer resolutions in
newer operating systems, the usage of pacing in TCP has been proposed several times since



4.4 End-to-end fast startup mechanisms 79

the late 1990ies. The permanent usage of rate pacing is a controversial topic. Several simula-
tion studies claim that rate pacing could improve the throughput of TCP flows. But it has also
been shown that TCP with permanent rate pacing may result in lower throughput and higher
latencies, since rate pacing delays congestion signals [3].

Rate pacing could be useful to initialize the self-clocking mechanism during startup events,
either for flow start or for flow restart. Rate pacing for TCP has first been proposed for the
fast restart after idle times in order to improve the performance of HTTP version 1.1 sessions
(“Rate-Based Pacing”) [235]. A fast startup scheme with rate pacing is the “TCP Fast Start”
proposal [169]. Instead of using Slow-Start it suggests to use temporal information sharing of
the CWND and RTT estimation and to (re-) start downloads with the cached values. In order to
avoid bursts, segments are clocked out by rate pacing. The authors also propose to assign the
packets sent during the fast startup to a traffic class with higher drop probability.

Another proposed fast startup scheme is “Swift-Start” [173]. It combines packet-pair bandwidth
estimation and rate pacing techniques. An initial CWND of four segments is used to estimate
the available bandwidth along the path. After one RTT, this estimate is used to increase the
CWND to a fraction of the measured BDP. As the window increase can be very large, rate
pacing is used to avoid large bursts. However, it is unclear whether four segments are sufficient
for an accurate estimation [5], and measurements have shown that the Swift-Start scheme is
often outperformed by TCP Reno’s Slow-Start.

Fast startup and fast restart mechanisms are also very relevant for multimedia streaming appli-
cations that have to quickly fill their playout buffer after startup. As the user must wait until the
playout buffer is filled, a minimal initial buffering time is very important. In order to achieve
this, the source must send data faster than the actual encoding rate, which contradicts the design
philosophy of the Slow-Start. There is empirical evidence that widely used multimedia appli-
cations use a fast start and are TCP-unfriendly during the initial buffer period [164]. There are
also ongoing efforts to develop a fast restart mechanism for flows using TFRC [120]. It allows
TFRC flows to ramp up faster than TCP’s Slow-Start after idle times.

4.4.3 Design of enhanced and new optimistic fast startup schemes

4.4.3.1 Jump-Start TCP

One possibility to cope with the potential aggressiveness of optimistic fast startup schemes is
to take additional application characteristics into account. The simplest solution makes the
startup dependent on the amount of application data that is available in the socket buffers. This
idea has been proposed recently by a group around Allman [136]. The fundamental principle
of this so-called Jump-Start (JS) is simple but disruptive: Instead of beginning with a small
initial window, a sender just plays out the queued data during the first RTT using a rate pacing
mechanism. Unlike other end-to-end fast startup mechanisms, the startup behavior of Jump-
Start thus depends on the strategy how the application delivers data to the network stack. The
more data is available, the higher is the initial rate. Jump-Start can be implemented as a sender-
side modification only.

Jump-Start explicitly risks to start with a too large data rate, which could result in multiple lost
packets. The original description [136] also proposes an orthogonal modified error recovery
procedure after the validation phase (cf. Figure 4.17): If packet losses occur during the vali-



80 Chapter 4. Fast startup congestion control mechanisms

1 10 100 1000

Available application data at socket [kB]

0.01

0.1

1

10

In
it
ia

l 
s
e

n
d

in
g

 r
a

te
 d

u
ri
n

g
 f

ir
s
t 

R
T

T
 [

M
b

it
/s

]

5 ms

10 ms

20 ms

100 ms

200 ms

50ms

500 ms

RTT

Maximum initial
window (4380 B)

Upper threshold
of 64 KiB

Maximum allowed data rate of 10 Mbit/s

Figure 4.18: Modified Jump-Start with up-
per bounds for data rate and outstanding data

0.001 0.01 0.1 1 10 100 1000

Initial sending rate during first RTT [Mbit/s]

10
-4

10
-3

10
-2

10
-1

10
0

C
C

D
F

Original Jump-Start

Modified Jump-Start

All Transfers larger

Only transfers with RTT>50 ms

Modified Original

than initial window

Jump-Start Jump-Start

Figure 4.19: Initial rate of Jump-Start in the
workload traces of Section 3.3.3.2

dation phase, the sender counts the TCP retransmissions. At the end of the loss recovery, the
CWND is adjusted to roughly half of the number of successfully transmitted segments:

Wrecov = max
(

Npacing−Nrtx
2 ,1

)
(4.11)

Note that the Equation (4.11) must be modified compared to the version in [136] in order to
avoid negative values after many retransmissions. Npacing is the number of segments sent during
the rate pacing phase, and Nrtx is the number of retransmissions out of these segments. Reducing
the CWND to roughly half of the load that the network was able to support corresponds to the
reaction of a long-lived TCP Reno connection in a similar situation. Compared to an unmodified
error recovery, Equation (4.11) may result in a significantly larger CWND, in particular after
retransmission timeouts.
With Jump-Start, data transfers can use an initial sending rate that is significantly larger than the
one of the Reno Slow-Start. Yet, Jump-Start has two properties that reduce the aggressiveness:

- RTT differentiation: For a given amount of data, the initial sending rate of Jump-Start
depends on the RTT. The larger the RTT, the smaller the initial rate. This dependency,
which can also be observed in Figure 4.18, has two advantages: The path capacity and
RTT are often correlated. In typical LAN scenarios the capacity is large and delays are
very small. In contrast, when a connection passes MAN or WAN links, the available
bandwidth is likely to be smaller, and the delay is larger. In addition, the risk of passing
through a congested link increases with the length of a path. Because of these effects,
it could be reasonable to be less aggressive for larger RTTs. Furthermore, a congested
link with filled buffers is likely to have a larger RTT, too. Thus, Jump-Start is inherently
less aggressive when a link on the path is congested, which can be a desirable behavior.
However, this also results in RTT unfairness, i. e., one of the shortcomings of the existing
TCP flow startup mechanism still exists (cf. Section 4.3.2).

- Data size dependency: In the original Jump-Start idea there is a linear relationship be-
tween the data transfer size and the initial sending rate, which is also shown in the left
part of Figure 4.18. Therefore, Jump-Start’s aggressiveness is reduced by the typical dis-
tribution of transfer sizes in the Internet: As mentioned in Section 4.3.2.2, most of today’s



4.4 End-to-end fast startup mechanisms 81

TCP connections only transmit few data. In this case, Jump-Start does not start signifi-
cantly faster than TCP Reno. This effect can be confirmed by analyzing the traces that are
already introduced in Section 3.3.3.2. In combination with the measured RTT, one can
estimate the initial sending rate that would be used by these larger transfers. According
to the results shown in Figure 4.19, most transfers would use an initial rate of the order of
few Mbit/s, which is large but often available in the current Internet.

The paper [136] also mentions further possibilities to cope with Jump-Start, including the usage
of AQM to absorb busts or a lower-priority marking of packets sent during a Jump-Start.

4.4.3.2 Suggested modifications to Jump-Start

In the original proposal [136], Npacing may be arbitrarily large if the RTT is small and if there is
a large amount of data s in the socket buffer. According to Figure 4.19 there is a non-negligible
probability of very high initial sending rates. As to be expected, this share is smaller among
connections with a large RTT, but still significant. In order to prevent arbitrarily high initial
rates and to reduce the aggressiveness, the author of this works suggests two modifications of
the Jump-Start algorithms.
First, there should be an upper limit Kdata for the amount of data sent in the first RTT. The
suggested value for this threshold is 65,535B. In addition to limiting the maximum burst size,
this threshold also avoids interactions with receive window scaling (cf. Section 5.2).
Second, the maximum playout rate should be limited to a maximum rate Krate. The suggested
maximum value is 10Mbit/s, i. e., the slowest rate of Ethernet links. If an endsystem knows
that the capacity of an outgoing link is smaller than 10Mbit/s, it would make sense to use
this capacity as upper bound instead. In addition to avoiding extremely large initial rates, this
upper bound also ensures that rate pacing is possible. Modern operating systems use a timer
granularity of the order of milliseconds, which means that the TCP/IP stacks have difficulties to
precisely schedule data transmission at rates much larger than 10Mbit/s (cf. Section 5.3.2.2).
With the thresholds Kdata and Krate, the initial rate of the “Modified Jump-Start” scheme is

Q = min
(

min(s,Kdata)
τ

,Krate

)
. (4.12)

This function is sketched in Figure 4.18 for different RTT values. With the selected parametriza-
tion, the initial maximum sending rate over a path with an RTT of 200ms is about 2Mbit/s,
which is a realistic value in many scenarios. Figure 4.19 also shows that the two thresholds
prevent extremely large initial data rates. Even the usage of Kdata alone would already have a
significant effect. Unless otherwise specified, in the following the term “Jump-Start” always
refers to the scheme with the explained modifications.

4.4.3.3 A new, alternative fast startup scheme with explicit activation

Another promising alternative end-to-end fast startup congestion control scheme could provide
a new interface to applications that allows them to activate selectively a fast startup. Otherwise,
Reno’s Slow-Start is used by default. This new idea combines principles of Jump-Start and
Quick-Start TCP: Similar to Quick-Start, the applications can explicitly choose a reasonable
initial rate Qreq. Unlike Quick-Start, this rate is just used without asking routers for approval:

Q = Qreq (4.13)



82 Chapter 4. Fast startup congestion control mechanisms

The mechanism could work well if the requested rate is of the order of magnitude of the avail-
able bandwidth. Obviously, it will result in packet drops if the selected rate is too large. Similar
to Jump-Start, a modified error recovery procedure can then be used. This new flow startup
principle is labeled Mega-Start (MS) in this work.

The actual realization of the proposed Mega-Start scheme is rather straightforward, since it
is basically a combination of two already known mechanisms, i. e., the application interfaces
definitions are basically the same like in Quick-Start, while the internal algorithms are similar to
Jump-Start. However, potential usage and impact of the Mega-Start proposal is different to other
fast startup schemes: The fundamental idea of Mega-Start is that applications only activate the
mechanism if a performance benefit is to be expected. As discussed in Section 5.1.1.2, there are
several possibilities how an application could make an informed choice of the initial sending
rate. If this mechanism was used only by a small share of applications, they could hardly
cause harm in the Internet. One possible solution for such an activation strategy is proposed in
Section 7.1, and its benefit is explained there, too.

4.4.4 Other approaches

A related mechanism has already been proposed earlier [254]. The idea is to use a performance
gateway that monitors the traffic and stores information concerning larger IP subnetworks. Ap-
plications can communicate with this gateway by an out-of-band protocol and thereby obtain
an estimate for the optimal initial CWND towards a given destination. Instead of Slow-Start,
a pacing scheme is used to send out the packets. Simulations show that this scheme could
significantly reduce the transfer times of short transfers [254].

A historical flow startup solution is Transaction TCP (T/TCP) [RFC 1644]. The experimental
TCP extensions for transactions consists of a set of downward compatible mechanisms that in-
tend to improve the performance of transaction-oriented client/server systems. T/TCP bypasses
the three-way handshake at connection setup and avoids delays between connection release
and the creation of a new instance of a connection. Even though the handling of the CWND
in T/TCP is not precisely specified, information sharing could be used to enable fast startups.
However, the T/TCP design has very fundamental problems. Omitting the three-way handshake
makes T/TCP vulnerable to “SYN flooding” attacks and simplifies spoofing attacks. Also, an
evaluation of the usage of T/TCP for HTTP-based application did not find significant perfor-
mance advantage compared to persistent TCP connections [88]. T/TCP was supported by some
TCP stacks in the mid-1990ies.

4.5 Network-assisted fast startup mechanisms

4.5.1 Overview of the Quick-Start protocol

4.5.1.1 Functional description of Quick-Start TCP

The Quick-Start (QS) protocol is a lightweight, coarse-grained, in-band, network-assisted fast
startup mechanism. With Quick-Start, endsystems can rapidly determine an allowed sending
rate in cooperation with the routers on the path, in particular at the beginning of a data transfer or
after long idle times when the network conditions are unknown. Quick-Start is basically a per-
formance enhancement for elastic best effort transport over paths with significant free capacity.
It does only control the sending rate in such transient conditions. A fast startup is only allowed



4.5 Network-assisted fast startup mechanisms 83

IP TCP

QS request

IP

IP

TCP

TCP

Rate
pacing

Standard
algorithms

SYN

SYN,ACK

New ACK

QS report

QS response

ACK

Initiator Router 1 Router 2 Acceptor

QS request IP option

Number Length Rate QS TTLType

Nonce

IP TCP

QS request

Rate!

Rate?

Echo 
rate

5.12 Mbit/s?

5.12 Mbit/s!

Figure 4.20: Quick-Start signaling during TCP connection setup

if there is a significant available capacity, i. e., the risk of causing congestion is rather small.
Quick-Start can also be classified as an anti-congestion control scheme [192]. Quick-Start is
originally specified as an experimental TCP extension [RFC 4782], which is complemented by
a paper of Sarolahti et al. [192]. The IETF recommends that initial deployment of Quick-Start
should be limited to controlled and trusted environments such as intranets. With some minor
enhancements, Quick-Start can also be used in combination with SCTP and DCCP [63]. As the
principal operation is the same in all cases, the following description only considers TCP.

The basic operation of the protocol can be explained with help of Figure 4.20, which illustrates
a Quick-Start request during the TCP connection establishment. In order to indicate its desired
sending rate, the connection initiator adds a “Quick-Start request” option to the IP header. This
option is 8B long and includes a coarse-grained target rate being encoded in a 4bit field. A value
of i > 0 corresponds to a rate q = 40kbit/s ·2i, i. e., there are 15 steps ranging from 80kbit/s to
1.31Gbit/s. The IP option also includes a QS TTL field and a QS nonce.

The routers along the path can approve, reduce, or disallow this rate request for qreq. Each router
that supports the Quick-Start mechanism performs an admission control (or approval control,
as explained later) and reduces or discards arriving request if there is not enough bandwidth
available. If it processes the request, it also decrements the QS TTL field by the same amount
it decrements the IP TTL field. If a router reduces the granted rate, it also randomly changes
certain bits in the QS nonce. Routers that do not understand the request or that reject it can
simply forward the packet without any processing.

If the request arrives at the destination, the granted rate is echoed back piggybacked as a TCP
option (“Quick-Start response”), along with the received QS nonce and the difference between
IP and QS TTL. The originator then determines whether all routers on the path support Quick-
Start and whether all of them have approved the request. It therefore compares the echoed TTL
difference with the difference in the original request. If they are not identical, there is at least
one QS-unaware router on the path. In this case, the originator switches back to the default
congestion control (i. e., Slow-Start) in order to ensure backward compatibility. By comparing
the stored and the echoed QS nonce, the originator can also detect with a certain probability
cheating attempts, i. e., receivers or routers that try to increase the rate above the granted value.

If the Quick-Start protocol grants a rate q > 0, the originator can increase its Congestion Win-
dow to the QS window Wqs = q·d

MTU . The variable d is the measured RTT. WQS may be much
larger than the initial value allowed by [RFC 3390]. Provided that the responder announces a
sufficiently large receive window that does not restrict the sender (cf. Section 5.2), the origina-
tor can start to send with the approved rate, using a rate pacing mechanism. The sender then



84 Chapter 4. Fast startup congestion control mechanisms

N
e
w

 f
u

n
c
ti

o
n

s

IP

Appl.

TCP

Option processing

Rate pacing

New cong. control

New interfaces

Figure 4.21: New TCP functions required
by Quick-Start

New functions

estimator

Resource

estimator

Traffic

Recent

approvals

QS req.

Ingress Egress

Option

proc.

Approval decision

Figure 4.22: New IP functions required by
Quick-Start

follows the principal phases of a fast startup shown in Figure 4.17. During a validation phase, it
detects if all sent packets have successfully arrived at the receiver. If this is the case, the Quick-
Start phase is completed after one RTT and the default TCP congestion control mechanisms are
used for the subsequent data transfer. If packet loss is detected during the validation phase, the
source must undo the CWND increase [RFC 4782].

4.5.1.2 Required functions in the IP and TCP layer

Quick-Start requires modification both in the transport layer of both involved endsystems as
well as some changes in the IP processing in every router on the path. The new functions
are depicted in Figure 4.21 and Figure 4.22, respectively. In the endsystem, the IP and TCP
options must be processed, the rate pacing must be realized, and the congestion control and
error recovery mechanisms must be adapted. Furthermore, new interfaces are required. The
design of these interfaces is detailed in Section 5.1.1.

As shown in Figure 4.22, the support of Quick-Start also requires additional functions in the IP
layer in every router on the path and also in the originator’s IP stack: The IP stack must process
the new IP options and perform an approval control, i. e., decide whether to accept a QS request
and which data rate to grant. As discussed in the next section, this requires knowledge about
the available bandwidth on the path, which can be obtained by determining the capacity of
the outgoing links and monitoring their utilization. Depending on the control algorithm, other
information such as the recently approved requests may have to be stored, too.

4.5.2 A new admission control concept: Approval control for Quick-Start

4.5.2.1 Constraints

The router functions required by Quick-Start have some similarity to MBAC, which is intro-
duced in Section 4.1.5.2. Yet, there are unique constraints and differences between the approval
control for network-assisted congestion control and traditional admission control algorithms:

- Elastic traffic: The approval control is performed for elastic traffic. Most MBAC al-
gorithms assume inelastic traffic and are designed to meet a certain QoS objective, in
particular a given buffer overflow probability. Buffer overflows are not a meaningful met-
ric for elastic traffic. Even recent work on MBAC assumes that the number of flows is
exactly known, and the developed algorithms are less efficient if this is not the case [78].
In IP networks it is impossible to precisely know the number of ongoing flows.



4.5 Network-assisted fast startup mechanisms 85

- No guarantees: Unlike IntServ-like QoS mechanisms, routers supporting Quick-Start are
not required to make any reservations of bandwidth. They may allocate resources, but
they are not required to reserve them for a flow, which would require per-flow state.

- No traffic descriptors and traffic conditioning: Many QoS admission control schemes
assume a precise a priori statistical characterizations of the sources, e. g., by peak packet
rates. The Quick-Start protocol does only request for an initial sending rate. Within few
RTTs, the traffic pattern of the flow may be completely different and cannot be predicted
for many TCP-based applications. In such an open environment, any admission decision
can turn out to be wrong.

- Flexibility of approval control: Admission control typically realizes a decision with bi-
nary result. However, instead of denying a Quick-Start request, a router can also just
grant a lower rate. This degree of freedom is not considered by most MBAC algorithms.
Also, there is only a low penalty of not approving a QS request. The flows then just ramp
up slower, but the network can still be utilized rather efficiently.

- Unknown validity: As Quick-Start is a sender-initiated scheme, a router cannot know
whether a request will be approved by other routers down the path, or whether it will
be denied. It even does not know whether an arriving request has already passed a QS-
unaware router and is already implicitly denied. This issue could only be solved by a
receiver-initiated scheme as shown in Figure 2.8, which would result in larger delays.

In summary, the mathematical assumptions of the statistical methods used by many MBAC
schemes are not fulfilled. As a consequence, the proposed algorithms can hardly be applied in
the context of Quick-Start. Instead, the Quick-Start approval control requires uncomplicated
algorithms. Approval control mechanisms for congestion-controlled traffic is a rather unex-
plored field. There is related work on admission control for elastic traffic in order to enforce an
upper limit on the number of TCP connections [73], but this is again a pure admission decision
problem. In the context of Quick-Start, approval control mechanisms are only studied in the
references [RFC 4782], [192], and [191]. Three different problems have to be solved: (1) esti-
mation of the available bandwidth, (2) approval decision, and (3) handling of recent requests.
The following subsections review the design space of these building blocks and then propose
new algorithms.

4.5.2.2 Design space for estimation of the available bandwidth

Approval control requires an online estimation of the available bandwidth on the outgoing links.
The Quick-Start approval control is performed by network components processing IP packets,
which are not necessarily aware of the dimensioning of outgoing links and potential bottlenecks
in the link layer technology. As stated in Section 4.1.5.1, an accurate and timely measurement
of the available bandwidth is difficult, and probing techniques have disadvantages [RFC 5559].
Yet, the coarse granularity of the Quick-Start mechanism mitigates this problem: The Quick-
Start approval control only requires a rough approximation of the available bandwidth (see
Section 6.5.3). In case that the link capacity is rather constant, such an estimation can be ob-
tained by determining the link capacity and subtracting the link usage, i. e., the carried traffic.
The capacity of router interfaces can be determined for instance from the corresponding net-
work technology. If the capacity is not constant (e. g., on shared wireless links), cross-layer
information exchange may be required.



86 Chapter 4. Fast startup congestion control mechanisms

Optimistic approval Pessimistic approvalFirst−come−first−served

Oversubscription (memoryless)

Approval control

Request frequency adaptive

"Share algorithm"

Bandwidth pooling (storage of approved requests)

"Extreme Quick−Start"

"Fair algorithm" (new)"Target algorithm""Optimistic algorithm" (new)

Figure 4.23: Classification of different approval control algorithms. The highlighted algorithms
are evaluated in this work.

The measurement of the link usage requires an online rate measurement within a time-scale
of the order of magnitude of the RTT of the flows. Such a frequent estimation of the carried
traffic can be derived from measurements of the transferred data volume, either within disjoint
time intervals or with a window-based solution [145]. The measurement can be combined with
low-pass filters, such as the Exponentially Weighted Moving Average (EWMA), trend-based
approaches [38], or forecasts. Sarolahti et al. proposed to use either an EWMA estimator that
updates the estimate u(t) of the link usage based on the measured value x(t) by

u(t)← αewma · x(t)+(1−αewma) ·u(t−∆), (4.14)

or a peak utilization estimator

u(t)←max
(
x(t),x(t−∆), . . . ,x(t−Npeak ·∆

)
. (4.15)

The peak estimator records the carried traffic during the most recent Npeak disjoint time inter-
vals of duration ∆; the suggested value is Npeak = 5. The peak estimator determines a more
conservative estimation of the available bandwidth, as it reacts fast to sudden increases, but also
remembers periods of high utilization in the recent past. It is the default estimator in this work
as explained in Section 6.3.3.2.

4.5.2.3 Design space for approval decisions

There are fundamentally different possibilities how an approval algorithm can be designed. As
classified in Figure 4.23, one can either use oversubscription or bandwidth pooling3. In the
former case, each request is approved independently from other requests. Possible algorithms
could for instance always approve a rate up to the currently available bandwidth. Such an
optimistic algorithm may grant a large amount of bandwidth if many requests arrive, i. e., it is
vulnerable to flash crowd effects. But, unlike end-to-end fast startup schemes, such an approval
control still reduces the risk of congestion, since it can prevent further aggressive flow startups
if a link is already congested. Alternatively, router algorithms could apply a more complex
control law that takes additional statistics into account, such as the queue length, similar to the
mechanism introduced in Section 4.6.2. A simple flash crowd protection could also be realized
by measuring the average number of requests within a certain time duration and reduce the
maximum granted bandwidth if it exceeds a threshold.
An alternative solution is to manage the available bandwidth as a pool of resources and allocate
a certain part of the pool resources whenever a request is granted. This avoids oversubscrip-
tion, but it requires a history of recently approved requests. Examples for such algorithms are

3The term resource pooling is also used in multipath transport in a completely different context.



4.5 Network-assisted fast startup mechanisms 87

0 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 2

 0  1  2  1 0  2  0  1  2

Reserved

Measured utilization

TimeReservation

Connection A

Connection B

Connection CSlot duration

Ring buffer for

recent requests per slot

Adm. threshold

Req.

Req.

Req.

B
a
n
d
w

id
th

Max. RTT

Current slot

A A

A

B

B
B

 C

C C

Figure 4.24: Illustration of the Quick-Start approval control and recent request storage

presented in Section 4.5.2.4 and Section 4.5.3.3. The problem of considering already admitted
flows also occurs in classic admission control algorithms [29].
There is a trade-off between oversubscription and bandwidth pooling: A conservative approval
control might deny too many requests, resulting in larger flow completion times, while an opti-
mistic scheme risks temporary congestion if many new flows arrive in parallel. There are also
further degrees of freedom how to deal with requests that exceed the bandwidth that can be
granted. For instance, the granted rate could depend on the request rate. A further option is just
to deny requests that exceed the available bandwidth, instead of reducing the rate. This strategy
would give incentives to hosts not to request for unnecessarily high data rates [199].
Keeping track of recently approved requests could be realized by storing temporal per-flow
state, e. g., between the “Quick-Start request” and the “Quick-Start report” [192]. But this
solution would require a potentially very large table of per-flow soft state. A more scalable
solution is to keep track of the aggregate approved rate over recent link usage measurement
intervals. This does not require per-flow state. In [199], the author of this work proposes to use
a ring buffer of size Ω for the storage of the recently granted aggregate bandwidth. Ring buffers
are well suited for storing reservations [37]. The usage of a ring buffer with Ω = 3 is illustrated
in the bottom part of Figure 4.24: Whenever a request is granted, the granted rate is added to
the current field of the ring buffer. After the time interval ∆, the pointer to the current element is
shifted to the next element and its value is zeroed.4 The aggregated allocated bandwidth results
from the sum of all elements in the ring buffer.
Figure 4.24 also illustrates that the rate measurements and the history of recent approvals must
be coordinated: When a request is approved, the granted capacity must be stored until a new
rate sample x(t) is measured and until it is almost certain that this sample includes the data
rate of the new flow. This requires rather frequent rate measurements, i. e., ∆ must be of the
order of the RTT of the flows. In the example of connection B in Figure 4.24, it takes three rate
measurements after the request until the router can forget the Quick-Start request. Choosing
the configuration parameter Ω results in a trade-off: If it is too small, the router forgets recent
rate approvals too quickly and thus may oversubscribe the available bandwidth. But if Ω is too
large, the router is too conservative when approving Quick-Start requests. The required number
of required ring buffer spaces is derived in [199] as

Ωopt =
⌈

dmax
∆

+2
⌉

(4.16)

4This assumes that both rate measurements and the ring buffer are updated after time intervals of duration ∆.
This is the most simple realization alternative because then all information is recalculated at the same time. Theo-
retically, both procedures could be decoupled, but this alternative is not further considered in this work.



88 Chapter 4. Fast startup congestion control mechanisms

if a new rate measurement should incorporate a flow starting with the granted rate, and if the
worst-case RTT is dmax. An optimistic setting is Ω = 2, which is also used in [192, 191],

4.5.2.4 Existing algorithms

The Quick-Start specification [RFC 4782] does not explicitly enforce a specific approval algo-
rithm. Sarolahti [191] introduces and compares three different solutions:

- The “target algorithm” uses bandwidth pooling. It approves requests up to a configured
percentage of the link’s bandwidth minus the sum of the current link usage and the ag-
gregated bandwidth of recently granted requests (unused bandwidth). This algorithm is
similar to the well-known “measured sum” admission control strategy [29].

- The “share algorithm” allocates a pre-set fraction of the unused bandwidth for each ar-
riving request. The unused bandwidth is determined by the link capacity minus the used
traffic minus the recent QS approvals similar like in the previous case.

- The “extreme Quick-Start” solution maintains per-flow state about QS requests. The
router keeps track of each individual QS request and report. Therefore, it can more
precisely estimate the bandwidth that has been approved but that is not used yet. The
proposed algorithm calculates for each flow how much data has been transmitted after a
QS request. This solves the problem of wasted capacity if the history of recent approvals
stores a request for a too long time. Furthermore, a score is used to identify senders that
tend to request more bandwidth than they actually use.

The large amount of state information kept by the “extreme Quick-Start” algorithm impose
severe implementation challenges, and it is therefore unrealistic that all routers implement it.
It could, however, be used at edge nodes, since it offers some protection against single hosts
issuing many large QS requests without using them [191].
[RFC 4782] argues that the target algorithm would be a reasonable solution. Its main advantage
compared to the “share” algorithm is that it includes a threshold θ up to which a link is con-
sidered “underutilized”. With this threshold, the unused bandwidth available for Quick-Start is
aQS = θ · c−u(t), if c is the assumed link capacity. It grants requests up to the maximum rate

qtarget = min(q,aQS−H(Ω)) , (4.17)

where H(Ω) is the sum of all stored previous requests. A flowchart of the algorithm and a
possible integration in the IP option processing is presented in Figure 4.25. Due to the rough
granularity of the rate field, the actually granted rate qapproved must be one of the 16 values. If
one selects the largest possible value qapproved ≤ qtarget, the granted rate is reduced in average
by factor 1.5.

4.5.3 Design of improved approval control algorithms for Quick-Start

4.5.3.1 Motivation

The target algorithm has two shortcomings: First, granting resources only on a FCFS basis is
inherently unfair. A single request for a large rate (e. g., 1.31Gbit/s) could allocate all bandwidth
and cause all further requests to be denied during a time interval of Ω ·∆. This unfairness of
the target algorithm is empirically observed in [191], but not solved. The unfairness is even
worsened by a specific rule of [RFC 4782]: If a Quick-Start requests gets denied, the sender



4.5 Network-assisted fast startup mechanisms 89

End

End

"Optimistic algorithm"

"Fair algorithm"

Both

Control interval

exceeded?

Update traffic estimator

Clear oldest approved history slot

Reset counter

QS IP option?

NoYes

Rate request None

Yes

Rate report
request>0?

approved = min(request,

capacity − traffic − history,

approved>0?

Yes

No

request = rescale(approved)

Record approved bandwidth

Add packet length to counter

approved=0

Modify QS IP option

No

Ongoing meas.?

Store 5−tuple and time

No Yes
Stop measurement

Determine time difference

Update RTT estimator

5−tuple match?

Yes

No

Packet arrival

fairshare − current_history )

Extensions:

Timeout

Figure 4.25: Quick-Start approval control by the “target algorithm”. The proposed extensions
by the “optimistic algorithm” and the “fair algorithm” are highlighted by shaded boxes.

must revert to the CWND that was valid before the Quick-Start request. This means that the
CWND after a denied Quick-Start request may be smaller than the CWND that would result
from the Slow-Start algorithm.

Second, the performance depends significantly on the estimation interval ∆. Sarolahti et al. [192,
191] use a fixed value of ∆ = 150 ms in their studies, but never address how this parameter
should be set. In the following, two enhanced Quick-Start router algorithm are presented that
address these two issues. They have first been presented by the author in [206].

4.5.3.2 Optimistic algorithm

One possible solution to address the FCFS unfairness problem is not to use the bandwidth pool-
ing philosophy. Specifically, a router could approve each request independently of previously
approved requests, just considering the available bandwidth. The granted rate of this “optimistic
algorithm” is

qoptimistic = min(q,aQS) . (4.18)

Obviously, this algorithm can oversubscribe link capacity, and it thus risks congestion if many
requests arrive within a short time interval. Yet, the optimistic algorithm protects a link against
an aggravation of existing congestion situations, since requests do not get approved if a link
is already completely utilized. Its main advantage is the simplicity: Requests can be approved
without modification of global system variables, which avoids the synchronization issues dis-
cussed in Section 5.3.3. In fact, the design philosophy of the “optimistic algorithm” is similar
to the one of other network-controlled schemes introduced in Section 4.6.3.



90 Chapter 4. Fast startup congestion control mechanisms

Time

Quick−Start admission threshold

Fair allocation target

Approvable rate

Granted

Request
Request

denied

B
a

n
d

w
id

th
B

a
n

d
w

id
th

Time

approved
completely
Request

Request
reduced

Approvable
rate

Approv.
rate

Slot duration

bandwidth can be

granted per slot

of the available

Only a part

Already reserved in slot

Measured utilization

Figure 4.26: Illustration of the approval control by the “fair algo-
rithm”. Within one slot, the fair allocation target increases linearly
with the time. Requests may preventively be reduced or denied.

n+4

RouterRequest

Request
n+1

Report
n

Request
n+2

Report
n+2

n+3
Report

n+3
Request

n+1
Report

Request

n

R
T

T
 e

s
ti
m

.
R

T
T

 e
s
ti
m

.

Figure 4.27: RTT
estimation method
for Quick-Start

4.5.3.3 Fair algorithm

If bandwidth pooling is desired, an ideal max-min fairness of the granted rates could in theory
be achieved as follows: If the number of Quick-Start requests within a time period Ω ·∆ was
known, one could grant to each of them its corresponding share of aQS. However, correctly
predicting the number of future requests is impossible in practice unless the arrival pattern is
very regular. It would also require additional state variables compared to the target algorithm.
The proposed “fair algorithm” does not try to predict the number of requests. Instead, it uses the
elapsed time t since the last rate measurement t0 as an additional parameter. The fundamental
idea is to reserve a certain share of resources for requests that may arrive in future. As shown
in Figure 4.26, the algorithm maintains an additional fair allocation target rate

qfair = min
(

1
Ω

(
Θ ·aQS +(1−Θ) ·aQS ·

t− t0
∆

)
−H(0),qtarget

)
(4.19)

within each time slot of duration ∆ if there are previous requests. The sum of the already ap-
proved rates in this slot is H(0). The maximum amount that can be granted within one slot is
upper limited by aQS/Ω. This increases the likelihood that requests arriving during the next
slots will find non-allocated capacity. Furthermore, within one slot, the fair allocation target is
linearly increased to prevent a single request randomly arriving at the begin of the interval to al-
locate all resources. The parameter Θ, which is set by default to 0.125, still allows such requests
to obtain some reasonable amount of bandwidth. Equation (4.19) can easily be integrated in the
target algorithm, for which very efficient implementations exist (cf. Section 5.3.3).

4.5.3.4 Proposal of an adaptive parametrization

The other open issue is how to appropriately set the measurement interval ∆. Setting this param-
eter has to cope with a fundamental trade-off: On the one hand, if ∆ is too short, the measure-
ment values may include a significant jitter. On the other hand, if it is too long, the measured
rate might already be outdated once it is calculated. As derived in reference [101], if the rate is
modeled by a random process, the variance of the sample decreases with the length of the aver-
aging interval ∆. Furthermore, if Ω is set to a constant value, the parameter ∆ also determines



4.5 Network-assisted fast startup mechanisms 91

how long approved requests are stored. According to Equation (4.16), ∆ should be of the order
of magnitude of the RTT of the flows. If ∆ was significantly larger, the approval control would
remember requests too long and may unnecessarily deny subsequent requests.

There is no single optimal value for ∆. Research results on network-controlled admission con-
trol show that their control interval should be set between the average and maximum RTT of
the flows through the router. A further proposed extension of the Quick-Start approval control
uses this idea and automatically tunes the measurement interval according to the RTTs of the
QS-enabled flows. This requires an estimation of the RTT of flows. There are various generic
techniques how to passively estimate the RTT of TCP connections [106]. The most simple one
keeps track of TCP’s three-way handshake and estimates the RTT between the last <SYN> and
the first <ACK> segment. However, a drawback of this approach is that it determines the RTT
of all flows, even if they do not support Quick-Start. The solution proposed by the author explic-
itly considers connections with Quick-Start only: As depicted in Figure 4.27, an approximation
of the average RTT can easily be obtained by measuring the delay between the Quick-Start
request and the Quick-Start report IP options. If there is only one ongoing measurement, the
router must only store a timestamp and a set of values that uniquely identify a flow. Figure 4.25
also shows that the integration of this method into the processing of the Quick-Start IP options
is straightforward.

These different approval control algorithms are compared in Chapter 6. There are also other
possibilities how to further enhance the approval control without giving up the simple controller
design. For instance, one could try to use an overbooking factor based on past experience [154].
Such possible enhancements are left for further study.

4.5.3.5 Implications of the activation strategy of Quick-Start

The Quick-Start mechanism must be used carefully, as it can easily be rendered useless if ap-
plications request for a large data rate without using it. The problem of requested but unused
bandwidth can to some extent be solved by the optimistic approval control in routers, but this
solution risks bandwith oversubscription. Actually, Quick-Start requests should only be sent by
endsystems if they make sense.

Useless requests can be avoided by an intelligent activation strategy: As Quick-Start only makes
sense for mid-sized data transfers, it should only be activated if such a transfer is expected. This
work argues in favor of an explicit fast startup activation interface between the network stack
and the applications which is introduced in Section 5.1.1. This interface allows an application
to trigger a fast startup only if it indeed anticipates a larger data transfer. This information
could for instance be determined from the size of the data objects, or from payload identifies
in application protocols. Alternatively, the network stack could internally monitor the socket
buffer and use the queue length as decision criterion for sending a Quick-Start request.

In both cases, a simple activation heuristic would be to activate Quick-Start only if the amount
of data is larger than a certain threshold χ . A reasonable setting of χ is determined in Sec-
tion 6.4.3.3. This solution requires that the network stack could monitor the data arrival in the
socket, similar to the Jump-Start proposal, or that explicit application knowledge is used. The
latter variant is further studied in Section 7.1. If these heuristics fail and if there are many
spurious requests, the utility of the Quick-Start protocol is reduced. This problem shows that
the usage of the Quick-Start protocol is more complex than end-to-end fast startup congestion
control schemes – not only because it requires modifications in routers.



92 Chapter 4. Fast startup congestion control mechanisms

Table 4.8: Comparison of selected fast startup TCP enhancements

Initial-Start Jump-Start Mega-Start Quick-Start
Type End-to-end End-to-end End-to-end Network-assisted
Sensing Measure RTT Measure RTT Measure RTT Explicit feedback
Probing Large window Play out appl. data Use given rate Use approved rate
Validation Unmodified Count retransm. Count retransm. Observe loss
Continuation Unmodified Adapt after loss Adapt after loss Revert after loss
Rate pacing No Yes Yes Yes
Activation by No No Yes Yes

application possible

4.5.4 Other approaches

The Quick-Start mechanism is at the time of writing the most elaborated network-assisted con-
gestion control scheme. Its differences to end-to-end fast start startup mechanisms are summa-
rized in Table 4.8. A related approach is “AntiECN” [122], which suggests an additional one
bit per-packet feedback in the IP header. By setting this bit, routers could inform endsystems
that they consider a link to be underutilized and that a faster increase of the CWND is possible.
The “Variable-structure Congestion Protocol” [250] suggests a similar notification by using the
two ECN bits. Routers classify the level of congestion into three regions (low-load, high-load,
and overload), and encode this state into the ECN bits. Based on the load region the sender uses
different window increase or decrease algorithms.

The idea of granting a certain rate is also part of a proposal for a QoS control plane for military
networks [18, 187]. It uses a new IP option with a length of 16B that includes an available and
a guaranteed rate, which are negotiated along the path with a sender-initiated request-response
signaling. There is not much information about the current status of this protocol.

In [160], a network-assisted configuration of the parameters of the Limited Slow-Start is ex-
plored. And there are also several proposals for additional IP control plane protocols that col-
lect bandwidth information from the routers along the path. One example is the “Performance
Transparency Protocol” [246].

[RFC 4782] also extensively discusses design alternatives for the Quick-Start mechanism, in
particular the usage of other signaling protocols such as ICMP or a QoS reservation protocol
like RSVP or NSIS. Unlike IP options, this would result in an out-of-band signaling that has
several disadvantages: The authentication of the messages would be much more complex, since
it must be ensured that the information originates from routers on the path. Also, the traversal
of NATs and IP tunnels is much simpler for in-band signaling with an “end-to-end echoing”
feedback model. Many functions of complex protocols such as RSVP or NSIS are not required
for network-assisted congestion control.

4.6 Network-controlled congestion control

4.6.1 Network control as a clean slate approach

Several new network-controlled congestion control schemes have been developed as part of the
research activities on future clean slate Internet architectures. They explicitly do not consider



4.6 Network-controlled congestion control 93

RCP header

Bottleneck rate

Reverse bottleneck rate

RTT Prot. Res.

XCP header

Inter−packet time gap

Res.Prot. Length Vers.

RTT

Reverse feedback

Delta throughput

pacing
Rate

Initiator Router 1 Router 2 Acceptor

TCP?RCPIP

TCP?RCPIP

TCP?RCPIP

TCP?RCPIP

TCP?RCPIP

TCP?RCPIP

TCP?RCPIP

TCP?RCPIP

TCP?RCPIP

TCP?RCPIP

Figure 4.28: Operation of XCP and RCP with a new congestion header

backward compatibility to TCP/IP as a major design objective (cf. Section 2.4.3). An important
outcome of this research is the idea of putting additional information in every single packet.
On the one hand, this additional information informs network components about performance
metrics of the flow (indication information). On the other hand, an on-the-fly modification of
this information makes it possible that network components control a flow without requiring
per-flow state. The insight that per-flow state can be avoided by transporting additional infor-
mation in every packet dates back to work of Stoica et al. [221], who showed that IntServ-like
rate guarantees are possible without per-flow management if precise deadline timing informa-
tion are transported in every packet. This approach of transporting state in packets is called
“Dynamic Packet State”. In more recent work [222], Stoica et al. develop an architecture for
fair bandwidth allocation that uses a similar mechanism and transports information about the
bandwidth in packet labels.

The idea of realizing network-controlled congestion control with help of an extended packet
header has recently attracted considerable attention in the research community, as it is a promis-
ing approach to address the shortcomings of an end-to-end congestion control. Several new
schemes have been proposed, which are still subject to ongoing research. The following two
sections briefly review the two most promising protocols.

4.6.2 Overview of the eXplicit Control Protocol (XCP)

The eXplicit Control Protocol (XCP) is an experimental network-controlled congestion control
protocol that has been developed by Katabi et al. [110]. It uses fine-grained, in-band, per-
packet feedback from network components in order to improve the performance in networks
with a high bandwidth-delay product. The XCP controller in network components decouples
the efficiency control from fairness control. The design of XCP is expected to achieve flow-
fair bandwidth allocation, a high link utilization even in large BDP environments with small
persistent queue size, and near-zero packet drops. Thus, the fast startup is not a primary design
goal. XCP requires some arithmetic operations in each queue on the path, but it does not require
any per-flow state in the network. XCP is the outcome of a clean-slate research project [51] and
still work-in-progress. An incomplete specification of the protocol is available [64].

XCP carries per-flow congestion state in every packets by using a congestion header with a
length of 20B, which is added between IP and transport layer. Its structure is depicted in
Figure 4.28. XCP only realizes congestion control, but no other transport protocol functions. It
can thus be understood as a new shim layer that realizes congestion control independently of
the transport protocol. The existing implementations use a modified TCP as transport protocol
on top of XCP. In principle, any other window-based protocol could be used as well. In each



94 Chapter 4. Fast startup congestion control mechanisms

packet, the XCP sender indicates how much it would like to increase or decrease its throughput
(“delta throughput”), and this field is updated by the network components along the path. XCP
uses end-to-end echoing: When a data packet reaches the receiver, this value is returned to the
sender in the “reverse feedback” field of a congestion header of a returning packet.
Katabi et al. [110] precisely specifies the algorithms that each XCP-enabled network component
has to execute on arrival and departure of packets. The network components monitor the input
traffic rates to their output queues and their queue length and maintain some statistics. For
each output queue, an XCP-enabled network element uses two algorithms for efficiency and
fairness control: The efficiency controller is responsible for maximizing the link utilization and
draining any standing queues. The fairness controller is responsible for fairly allocating the
bandwidth to the flows sharing the link. These two algorithms are executed periodically after a
control interval. The control interval duration ∆ is set to the average RTT davg of the flows. The
efficiency controller periodically calculates the desired change of the aggregated bandwidth:

aXCP = αXCP · (c− x(t))−βXCP ·
bpersist(t)

∆
. (4.20)

In this equation c stands for the assumed link capacity, x(t) is the bandwidth of the arriving
traffic in the last control interval, and bpersist is the minimum queue length observed during
the control interval. The first term calculates the unused bandwidth, whereas the second term
ensures that a persistent queue is drained. The aggregate feedback aXCP may be positive or
negative. The fairness controller uses an AIMD principle to allocate the positive or negative
feedback pools to flows: If aXCP > 0, it equally assigns the spare bandwidth to all flows. If
aXCP < 0, the negative feedback is distributed proportionally to each flow’s current throughput.
As a consequence, if a link is fully utilized, XCP will not assign much capacity to a new flow. In
order to overcome this problem, XCP uses a “bandwidth shuffling” mechanism that redistributes
a small amount of the available capacity (at most 10%) by adding it to the positive and negative
feedback pools. The stability of the controller depends on the parameters αXCP and βXCP.
A linear stability analysis [110] finds that a system with a single link is stable independently
of delay, capacity, and the number of flows, assuming that the link capacity is known. The
recommended parametrization is αXCP = 0.4 and βXCP = 0.226 [110, 64].
XCP requires that each queue controller knows the exact capacity of its link. In shared access
media, knowing the actual capacity of the channel is a difficult task. As analyzed in Sec-
tion 6.5.3, any link capacity overestimation results in a persistent queue length, whereas link
capacity underestimation causes a link underutilization. There have been efforts to address this
shortcoming by modifications of the XCP control algorithms [1], which use the variation of the
queue length instead of an estimation of the available bandwidth. However, these modifications
are not very robust and reduce the convergence time to full utilization, and they can only operate
if there is a certain persistent minimum queueing delay.

4.6.3 Overview of the Rate Control Protocol (RCP)

XCP has two shortcomings: First, the startup of flows is known to be rather slow, resulting in
poor flow completion times for short flows [56]. Second, it requires per-packet calculation and
manipulation of state variables, which results in computational overhead and synchronization
problems among parallel packet processing entities [84]. The Rate Control Protocol (RCP) has
been developed by Dukkipati [57] in order to provide a simpler alternative to XCP. It uses a per-
packet feedback similar to XCP. Different to XCP, the design objective of RCP is to emulate



4.6 Network-controlled congestion control 95

process sharing and to minimize the average flow completion time. Furthermore, RCP only
requires very simple per-packet computations.

An RCP-enabled network component maintains a single rate that is assigned to all flows that
pass through it. RCP thus achieves automatically max-min fairness. The rate is updated once per
control interval, which is set to the average RTT of the flows similar to XCP. In an experimental
implementation [58], RCP is implemented as an own protocol layer between IP and transport
layer with a congestion header having a length of 12B. As shown in Figure 4.28, this header
mainly consists of a rate field and a second field used by the receiver to echo the received value
back to the sender. RCP assumes that senders use a rate-based sending mechanism.

By assigning a single rate to all flows, RCP optimistically assumes that not too many flows will
arrive in the next control interval, and it tolerates larger instantaneous queue sizes. Processor
sharing could easily be emulated if the number of ongoing flows n(t) was known. The flow
rate fair assignment of the assumed link capacity c would then be aRCP(t) = c/n(t). However,
since it is difficult to precisely estimate n(t), RCP uses an approximation n(t)≈ c/aRCP(t−∆).
This empirically motivated, recursive estimation method assumes that in the last time interval
the rate assignment has been perfect. Simulation studies [57] show that the estimator performs
reasonably well if there are many long-lived flows, and that it is not critical that short-lived
flows cannot be counted accurately. With this recursive approximation, RCP calculates the rate
aRCP(t) once per control interval as

aRCP(t) = aRCP(t−∆)

1+
∆

davg

(
αRCP (θ · c− x(t))−βRCP

b(t)
davg

)
θ · c

 , (4.21)

where davg is the moving average of the RTT measured among the traffic passing through the
RCP queue, ∆ is the update interval duration with ∆≤ davg, aRCP(t−∆) is the last used rate, c the
assumed link capacity, x(t) the measured input traffic rate during the last update interval, b(t) the
instantaneous queue size, and θ a parameter that selects a desired peak utilization (0 < θ ≤ 1).
The configuration parameters αRCP and βRCP affect stability and performance: αRCP represents
a trade-off between stability and response time. A larger value results in faster response times
at the expense of reduced stability margins and vice versa. βRCP corresponds to the trade-off
between acceptable queueing delay and the fair-share rate during transient periods. It can be
shown that RCP is locally stable if certain conditions for αRCP and βRCP are fulfilled [57]. The
recommended settings is αRCP ∈ (0.4,0.6) and βRCP ∈ (0.2,0.6) [57], even though Dukkipati
also uses αRCP = 0.1 and βRCP = 1.0 in many studies. There is also ongoing work to develop
improvements of RCP, such as replacing the queue term by a different controller [102].

4.6.4 Other approaches

Several other, similar network-controlled congestion control schemes have been proposed:

- “MaxNet” [225] is a congestion control approach where the source receives the maximum
price on the path, i. e., the congestion level of the most congested bottleneck link. The
source then chooses its sending rate to maximize its own utility function.

- In “JetMax” [256], routers calculate the target rate by estimating the number of flows
that are bottlenecked at a link and by estimating the capacity used by non-bottlenecked
flows. In steady state, this achieves max-min fair rate allocation in multi-link scenarios.



96 Chapter 4. Fast startup congestion control mechanisms

However, recent studies report that this approach cannot utilize links in presence of short
flows, because the heuristics fail to differentiate between short and long flows [102].

- “Congestion avoidance with Distributed Proportional Control” is a network-controlled
congestion control scheme developed by Welzl [245]. It uses the out-of-band “Per-
formance Transparency Protocol” to retrieve feedback about the available bandwidth.
The control laws are rate-based and independent of the RTT. They are an extended ver-
sion of the Available Bit Rate (ABR) resource management in Asynchronous Transfer
Mode (ATM). The scheme does not work well for short flows.

- The Available Bit Rate traffic control of ATM [ATM TM] periodically sends resource
management cells from the source to the destination. They can support different feed-
back signaling schemes, such as a one-bit explicit congestion notification or an explicit
rate feedback. The ATM switches calculate the maximum rate that they want to grant and
update the information in the resource management cells. Finally, the destination reflects
the resource management cells back to the sender. The closed loop resource management
of ATM ABR is thus similar to the network-controlled congestion control schemes pre-
sented in this section. However, a key difference is that an ATM switch exactly knows the
number of flows. This significantly simplifies the admission control algorithms and also
enables variants that cannot be realized if the number of flows is not known.

4.7 Functional comparison of fast startup schemes

4.7.1 Systematic comparison of Quick-Start, XCP, and RCP

4.7.1.1 Protocol features

Quick-Start, XCP, and RCP are three congestion control schemes that all require additional
signaling between endsystems and the network. They all have in common that they can discover
additional available bandwidth on the path rather quickly, unlike end-to-end congestion control
schemes, which must be conservative.
Yet, the design philosophy and protocol mechanisms are different. A systematic analysis of
the design choices and different realizations can be found in Table 4.9. For the sake of com-
pleteness, ECN is also included, since it is a network-assisted congestion control scheme that
is already partly used in the Internet. According to Table 4.9, the Quick-Start protocol is an
evolutionary solution with a complexity between the simple ECN and the disruptive network-
controlled congestion control schemes that are not downwards compatible. Its main difference
compared to RCP and XCP is that it is designed for sporadic usage, i. e., the signaling is in-
cluded in few packets only. Table 4.9 also reveals that the protocol specifications of XCP and
RCP lack solutions for several problems that are addressed by the ECN and Quick-Start proto-
cols. In the following sections, these problems are discussed in detail.

4.7.1.2 Common challenges of network-supported congestion control

Compared to today’s end-to-end congestion control, network support would be a fundamental
change that affects the Internet architecture in its core. Network-supported congestion control
raises issues that have not been completely solved so far [172]:
Performance and robustness: Congestion control is subject to some trade-offs: On the one
hand, it must allow high link utilizations and fair resource sharing, but, on the other hand, the



4.7 Functional comparison of fast startup schemes 97

Table 4.9: Comparison of network-supported congestion control schemes

TCP with ECN Quick-Start TCP XCP RCP
Scope TCP extension TCP extension New cong. cont. New cong. cont.
Design target Avoid packet Fast startup High utilization Fast startup

loss and fairness, no and small flow
packet loss completion time

Feedback granularity Binary 16 steps Fine grained Fine grained
Maximum frequency Once per RTT During conn. setup Per packet Per packet

or after idle periods
Returned metric Occurrence of Available bandwidth Allowed increase Allowed sending

congestion of cong. window rate
Resource sharing N/A Bandwidth pooling Bandwidth Oversubscription

(target algorithm) pooling
Indication/notification IP header New IP option New shim layer New shim layer
Feedback TCP header New TCP option New shim layer New shim layer
Overhead in packets 0B 8B (if used) 20B 12B
Requires support by all No Yes Yes Yes

routers along the path
Router support detection Not required TTL difference Not defined Not defined
Information required Queue length Order of magnitude Link capacity Link capacity

in routers (AQM) of the link capacity and queue length and queue length
Interworking with Simple if AQM Simple due to Requires traffic Requires traffic

TCP Reno is used fallback mechanisms separation separation
Malicious receiver/router Optional QS nonce None None

protection (ECN nonce)

algorithms must also be robust during congestion phases. Network support can help to improve
performance, but it can also result in additional complexity and more control loops. This re-
quires a careful design of the algorithms in order to ensure stability and to avoid oscillations.
A further challenge is the fact that information may be imprecise or erroneous. For instance,
severe congestion can delay feedback signals. Also, in-network measurement of parameters
such as RTTs or data rates may contain estimation errors. A feedback signal that is returned
by end-to-end echoing has an inherent delay of one RTT. Neither the endsystem nor network
components can predict how the traffic will change until the feedback becomes effective. It
is an open research question how much network components can indeed improve performance
without damaging or impacting end-to-end mechanisms that are already in place.

Information acquisition: In order to support congestion control, network components have to
obtain at least a subset of the information in the following list. Obtaining this information may
be a complex task and require additional interfaces or protocols.

1. Capacity of links: Link characteristics depend on the realization of lower protocol layers.
Routers operating at IP layer do not necessarily know the link layer network topology and
link capacities all the way to the next IP hop. The capacity is also not constant if there are
shared multi-access links or links that have a variable capacity, such as wireless links or
bandwidth-on-demand links. Depending on the network technology, there can be queues
or bottlenecks that are not directly visible at the IP layer. Difficulties also arise due to
tunnels or traffic engineering mechanisms below IP, e. g., by MPLS. In this case it may
be required to coordinate the feedback in the “inner” IP header with information in the



98 Chapter 4. Fast startup congestion control mechanisms

“outer” header or label. The information about link characteristics could be determined
by cross-layer information exchange, but this requires interfaces that are specific to the
link layer technology. An alternative could be online measurements, but this can cause
significant additional network overhead. There are also difficulties with tunnels.

2. Traffic carried over links: Accurate online measurement of data rates is challenging when
traffic is bursty. For instance, measuring a “current link load” requires defining the right
measurement interval/sampling interval.

3. Internal buffer statistics: Some proposals use buffer statistics such as a virtual queue
length to trigger feedback. However, network components can include multiple dis-
tributed buffer stages that make it difficult to obtain such metrics.

Deployment: Schemes that require support by all network components on a path have bad
incremental deployment properties. In particular, the incentive to add additional complexity to
core routers is rather low, as core networks are very unlikely to become congested. This results
in a typical “chicken-egg” problem.

Complexity in network components: Even if many solutions do not require per-flow state, they
require additional processing in network components. Modern high-end router designs have a
pure hardware data path that cannot execute complicated code per packet. Routers are optimized
to process the regular IP header in the fast path. Unknown headers or headers with IP options are
processed in the slow path at much lower speed. The additional processing of explicit feedback
signals can therefore affect the scalability and increase the end-to-end latencies. Furthermore,
additional processing efforts could expose routers to new kinds of DoS attacks.

Middleboxes: Today’s IP networks include many middleboxes, such as NAT and firewalls, that
may prevent the usage of transport protocols other than TCP and UDP and other new protocol
mechanisms.

Security: Congestion control must operate in untrusted environments, where senders, receivers,
and network components may be misbehaving. Any information exchange may create addi-
tional vulnerabilities and could offer opportunities for new attack vectors.

Multi-domain operation: Many autonomous systems only exchange very limited amount of
information about their internal state (topology hiding principle), as such information is con-
sidered to be highly sensitive in environments with limited trust. Explicit signaling can reveal
information about the internal state and dimensioning of networks that may not be visible with-
out network support.

4.7.1.3 Issues specific to Quick-Start

There are also several challenges that are specific to the Quick-Start mechanism:

Application support: The interaction of Quick-Start with applications has hardly been studied
so far, for instance, when to trigger Quick-Start requests, and how to determine the data rate to
request for. Requests could for instance be triggered by the applications, but this would require
modifications at the application layer. Another open research question is how to determine the
data rate that Quick-Start shall request for. Both aspects are addressed in Section 5.1.1.2.

Usage of IP options: The processing IP options is non-mandatory. As a result, many routers,
hosts, and middleboxes simply drop packets with unknown IP options. Measurements [150]
show that a connection is not established with a probability of over 70 % if an unknown IP
option is included in the SYN segment. In contrast, unknown TCP options cause only rarely



4.7 Functional comparison of fast startup schemes 99

problems. Other measurements have shown that packets with IP options experience higher end-
to-end delays probably caused by slow path processing in routers. New IP and TCP options
cannot be handled by the hardware-based TCP offload engines on modern network interface
cards. Also, the TCP option space has a maximum length of 40B and is thus scarce. In SYN
segments, over 20B are already used by TCP options in state-of-the-art TCP stacks.

Abuse: Both routers and hosts could try to report data rates that are larger then the actually
available bandwidth. The QS nonce provides some protection mechanisms against cheating
routers and receivers. However, QS is vulnerable to DoS attacks along two vectors: First,
QS requests increase the router processing load, which could be prevented by enforcing an
upper rate limit. Second, endsystems can send many arbitrarily large bogus QS requests, thus
reserving the bandwidth and preventing the use of QS by other flows if bandwidth pooling is
used. This problem does not exist if the approval control oversubscribes resources (“optimistic
algorithm”). It could also be reduced by approval control with per-flow state [192, 191] or by
policers similar to re-ECN (cf. Section 4.2.5.2).

4.7.1.4 Unsolved problems of the network-controlled schemes

Schemes such as XCP or RCP face numerous further challenges:

Support in all queues: The control algorithms of XCP, RCP, and other network-controlled
schemes assume that every queue on the path supports the protocol. It is supposed that the
controller has not only perfect knowledge of the link capacity, but also that there is only a single
buffer in front of the link, which has a known queue size. This contradicts the design of high-
end routers that rarely have one queue only, but instead consist of many cascaded or parallel
queues. Also, the queues are typically located at egress line cards and the queue state is thus not
easily accessible from ingress line cards, where most packet header processing is performed.

Instability: Both XCP and RCP can become unstable in certain network topologies with het-
erogeneous delays, if flows with long RTTs share a bottleneck with many flows having a short
RTT (see, e. g., [256, 102]): If the control interval is then set to the average RTT, the control
interval may be significantly shorter than the feedback loop of the flows that are bottlenecked
at the queue. A mitigation is to set the control interval to the maximum RTT, instead of the
average. However, then the convergence speed is much slower and the protocols become sensi-
tive to single flows that have a large RTT or maliciously advertise a large RTT. It is an inherent
problem of XCP and RCP that the control loop delay must be of the order of the RTT of the
flows, which is not possible if the RTTs vary over several orders of magnitude.

Coexistence with other congestion control schemes: The congestion control design assumes that
all traffic uses the proposed mechanisms. There is no simple solution how links can be shared
with traffic that uses the TCP congestion control. Coexistence is likely to require separate
queues and traffic isolation of the different congestion control schemes.

Incomplete specification: Network-controlled congestion control schemes such as XCP or RCP
only provide a congestion control framework. As they are not a complete transport protocol,
many functions must be realized on top of it. Yet, this integration is not completely described
so far. For instance, the reaction to lost packets is unclear and it is assumed that it will somehow
trigger a transport layer congestion control. Further important protocol functions, such as how
to detect whether a path is able to support the new mechanism, are also not specified.

Security: Unlike ECN and Quick-Start, the proposed network-controlled congestion control
mechanisms do not include protection mechanisms against malicious senders and receivers or



100 Chapter 4. Fast startup congestion control mechanisms

man-in-the-middle attacks. A single attacker can use the protocol mechanisms to affect the
resource management of all flows passing through a link. While some protection could be
possible e. g. by adapting the protection mechanism of Quick-Start, this would require funda-
mental design changes of the protocols. In its current form, XCP, RCP, and also other related
mechanisms cannot be used in untrusted environments.

In addition to these general challenges, there are also issues that are specific to each protocol:
As already mentioned, XCP penalizes short flows. It is also very sensitive to endsystems that do
not use their allowed bandwidth [255, 158]. RCP is vulnerable to flash crowds and may require
huge buffers in certain scenarios [102], even if a recent theoretical analysis [124] shows that
buffer sizes of the order of 10 % percent of the BDP may be sufficient in many cases.

4.7.1.5 Assessment and conclusions

Quick-Start has fewer open issues than other new congestion control mechanisms with per-
packet feedback. In particular, it can easily coexist with other TCP traffic. Still, as some of
these issues require further research, [RFC 4782] concludes that initial deployment of Quick-
Start should be limited to controlled and trusted environments such as centrally administrated
intranets, dedicated network for scientific computing, closed mobile networks, or satellite links.
In these scenarios there are incentives to deploy new network components that include the
required enhancements. A further option to get new functions in routers is a combined deploy-
ment together with other new mechanisms in the IP layer, for instance, new Internet routing
schemes (cf. Section 2.4.3). However, at the time of writing this thesis, it is unclear whether
such deployments are likely to occur within short time scales.

4.7.2 Other published comparative studies and related work

4.7.2.1 Simulation studies

The performance of fast startup mechanisms has already been evaluated in existing work. Con-
cerning end-to-end schemes, the inventors of most of the schemes surveyed in Section 4.4 have
publish simulation and/or measurement studies analyzing their proposed algorithms. An ex-
ception is Jump-Start: The initial evaluation in [136] is more of illustrative type and not com-
prehensive. It finds scenarios where Jump-Start improves performance. But in particular for
medium loaded links Jump-Start has a worse performance than the Slow-Start. The drop rate is,
as to be expected, higher. These studies are performed by simulation only and do not consider
recent advancements in the TCP stacks.

Sarolahti et al. published a well-rounded evaluation of Quick-Start, also using simulations [192,
191]. The simulation results show that the Quick-Start extension can significantly enhance
the TCP performance over paths with a high bandwidth-delay product. The transfer times of
moderate-sized files can be improved by several hundred percent. According to these published
simulation results, the overall utilization and aggregate drop rates for Web-like traffic are largely
independent of whether or not Quick-Start is used, since Quick-Start is only used when the net-
work is underutilized. The method for estimating the link utilization does not significantly affect
the approval rate of QS requests, but it affects the number of failures, i. e., packet losses during
the rate pacing phase. As to be expected, the “peak utilization” estimator is more conservative
than the EWMA estimator. In addition to avoiding the Slow-Start, the Quick-Start mechanism
has also been found to be useful in the middle of data transfers, e. g., after longer idle periods, or



4.7 Functional comparison of fast startup schemes 101

Table 4.10: Reported implementations of network-supported congestion control schemes

Mechanism Operation system Hardware
XCP FreeBSD, Linux 2.6 [255, 158, 102] Network processor (partially)
RCP Linux 2.6 [58, 102] FPGA [58]
MaxNet Linux 2.6 [225] –
JetMax Linux 2.6 [256, 102] –
Quick-Start Linux 2.6 [204] Network processor [84]

after vertical handovers from narrowband to broadband links [190]. Another short study [193]
analyzes the performance of Quick-Start over satellite links. It confirms significant benefits for
the startup behavior of streaming traffic with TFRC.
Katabi et al. demonstrated by extensive simulations that XCP can achieve a high link utiliza-
tion and good fairness, that the buffer occupancy is small, and that there are almost no packet
drops [110]. Yet, it has also been shown that XCP can be more conservative in giving band-
width to flows than TCP, particularly to new flows [56, 57]. XCP gradually reduces the window
size of existing flows and increases the window size of new flows, making sure that the bot-
tleneck is never oversubscribed. Short-lived flows can terminate before they achieve their fair
rate. Therefore, the ramp-up speed can be smaller than the one of the TCP Reno Slow-Start, and
XCP is rather ineffective for short-lived flows. Due to Little’s law, this also means that there are
more active flows. RCP, which should overcome this problem, is also extensively evaluated by
simulations [57]. XCP and RCP have also been compared by simulation studies [57, 256] and
also by measurements [102]. The author was also involved in a simulation-based comparison
study of both protocols [180, 181].
Despite all this existing work, a performance comparison of end-to-end fast startup mecha-
nisms and Quick-Start has never been published so far. Furthermore, Quick-Start and network-
controlled congestion control schemes have also never been compared against each other; even
though future research in this field is recommended [192]. The studies in the following section
complements this existing work and fill the aforementioned gaps.

4.7.2.2 Available implementations

Simulation studies are not considered sufficient for the evaluation of new congestion control
protocols. In addition to the fundamental shortcomings of simulation as method, which is ex-
plained in Section 3.3.4.1, there are also two specific problems of simulating new congestion
control protocols: First, simulation models make idealistic assumptions about timing and the
packet scheduling with arbitrary inter-packet delays, which cannot be realized in practice. Sec-
ond, implementation issues and the complexity cannot be identified without a real implemen-
tation. This is why there have been significant efforts to implement the presented congestion
control schemes in real network stacks, in particular using the Linux TCP/IP stack. The well-
known implementation efforts are documented in Table 4.10, which also includes the work on
Quick-Start of the author. Selected schemes have also been implemented with more hardware-
support, using either a network processor or a Field Programmable Gate Array (FPGA). How-
ever, appart from the work of Hauger et al. [84], the implementation complexity of the different
schemes has hardly been considered thoroughly.





5 Application integration and
implementation issues and solutions

The practical realization of fast startup congestion control raises several functional issues that
are not directly related to performance and the ability to deal with congestion. This chapter
addresses two aspects that are not comprehensively addressed in other work: The first section
analyzes how the new congestion control schemes interact with applications. It discusses the
benefit of additional cross-layer interfaces between applications, the TCP/IP protocol stack,
and also the link layer. The second section investigates interactions between fast startup con-
gestion control and other TCP mechanisms, in particular the flow control. These issues have
originally been identified by the author [202]. In addition, the actual realization of several fast
startup congestion schemes is analyzed. This part of the chapter quantifies the implementation
complexity and summarizes important lessons learned that have been identified as part of the
research reported in this thesis. This section proves that fast startup congestion control can be
realized by lightweight mechanisms. The results presented in this chapter are novel contribu-
tions beyond existing work. Unless otherwise stated, proof-of-concept implementations show
that the proposed mechanisms indeed work in practice.

5.1 Solutions for the interface design

5.1.1 Application interfaces

5.1.1.1 Challenges in fast startup configuration

It is possible to realize fast startup congestion control as an extension of the TCP/IP protocol
suite only. However, additional interfaces both towards applications and lower protocol layers
make a lot of sense. As discussed in Section 4.3.2.2, such interfaces could provide information
about application requirements. While most existing TCP algorithms are completely indepen-
dent of the applications and their communication patterns, the usefulness of fast startup con-
gestion control schemes is application dependent: An application can only significantly benefit
from a fast startup (1) if it is delay-sensitive and (2) if the Slow-Start introduces a significant
amount of additional delay. The needless use of a fast startup also comes at some cost: If an
end-to-end mechanism is used, the risk of packet loss and congestion is increased. In case of an
network-assisted scheme, like Quick-Start, unnecessary requests or requests for an overly large
rate result in overhead and may waste bandwidth, too.

An activation of fast startups only for selected applications requires additional control functions:
The information associated with a TCP connection in the existing network stacks is typically
not sufficient in order to decide whether to activate a fast startup scheme. A sophisticated usage
therefore either requires an explicit activation by an entity in the user space using an additional

103



104 Chapter 5. Application integration and implementation issues and solutions

Socket API New API

Socket

Application

User space

Kernel space

Control

Startup

Figure 5.1: Explicit fast startup control

Socket API

Application

Socket

Kernel space

User space

Manager

Startup

Control

Figure 5.2: Implicit fast startup control

interface as shown in Figure 5.1, or, alternatively, additional intelligence inside the network
stack. In the latter case, a fast startup manager inside the stack performs the control (cf. Fig-
ure 5.2). Both solutions have advantages and drawbacks: An additional interface to the user
space offers more possibilities for control. It also avoids the problem that stack-internal heuris-
tics cannot easily determine application requirements, and it maintains a clean architectural
separation between application and network functions. However, the interface must be known
by the applications and it must be stable and technology-independent, e. g., independent of the
operating system. Instead of the application, a congestion manager [RFC 3124] could use this
new interface, too. But this architecture would require an additional entity in the user space,
and additional interfaces between the congestion manager and the applications.1 In contrast,
a stack-internal fast startup manager does not mandate any additional interface to applications
and is therefore simpler to realize. It can also handle existing applications that do not use new
interfaces, and it could even try to classify applications implicitly according to their traffic pat-
terns. The question whether the service requirements of applications are implicitly or explicitly
obtained is an inherent trade-off, which is already discussed by Shenker [212].

5.1.1.2 Parametrization

All fast startup schemes have parameters that must be configured. In particular, Quick-Start
and similar mechanisms (e. g., Mega-Start) require that the sender selects an initial data rate.
This initial rate selection problem is non-trivial without additional context information about
the application and/or the environment. There are five possible sources from which relevant
information could be obtained:

1. Application: An application may know what data rate would be useful. In some cases
such information is already known at compile time, e. g., in case of multimedia streaming
with codecs that have a known average or peak rate. Alternatively, it can be a run-time pa-
rameter that must be configured by the user, similar to other network-related parameters
such as the use of an HTTP proxy. Furthermore, an application may automatically deter-
mine an initial rate from knowledge or predictions of the communication characteristics
and performance requirements. This solution is the recommended one in this work.

2. System configuration: The administrator of the endsystem could set global configuration
parameters. For instance, a parameter could specify the capacity of the local interface or
the capacity of the Internet access, and this value could be used as initial rate.

1Alternatively, a congestion manager could intercept the sockets interface function calls, e. g., by dynamic-link
library injection, and then activate the fast startup congestion control on behalf of the applications. This solution
would not require modifications of the applications and is equivalent to a stack-internal control mechanism.



5.1 Solutions for the interface design 105

Transport

Network

Application

Link

Transport

Network

Application

Link

Transport

Network

Application

Link

Endsystem

Endsystem

Network information service

Query

Endsystem

Figure 5.3: Querying fast startup parameters
from a network information service

Client Sourceservice

Netw. info.

Source,rate?

Source,rate!

SYN

SYN−ACK

ACK

Resp.

Req.
(rate) Initial rate

Figure 5.4: Using signaling in order to ob-
tain a rate recommendation

3. Stack-internal heuristics: A fast startup manager inside the stack can monitor the appli-
cation communication behavior and path characteristics and learn from this. For a single
connection, an obvious option is to measure the available bandwidth on the path during
data transfers and use this rate after longer idle times, when the Congestion Window has
been reduced. In case of Quick-Start, if there has been a previous successful request, also
the last granted rate could be used when a new request is issued. A fast startup manager
could also try to classify applications by observing their communication characteristics,
e. g., by monitoring the amount of queued data in the socket as shown in Figure 5.2.
Finally, there could be information sharing between connections as introduced in Sec-
tion 4.4.1.2, or a full-featured congestion manager.

4. Network interface: Reasonable choices for the initial rate could be made by knowing the
local link capacity [RFC 4782]. Such network characteristics could also be obtained by
cross-layer information exchange with the network interface (see Figure 4.15).

5. New network information service: Recommendations for initial sending rates could also
be obtained from centralized entities by a signaling control plane. In ongoing research
and standardization work, a new network information service is developed that provides
guidance to applications how to optimize their traffic [4, 251]. The main motivation
is to optimize the topology of P2P systems by providing access to information about
the internal network topology. As illustrated in Figure 5.3, this information could be
provided by a query/response protocol to servers that are operated by Internet service
providers. But this service could also expose other information, such as the capacity
of the last mile link. If such a service was available in future, the returned capacity
information could be used as a initial sending rate during flow startups. Figure 5.4 shows
one possible realization of such a flow startup with a recommended initial sending rate.
As the realization of this network information service is still a research issue, its usage in
combination with fast startup congestion control is not further detailed in this thesis.

5.1.1.3 Proposed new application interface

The sockets interface [1003.1] is the most widely used interface between the TCP/IP stack and
applications. The transport protocol services are accessed in the same way as reading or writing
from a file. The weakness of this simple and abstract API is that it hides all network-specific
information (context information) and isolates the application logic from the transport protocol
congestion control (see Figure 4.15). The current TCP/IP stacks hardly offer control interfaces



106 Chapter 5. Application integration and implementation issues and solutions

Table 5.1: Proposed fast startup application interface extensions

Functions Suggested values
TCP_APPLICATION_TYPE RESPONSIVE/STANDARD/LOWPRIORITY
TCP_INITIAL_RATE Rate [bit/s]

Potential additional functions Suggested values
TCP_STABILIZE_THROUGHPUT True/false
TCP_DATA_VOLUME Expected transfer volume [B]
TCP_DEADLINE Desired delivery deadline [ms]

to applications apart from the standardized TCP_NODELAY socket option [1003.1]. In particular,
there is no possibility to affect the sending rate determined by the congestion control. It has been
argued that further optional, generic, and technology-independent interfaces are needed [61],
but the design of such interfaces is still an open issue. The availability of fast startup congestion
control may improve the acceptance of such new interfaces.
All fast startup mechanisms developed in this work support an implicit activation by heuristics.
In some cases there are also further control possibilities: Several new control primitives would
enable the control of fast startup congestion control schemes by applications. This thesis pro-
poses a number of new “set” functions that are listed in Table 5.1. They are independent of the
realization of the fast startup mechanism.
The first proposed function call allows an application to characterize its communication require-
ments according to three classes, which represent the main TCP usage scenarios:

1. Responsive: Activation of fast startup congestion control
2. Standard: Usage of the standard TCP congestion control (default)
3. Low priority: Usage of a less than best effort congestion control

The default class for elastic applications is standard; it results in the usage of the Slow-Start al-
gorithm. A broadband interactive application that wants to apply fast startup congestion control
can set the type of a connection to responsive. In addition to this, low priority class makes sense
for background transport (cf. Section 4.2.3.2), but the realization of this class is not further stud-
ied in this work. These three classes overcome the problem of designing one congestion control
for all kinds of applications, while still keeping the number of classes small. The provisioning
of a faster application class is well aligned with the arguments of Briscoe that suggests to speed
up Web applications compared to bulk data P2P traffic [35]. In a DiffServ-enabled network,
the application classes could also be mapped to the corresponding DiffServ classes listed in
Table 2.1, if DiffServ is supported on the path. For example, the responsive application class
could be mapped to the low-latency DSCP. A further, unexplored possibility would be to control
the flow startup aggressiveness by a numerical weight parameter.
The second proposed function call allows applications to inform the network stack about a
desired reasonable rate. It implements the interface that has been introduced in the previous
subsection. As there is no possibility for resource reservation, the value is a recommendation
only. The actual speed of the flow startup may of course be smaller.
Further useful function calls could characterize whether the requested rate is expected to be
sufficient (e. g., if it is the peak rate), or whether higher data rates would be beneficial. This
information may be important in order to decide how to handle the SST after a fast startup



5.1 Solutions for the interface design 107

int initial_rate = 10000000; /* 10 Mbit/s */
setsockopt(socket, SOL_TCP, TCP_INITIAL_RATE, &initial_rate, sizeof(int));

Figure 5.5: Explicit application interface example: The source code in the C programming
language shows how an application could activate a fast startup by a new socket option.

phase, as discussed later in Section 6.3.3.1. Table 5.1 also lists further possible function calls
that could be used as well. For example, it can make sense to inform the network stack about
the total amount of expected data, since applications do not write data to the socket in a single
call [192].2 A further option would be a function by which an application could announce the
future availability of data, potentially even with an estimation of the delay until the data will be
available. Such an announcement could be beneficial in combination with a signaling mecha-
nism like Quick-Start. In theory, an early announcement could help to start the signaling right
before the data actually arrives. In practice, however, this is difficult since a Quick-Start request
can only be signaled in <SYN> or data segments and therefore cannot be sent in advance. This
is why only the first two inferfaces are specifically studied in this work.

All proposed interface extensions are optional, i. e., if an application does not use them, the
standard TCP congestion control will be used. The interface can easily be realized by additional
socket options. The usage by applications is very simple. For instance, Figure 5.5 illustrates
how an application can request for an initial sending rate with two lines of code only, which can
easily be added to the source code of TCP-based applications, e. g., Web servers [223, 204].

5.1.1.4 Application integration

A non-trivial question is when a source can provide information about its desired rate. This
is of particular importance for schemes that need one RTT for signaling, such as Quick-Start.
Figures 5.6 and 5.7 compare two different cases how an application could activate Quick-Start:
It could either enable Quick-Start before the connection is set up (early activation). Then the
Quick-Start request can be piggybacked during the three-way handshake. If it is approved, a
data transfer could immediately start if application data is available within one RTT. However,
in a request-response protocol such as HTTP, the server does not necessarily know the size of
the requested object during TCP handshake [192]. This makes it difficult to decide whether to

2An alternative in the Linux network stack is the TCP_CORK socket option.

Client Server

SYN−ACK

ACK

QS rate

Req.

Resp.

max. 1 RTT

SYN

Figure 5.6: Early activation of Quick-Start

Client Server

SYN

SYN−ACK

ACK

Req.

Resp.

QS rate

Figure 5.7: Late activation of Quick-Start



108 Chapter 5. Application integration and implementation issues and solutions

scharf@tcp1:~$ sudo ifconfig eth1 capacity 10000000
scharf@tcp1:~$ ifconfig eth1
eth1 Link encap:Ethernet HWaddr 00:80:C8:F6:91:04

inet addr:192.168.0.1 Bcast:192.168.0.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
Capacity:10000000 bit/s
Interrupt:17 Base address:0xd800

Figure 5.8: Example for the manual command line configuration of the interface capacity for
the router functions of network-supported congestion control. The “capacity” parameter is a
new interface extension. In the example, the maximum data rate available to Quick-Start on an
Ethernet link is set to 10 Mbit/s, which is a conservative setting.

use a fast startup, or not. One possible remedy would be to use dedicated sockets for the data
transfers for which a fast startup is desired.

An alternative is to realize the rate request only when the request has already been processed
and when the response arrives, i. e., when a more informed decision can be realized. This late
activation is depicted in Figure 5.7. In case of Quick-Start, the late activation requires that the
Quick-Start is piggybacked on the first data packets. This means that the first packets are sent
as allowed by TCP’s initial window, and that there is no fast startup during the first RTT. After
one RTT, subsequent packets are then sent with the approved rate.

Obviously, a fast restart can only use the late activation. In general, the late activation is re-
quired for all fast startup schemes that require a signaling handshake that includes application
requirements. End-to-end fast startup mechanisms do not suffer from the delays caused by the
late activation. This is an important advantage compared to network-supported schemes.

5.1.2 Network interfaces

If a fast startup scheme requires knowledge about the network interface capacity, additional
interfaces between the network and/or transport layer are required, too. As discussed in Sec-
tion 4.7.1.2, this is a key requirement of network-supported congestion control schemes. It
depends on the link layer technology whether the link capacity is known, and whether and how
this information can be made available to the TCP/IP stack. For example, the operating system
on a PC with Ethernet links could automatically determine the current interface link speed from
the corresponding device driver. Due to auto-negotiation mechanisms, this information must be
updated periodically. On multi-access links the problem is more challenging, and a cross-layer
information exchange may be required if the exact link capacity must be known. One excep-
tion is Quick-Start, which also works if the assumed link capacity is smaller than the actual
value [RFC 4782]. Thus, the assumed capacity can be set to a reasonable lower bound.

This work suggests to extend the interface configuration tools in order to configure the capac-
ity parameter. Figure 5.8 shows an example for such a command line tool extension that has
been developed as part of the Linux Quick-Start implementation. The interface presented in
Figure 5.8 is simple and straightforward to use, as only one additional parameter has to be con-
figured per link. A network-controlled congestion control scheme that requires a very precise
knowledge about the available bandwidth could require a more sophisticated interface.



5.2 Proposed mechanisms to avoid interactions with flow control 109

Transport

Network

Application

Link

Transport

Network

Application

Link

Sender Receiver

Acknowledgments

Data segments

incl. advertised RWND

CWND

calculating

control

Congestion Flow

control

calculating

the RWND

Figure 5.9: Illustration of the difference of
congestion control vs. flow control

0
RTT 2 RTT

Time

W
in

d
o
w

Slow−Start

RWND at receiver

CWND at sender

Figure 5.10: Illustration of receive window
auto-tuning that assumes a Slow-Start

5.2 Proposed mechanisms to avoid interactions with flow control

5.2.1 State-of-the-art receive window auto-tuning

TCP realizes congestion control and flow control. In principle, both mechanisms are indepen-
dent. The former is a sender-side closed loop control mechanism that determines the available
capacity on the path. The latter is a receiver-driven open loop control that informs the sender
about the available receive buffer at the receiver, which is announced by the advertised receive
window as depicted in Figure 5.9. The receive window avoids that the sender sends data that
will be dropped at the receiver. As a consequence, both congestion and flow control have similar
objectives, namely avoiding waste of network resources, and they may interfere.

A receiver must consider two different constraints when determining the size of the advertised
RWND: On the one hand, the available memory must be subdivided among the existing TCP
connections. On the other hand, the available bandwidth can only be used if the advertised
RWND is of the order of the BDP of the path. It has been argued a long time ago that TCP
receivers should advertise large windows no less than twice the BDP [210], so that the path is
efficiently used and out-of-order segments can be stored, too. Receivers can even oversubscribe
their buffer space because the whole buffer is hardly ever needed [210].

In modern operating systems, the receive buffer is not statically allocated. Automatic buffer
tuning dynamically determines the socket buffer sizes based on available memory and empir-
ical measurements: First, the receiver should measure the application processing capacity. If
enough buffer space is available, it should advertise at least an RWND equivalent to approxi-
mately twice the amount of data read by the application in one RTT. Second, the receiver should
estimate the BDP of the path (or the sender’s CWND) and try to advertise a receive window of
twice that value. This so-called dynamic right-sizing [69] ensures that the data transport is not
constrained by flow control as long as the bottleneck is not in the receiver. Automatic buffer
tuning is typically also implemented on the sender side and then known as auto-tuning [210].
For the Linux operating systems, the complex details of the algorithms used for automatic buffer
tuning and receive window advertisements are described in [218]. According to Section 4.2.4,
automatic buffer tuning is also used in other important modern TCP/IP stacks.

5.2.2 Possible interactions with fast startup congestion control

The usage of a fast startup significantly changes the TCP behavior during connection setup,
since a sender can use a large CWND immediately after the connection setup. This results in
two potential interactions between the TCP flow control and a fast startup congestion control



110 Chapter 5. Application integration and implementation issues and solutions

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time since SYN segment [s]

1

10

100

1000

10000

W
in

d
o

w
 s

iz
e

 [
k
B

]

Default Linux configuration

Target RWND size of 8 MiB

Receive window

Congestion window
at server

advertised by client

BDP

CWND

RWND
smaller
than
BDP

RWND always larger than CWND

Figure 5.11: Example for the receive win-
dow auto-tuning used by Linux

0

2

4

6

8

10

IP
 d

a
ta

 r
a

te
 [

M
b

it
/s

]

Slow-Start
Quick-Start
JS sender only

JS sender+receiver
JS sender ignores rwnd

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Time since SYN segment [s]

0

10
6

R
e

c
v
. 

s
e

q
. 

n
o

. 
[B

]

SSQS JS

control
by flow
JS limited

Figure 5.12: Illustration of the interaction
between a fast startup and flow control

scheme, which are described in the following. Both problems as well as corresponding solutions
are also comprehensively specified in [202].

First, the receiver might not allocate a sufficiently large buffer space after connection setup, or it
may advertise a small receive window implicitly assuming the Slow-Start behavior on the sender
side. This effect is illustrated in Figure 5.10. Existing automatic buffer tuning mechanisms
initially advertise a rather small receive window. The more data arrives, the more buffer space
is advertised. This behavior is reasonable if the sender uses the standard Slow-Start and indeed
starts with a small congestion window [69]. However, when a fast startup shall be used, the
receiver must be ready to buffer a large amount of data immediately after the connection setup,
which requires a modified buffer allocation strategy.

Figure 5.11 demonstrates this problem using the example of the Linux stack: It shows both the
CWND and the advertised RWND of a TCP connection over a 10 Mbit/s link with a minimum
RTT of 200 ms (see Section 6.1.1.1 for further details on the simulation scenario). In the graph
of the CWND, one can clearly observe the initial Slow-Start with an initial window of w =
2 MSS. The RWND announced by the Linux receiver is approximately two times as large as
the CWND and thus follows a Slow-Start as well. This virtually prevents a fast startup: Even if
the sender increased its CWND faster, the transfer would hardly be speeded up, as the amount
of outstanding data would then be limited by the small RWND.

This interaction of TCP flow control and fast startups is also confirmed in Figure 5.12. It
covers two different configurations: If both sender and receiver support fast startup congestion
control, the flow control implementation can be modified in order to announce a sufficiently
large window. Figure 5.12 confirms that when both endsystems use Quick-Start or Jump-Start,
the fast startup is realized as expected. However, if only the sender uses Jump-Start, the receiver-
side flow control enforces a Slow-Start. A more detailed analysis of the differences in the startup
behavior can be found later in Section 6.3.

Second, there is a specific issue with the semantics of the receive window: The TCP header
standardized in [RFC 793] uses a 16 bit field to report the RWND size to the sender, which
limits the value to 64 KiB. In order to circumvent this limitation, the window scale TCP ex-
tension [RFC 1323] defines a scale factor that is used to multiply the window size value in a



5.2 Proposed mechanisms to avoid interactions with flow control 111

TCP header to obtain a 32 bit value. If enabled, the scale factor is announced during connec-
tion setup by the window scale TCP option in <SYN> and <SYN,ACK> segments. However,
[RFC 1323] defines that the “Window field in a SYN (i. e., a <SYN> or <SYN,ACK>) segment
itself is never scaled”. This means that the maximum receive window that can be signaled to the
sender in the <SYN,ACK> is 64 KiB. This significantly limits the usefulness of a fast startup
after the three-way handshake in the direction of the connection initiator to the responder. After
having received the <SYN,ACK>, the connection initiator cannot send more than 64KiB be-
fore receiving an ACK, even if the fast startup congestion control scheme allows a much larger
Congestion Window and if the receiver actually has much more free buffer space.

This restriction is particularly undesirable in combination with the Quick-Start mechanism [202]:
First, if a sender sends the Quick-Start request in the initial <SYN> segment, and if the corre-
sponding Quick-Start response is echoed back in the <SYN,ACK>, the receiver already knows
before sending the <SYN,ACK> that a large burst of data may arrive. It can allocate sufficient
buffer space, but it cannot announce it due to TCP header semantics. Second, as the amount of
data sent during the Quick-Start rate pacing phase is at most 64 KiB, the CWND is set to this
value after leaving the rate pacing phase [RFC 4782], even if the granted data rate would have
allowed a much larger CWND.

Both the problem of receive buffer dimensioning as well as the limitations of the TCP header
semantics apply to all TCP-based fast startup schemes. The possibility of a limitation by receive
window auto-tuning has also been observed in other implementation work [255, 158], but so-
lutions have not been proposed. The interaction between fast startup schemes and [RFC 1323]
are also completely neglected in many related NS-2 simulation studies such as [192, 136].

5.2.3 Proposed solution and its implications

These two interactions between congestion control and flow control can be avoided by two
optional changes of the TCP algorithms [202].

Optimistic buffer management: If a receiver wants to allow a sender to use a fast startup conges-
tion control, it should advertise a sufficiently large initial receive window so that data transfers
can indeed start with a high sending window. A reasonable value is the expected bandwidth-
delay product of a path, if the endsystem has sufficient socket buffer space. The amount of
information that a receiver can gain during a connection setup depends on the fast startup mech-
anism. In case of end-to-end fast startup schemes, a receiver cannot easily determine whether
a sender uses fast startup congestion control, i. e., it may always have to announce a larger
window.3 If an explicit signaling scheme such as Quick-Start is used, the receiver has addi-
tional information and can announce larger receive windows only if Quick-Start requests are
received. For instance, the endsystem could estimate the required buffer size as the product of
the approved Quick-Start rate and the RTT, and advertise a corresponding receive window. This
receive window should allow the other TCP host to fully use the approved Quick-Start request.
If the RTT is unknown a worst-case RTT such as 500 ms could be assumed.

Additional acknowledgment method: The proposed solution for overcoming the limitation im-
posed by the window scaling is an additional acknowledgment. If necessary, the connection
responder host could send a scaled receive window in a separate <ACK> segment following

3One solution would be a new TCP option by which the sender announces its willingness to use a fast startup.
This straightforward TCP extension is left for further study.



112 Chapter 5. Application integration and implementation issues and solutions

IP

IP

TCP

TCP

Rate
pacing

Standard
algorithms

SYN

New ACK

QS response

QS request

SYN,ACK
(unscaled RWND)

Initiator Router 1 Router 2 Acceptor

Rate?

Rate!

Echo 
rate

Add. ACK
(scaled RWND)

Figure 5.13: Message sequence chart of the workaround to prevent interactions between fast
startup congestion control and the TCP flow control, shown for the example of Quick-Start

the <SYN,ACK> packet that announces the true scaled receive window. The resulting mes-
sage flow is depicted in Figure 5.13. After having received this additional acknowledgment, the
sender is aware of the true available receive buffer. There is some degree of freedom as to when
to send the additional acknowledgment. The straightforward solution is to send it immediately
after the <SYN,ACK> segment. But in fact it is sufficient if the sender receives this segment
before reaching the limit of the unscaled receive window. As a consequence, receivers could
also delay the sending of this segment for some small amount of time.

The specification of these two methods [202] comprehensively discusses their implications,
deployment options, as well as security issues, in particular focusing on the Quick-Start TCP
extension. Both methods are compliant with the TCP specifications [RFC 793, RFC 2581]. For
standard-compliant TCP stacks, their realization should require changes in the receiver TCP im-
plementation only. However, practical experiments have shown that sender-side modifications
are also required to enable the processing of the additional ACK. In general, an empty acknowl-
edgment shortly after a <SYN,ACK> segment is an atypical TCP communication event. Both
segments could get reordered or the additional ACK may be dropped by middleboxes. In these
cases, the sender only knows the unscaled receive window until the next new ACK arrives.
Delaying the additional ACK could help to avoid such problems [202].

Both methods also have security implications. If an endsystem reserves large amounts of buffer
space during the three-way handshake, this could increase the vulnerability to SYN flooding
attacks. An attacker sending many SYN segments could try to allocate much buffer space at
a host. This problem can be solved by buffer oversubscription, which works well as long as
receiving applications are able to process data as fast as it is delivered by the network. The
usage of an additional ACK in order to update the receive window also causes some limited
additional network overhead. Since two packets are sent as response to a single <SYN> seg-
ment, an attacker could spoof its source IP address and use the ACKs for a DoS attack with an
amplification factor of two. However, this is not a major security thread.

5.2.4 More disruptive alternative solutions

The limitation by the TCP flow control could be circumvented in several other ways, which
are mentioned here for the sake of completeness. One could use a scaled receive window in
<SYN> and <SYN,ACK> segments, but this would cause interworking problems with current
TCP implementations. The scaled receive window could also be indicated by a new TCP option.



5.3 Realization complexity and feasibility 113

0
RTT 2 RTT

Time

W
in

d
o
w Fast startup ignoring RWND

Received

CWND at sender

RWND at receiver

Sent

Figure 5.14: Explanation why the RWND could be ignored during the flow startup

Another, more disruptive possibility is that the sender ignores the advertised receive window
during a fast startup. This violation of the TCP specification [RFC 793] indeed works with
unmodified TCP receivers: Even if the sender sends more data than allowed by the receive
window, TCP’s protocol semantics are always fulfilled at the receiver side, if the receiver uses
receive window auto-tuning with a receiver-side Slow-Start. As shown in Figure 5.14, the
receiver increases RWND whenever new segments arrive. This means that the computed receive
window at this point in time is always large enough to accommodate the arriving segments –
unless the receiver runs out of memory. If a receiver does not have enough buffer space, it can
simply drop the arriving packets. The reaction of the TCP congestion control then avoids a
further increase of the buffer space consumption in the receiver.

Figure 5.12 shows that this disruptive mechanism could be a solution, too: An unmodified
Linux-based receiver indeed accepts the packets sent by the Jump-Start scheme even though its
announced RWND is small. Note that this Jump-Start implementation only violates [RFC 793]
during the first RTT and complies to the receive window afterwards. As a result, the speedup is
slightly smaller compared to bi-directional fast startup support. In the experiments in this thesis,
it is generally assumed that both endsystems support the fast startup and that the receiver both
announces a large RWND and sends an additional ACK if required. Still, Figure 5.12 shows
that it is possible to obtain similar results with sender-side modifications only.

From a fundamental point of view, the interaction issues result from a functional overlap be-
tween congestion control and flow control. It is an interesting insight that, in fact, the TCP flow
control is actually not a mandatory TCP mechanism, since the congestion control alone could
handle receiver overload as well: Because an overloaded receiver does not accept arriving pack-
ets, the congestion control is triggered anyway. As a consequence, the author has also proposed
to design a novel TCP flow control that only considers the receive window when its value is
smaller than a threshold, and solely relies on the congestion control algorithms otherwise [201].
This simple modification would significantly simplify the socket buffer memory management in
combination with fast startup congestion control. However, disabling the flow control also has
some drawbacks, since the advertised RWND can announce additional capacity very quickly in
a single ACK, which is useful if applications consume data in bursts. Further studies would be
needed to study all implications of such a simplified TCP flow control.

5.3 Realization complexity and feasibility

5.3.1 Overview of the implementation work

Any new protocol mechanism raises the question whether it can be implemented in an effec-
tive and efficient way. This question is of particular importance for any proposal that adds



114 Chapter 5. Application integration and implementation issues and solutions

14 15 16 17 18131211109876543210 19 20

RTT is equal to 20 ticks

Time [Ticks]

Time [Ticks]

Timer granularity

Minimum

Minimum"Carryover" segments

chunk size: 4

chunk size: 1

Case 2: Limitation by minimum chunk size

Case 1: Limitation by maximum number of timers

Figure 5.15: Rate pacing with a constant timer granularity. In the example a window of
Wplayout = 50 is played out during an RTT of 20/HZ with different minimum chunk sizes Nchunk.
A larger value of Nchunk can reduce the number of required timers.

additional complexity to network components. This section summarizes the results of a case
study that compares the implementation complexity of the Quick-Start protocol to other fast
startup schemes, both concerning endsystems and network components. The realization efforts
are compared to Jump-Start as an example for a pure end-to-end mechanism. Both schemes, as
well as the other TCP extensions have been implemented in the Linux network stack [204, 205]
in order to show that they can be realized with limited overhead. The Quick-Start and XCP
processing has also been implemented in a network processor in a research cooperation with
Hauger [84, 203]; the corresponding lessons learned are also briefly summarized here. The
numerical performance results are presented later in Section 6.6.

5.3.2 Implementation in endsystems

5.3.2.1 Overview of the Linux implementations

The endsystem implementations are realized as modifications of the Linux network stack. Linux
is an open source operating system with a highly optimized and field-proven network stack that
is widely used as development platform for experimental Internet research (cf. [240]). The
first implementation of Quick-Start in the Linux kernel has been realized by Strotbek [223].
The kernel patch completely implements Quick-Start for IP version 4 and TCP according to the
specifications [RFC 4782, 202], i. e., both endsystem and router functions. This implementation
has subsequently been extended and improved by the author [204]. The version used in the
experiments in this work is based on Linux kernel version 2.6.24. The implementations of
Jump-Start and other fast startup schemes modify the same kernel version.

5.3.2.2 Realization details of the rate pacing

Most proposed fast startup schemes use a rate pacing mechanism. As TCP is a window-based
protocol, a standard TCP/IP stack does not use rate pacing. Rate pacing is thus one of the new
mechanisms that have to be added to a protocol stack. Its realization is non-trivial because it re-
quires timers, which are only possible with a certain granularity. In its default configuration, the
Linux kernel uses an interrupt to realize kernel-internal timers, which is called HZ = 10001/s
times per second. Thus, Linux offers a high timer granularity of 1ms.
In the fast startup implementations, the rate pacing is realized by such an additional kernel-
internal timer. Each time the timer expires, the Congestion Window W is increased by a given



5.3 Realization complexity and feasibility 115

Connection setup

Uninitialized

Enabled

Appl. data to be sent

Pacing active

New ACK or last timer

Pacing finished

Final ACK

Done

Retransmission

Recover

Final ACK

R
e
−

a
c
ti
v
a
ti
o
n
 a

ft
e
r 

id
le

 p
e
ri
o
d
s

Figure 5.16: Simplified Jump-Start sender
state engine

Appr. rate>0 Not approved
 or invalid

Not supported

Report sent

Not used

Report rate

Report sent

Rate approved

Data avail.

Pacing active

Pacing end

Pacing finished

Request pending

Request sent

Enabled

Req.

Uninitialized

New req.

SYN or data seg.

window

Small

Done

Recover

T
im

e
o
u
t

Potential re−activation

Lost packets

Continuation

Figure 5.17: Simplified Quick-Start sender
state engine

amount of segments up to target window Wplayout (e. g., Wqs). The fixed timer granularity thereby
affects the number of timers Ntimer: As shown in Figure 5.15, the number of timers depends on
the window increase Wplayout, the minimum increase per timer Nchunk (minimum chunk size),
and the number of ticks of the rate pacing duration. Pacing over one RTT corresponds to a
maximum number of timers of bτ ·HZc. The actual number of timers is therefore

Ntimer = min
(
bWplayout/Nchunkc,bτ ·HZc

)
. (5.1)

As can be seen in Figure 5.15, the configuration parameter Nchunk trades off the traffic burstiness
and the number of timers, i. e., the processing overhead. If the number of window increase steps
bWplayout/Nchunkc is large, the maximum number of timers is required, and carryover segments
might be required [223]. The overhead of many timers can be reduced by enforcing a minimum
window increase per timer Nchunk > 1. In this work, a minimum chunk size of Nchunk = 3
segments is used, which corresponds to the initial burstiness allowed by [RFC 3390]. However,
there are also cases in which the timer granularity of the operating system is not sufficient for a
fine-grained rate pacing (i. e., Ntimer = bτ ·HZc). Then, the burst size can be significantly larger.

5.3.2.3 Case Study: Comparison of Jump-Start and Quick-Start TCP

In order to compare the overhead of a network-assisted fast startup scheme to an end-to-end
solution, the following section studies the similarities and differences of the implementations
of Jump-Start and Quick-Start TCP. In both cases, the sender must keep additional state infor-
mation. Figure 5.16 and Figure 5.17 compare the sender’s state engines in the implementations
used in this work. In case of Jump-Start, the operation is rather straightforward, even though
some complexity is caused by the modified error recovery procedures. Also, the socket pro-
cessing workflow must be adapted in order to determine the amount of queued application data.
Quick-Start requires much more states to handle the sending and reception of the IP and TCP
options. [RFC 4782] also defines several abort conditions that must be taken into account.
One question that is not addressed in literature is how and when to activate the fast startup. The
Quick-Start implementation used in this work supports both an explicit enabling by the appli-
cation, using the socket option interface introduced in Section 5.1.1, as well as kernel-internal
heuristics. They automatically issue a request for the previous rate if application data is avail-
able after a long idle time. These heuristics can also be used in the Jump-Start implementation
in a similar way.



116 Chapter 5. Application integration and implementation issues and solutions

Typical flow of packets

Application

User space

Kernel space

Device driver

IP

TCP

Config

Cong.

ip_rcv

net_rx_action

ip_local_deliver

Routing
ip_forward ip_forward_finish

ip_queue_xmit

ip_finish_output

dev_queue_xmit

tcp_transmit_skb

control

Analysis

tcp_v4_rcv

Fast/slow path

Socket interface

State

Send ACK

tcp_write_xmit
Handle SYN 

do_tcp_setsockopt

Sysctl config

Sysctl config

ip_build_and_
send_packeting_frames

ip_push_pend

tcp_sendmsg

Options

Rate

pacing

Options

Traffic metering,

QS TTL decr.

Hist.

Flow control

Activate QS New sysctl

Additional code

OptionsAutom. activation

Adaptation control

Metering, adapt.

Figure 5.18: Illustration of the Quick-Start TCP implementation in the Linux network stack.
The required modifications are highlighted by the gray boxes.

In order to illustrate the complexity of these implementations, Figure 5.18 gives a simplified
overview of the structure of the IP and TCP layer in the Linux kernel, focusing on the packet
processing functions. The gray boxes represent the main modifications of kernel code that are
required to implement Quick-Start. Even though the Quick-Start mechanism is rather sim-
ple, changes are required in almost every part of the TCP implementation, and also in several IP
functions. The Quick-Start IP option processing is here realized by new methods in the forward-
ing path of IP packets, which meter the traffic, perform the approval control, and store recently
approved requests in a ring buffer as described in Section 4.5.2.3. An alternative solution would
have been to use the Linux “netfilter” mechanisms as in related work [158, 255, 102]. The TCP
implementation must be extended by the processing of the header options, the modification of
TCP congestion and flow control, and the rate pacing mechanism. Global and interface-specific
parameters can be configured by additional sysctl variables and ioctl calls, which are listed
in Appendix B.3. Further details about the Quick-Start implementation can be found in [223].
Compared to this, a realization of Jump-Start is much simpler and mainly consists of a subset
of the modifications in the TCP layer.

A quantitative comparison of the complexity of the Jump-Start and Quick-Start implementa-
tion is provided in Table 5.2. While these numbers are affected by some design choices, they

Table 5.2: Comparison of the implementation complexity of fast startup schemes

Criteria Jump-Start Quick-Start
Additional lines of code (including comments) ca. 600 ca. 2200
Number of affected source code files 11 24
New state variables per connection in tcp_sock 9 19
New state variables per interface in net_device – 10 or more
New configuration parameters in /proc/sys/net/ipv4 4 13



5.3 Realization complexity and feasibility 117

Routing

TTL decr. Transmit

Routing

TTL decr.

Receive

Microengine

Microengine

Routing

Microengine

Queue

Microengine

Scheduler

Transmit

Microengine

General purpose processor

Management and control

L
in

e
 i
n

te
rf

a
c
e

L
in

e
 i
n

te
rf

a
c
e

TTL decr.

Checksum

Fast path

Slow path

Link util. monitorHist.Granted bandwidth

QS TTL

CountersBandwidth

Adapt. contr.

Figure 5.19: Illustration of a Quick-Start implementation in a network processor (adapted
from [84, 203])

show the overhead caused by network support. Compared to the complexity of a TCP/IP stack
as a whole, these numbers are rather small. For instance, the Quick-Start patch changes less
than 5% of the TCP and IPv4 code. This means that, in terms of lines of code, the Quick-
Start implementation is at least one order of magnitude less complex than a user-space RSVP
implementation [109]. The available Linux implementations of XCP [158, 255] or RCP [58]
have a similar complexity like the presented Quick-Start implementation, even though they only
address a subset of the problems solved by Quick-Start.

5.3.3 High-speed implementation in network components

Any network-supported congestion control scheme that requires additional processing in routers
can only be realized if the required functions can be implemented efficiently in high-speed
routers. Modern routers have a modular architecture consisting of network interface cards, an
internal interconnection unit (switch fabric), and a Central Processing Unit (CPU) [14]. Packets
are either processed in the fast path or in the slow path. The fast path is optimized for processing
of the vast majority of packets and is typically implemented in hardware, i. e., in Application-
Specific Integrated Circuits (ASICs) or in Field Programmable Gate Arrays (FPGAs). The slow
path processing is performed in software and used for packet that are less time critical. One
fundamental challenge for IP enhancements is that packets including IP options are typically
processed in slow path [14]. This means that such packets can only be processed at a limited
rate and may suffer from larger delays than packets in the fast path.

In order to prove that the router functions of network-supported congestion control can be real-
ized in the fast path with very limited effort, Suriyajan [226] has implemented the Quick-Start
and XCP router functions in an IXP 2400 network processor. A network processor is a pro-
grammable hardware component that is optimized for high-speed packet processing and that
integrates one or more special purpose processors. The IXP network processor series comprises
multiple cores for fast path processing (microengines) and is widely used for experimental net-
working research.



118 Chapter 5. Application integration and implementation issues and solutions

The resulting structure of an IP router implementation with added Quick-Start support is il-
lustrated in Figure 5.19. The figure shows that the router functions are divided into several
functional pipeline stages. The processing of the Quick-Start requests is added to the pipeline
stage that performs the IP packet processing, and the management of the spare capacity on the
output links is realized by the general purpose processor. A more detailed description of the
implementation can be found in [226, 84]. The measurement results published in [84, 203]
show that both Quick-Start processing is feasible at multiple Gbit/s line speed. Some numerical
performance results are also summarized in Section 6.6.

In addition to Quick-Start, XCP is also considered in references [226, 84]. Compared to Quick-
Start, XCP requires a more complex processing. The main difference is that the additional effort
is required for every packet, whereas Quick-Start options can be expected to be used in only few
packets. This difference is very important if packets are processed by several entities in parallel.
In this case, synchronization of global state variables among the different microengines must
be ensured. As explained by Hauger [84], a general solution for synchronization is locking, but
locking does not scale well with parallelism. A more efficient realization of the target algorithm
approval control of Quick-Start is possible by atomic operations. However, this method cannot
be applied for the complex XCP algorithms, which can result in performance problems.

5.3.4 Lessons learned from the case study

The most important result of the case study is that fast startup schemes such as Jump-Start
and Quick-Start can be implemented in a state-of-the-art network stack with a very limited
additional complexity. The realization of an end-to-end scheme such as Jump-Start is mostly
straightforward. For Jump-Start, the only major issue that has been identified in real-world
tests is that its performance significantly depends on the question whether an application writes
data as a whole to the socket buffer. If applications use several small write operations, the data
transport could be speeded up by rewriting application code.

The implementation work on Quick-Start revealed several problems that are not mentioned in
the protocol specifications but that are important in practice:

- Storage of state information: An endsystem that initiates a Quick-Start request must store
several integer variables in the TCP control block. This state information is critical in case
of listening sockets, i. e., if connection acceptors trigger a request in the <SYN,ACK>.
When there are multiple parallel connection setups to the same listening socket, the
endsystem must store the Quick-Start state information for each of them. But the network
stack should actually store only the minimum amount of information for connections that
are not yet established. This is necessary in order to make them less vulnerable against
SYN flooding attacks. As a consequence, the use of Quick-Start in <SYN,ACK> segments
comes along with an increased vulnerability to SYN flooding attacks. Quick-Start is also
not compatible with SYN cookies, which is an optional mechanism to prevent these DoS
attacks.

- Algorithms: The actual realization of several algorithms and decisions is left open in the
specification [RFC 4782]. In particular, it is not specified whether and when a sender
should actually send a Quick-Start request. Another example is the question whether and
how to adapt the Slow-Start Threshold after a successful Quick-Start. Different algo-
rithms that solve these issues are proposed and evaluated in Section 6.3.3.1.



5.3 Realization complexity and feasibility 119

- Violation of protocol layering: As Quick-Start violates the layer separation between IP
and TCP, interface extensions are required between the layers. For example, the Linux
stack is not well prepared for sporadically added IP options. A non-trivial problem is that
the TCP maximum segment size must be reduced for IP packets carrying a Quick-Start
IP option in order to avoid packet fragmentation. The IP and TCP options also prevent
the offloading of the checksum calculation or other protocol functions to the network card
(e. g., TCP segmentation offload). In case of Linux, there are also no generic interfaces
from the network layer to the network interface drivers from which one can determine the
capacity of links, even for standard Ethernet network cards.





6 Performance evaluation

The realization of fast startup congestion control raises many issues concerning performance,
fairness, and implementation costs. For end-to-end schemes, there is an inherent trade-off be-
tween a possible speedup of applications on the one hand, and the risk of packet losses and
congestion on the other hand. The key question is to which extent network support can reduce
or avoid these risks. Fast startup schemes also raise the question how complex their implemen-
tation is, and whether the cost is worth the effort. This chapter comprehensively studies these
performance and complexity aspects. It compares both end-to-end and network-supported fast
startup schemes by analytical calculations, simulation studies, laboratory experiments, as well
as some tests over a real network path. The chapter is thus a novel and unique investigation of
the trade-offs of fast startup congestion control. The first section presents the simulation and
measurement methodology. Then, the second section verifies that results of the used simulation
tool are indeed consistent with measurement results in real setups. In the third section, the fun-
damental behavior of different fast startup schemes is studied, and different options for several
algorithms are compared, in particular for Quick-Start. The forth section analyzes the perfor-
mance improvement in both synthetic and realistic workload scenarios. In the fifth section, the
robustness, fairness, and risk of fast startup is explored. The chapter concludes with numerical
results for the complexity and performance overhead caused by network support.

6.1 Evaluation methodology and tools

6.1.1 Simulation scenarios

6.1.1.1 Tools, topologies, and workload models

The simulation tools used in this work are based on the the Network Simulation Cradle (NSC),
which is introduced in Section 3.3.4.3. Due to the usage of real network stack code, the resulting
simulation tool-chain with the NSC is more complex than standalone simulation tools.

Figure 6.1 describes the workflow and the different steps that are needed to simulate new TCP
protocol extensions. The gray boxes highlight tasks that require additional software devel-
opment. The first important part is the implementation of the protocol extensions inside the
TCP/IP stack. This thesis uses own Linux kernel patches for Quick-Start, Jump-Start, Initial-
Start, and Mega-Start TCP extensions, which are partly described in Section 5.3.2 and also
further documented in [223, 204, 205]. Some small modifications are also required in the NSC
itself, in particular in order to provide handlers for additional interfaces such as new socket op-
tions and new system configuration commands. The other major part is the simulation tool that
implements the network model, the host model, the application model, as well as the interfaces
to the NSC as shown in Figure 3.16. Parts of the tools that are used in the following studies
have been developed by Zeeh [253] and Proebster [180].

121



122 Chapter 6. Performance evaluation

010101

010101

010101

txt txt txt

txt txt txt

txt txt txt

{ a=1; }

{ b=2; }

{ c=3; }

lib lib lib

lib lib lib

lib lib lib

lib lib lib

lib lib lib

lib lib lib

include/

kernel/

net/

− int i=0;

+ int j=1;

+

exe exe

exe exe

exe exe

− int i=0;

+ int j=1;

+

txt txt txt

txt txt txt

txt txt txt

txt txt txt

txt txt txt

txt txt txt

.pcap

.log.par.so

.soLinux

.diff
Tool

program

void main {

  ...

Simulation

.diff

Network NSC

Socket

Stack

.trc

.data

Parameters

Input traces

Simulation library

NSC library

mechanisms

New protocol

Compiler

Patch

Kernel−space
software
development development

software
User−space

Linux 2.6.18 code Network Simulation Cradle

Patch

Evaluation

statistics

batch

Simulation

"printf", ...)

("printk",

Output traces

interfaces

Additional

Compiler OutputRun

processor

Pre−

(globalizer)

Captured

packet

traces

Figure 6.1: Workflow of simulations with real network stack code

In the simulation framework, the NSC-based TCP/IP stack can also be replaced by an abstract
transport protocol realization that enables simulations of XCP and RCP [181]. Unlike the TCP
extensions, the implementations of XCP and RCP in the simulation tool are not validated by
measurements. Given the large number of open issues in the specification of these protocols,
XCP and RCP experiments are only presented to round off the performance evaluation and to
highlight the similarities and differences compared to the Quick-Start protocol.

It is impossible to define a set of scenarios that reflects “the typical Internet”. The only realistic
option is to define several standard scenarios and use them to compare different mechanisms
under similar constraints. Such scenarios have been suggested for a common TCP evaluation
suite [10]. The scenarios include several network topologies as well as a range of workload
scenarios and path characteristics (RTTs, queue management schemes, etc.). Its full specifi-
cation is work in progress. In the following sections, a subset of these scenarios is used. The
most important one consists of the so-called dumb-bell topology that models a bottleneck link
between two subnetworks. It is shown in Figure 6.2. Any congestion control scheme must be
able to efficiently handle scare resources in such a shared bottleneck. An alternative topology
consists of several subsequent routers on a path with cross-traffic (parking lot topology).

The dumb-bell topology is widely used as reference scenario for transport protocol evalua-
tions and therefore also used in most of the following experiments. By default, the bottleneck

T

T

Central bottleneck

Rate 10 Mbit/s

Configured delay

Access link

Rate 1 Gbit/s Rate 1 Gbit/s

Access linkLimited buffer size

(Optional delay) (Optional delay)

TCP connection(s)

Client

Client

Client Server

Server

Server

Figure 6.2: Dumb-bell simulation topology
with a central bottleneck

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

9

8

7

6

5

4

3

2

1

9

8

7

6

5

4

3

2

TCP connection(s)

Central bottleneck

Rate 10 Mbit/s

Limited buffer size

Access link

Rate 1 Gbit/s

Group−specific delay

Access link

Group−specific delay

Rate 1 Gbit/s

174 ms

200 ms

150 ms

124 ms

98 ms

74 ms

28 ms

54 ms

4 ms

group

RTT of

1

G
ro

u
p

s
 o

f 
e

n
d

s
y
s
te

m
s

Figure 6.3: Alternative dumb-bell simula-
tion topology with different RTTs



6.1 Evaluation methodology and tools 123

bandwidth is set to rC = 10Mbit/s. This is a realistic value for the bottleneck bandwidth of
long-distance connections over current access networks and WANs. Therein, the bottleneck is
typically located in the access network (last hop). Unless stated otherwise, the central buffer
has a fixed size of B = 50 packets and uses a drop-tail strategy. Buffers of the order of 50 pack-
ets are considered to be a realistic assumption [234]. A certain number Nhosts of endsystems
are connected to the central bottleneck by “access links” with rate rA = 1Gbit/s, which ensures
that they cannot become the bottleneck. And there is also a configurable delay. As illustrated
in Figure 6.2, homogeneous delays are enforced in the central bottleneck. Many experiments
in this work consider a latency τ of the order of 100ms or 200ms, which are typical values
for long-distance network paths. As already mentioned, TCP’s flow startup is specifically chal-
lenged by such paths. An alternative setup considers nine different groups of endsystems with
heterogeneous access link delays. It is depicted in Figure 6.3. This topology results in nine dif-
ferent RTTs between 4 ms and 200 ms, which is a realistic distribution and also recommended
in the common TCP evaluation suite [10]. The MTU in all experiments in this thesis is 1500B.

The workload is characterized by different models that reflect the characteristics of client-server
applications with bi-directional data transfers realizing requests. They are described by con-
nection vectors as introduced in Section 3.3.3.1. The simulations always consist of a set of
connections between a client-server pair. In addition to simple models with fixed-sized requests
and responses, request-response vectors are also obtained from synthetic source models. In or-
der to model real Internet workload, traffic traces are replayed as explained in Section 3.3.3.2.
The arrival of connection vectors is then modeled by an open-loop process with exponentially
distributed inter-arrival times. Further specific details of the models are described in the subse-
quent sections. It must be emphasized that most related simulation studies in other published
work only consider uni-directional traffic. Bi-directional client-server traffic reflects much more
realistically the communication patterns of interactive applications and also ensures that there
is traffic in the uplink direction, which reduces the risk of synchronization of flows.

6.1.1.2 Network stack configurations

The simulations are performed with the Linux kernel version 2.6.18, both without and with the
new fast startup patches. This kernel version is the most recent one in the used NSC version.
For the measurements, the Linux kernel 2.6.24 is used in order to have also results with a
more recent stack. The network stack implementations in these two kernel versions are similar,
but not identical. As a result, several subtle differences exist that also affect the results of
simulations and measurements. The author tried to minimize these effects as far as possible.

Most importantly, the implementation of the TCP Slow-Start in the Linux kernel version 2.6.24
slightly differs from version 2.6.18, since the newer version also supports the Limited Slow-
Start algorithm, even though it is not activated by default. The implementation of the CUBIC
congestion control is also different in both kernel versions. The CUBIC implementation in
kernel version 2.6.18 is known to be incorrect and has been corrected in subsequent kernel
version [130, 82]. Furthermore, unlike later kernel versions, it uses an initial SST of 100 seg-
ments [82]. In order to overcome this problem, the simulation studies presented in the following
use a corrected CUBIC congestion control module that has been ported back from kernel ver-
sion 2.6.24. As many experiments in this work require a high-speed congestion control flavor,
the CUBIC algorithms are used in all studies unless explicitly stated otherwise.



124 Chapter 6. Performance evaluation

For all simulation and measurements except for the experiments in Section 6.2, the socket buffer
sizes have been increased to 8MiB, as documented in Appendix B.2. The larger buffer ensures
that the flow start is never limited by the TCP flow control (cf. Section 5.2). Furthermore, the
caching of connection statistics is disabled. This setting models the scenario that connections
are always opened to unknown destinations. If connection caching was used, the previous SST
would be reused, which would result in a better performance both of the Slow-Start and of the
fast startup TCP extensions. Moreover, in the measurements the TCP enhancement “Forward
RTO-Recovery” is disabled, as its realization in the Linux kernel version 2.6.24 is erroneous.

A further challenge are experiments that use persistent TCP connections: Their performance
during flow restarts depends on Linux’s “QuickAck” mechanism (see Section 4.2.4). After a
connection setup, or after idle periods, a receiver acknowledges every segment up to an upper
limit that depends, among others, on the advertised receive window. The number of “Quick-
Acks” significantly affects TCP’s behavior in Slow-Start. Due to receive window auto-tuning,
this number may change over the lifetime of a connection. In order to make the simulation
results reproducible and independent of the complex activation heuristics of the kernel, the acti-
vation threshold is manually set to a large value in this work. A side-effect of this modification
is that the delayed acknowledgments are always disabled during flow start (η = 1). This means
that the Slow-Start is significantly faster than a TCP stack that would use η = 2 as suggested
in [RFC 2581]. In other words, the Slow-Start results presented in this work correspond to the
best possible case. If the Linux stack did adhere to the recommendation of [RFC 2581], the fast
startup schemes considered in this work would achieve a significantly larger speedup.

6.1.1.3 Evaluation methods

As depicted in Figure 6.1, the simulation tool provides several kinds of output in addition to
statistics of the simulation environment [25]. The studies in the following sections can be sub-
divided into stationary and transient experiments. In the stationary case, the system is studied
in its statistical equilibrium. In this steady state case, the measured values are subdivided in a
transient phase and 10 batches. In addition to average values, also 95% confidence intervals are
calculated. The main steady state performance metric is the average response time. Addition-
ally, throughput, packet loss rate, and fairness metrics are calculated. Numerical calculations
outside the simulation tools are performed with the “Matlab” tool.

The transient behavior of systems with complex control loops cannot be studied by stationary
experiments only. Transient experiments analyze the qualitative behavior and the response to
sudden changes or events. A thorough analysis actually requires several independent replica-
tions with different initial values instead of the method of batch means. Certain effects can
also be illustrated by visualizing individual traces only. The simulation framework can capture
packet trace files on the network interfaces, which can then be postprocessed. One specific type
of analysis used in the following are throughput time series. They are obtained by summing
up the amount of transported data over a fixed sampling interval, which is by default 200ms.
Figure 6.4 shows an example of the analysis of a trace that contains a Quick-Start request.

6.1.2 Measurement setups

In order to verify the analytical and simulation results presented in Figure 6.4, measurements in
a local network testbed have been performed. The endsystems are Personal Computers (PCs)
with an Ubuntu 7.04 Linux operating system, either running an unmodified or a patched Linux



6.1 Evaluation methodology and tools 125

Captured data rate

Quick−Start mechanism

without and with the

handshake

TCP’s three−way

in <SYN,ACK> segment

Quick−Start IP option

Figure 6.4: Quick-Start dispatcher in the “Wireshark” tool that displays traces

kernel version 2.6.24. The basic testbed setup is sketched in Figure 6.5 and also documented
in Appendix B.1. The client and server applications run on computers that are interconnected
by Ethernet segments, which are by default manually throttled to a line speed of 10 Mbit/s in
order to emulate a realistic Internet long-distance path capacity. The Ethernet flow control is
disabled in order to avoid interactions with the congestion control. TCP segmentation offload
is also disabled (cf. Section 5.3.4). The Linux network emulation [90] is used in order to
enforce constant minimum packet delays. The network stack configuration is, as far as possible,
identical to the simulation settings explained in Section 6.1.1.2.

When real equipment is used, it is difficult to exactly control the amount of available buffer
space on a path, since buffers do not only exist inside the IP network stack, but also in the
network interface card, but can hardly be controlled there. This is why the impact of limited
buffer space is mostly evaluated by simulation only.

Fast startup congestion control is particularly interesting for interactive applications that fre-
quently exchange certain amounts of data and thus often suffer from the Slow-Start. The exper-

Transport

Network

Application

Link

Transport

Network

Application

Link
(duplex)
Ethernet Ethernet

(duplex)Network

Link

3 GiB memory

Pentium 4 2.8 GHzPentium 4 2.8 GHz

3 GiB memory

ServerClient Router
(optional)

Emulated
delay
(Linux
"netem")

Figure 6.5: Experimental lab setup with sev-
eral computers

(JGN2plus) 1 Gbit/s (Internet2)

North Carolina
State Universityof Technology

Kuyushu Institute RTT 233 ms

Figure 6.6: Illustration of the experimental
path used in some experiments



126 Chapter 6. Performance evaluation

Network NSC

Socket

Stack

Network NSC

Socket

Stack

Sink

Goodput

ACKs

Data

Source

loss

Packet

T

100 ms

T

Delaybuffer size

10 Mbit/s,

Data rate

1000 packets

Bulk data transfer

Figure 6.7: Setup of the validation scenario
that studies the response function

Network NSC

Socket

Stack

Response time

Network NSC

Socket

Stack

ResponderInitiator

64 B data

64 B data
T

T

loss

Packet

10 ms

Delaybuffer size

1000 packets

1 Gbit/s,

Data rate

Signaling messages

Figure 6.8: Setup of the validation scenario
for Head-of-Line blocking

iments use two different types of interactive applications: First, tests are performed with simple
client and server C programs that use straightforward socket calls. The server is also able to
explicitly activate a fast startup by the expanded sockets interfaces, if required. The second
class of tests consists of a modified “lighttpd” Web server (version 1.4.18), which can option-
ally explicitly activate a fast startup [223]. The workload is then generated by the SURGE Web
traffic generator (version 1.00a), which is introduced in Section 3.3.3.1, by the “httperf” tool,
or directly by the “Firefox” Web browser. Long-lived flows that emulate long file transfers are
generated by the “iperf” tool. Finally, stress tests with high workloads are realized by using an
Agilent network analyzer for workload generation and high-precision tracing.

6.1.3 Experiments in a test network

A laboratory experiment can hardly represent a complete Internet path. This is why some exper-
iments have also been performed over a real long-distance network path shown in Figure 6.6.
The endsystems as well as the path form part of an experimental network testbed that is used
for transport protocol performance tests. The path can also be traversed by packets that carry
new IP options. The bandwidth of the path is about 1Gbit/s and the RTT is 233ms. The main
advantage of using this infrastructure is that it allows experiments under real constraints, e. g.,
concerning router buffer sizes, without the need to run a network emulation. However, because
this infrastructure could only temporarily be accessed, only few experiments could be realized
in this environment.

6.2 Simulation tool validation

6.2.1 Scenario selection

As explained in Section 3.3.4.1, any simulation study must be validated. The following subsec-
tions verify that the used simulation tool indeed provides results that are close to measurements
in real setups. The two validation scenarios shown in Figures 6.7 and 6.8 study the simula-
tion accuracy of the throughput and transport delay, respectively. Both metrics are compared to
real-world measurements and analytical approximations. These experiments complement other
NSC validation tests of Jansen [103, 104], who has not systematically compared the simula-
tion results to models and who has also published only few results on the simulation accuracy
compared to measurements.



6.2 Simulation tool validation 127

0.001 0.01 0.1 1

Packet loss rate [%]

0

1

2

3

4

5

6

7

8

9

10

A
p
p
lic

a
ti
o
n
 t
h
ro

u
g
h
p
u
t 
[M

b
it
/s

]

Analytical models

Meas. (Linux)

Sim. (Linux)

Sim. (IKR Tcplib)

Sim. (NS-2 "sack1")

Reno

Figure 6.9: Simulated Reno response func-
tions vs. models and measurements

0.001 0.01 0.1 1

Packet loss rate [%]

0

1

2

3

4

5

6

7

8

9

10

A
p
p
lic

a
ti
o
n
 t
h
ro

u
g
h
p
u
t 
[M

b
it
/s

]

Analytical models

Meas. (Linux)

Sim. (Linux)

Reno CUBIC

Figure 6.10: Simulated CUBIC response
functions vs. models and measurements

6.2.2 Validation scenario: Response function

6.2.2.1 Motivation

The first validation scenario studies the response function G(p), which quantifies the throughput
G of a single connection as a function of the packet loss probability p for a given RTT. This
function describes the fundamental behavior of a congestion control algorithm. A closed-form
expression for the Reno algorithm is provided in Equation (4.7). Corresponding terms for the
CUBIC and Compound congestion control are given in Equation (4.9) and Equation (4.10),
respectively. As shown in Figure 6.7, the simulation setup consists of one TCP connection with
a greedy source running over an emulated 10 Mbit/s Ethernet Link. In the measurement, the
corresponding scenario is set up with two computers as illustrated in Figure 6.5.

6.2.2.2 Comparison of simulation and measurement results

Figure 6.9, Figure 6.10, and Figure 6.11 study how packet loss affects the TCP throughput for
an RTT of τ = 200ms. The simulation results obtained from the NSC-based tool are compared
to measurements as well as to the theoretical models. Reno, CUBIC, and Compound are used
as congestion control algorithms. In case of Reno, two other simulation tools are considered
as further references: NS-2 version 2.31 with the “sack1” TCP model and the IKR Tcplib
version 1.4.3. These two simulation tools provide by default a Reno congestion control only.

The graphs in Figures 6.9, 6.10, and 6.11 illustrate three different aspects: First, the response
functions all have a characteristical shape. For a low packet loss rate p� 1%, the throughput is
close to the link capacity. Due to the overhead of the Ethernet header, inter-frame gaps, and the
IP and TCP header the maximum value is smaller than the Ethernet link capacity of 10Mbit/s.
In the simulation, the IP data rate is therefore set to r = 9.76Mbit/s ≈ 10Mbit/s. This value is
the effective capacity of a 10Mbit/s Ethernet link for full-sized packets with MTU = 1500B.
The slight reduction is caused by the Ethernet header and inter-frame gaps. It is considered in
all simulation setups in this thesis.

When the packet loss rate p gets larger, the congestion control more and more limits the through-
put. The second observation is that the high-speed congestion control schemes CUBIC and



128 Chapter 6. Performance evaluation

0.001 0.01 0.1 1

Packet loss rate [%]

0

1

2

3

4

5

6

7

8

9

10

A
p
p
lic

a
ti
o
n
 t
h
ro

u
g
h
p
u
t 
[M

b
it
/s

]

Analytical models

Meas. (Linux)

Sim. (Linux)

Reno Compound

Figure 6.11: Simulated Compound response
functions vs. models and measurements

10 100 1000

Speedup of simulation time vs. real time

0

5

10

15

20

25

30

V
ir
tu

a
l 
m

e
m

o
ry

 s
iz

e
 [

M
iB

]

IKR Tcplib

NS-2 "sack1"

NSC (Linux)

1000 Hz 250 Hz

compression
With packet

Memory: 3 GiB
Pentium 4 2.8 GHz
Processor: Intel
Environment:

Better

Figure 6.12: Runtime performance compar-
ison of the different simulation tools

Compound result in a significantly larger throughput for moderate packet loss rates of the order
of 0.1%. If the packet loss rate is larger, they fall back to a Reno-like behavior. Both effects
exactly correspond to the design objectives of high-speed congestion control algorithms. For
packet loss rates of the order of 1%, the average CWND is kept at a rather small value and a
TCP connection is unable to completely utilize a path with a larger BDP.

Third, the simulation results and the measurements reveal a rather close match. All Reno sim-
ulations are also almost identical to the model of Equation (4.7). The models for CUBIC and
Compound are also good approximations in particular for moderate packet loss rates. These
results prove that an NSC-based simulation tool indeed delivers a throughput that differs by at
most few percent from the value that one would measure in a corresponding real experiment.

6.2.2.3 Runtime performance and scalability limits

The execution of real network stack comes at some cost, which is quantified in Figure 6.12. This
figure depicts two runtime performance metrics. It corresponds to simulations of the scenario
shown in Figure 6.7 with Reno congestion control and a packet loss rate of p = 0.1%. The
diagram reveals two properties of NSC-based simulators:

- Simulation speed: In small and mid-sized scenarios a NSC-based simulation runs signif-
icantly faster than real time. As shown in Figure 6.12, a measurement with equivalent
number of samples would have required at least 20 times the duration of the simulation.
Still, the NSC-based simulation is about one order of magnitude slower than a simulator
that use a simplified model of TCP only. This is a well-known drawback of the NSC, and
a slowdown of the same order of magnitude is also reported by Jansen [103]. The simula-
tion speed also decreases approximately linearly with the number of instantiated network
stacks, since the timer interrupt must be triggered in each stack and causes processing
overhead.

- Memory consumption: Simulations with the NSC require a significant amount of memory.
The largest part is consumed by the shared library that contains the kernel code. As
this library must be loaded only once in homogeneous simulation scenarios, it results in
a constant minimum memory requirement. A certain additional amount of memory is



6.2 Simulation tool validation 129

required per stack, mainly for providing the buffer space. Finally, memory is required for
storing the outstanding packets on the path. In the latter two cases, the exact amount of
memory for depends very much on the simulation scenario.

The memory requirements and the usage of interrupt timers impose an upper scalability limit
of the order of thousand stacks per simulation tool. There are also techniques how to improve
the scalability [253, 200]. Most importantly, the timer interrupt frequency could be reduced.
For instance, a Linux kernel uses by default a frequency of HZ = 1000Hz, but it can also be
configured to run with 250Hz. Furthermore, the memory consumption can be reduced by using
pseudo data as payload of packets [253]. In this case the simulator does not have to allocate a
whole MTU of memory for each packet. As shown in Figure 6.12, both methods indeed improve
the performance, but their impact is small. The usage of NSC-based simulation tools in very
large simulation scenarios with more than thousand stacks would require further optimizations.

6.2.3 Validation scenario: Head-of-line blocking

6.2.3.1 Motivation

The throughput measurements in the previous section do not provide insight into the timing
accuracy of the simulation tool. Therefore, a second validation scenario studies how precisely
an NSC-based simulation tool models latencies. The considered use case is a transaction-based
signaling application that exchanges small signaling messages between two signaling entities
over a path that is subject to symmetric packet losses. This kind of workload is typical for
control plane traffic, e. g., for firewall control [116]. The corresponding simulation setup is
depicted in Figure 6.8. The initiator periodically sends request messages of length s = 64B
with a negative exponentially distributed IAT with mean value δ = 10ms. The messages are
sent over a single TCP connection to the responder, which echos back the messages. The
initiator then measures the response time of each request-response pair. In this experiment it
is important that both endsystems use the TCP_NODELAY socket option. Due to the usage of
bidirectional data transfers, this scenario cannot easily be realized in simulation tools that only
model unidirectional communication.

TCP provides an ordered reliable transport service, even though reliability and ordered delivery
are actually orthogonal issues. As a consequence, Head-of-Line Blocking (HOL) occurs when
packets get lost, as subsequent messages have to wait for the successful retransmission in the
receiver queue and are thus delayed. The impact of HOL on the response time of transaction-
based signaling applications has been analyzed analytically [197, 116] and can thus be used in
order to validate the simulation tool. The analytical model is briefly summarized in Section A.2.

6.2.3.2 Comparison of simulation and measurement results

Figure 6.13 shows the mean response time as a function of the packet loss rate for the Reno
and CUBIC congestion control. Again, the simulation results and the measurements are very
similar, except for a constant offset of about 2ms. This difference can be attributed to the
network emulation which adds an error of about 1ms per direction. As long as the packet loss
rate is small, the results are also close to the reference value given by Equation (A.7) with the
processing overhead ε assumed to be 0.5ms. However, for p > 1%, both the simulated and
measured mean response time is larger than predicted by the model. This can be explained by



130 Chapter 6. Performance evaluation

0.001 0.01 0.1 1

Unidirectional packet loss rate [%]

0

10

20

30

40

50

60

M
e
a
n
 r

e
s
p
o
n
s
e
 t
im

e
 [
m

s
]

Analytical lower bound

Measurement (Linux)

Simulation (Linux)

Reno

CUBIC
Minimum RTT of 20 ms

Figure 6.13: Comparison of the impact of
HOL in simulation and measurements

0 50 100 150 200 250 300 350 400

Response time [ms]

10
-3

10
-2

10
-1

10
0

C
C

D
F

Measurement (Linux)

Simulation (Linux)

Reno

CUBIC

Figure 6.14: Response time distribution re-
sulting from HOL

the TCP congestion control that limits the throughput when losses occur frequently. As to be
expected, CUBIC outperforms Reno in this parameter range.

Despite the close match of the mean values of the simulation and measurement results, there
are also some differences. They can be observed in the CCDF for p = 1% that is depicted
in Figure 6.14. The CCDF reveals a non-negligible probability for high delays. In case of
Reno, simulation and measurement results are consistent. But there are some differences in the
distribution tail for the CUBIC congestion control. The delay obtained from the simulations
and measurements differs in about one percent of the samples. This slight discrepancy might be
caused by small implementation differences in the network stacks used for the simulations and
for the measurements, which can have an impact on the timing of certain packets (e. g., error
recovery algorithms). But as this inaccuracy only affects a very small number of samples, it has
hardly any impact on experiments that consider mainly mean values.

6.2.4 Summary of the validation experiments

All in all, the validation experiments show a rather close match of the simulation results and
measurements in a comparable setup. Compared to simulation tools with simplified TCP mod-
els, the main shortcomings of NSC-based simulations with real kernel code are longer simula-
tion durations and a significantly larger memory consumption. These results confirm validation
experiments of Jansen who also found differences of the order of few percent only [103, 104].
Yet, the observed simulation and measurement results can never be expected to be identical
because of a number of reasons:

- The application interface differs between a simulation tool and a real operating system.
It is difficult to precisely model delays caused by the interaction of the network stack
and application, even though there have been efforts [253]. Blocking socket calls are
difficult to model. In a message-oriented simulator, they have to be replaced by a message
interface that may behave differently. Also, different write patterns can affect the memory
allocation and buffer handling. For instance, the application write patterns affect the
usage of the “PUSH” flag. These effects could only be simulated by a workload model
that exactly reflects the read and write operations of an application.



6.3 Study of functional design aspects of fast startups 131

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

2

4

6

8

10

IP
 d

a
ta

 r
a

te
 [

M
b

it
/s

]

Slow-Start (sim.)

Jump-Start (sim.)

Slow-Start (meas.)

Jump-Start (meas.)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Time since SYN segment [s]

0

2

4

6

8

10

IP
 d

a
ta

 r
a

te
 [

M
b

it
/s

]

Slow-Start (sim.)

Mega-Start (sim.)

Initial-Start (sim.)

Slow-Start (meas.)

Mega-Start (meas.)

Initial-Start (meas.)

SSJS

SSMS IS

Figure 6.15: Fast startup and fast restart of
different end-to-end mechanisms

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

2

4

6

8

10

IP
 d

a
ta

 r
a

te
 [

M
b

it
/s

]

Slow-Start (sim.)

Quick-Start (sim.)

Slow-Start (meas.)

Quick.Start (meas.)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Time since SYN segment [s]

0

2

4

6

8

10

IP
 d

a
ta

 r
a

te
 [

M
b

it
/s

]

TCP (sim.)

XCP (sim.)

RCP (sim.)

SSQS

TCPRCP XCP

Figure 6.16: Fast startup and fast restart of
different network-supported mechanisms

- The simulation model does not model the network interface card and its buffer. Therefore,
it also does not model local backpressure mechanisms if this buffer is full.

- There are many sources of other delays, such as competing processes and the scheduler
of the operating system. These delays cannot easily be modeled in a simulation.

- As explained in Section 6.1.1.2, there are small differences between the kernel versions
used in the simulation (version 2.6.18) and the one used in measurements (version 2.6.24).
This is an inherent problem because real TCP/IP stacks are always a “moving target”.

One has to be aware of these effects when using simulations with real network stacks, even
though their impact can be neglected in many cases.

6.3 Study of functional design aspects of fast startups

6.3.1 Comparison of the startup behavior

In the following, the different end-to-end and network-supported fast startup congestion control
schemes introduced in Sections 4.4, 4.5, and 4.6 are studied. The fundamental properties of
Initial-Start, Jump-Start, Mega-Start, Quick-Start, XCP, and RCP can be examined in a simple
and deterministic scenario: It consists of one client and one server (Nhosts = 1), a single bottle-
neck, and no other traffic. In order to validate the implementations in the simulation tool, this
scenario has been setup up both in simulations and in the lab testbed explained in Figure 6.5.
Figures 6.15 and 6.16 show the throughput at IP layer for a simple client-server transaction with
the connection vector V = [(100,2 · 106,10),(100,2 · 106,0)], i. e., two requests of size 100B
and two responses of 2MB with an idle time of 10s. This corresponds to the typical on-off
communication pattern of interactive applications. In the simulation, the IP data rate is set to
r = 9.76Mbit/s ≈ 10Mbit/s, which is the effective capacity of a 10Mbit/s Ethernet link that
is used in the measurements. The presented traces are measured in downlink direction at the
client. They have been obtained by summing up the size of the received IP packets within slots
of a duration that is equal to the minimum RTT τ = 200ms. For the comparison of simulations
and measurements, the buffer size is set here to B = 1000 packets, which is the default IP layer
buffer size in the Linux kernel. The impact of smaller buffer sizes is studied in the next sections.



132 Chapter 6. Performance evaluation

Figure 6.15 reveals that the Slow-Start algorithm needs about 2s until the path can be fully
utilized in such a setup, both after connection setup and after a long idle time. In the latter
case, the Congestion Window Validation has reduced the window to the restart window. As
to be expected, all fast startup mechanisms are much better. The upper part of the diagram
presents the results for Jump-Start, which plays out up to Kdata = 64KiB during the first RTT.
One can also observe that the implementation of Jump-Start correctly detects the long idle time
and activates a fast restart.

In the lower part of Figure 6.15, the performance of the Mega-Start scheme is shown under
the assumption that the sender approximately knows the available bandwidth of r = 10 Mbit/s
and uses such an initial rate. This graph represents the theoretical optimum in this scenario.
Furthermore, just increasing the initial window to wIS = 10 would also work in this scenario
(Initial-Start), even though the speedup is smaller. In this specific path with significant buffer
space, it would even be possible to use larger initial values without risking packet loss. If the
buffer had been smaller, overflow would have occured, and the resulting completion time would
be similar to Slow-Start or even worse.

Figure 6.16 shows comparable results for different network-supported schemes, with the Slow-
Start as a reference: On a 10Mbit/s link, the maximum useful Quick-Start request rate is
qreq = 5.12Mbit/s [RFC 4782]. In this example, the server piggybacks such a request on the
<SYN,ACK> segment (early activation) and reissues it after the idle time. As the path is empty,
both requests are approved, and the data transfer starts with this rate. The upper part of Fig-
ure 6.16 shows the resulting trace. As one can see, Quick-Start ramps up to full link speed in
about 300 ms. In this diagram, the sender does not adapt the Slow-Start Threshold after the
Quick-Start validation phase, i. e., it continues in Slow-Start mode. This specific design choice
is investigated more in detail in Section 6.3.3.1.

Figure 6.16 also illustrates corresponding simulation results for XCP and RCP. The perfor-
mance of RCP is quite similar to Quick-Start, whereas the speedup of XCP is slightly smaller.
Concerning RCP, some assumptions were necessary in order to realize such a bi-directional
communication with idle times. The published descriptions of RCP [58, 57] do not precisely
specify how the protocol could handle idle times. The RCP model in this thesis uses the last
valid feedback value for flow restart and thereby differs from the NS-2 model that sends unnec-
essary probe traffic instead [181]. Obviously, this algorithm can be very aggressive after idle
times. An alternative would be to restart flows with a small initial rate, as it is realized in case
of XCP.

As to be expected, the comparison of Figures 6.15 and 6.16 shows that the performance of all
fast startup schemes is similar in this specific setup. Yet, there are some subtle differences: First,
the different schemes depend to a different degree on the measured RTT. In the given setup,
the last measured value after a long idle time is larger than the actual RTT, which has been
inflated by queueing during the previous data transfers. Rate-based approaches (Quick-Start,
Mega-Start, etc.) are quite insensitive to RTT measurement errors. If the estimated RTT is too
large, acknowledgments arrive during the rate pacing phase, which must be stopped early. Still,
segments are played out with the expected rate. In contrast, Jump-Start is sensitive with respect
to inflated RTTs and reacts by a reduction of the sending rate. This effect can be observed in
Figure 6.15.

Second, Quick-Start (as well as XCP) requires signaling before it can ramp up the rate. This
signaling results in an additional delay after a long idle time. When application data becomes
available, the sender can only send as much data as permitted by the restart window. For



6.3 Study of functional design aspects of fast startups 133

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

2

4

6

8

10

IP
 d

a
ta

 r
a

te
 [

M
b

it
/s

]

Slow-Start

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Time since SYN segment [s]

0

2

4

6

8

10

IP
 d

a
ta

 r
a

te
 [

M
b

it
/s

]

SS + RED

Conn. 2

Conn. 1

Conn. 1

Conn. 3

Conn. 2

Conn. 3

Figure 6.17: Behavior of competing flows
using Slow-Start without and with RED

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

2

4

6

8

10

IP
 d

a
ta

 r
a

te
 [

M
b

it
/s

]

Jump-Start

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Time since SYN segment [s]

0

2

4

6

8

10

IP
 d

a
ta

 r
a

te
 [

M
b

it
/s

]

Mega-Start

Conn. 2

Conn. 1

Conn. 1

Conn. 3

Conn. 2

Conn. 3

Figure 6.18: Behavior of competing flow us-
ing Jump-Start or Mega-Start

increasing the sending rate beyond this value, the source must wait one RTT and receive the
feedback. Compared to this, end-to-end fast startup scheme can start to send immediately. This
additional signaling delay can be observed in Figures 6.15 and 6.16 by comparing Quick-Start
and Mega-Start: After the idle time, Quick-Start uses a high sending rate about 200ms later.

For all schemes except RCP and XCP, Figures 6.15 and 6.16 also include traces that have been
measured in a testbed with real computers. The comparison with simulation results shows only
small differences. This again backs up the validity of the simulation results.

6.3.2 Differences in convergence and bandwidth sharing

One of the most important characteristics of a congestion control scheme is the handling of com-
peting flows. A bottleneck link is seldomly used by a single flow only. The convergence behav-
ior and fairness characteristics of the different fast startup schemes can be compared in a similar
simulation scenario with Nhosts = 3 clients and servers (r = 9.76Mbit/s, τ = 200ms). The work-
load for each client/server pair is described by a connection vector V = [(100,12000000,0)] and
a start offset of 5s between the different connections. This specific scenario is selected since it
results in different flow arrival and departure patterns. Other fairness experiments with statisti-
cal workload patterns are presented later in Section 6.5. In order to allow the congestion control
to converge, the drop tail buffer in the central bottleneck now has a size of B = 50 packets.
Figures 6.17, 6.18, 6.19, and 6.20 show throughput traces of the three connections if all use the
same flow startup principle.

The microscopic behavior of congestion control algorithms in such a transient scenario is very
sensitive to the path characteristics and the queue management schemes. Even small changes
can result in a completely different transient behavior. The presented traces can therefore only
illustrate one possible outcome of the experiment. Nonetheless, several fundamental differences
of the convergence properties can be observed: The graphs in the upper part of Figure 6.17 show
that the CUBIC congestion control, as well as most other TCP congestion control flavors, does
not necessarily result in equal rates for each flows, even if the RTT is equal. In the given
example, both flows that start later are unable to reach an equal share of the link capacity, which



134 Chapter 6. Performance evaluation

0

2

4

6

8

10

IP
 d

a
ta

 r
a

te
 [

M
b

it
/s

]

Quick-Start

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Time since SYN segment [s]

1

10

100

1000

D
o

w
n

l.
 q

u
e

u
e

 [
p

a
c
k
e

ts
]

Quick-Start

Maximum queue length

Temorary buffering
of TCP’s bursts

Figure 6.19: Behavior of competing flows
using Quick-Start with limited buffer

0

2

4

6

8

10

IP
 d

a
ta

 r
a

te
 [

M
b

it
/s

]

XCP
RCP

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Time since SYN segment [s]

1

10

100

1000

D
o

w
n

l.
 q

u
e

u
e

 [
p

a
c
k
e

ts
]

XCP
RCP

Excessive queueing

Figure 6.20: Behavior of competing flows
using XCP or RCP with unlimited buffer

is mostly occupied by the first flow. This lack of convergence to equal rates is typical for TCP
and bottlenecks with drop tail buffers.

As already explained in Section 4.2.2.2, the fairness can be improved by Active Queue Manage-
ment (AQM) mechanisms such as Random Early Detection (RED) [RFC 2309]. In the lower
chart of Figure 6.17, the central bottleneck uses an RED strategy instead of drop tail. The ad-
vantages are evident: The flows have a roughly equal throughput most of the time, and there are
much less oscillations. Another effect of AQM is that the specific congestion control algorithms
used by the endsystems have less impact on the total performance. But since AQM is still not
predominantly used in the Internet, the following experiments use drop tail buffers.

The experiment shown in Figure 6.18, as well as other studies published in [205], reveal that a
fast startup with Jump-Start does not necessarily improve the convergence to equal bandwidth
sharing. Given that Jump-Start reduces its CWND if packet losses occur, it depends on the
loss pattern whether it is able to take bandwidth from long-lived flows. A fast startup must
send almost with full path capacity (Mega-Start) in order to improve the performance of the
new flows at cost of the already established connections. As explained in Section 4.3.1, it is an
open and controversial question whether such an aggressive behavior of short flows is indeed
fair [172]. This thesis argues similar like Briscoe [35] that it is reasonable to accept some
short-term performance degradation of long-lived flows if this speeds up short and mid-sized
transfers. With high-speed congestion control, long-lived flows are anyway able to return to
their previous rate within few seconds, so that the influence on their overall performance is very
small.

Figure 6.19 reveals that Quick-Start does not improve the convergence behavior if the routers
use an admission control strategy that prevents oversubscription of bandwidth. Due to lack of
available bandwidth, the Quick-Start requests are denied at the bottleneck, and therefore any
new connection falls back to Slow-Start. The other chart in Figure 6.19 depicts the evolution of
the queue length in downlink direction. As to be expected, the long-lived flows cause the queue
to be filled most of the time. If the link is not completely utilized, the bursty arrival of packets
cause short-term fluctuations of the queue length. This is an inherent effect of a window-based
transport protocol.



6.3 Study of functional design aspects of fast startups 135

Server

SYN,ACK

SYN

ACK

response
Server

Request

time

Client

Rate!

Rate?
QS request

IP TCP

QS response
IP TCP

QS report
IP TCP

Response

Figure 6.21: Client-server communi-
cation with early QS activation

P4 2.8 Ghz

2 GiB RAM

1 Gbit/s

P4 2.8 Ghz

2 GiB RAM

1 Gbit/s

IXP 2400

network

processor

P4 2.8 Ghz

1 Gbit/s

1 Gbit/s1 Gbit/s 1 Gbit/s

iperfiperfiperf

Client Router 2
Delay 100 ms

Router 1 Server

Generator 1Sink 1 + generator 2Sink 2

Cross traffic 2
100 Mbit/s

Cross traffic 1
30 Mbit/s

Figure 6.22: Quick-Start testbed with different
router implementations

The behavior of XCP and RCP is completely different in such a setup: As illustrated in Fig-
ure 6.20, both network-controlled schemes indeed converge to equal bandwidth sharing, but at
different time scales: XCP assigns bandwidths to new flows rather slowly. As a consequence,
the convergence time is of the order of 5s. Being a window-based protocol, XCP also requires
some temporary buffering. RCP is much faster and achieves equal throughputs within one RTT.
This advantage of RCP is well-known [57]. However, RCP requires a very large amount of
buffering when new flows arrive. The required buffer space can be of the order of several hun-
dred packets or even larger, which is often not available in current network components. This
effect is also known from other studies [102]. The simulation results in Figure 6.20 assume that
the required buffer space is indeed available (B = ∞). If B had been small, packet loss would
have occured, and both schemes would have to use TCP-like mechanisms that are not specified
so far.

6.3.3 Design and evaluation of new algorithms for Quick-Start

6.3.3.1 End-system functions

The following sections study some algorithmic aspects that are specific to the Quick-Start pro-
tocol. A unique characteristic of Quick-Start is that the endsystems have to request for a certain
data rate qreq as illustrated in Figure 6.21. This raises the question of when to request for what
rate. A very important issue is to avoid needless requests. As a solution, an intelligent activa-
tion strategy is proposed in Section 4.5.3.5. Furthermore, the requested rate can either be larger
or smaller than the available bandwidth on the path. In both cases there are design choices
that affect the performance: If the requested bandwidth is larger than the available bandwidth
on a path with several routers as shown in Figure 6.22, the approval control algorithms have a
significant influence, which is studied in the next subsections.

If the approved rate is smaller than the available bandwidth, Quick-Start may not be able to
immediately utilize the path. In this context, an important question is whether to adapt the Slow-
Start Threshold (SST) after a successful Quick-Start probing phase, or not. This question is left
open by the Quick-Start specification [RFC 4782]. Several alternative strategies are possible:

- Strategy a (or QS-a): The SST is not adapted after a successful Quick-Start request, i. e.,
it remains at its default initial value. In case of Linux, the initial value is very large and
the sender thus continues with the Slow-Start algorithms after the rate pacing.

- Strategy b (or QS-b): The SST is set to the Quick-Start window or some multiple of it. As
a consequence, the data transfer continues in Congestion Avoidance. The rational behind



136 Chapter 6. Performance evaluation

0 1 2 3 4

Time since SYN segment [s]

0

2

4

6

8

10

IP
 d

a
ta

 r
a

te
 [

M
b

it
/s

]

SS, CUBIC (sim.)

QS-a 5.12 Mbit/s, CUBIC (sim.)

QS-b 5.12 Mbit/s, CUBIC (sim.)

SS, Reno (sim.)

QS-a 5.12 Mbit/s, Reno (sim.)

QS-b 5.12 Mbit/s, Reno (sim.)

Corresp. measurements

Slow-StartQuick-Start
without SST
adaption

Quick-Start with SST adaption

CUBIC

Reno

Figure 6.23: Quick-Start with different SST
adaptation strategies on a 10Mbit/s path

0 1 2 3 4 5

Time since SYN segment [s]

0

20

40

60

80

100

IP
 d

a
ta

 r
a

te
 [

M
b

it
/s

]

SS (sim.)

QS-a 82 Mbit/s
QS-b 82 Mbit/s
QS-a 5.12 Mbit/s
QS-b 5.12 Mbit/s
Corresp. meas.QS

82

QS
5.12

Slow-Start

Mbit/s

Mbit/s

Figure 6.24: Quick-Start with different SST
adaptation strategies on a 100Mbit/s path

this is to use the information about the path characteristic obtained from the Quick-Start
mechanisms. This algorithm is recommended in [190].

- Strategy c (or QS-c): The SST is adapted to the Quick-Start window only if the requested
rate is explicitly set by the application and if this rate is also approved. This strategy
combines aspects of the other two ones and has not been proposed elsewhere.

All these strategies have advantages and drawbacks. In strategy QS-b and potentially also in
strategy QS-c, the sender continues in Congestion Avoidance. This variant is less aggressive and
does not risk Slow-Start overshooting. However, a reduction of the SST is also disadvantageous
in many situations. If the approved rate q is smaller than the path capacity, the sender enters the
Congestion Avoidance phase before the sending rate reaches the link capacity. Hence, it takes a
certain additional time until the available bandwidth is indeed utilized. If the Reno algorithms
are used instead of a high-speed congestion control flavor, this time can be extremely long.

This effect is confirmed in Figure 6.23, which prints the first seconds of a long download from
a server. The parameters are: V = [(100,100 · 106,0)], r = 10Mbit/s, τ = 200ms, B = 1000.
Even with CUBIC it is possible that the Slow-Start is faster than Quick-Start in combination
with strategy QS-b. In contrast, the link can almost instantaneously be utilized if the SST is not
adapted (QS-a). The drawback of the SST reduction is even more apparent if the path capacity
is larger, as shown in Figure 6.24. With QS-a, the connection can almost immediately utilize
the link with the capacity 100Mbit/s and an RTT of τ = 200ms, independent of the approved
rate. But with QS-b, even CUBIC increases the data rate very slowly beyond an approved rate
of 5.12Mbit/s. This shows that strategy QS-b hardly makes sense if q� r. One exception could
be the case that an application explicitly states that a sending rate of q is indeed sufficient.

In summary, not adapting the SST after a successful Quick-Start results in faster data transfers in
many situations. Therefore, the strategy QS-a is the default choice in the following experiments,
unless stated otherwise. Strategy QS-b, i. e., an unconditional adaptation of the SST, cannot be
recommended. A possible alternative could be strategy QS-c, in particular if applications would
be able to specify whether the requested value is the maximum useful data rate. A corresponding
API extension is suggested in Section 5.1.1.3. As long as applications cannot precisely specify
their requirements, QS-a is a more generally applicable strategy.



6.3 Study of functional design aspects of fast startups 137

0

20

40

60

80

100

120

140

IP
 d

a
ta

 r
a

te
 [

M
b

it
/s

]

Received at client
Measured at router1
Reserved at router1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Time since SYN segment [s]

0 

10 M

20 M

30 M

R
e

c
v
. 

s
e

q
. 

n
o

. 
[B

]

Automatic
new QS req.

Restart window

Approved QS req.

Approved QS req.

Approved

QS req.

Figure 6.25: Quick-Start on an emulated
path with several routers without cross-traffic

0

20

40

60

80

100

120

140

IP
 d

a
ta

 r
a

te
 [

M
b

it
/s

]

Received at client
Measured at router1
Reserved at router1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Time since SYN segment [s]

0 

10 M

20 M

30 M

R
e

c
v
. 

s
e

q
. 

n
o

. 
[B

]

Cross traffic

Cross traffic at router2

at router1

Restart window

Request
82 Mbit/s

Reduced QS req.

Approved QS req.

Denied QS req.

Figure 6.26: Quick-Start on an emulated
path with several routers with cross-traffic

Unlike in all previous experiments, Figure 6.24 also reveals some differences between the sim-
ulation and measurement results after the flow startup phase. In the simulation, the unmodified
network stack with Slow-Start suffers from a retransmission timeout after about 3s, which does
not occur in the measurements. The trace originating from measurements and simulations also
differ if Quick-Start is enabled. This effect can be explained by a subtle difference between the
simulated network stack and the laboratory setup shown in Figure 6.5: As already mentioned
in Section 6.2.4, the Linux network stack in the endsystem has a local backpressure mechanism
from the link layer to the transport layer. If the buffer in the local interface card is full and TCP
tries to send further packets, an error code is sent back. The Linux TCP implementation reacts
in this case as if this packet had been lost and triggers the congestion control. However, in the
simulation the network interface buffer is not modeled inside the kernel. As a consequence,
the TCP network stack does not receive these backpressure signals. The simulation tool can
therefore not accurately study scenarios where the bottleneck is in the first hop. This difference
is less important in dumb-bell topologies in which the first hop can never become a bottleneck.

6.3.3.2 Fundamental behavior of the target algorithm approval control

A request for a too large rate triggers the approval control in one or more routers on the path.
Figure 6.22 illustrates a parking lot topology with several routers. In this case, these routers even
use different implementations. In order to demonstrate the operation of the approval control
with the target algorithm (cf. Section 4.5.2.4), the client downloads three times a data volume
of 10MB with 5s idle time over a persistent TCP connection. In all entities, the Quick-Start ap-
proval threshold is set to θ · c = 100Mbit/s. The requested Quick-Start rate is qreq = 82Mbit/s,
and the endsystems use QS-b for illustration purposes. In order to challenge the approval con-
trol, further inelastic traffic sources have been set up. If they are enabled, a cross traffic of
30Mbit/s interferes with the first download, and during the third download there is a back-
ground load of 100Mbit/s.

Figure 6.25 and Figure 6.26 show the resulting communication as observed both by the client
and router 1. In router 1, both the currently carried traffic and the Quick-Start request history
has been extracted from kernel logging messages. If there is no cross-traffic, all requests should



138 Chapter 6. Performance evaluation

0

5

10

15

20

IP
 d

a
ta

 r
a
te

 [
M

b
it
/s

]

Measured usage (slot 200 ms)

Usage estimation (peak estim.)

Appr. requests (target algorithm)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time [s]

0

5

10

15

20

IP
 d

a
ta

 r
a
te

 [
M

b
it
/s

]

Measured usage (slot 200 ms)

Usage estimation (EWMA estim.)

Appr. requests (target algorithm)

Figure 6.27: Quick-Start approval control
with the target algorithm using the peak or
EWMA rate estimator

0

5

10

15

20

IP
 d

a
ta

 r
a
te

 [
M

b
it
/s

]

Measured usage (slot autom.)

Usage estimation (peak estim.)

Appr. requests (fair algorithm)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time [s]

0

5

10

15

20

IP
 d

a
ta

 r
a
te

 [
M

b
it
/s

]

Appr. requests (optimistic algo.)

Better fairness

Better fairness

Figure 6.28: Quick-Start approval control
with the fair or optimistic algorithm in com-
bination with the peak rate estimator

be approved, which is confirmed by Figure 6.25. With cross-traffic, the throughput measured
by the router differs from the one that is observed in the client. The upper part of Figure 6.26
reveals that router 1 indeed measures a carried traffic of 30Mbit/s when the first Quick-Start
request of 82Mbit/s arrives. Due to the admission threshold of 100Mbit/s, it can only approve
41Mbit/s. As a consequence, the data transfer starts with this rate.

The second request can be fully approved. The received sequence numbers are plotted in the
lower part of Figure 6.26. They confirm that the second transfer starts only with the small restart
window. The Quick-Start request is piggybacked on first packet. The high-speed data transfer
starts once the corresponding ACK with the Quick-Start response has arrived after one RTT.

During the third transfer, the output link of router 1 is idle. Therefore, router 1 approves and
allocates a rate of 82Mbit/s. However, the admission control at router 2 denies the request,
since the load on its outgoing interface exceeds the Quick-Start admission threshold. As a
consequence, the third download starts in the Slow-Start phase, and router 1 spuriously reserves
Quick-Start capacity during Ω = 2 slots of duration ∆ = 200ms. This simple example shows
that allocation in routers may be wasted due to lack of knowledge about the rest of the path.

As explained in Section 4.5.2, there are several degrees of freedom how to implement the ap-
proval control according to the target algorithm proposed in [192]. Two possible filters for
the calculation of the link usage are a peak estimator and an EWMA estimator. Both alterna-
tives are compared in Figure 6.27. These simulations assume a deterministic arrival pattern of
Quick-Start requests that represent different request arrival patterns: One client-server trans-
fer with a connection vector V = [(100,2000000,0)] starts at t = 0s. Two further mid-sized
transfers with V = [(100,200000,0)] start at t = 4s with a 1s gap, then there are five transfers
with V = [(100,200000,0)] at t = 7s, each with a 0.1s gap, and finally the link is used by
twenty smaller transfers with V = [(100,20000,0)] at t = 10s with a 0.05s gap. The traffic
metering and approval control functions here operate with a constant control interval duration
of ∆ = τ = 200ms and Ω = 2. The traffic measurement is realized before the IP packets get
queued in the bottleneck link with rate r = 10Mbit/s.



6.3 Study of functional design aspects of fast startups 139

100 Mbit/s

Ethernet

100 Mbit/s

Ethernet

1.28 Mbit/s (25%)

2.56 Mbit/s (25%)

5.12 Mbit/s (25%)

10.24 Mbit/s (25%)

Log file

100 Mbit/s

request generator

Quick−Start

Router

Sink

Figure 6.29: Quick-Start approval control load test with a mix of request rates

As Figure 6.27 shows, the peak estimator reacts instantaneously to an increase of the measured
rate, and remembers a peak value during a duration of Npeak ∆ = 1s. As the router observes
the input traffic to the bottleneck queue, the instantaneous rate may be larger than r. In con-
trast, the EWMA estimator reacts much more smoothly to sudden changes of the load. In the
given example, the EWMA estimator, configured with αewma = 1/8, grants more bandwidth to
Quick-Start requests, but the overall difference between both techniques is small. This result is
consistent with findings of Sarolahti et al. [192]. In this work the peak estimator is preferred
due to its faster responsiveness.

6.3.3.3 Performance of the proposed new approval control algorithms

In Section 4.5.3.3, the fair algorithm and the optimistic algorithm are proposed as alternatives to
the target algorithm. Figure 6.28 compares their characteristics in the same workload scenario
like in the previous section. As to be expected, their behavior differs to the target algorithm if
there are many competing requests. The upper part of Figure 6.28 shows that the fair algorithm
reacts to the bulk arrival of requests at t = 10s. It indeed grants more or less the same, small
rate to each of of the requests. In contrast, the target algorithm randomly grants a larger rate
to selected ones, which is unfair. The lower part of Figure 6.28 reveals that the optimistic
algorithm is even more fair: It justs approves all requests as long as the central link has spare
capacity. But this also means that during the bulk arrival of requests at t = 10s the available
capacity is overbooked by one order of magnitude.

The benefits of the two alternative approval control algorithms can be observed more systemati-
cally in a load test without actual data traffic, which avoids interactions with the rate estimators.
As depicted in Figure 6.29, the approval control can be challenged by a request generator that
issues a large number of Quick-Start requests. In the practical setup, this Linux-based load
generator has been realized by a program that generates raw IP packets carrying a Quick-Start
request [226]. They have a configurable, exponentially distributed IAT. The maximum band-
width available to requests is here set to θ · c = 100Mbit/s.

In theory, the target algorithm can grant a maximum bandwidth per second that is equal to

Ξ =
θ · c−u

∆ ·Ω
. (6.1)

In this term, θ ·c−u is the available bandwidth and ∆ ·Ω the duration of the bandwidth pooling.
The dependency of Ξ on the duration of the control interval ∆ is confirmed by the measurement
results presented in Figure 6.30. It depicts the granted bandwidth per second as a function of
the requested value, which depends on the IAT of requests. The figure considers four different
setings for the slot duration ∆ between 100ms and 1s. The larger the value of ∆ (or, alternatively,
Ω), the more conservative is the target algorithm, i. e., the less bandwidth is granted.



140 Chapter 6. Performance evaluation

0 100 200 300 400 500

Requested rate in Mbit/s per second

0

100

200

300

400

500

G
ra

n
te

d
 r

a
te

 i
n
 M

b
it
/s

 p
e
r 

s
e
c
o
n
d

Target algorithm

Fair algorithm

Optimistic algorithm

Theoretical upper bound

1000 ms

100 ms

200 ms

500 ms

Slot duration

Figure 6.30: Efficiency of different approval
control algorithms

0 100 200 300 400 500

Requested rate in Mbit/s per second

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
a
ir
n
e
s
s
 i
n
d
e
x

Target algorithm

Fair algorithm

Optimistic algorithm

Inherent unfairness of requests

1000 ms

500 ms

200 ms

100 ms

Slot duration

Figure 6.31: Fairness of different approval
control algorithms

Figure 6.31 analyzes more in detail how the rate is allocated to the different requests. The
chart has been obtained by calculating the fairness index of the approved rates according to
Equation (4.2). Of course, the optimal situation is that all requests get approved. In the given
setup, this outcome corresponds to a fairness index FI < 1, as the rate requests have different
values. The result for an approval control with the target algorithm is much below this optimal
value: If ∆ is large, e. g., 500ms or 1s, the fairness index FI for the target algorithm is very
small. This experiment proves that the target algorithm is indeed very unfair if resources are
scarce and requests have to be reduced.

Figure 6.31 confirms that the fairness is significantly improved by the proposed alternative
algorithms. As the optimistic algorithm approves all requests in this setup, the fairness index FI
is equal to the theoretical optimum value. In other words, the optimistic algorithm is inherently
fair because it allows an oversubscription of the resources.

Figure 6.31 shows that the fair algorithm achieves a reasonable level of fairness, too, even
though it uses the principle bandwidth pooling like the target algorithm. The fairness index FI
is slightly smaller than the optimum value. This effect is caused by the parameter Θ, which
still allows some unfairness in order to achieve efficiency (see Section 4.5.3.3 for details). Fur-
thermore, the fair algorithm only assigns equal rates if the arrival pattern of the requests is
rather regular, which is not the case in this setup – and also very unrealistic in reality. Still,
the achieved fairness is much better than the one of the target algorithm. The drawback of the
fair algorithm is that less bandwidth is granted in total, which can be observed in Figure 6.30.
This underutilization of the total size of the bandwidth pool is a side-effect of reserving some
bandwidth for future requests, which may not always be used.

These example results indicate that there is a fundamental design trade-off between high effi-
ciency, high fairness, and low risk of congestion, and that no approval control is optimal with
respect to all three design goals. The target algorithm is efficient and conservative, i. e., it does
try to minimize the risk of congestion. Both proposed new algorithms improve the fairness com-
pared to the existing target algorithm – at the cost of either reducing the efficiency or increasing
the probability of congestion due to resource oversubscription. The application performance
implications of this trade-off is also investigated in Section 6.4.5.2. The experiments there will
show that an approval control with oversubscription performs quite well in many situations.



6.4 Quantification of the potential performance improvement 141

6.4 Quantification of the potential performance improvement

6.4.1 New analytical model for fast startup performance

6.4.1.1 Existing models for short and mid-sized TCP data transfers

The potential performance improvement of fast startup schemes depends on the Slow-Start
performance and on the specific realization of the fast startup. There are various closed-form
analytical models for the transfer time of a given amount of data in Slow-Start. These existing
Slow-Start models can be subdivided into two different classes that differ in their assumptions.

First, TCP’s performance in Slow-Start can be limited by a maximum allowed Congestion Win-
dow, a limited initial Slow-Start Threshold, a small receiver advertised window, or by packet
loss. In all these cases, the maximum throughput may remain below the theoretical maximum
given by the available bandwidth on the path. Two well-known models for the influence of lost
packets during Slow-Start can be found in references [42, 215].

Second, the Slow-Start algorithm imposes a fundamental performance limit. Even if a source
can indeed send with a data rate equal to the available bandwidth on the path, the Slow-Start
results in an additional delay until this optimal operation point is reached. Because of the expo-
nential increase of the CWND, this delay depends on a logarithmic function of the BDP. This
effect is obvious and has also been quantified in several publications [185, 20]. Bodamer [24]
has extended this previous work and has derived a closed-form expression for file transfer times
in Slow-Start. In the following, an adapted version of Bodamer’s model is used to quantify the
maximum possible improvement of fast startup congestion control.

Despite numerous related work on fast startup schemes, the exact performance improvement
has hardly been calculated analytically. As an exception, Sarolahti et al. [192, 191] present
an analytical close-form equation for the performance improvement of the Quick-Start TCP
extension. However, the equations in [192, 191] are not correct when the amount of data exceeds
the BDP. Furthermore, that model completely neglects the impact of the rate pacing and the
consequences of an initial sending rate that is smaller than the available bandwidth. Thus, it
only provides a rough upper bound on the performance improvement by Quick-Start in some
usage scenarios.

The analytical models derived in the following sections are much more precise and overcome
these shortcomings. An early version for Quick-Start has been published in reference [199]. It
has later been extended to handle other fast startup schemes as well [205].

6.4.1.2 Data transfer times with Slow-Start

In this section, Bodamer’s model as presented in [24] is briefly recapitulated. As shown in
Figure 6.32, it is assumed that the end-to-end path can be characterized by a TCP path capacity
R = L

MTU · r and its minimum RTT τ . r is the data rate at IP layer, MTU is the maximum
transmission unit, and L is the maximum segment size (MSS).

The TCP behavior in Slow-Start can be modeled by rounds or mini-cycles that start when the
sender begins the transmission of a window of packets and that end when an ACK for one or
more of these packets arrives [42, 185, 215, 20]. In each round i≥ 1, the sender sends as many
data segments as its CWND W (i) allows. Depending on the usage of delayed ACKs, the receiver
typically sends an ACK after having received η segments. Since the sender increases its CWND
by one segment per ACK, the CWND at round i + 1 follows as W (i + 1) ≈ (1 + 1

η
)W (i) =



142 Chapter 6. Performance evaluation

τ/2

τ/2
ACKs

Rate r

"Bottleneck" link
ReceiverSender

Figure 6.32: Simplified path model

0 RTT 2 RTT 3 RTT

R
0

Time4 RTT

Round 1
Round 2

Round 3

Round 4

Amount of data s

R

S
e

n
d

in
g

 r
a

te
 R

(i
)

here:

(Round 5)

Rate R(i) exceeds R

Available bandwidth R

first RTT
Pacing during

ψ
PA

=4

Figure 6.33: Fast startup with rate pacing

γ ·W (i) with γ = 1+ 1
η

. With an initial window of w the window size in round i is W (i)= w ·γ i−1.
W (i) corresponds to the maximum amount of data to be sent in that round. The amount of data
transmitted in i rounds can be approximated by a geometric series:

M(i,w) =
i

∑
j=1

W ( j) = w
γ i−1
γ−1

. (6.2)

The maximum amount of data that is transferred in Slow-Start rounds is M(ψSS,w). ψSS is
the index of the last Slow-Start round that is completely used by the sender. Once the sending
window W (i) exceeds the BDP, the throughput is limited by the data rate of the path. Under
the assumption that the duration of a round is Tround = τ + L

R and that it is independent of the
window size, the transfer time of a given amount of data s in Slow-Start is

ΓSS(s,w) = Tround ·ψSS︸ ︷︷ ︸
Delay by Slow-Start

+
(

s−L ·M(ψSS,w)
R

)
︸ ︷︷ ︸
Transfer fully utilizing path

. (6.3)

This expression assumes that the initial value of the Slow-Start Threshold is larger than the BDP
and that the connection is not receiver-limited. In order to calculate ψSS, two cases have to be
considered: If the data transfer is long enough, the sender fully utilizes the pipe in round κSS if
W (κSS) exceeds the BDP, i. e., W (κSS)≥ R ·Tround/L. Solving for κSS gives:

κSS =
⌈
logγ

(
R·Tround

w·L

)⌉
+1 . (6.4)

Short transfers may not arrive at this point. If the amount of data is completely transferred in
Slow-Start rounds only, the number of rounds νSS follows from M(νSS,w)≥ d s

Le:

νSS =
⌈
logγ

(⌈ s
L

⌉
γ−1

w +1
)⌉

. (6.5)

By definition, the last complete round has the index

ψSS = max(min(κSS,νSS)−1,0) . (6.6)

6.4.1.3 New model for rate paced fast startup schemes

One fundamental difference between the Slow-Start and most of the considered fast startup
schemes is the use of rate pacing during the first RTT. Due to ACK clocking, rate pacing also



6.4 Quantification of the potential performance improvement 143

changes the subsequent traffic pattern, since the segments are not all sent at once, but equally
spaced over an RTT. Because of this difference, Equation (6.3) does not correctly describe a
data transport that starts with rate pacing. Rate pacing can correctly be analyzed by a new
model [205] that modifies Bodamer’s equations accordingly.

With rate pacing, the sender approximately uses an initial sending rate Q during the first RTT.
If the sender uses the Slow-Start algorithms after the initial playout of data, i. e., if it does not
switch to Congestion Avoidance, the sending rate is further increased. This means that again
rounds with a duration Tround occur, as depicted in Figure 6.33. However, unlike in the model in
the previous section, data is continuously sent within the round. As long as the available TCP
path capacity R is not reached, the sending rate is increased by a factor γ = 1+ 1

η
every round,

i. e., data is continuously sent with rate Q(i) = Q · γ i−1 during round i. Therefore, one must
distinguish like in Equation (6.3) a sending phase in which the rate Q(i) is smaller than R, and
another one in which the path is fully utilized. The transfer time then follows as

ΓPA(s,Q) = Tround ·ψPA +
s−M(ψPA,Q ·Tround)

min(R,Q · γψPA)
. (6.7)

In this expression, M(i,w) is the maximum amount of data that can be sent in round i. It is given
by Equation (6.2). ψPA is again the index of the last round with a rate Q(i) < R. Analogous to
Equation (6.6), it depends on two different effects and is defined as

ψPA = max(min(κPA,νPA)−1,0) . (6.8)

The first term with κPA refers to the index of the round in which the available path capacity R
is reached. νPA is the round in which all data would have been sent. The corresponding values
differ from Equation (6.4) and Equation (6.5) in several details:

κPA =
⌈
logγ

(
R
Q

)⌉
+1 (6.9)

νPA =
⌈
logγ

(
s·(γ−1)
Q·Tround

+1
)⌉

. (6.10)

6.4.1.4 Total transfer times

Equation (6.3) and Equation (6.7) only quantify the transfer time. Latencies on the path have to
be considered separately. For instance, if the transfer time of a response is Γ, and if the request
message size can be neglected, the minimum response time of a client-server application follows
as Tresp = Γ+τ . If a connection has to be established first, an additional RTT is required for the
three-way handshake, which results in a total delay of 2τ +Γ.

For different startup schemes, Γ depends on the parametrization. Table 6.1 lists the correspond-
ing expressions for the algorithms that are used in the following experiments. The minimum
server response time of Initial-Start follows directly from Equation (6.3) with a larger initial
window wIW. In case of Jump-Start, the initial rate Q depends on the amount of queued appli-
cation data s and the thresholds Kdata and Krate. Mega-Start and Quick-Start both depend on the
used initial rate Q. However, in case of Quick-Start there is only a limited number of valid val-
ues for Q [RFC 4782]. Furthermore, the signaling delay of one RTT must be taken into account
depending on the Quick-Start usage scenario.



144 Chapter 6. Performance evaluation

Table 6.1: Response time equations for different startup schemes

Scheme Additional parameters Minimum response time Tresp(s)

Linux Slow-Start – τ +ΓSS(s,w)
Initial-Start Initial window wIS τ +ΓSS(s,wIS)
Jump-Start Thresholds Kdata and Krate τ +ΓPA (s,min(s/τ,Kdata/τ,Krate))

if min(s,Kdata,Krate · τ) > w ·L
Mega-Start Initial rate Q = L

MTU ·q τ +ΓPA(s,Q) if Q · τ > w ·L
Quick-Start (early activ.) Approved rate Q = L

MTU ·q τ +ΓPA(s,Q) if Q · τ > w ·L
Quick-Start (late activ.) Approved rate Q = L

MTU ·q 2τ +ΓPA(s−w,Q) if Q · τ > γ ·w ·L

The parameters in these analytical models are as follows: In the Linux network stack the MSS
is L = 1448B for an MTU of 1500B. The “QuickAck” mechanism during a Slow-Start results
in η = 1. Linux’s initial CWND in Linux kernel version 2.6.18 depends on the scenario: At the
beginning of a connection it is w = 2, whereas w = 3 is used after long idle times. Apparently,
the motivation for this difference is to avoid interactions with erroneous implementations of
delayed acknowledgments.

6.4.2 Comparison of the potential speedup

6.4.2.1 Performance improvement under ideal constraints

If the assumptions of the analytical model are fulfilled, the performance benefit of fast startup
schemes depends on the amount of data s, the available bandwidth r, and the minimum RTT τ .
In the following, the possible speedup of data transfers is studied under such ideal constraints,
and the protocol implementations are validated against the analytical models.

The setup again consists of a client and a server. The communication is described by a connec-
tion V = [(100,s,0)], which is transported over a new TCP connection. s is varied over several
orders of magnitude. The experiment thus corresponds to the communication pattern shown in
Figure 6.21. Both in simulations and measurements, the link capacity is r = 10Mbit/s. The
buffer size is set to B = 1000 packets to enable similar constraints for simulation and measure-
ments. In order to illustrate the fundamental effect, the minimum RTT is assumed to be 200ms
in the first diagrams. Afterwards, the RTT as well as be bandwidth are varied. All presented re-
sults have been obtained with the CUBIC congestion control. Other experiments have revealed
that there are only few differences if the Reno algorithms is used; they are published in [204].

The main performance metric is here the server response time Tresp, which is the duration be-
tween the completion of the three-way-handshake and the end of the data transfer. Without
random cross-traffic, the simulation result for the response time is deterministic, i. e., confi-
dence intervals are not required. For the testbed measurements, each presented response time
value is the average of ten consecutive measurements.

Figures 6.34–6.37 print the server response time Tresp as a function of the response size s, i. e.,
the amount of data sent by the server. All figures compare the analytical prediction for the
response times with the simulation and testbed measurement results, i. e., there are three graphs
for each considered flow startup mechanism. The graphs for standard TCP, which is shown in
all figures, reveals the typical steps of the Slow-Start. These steps occur whenever a new Slow-
Start round is required. The Slow-Start of the simulated network stack is exactly modeled by



6.4 Quantification of the potential performance improvement 145

10
3

10
4

10
5

10
6

10
7

Response size [B]

0.1

1

10

S
e
rv

e
r 

re
s
p
o
n
s
e
 t
im

e
 [
s
]

Analytical model

Simulation
Measurement
Theoretical optimum

Slow-Start

Jump-Start

The graphs of

analytical model, 

simulation, and

measurement are 

almost identical.

Figure 6.34: Benefit of Jump-Start as a func-
tion of the transfer size

10
3

10
4

10
5

10
6

10
7

Response size [B]

0.1

1

10

S
e
rv

e
r 

re
s
p
o
n
s
e
 t
im

e
 [
s
]

Analytical model

Simulation
Measurement
Theoretical optimum

Slow-Start

Initial-Start
10 MSS

Mega-Start
10 Mbit/s

Figure 6.35: Benefit of other end-to-end
schemes as a function of the transfer size

10
3

10
4

10
5

10
6

10
7

Response size [B]

0.1

1

10

S
e
rv

e
r 

re
s
p
o
n
s
e
 t
im

e
 [
s
]

Analytical model

Simulation
Measurement
Theoretical optimum

Slow-Start

QS 5.12 Mbit/s
early activationlate activ.

QS 5.12 Mbit/s

Figure 6.36: Benefit of Quick-Start as a
function of the transfer size

10
3

10
4

10
5

10
6

10
7

Response size [B]

0.1

1

10
S

e
rv

e
r 

re
s
p
o
n
s
e
 t
im

e
 [
s
]

Simulation
Theoretical optimum

Slow-Start

XCP

RCP

Figure 6.37: Benefit of network-controlled
schemes as a function of the transfer size

Equation (6.3). However, there is a difference between the simulation and the measurement. As
mentioned in Section 6.1.1.2, the Slow-Start implementations in Linux kernel versions 2.6.18
and 2.6.24 are not identical and differ in the initial window. Only the kernel that is used in
simulations uses an initial window of w = 2. But the difference between both versions is only
significant for transfers up to 10kB. Above this value the simulation results, the measurements,
and the analytical model match very well.

Fast startup schemes can be expected to improve the response time in particular for mid-sized
response sizes of the order of several dozens of kilobytes [192], i. e., transfers between “mice”
and “elephants”. The charts in Figures 6.34–6.37 confirm this is inherent characteristic of all
fast startup scheme. Though, there are specific differences.

As shown in Figure 6.34, Jump-Start results in substantially faster data transfers if the avail-
able data exceeds the initial window w. As Jump-Start is designed to play out the available
application data during one RTT τ , the response time should ideally be given by Tresp = 2τ for
w < s ≤ Kdata. However, Figure 6.34 reveals that the actual response time of the real imple-



146 Chapter 6. Performance evaluation

mentation is smaller for s� Kdata = 64KiB. As explained in Section 5.3.2.2, rate pacing can in
practice only be realized with a limited number of timers. If s is small, only two timers make
sense. But with such a small number of timers it is impossible to realize an ideal rate pacing.

Other end-to-end schemes can result in a much larger initial sending rate. If the initial window
is just increased to a larger value wIS = 10, bursts up to this size can be sent out immediately
(Initial-Start). The resulting graph, which is depicted in Figure 6.35, basically represents a
vertical shift of the Slow-Start graph. Figure 6.35 also shows the theoretical optimum that
would be achieved if the available bandwidth on the path r = 10Mbit/s was somehow known
and used (Mega-Start).

In case of Quick-Start, the performance benefit depends on the activation method. According
to Figure 6.36, if either the application or the kernel-internal heuristics initiate a request during
the three-way handshake (early activation), Quick-Start significantly speeds up transfers in the
range of few kilobytes to about one megabyte. As long as s < Q · τ , the sender can play out
all data with the approved rate, which is q = 5.12Mbit/s in the given example. Larger transfers
completely utilize the path after some time. In the Quick-Start graphs in Figure 6.36 there is
also a small kink at s = 128kB, which corresponds to the amount of data that can completely be
sent during the rate pacing phase. If Quick-Start gets activated once application data is indeed
available (late application), one additional RTT is required for the signaling. This delay results
in a smaller performance benefit, which is also shown in Figure 6.36. The simulation and mea-
surement results again correspond to target value given by the analytical models in Table 6.1.

The fundamental difference between the philosophy of bandwidth pooling and oversubscription
can be observed in Figure 6.37. In XCP, the RTT must be known by the network components
before bandwidth out of the resource pool is granted to a flow [64]. As a consequence, XCP
requires an additional RTT before it can start to send with a high sending rate. The initial
window allowed by XCP without positive feedback is not specified and here assumed to be
one MSS. The performance is thus similar to Quick-Start with late activation. In contrast, RCP
permits bandwidth oversubscription. As a result, the available bandwidth can immediately fully
be utilized and the response time is almost identical to the theoretical minimum.

6.4.2.2 Impact of the RTT and the available bandwidth

The benefit of fast startup congestion control fundamentally depends on the RTT of the path.
Figures 6.38 and 6.39 depict as examples the relative improvement of Jump-Start and Quick-
Start for different RTTs. This improvement is calculated from the ratio of the server response
time with Slow-Start divided by the one with the fast startup according to Table 6.1.

Both diagrams reveal a characteristical pattern: For a given RTT, the fast startup is only of
limited benefit for small amounts of data, since such transfers can be completed in a few RTTs
anyway. Long bulk data transfer are also not significantly improved, because the Slow-Start is
only a transient phase and has only marginal impact on the overall download time. But there
is a benefit for mid-sized transfers in between, i. e., for data volumes between 10kB and 1MB.
In this range, the Slow-Start has a delaying effect. If the RTT is small, the effect is only small.
But for RTTs of the order of 100ms or larger, server response times can be improved by several
hundred percent. The larger the RTT, the higher the potential speedup. These diagrams confirm
similar empirical findings of Sarolahti et al. for Quick-Start [192].

When the available bandwidth on the path increases, the relative performance improvement can
be much larger. This effect can be observed in Figure 6.40, which shows simulation results for



6.4 Quantification of the potential performance improvement 147

10
3

10
4

10
5

10
6

10
7

Response size [B]

1

1.5

2

2.5

3

3.5

4

R
e
la

ti
v
e
 i
m

p
ro

v
e
m

e
n
t 
o
f 
re

s
p
o
n
s
e
 t
im

e Analytical model

Simulation

RTT

100 ms

50 ms

10 ms

200 ms

Jump-Start
64 KiB threshold

10 Mbit/s rate limit

Figure 6.38: Relative performance improve-
ment of Jump-Start as a function of the RTT

10
3

10
4

10
5

10
6

10
7

Response size [B]

1

1.5

2

2.5

3

3.5

4

R
e
la

ti
v
e
 i
m

p
ro

v
e
m

e
n
t 
o
f 
re

s
p
o
n
s
e
 t
im

e Analytical model

Simulation

RTT

100 ms

50 ms

10 ms

200 ms

Quick-Start
5.12 Mbit/s req.
early activation

(QS-a)

Figure 6.39: Relative performance improve-
ment of Quick-Start as a function of the RTT

10
6

10
7

10
8

10
9

IP path capacity [bit/s]

0.1

1

10

R
e

s
p

o
n

s
e

 t
im

e
 f

o
r 

a
 2

 M
B

 f
ile

 [
s
]

Theor. optimum

Slow-Start
Jump-Start

QS-a 5.12 Mbit/s, early activ.

QS-b 5.12 Mbit/s, early activ.

QS-a 655 Mbit/s, early activ.

QS-b 655 Mbit/s, early activ.

Slow-Start

Jump-Start

QS 655 Mbit/s

QS-a 5.12 Mbit/s

QS-b 5.12 Mbit/s

Figure 6.40: Benefit of selected schemes for
higher path capacities

10
3

10
4

10
5

10
6

10
7

Transfer data size [B]

0.1

1

10
S

e
rv

e
r 

re
s
p
o
n
s
e
 t
im

e
 [
s
]

Analytical model

Measurement on path

Slow-Start

Quick-Start

82 Mbit/s

655 Mbit/s

between NCSU and Kuyushu

5.12 Mbit/s req.

(1 Gbit/s, RTT 233 ms)

Speedup by
factor 10

Figure 6.41: Measured speedup on a real
1Gbit/s path with different QS request rates

such a path with an RTT of 200ms. A mid-sized data transfer in Slow-Start cannot utilize the
bandwidth if it exceeds several Mbit/s. The minimum download time is of the order of 2s, even
if the path capacity is very large. In contrast, the theoretical optimum can almost be reached
if a sufficiently large Quick-Start request is issued and granted. This corresponds to a speedup
of one order of magnitude. There are certain steps in the Quick-Start graph, which correspond
to the few possible Quick-Start request rates. If only a smaller rate of qreq = 5.12Mbit/s is
requested, the path is not completely utilized, and the response time can only be improved by
about one second.

In this setup, Jump-Start also improves the delay by about one second only and cannot com-
pletely benefit from the large available bandwidth. Besides this, Figure 6.40 shows once again
that a reduction of the SST after the Quick-Start phase is not optimal and that the QS-b strategy
can even result in a worse performance than Slow-Start.

These results have also been confirmed on a real long-distance path with a data rate of r ≈
1Gbit/s. Figure 6.41 presents the results of an experiment with different Quick-Start request



148 Chapter 6. Performance evaluation

rates. Due to lack of full Quick-Start router support, this study assumes that requests up to that
rate are indeed approved on the path, since the path was not significantly loaded by other traffic.
The Quick-Start mechanism can achieve substantial transfer time speedups up to a factor of ten
in such a high-speed environment, if the endsystem asks for a sufficiently high rate. This means
that the transport delay are reduced by up to several seconds, which is perceivable by a human
user.

6.4.3 Bandwidth sharing properties

6.4.3.1 Implications of cross-traffic

A flow startup scheme is challenged if a large number of flows arrive on a bottleneck link. In
order to study this important situation, both simulations and measurement have been performed
for a client-server communication between Nhosts = 200 client-server pairs. For simplicity, it is
assumed that client and servers exchange requests and responses over Nhosts = 200 persistent
TCP connections. In this case, Slow-Start is also used since the Congestion Window Valida-
tion [RFC 2861] reduces the CWND during the idle times to the restart window (in case of
Linux, w = 3). In order to adjust a certain load ρ , random request-response vectors are sched-
uled on these persistent TCP connections. The requests are small (100B), and the response
length is obtained from a truncated pareto distribution with mean m = 114kB, shape factor
αpareto = 1.1, and a cutoff at Kpareto = 10MB. This distribution is introduced in Section A.1.
This workload model thus uses a similar response size distribution like the traffic measurements
presented in Section 3.3.3.2, but assumes larger average transfer sizes, i. e., a traffic scenario in
which more mid-sized transfers occur. Experiments that reflect the current Internet workload
characteristics are presented in the next section. The IAT of vectors is exponentially distributed
with mean δ = m/R/ρ , which is a realistic assumption according to Section 3.3.3.2. The pa-
rameters of the dumb-bell topology are r = 10Mbit/s and τ = 200ms. In the simulations, the
central bottleneck has a reasonable buffer size of B = 50 packets.

The theoretical minimum average server response time for a lightly loaded bottleneck (ρ � 1)
can be calculated by integrating over the response size probability distribution (cf. Section A.1):

Tresp,min =
∫ Kpareto

kpareto

ftpareto(z) ·Tresp(z)dz. (6.11)

The corresponding expressions for Tresp(z) as a function of the amount of data z depend on the
flow startup scheme and are given in Table 6.1. When the load ρ increases, it is hardly possible
to exactly calculate the server response time, as the link is not equally shared among the data
transfers. Furthermore, packet losses will occur, but their influence cannot be described by a
simple model. Yet, it is possible to model an ideal case without the impact of TCP’s protocol
mechanisms, in which all ongoing transfers equally share the bottleneck link. The response
time in this case can be determined from an M/G/1 Processor Sharing (PS) model [20]:

Tresp,ps = τ +
m

R (1−ρ)
. (6.12)

If the individual rate of the flows was limited, this model could be extended by an M/G/r PS
model [185, 20].



6.4 Quantification of the potential performance improvement 149

0.01 0.1 1

Downlink load target

0

200

400

600

800

1000

1200

1400

1600

1800

2000

A
v
e
ra

g
e
 s

e
rv

e
r 

re
s
p
o
n
s
e
 t
im

e
 [
m

s
]

Simulation
Measurement
Processor sharing

SS

JS

Processor sharing

Lower bound by model

Lower bound by model

Figure 6.42: Impact of an increased load on
Jump-Start

0.01 0.1 1

Downlink load target

0

200

400

600

800

1000

1200

1400

1600

1800

2000

A
v
e
ra

g
e
 s

e
rv

e
r 

re
s
p
o
n
s
e
 t
im

e
 [
m

s
]

Simulation
Measurement
Processor sharing

SS

IS

MS
Processor sharing

Lower bound by model

Lower bound by model

Lower bound by model

Figure 6.43: Impact of an increased load on
other end-to-end schemes

6.4.3.2 Comparison of the different fast startup schemes

Figure 6.42 compares the performance of Slow-Start and Jump-Start scheme in this setup, both
with measurement and simulation data. Obviously, the response time increases as the load
ρ at the bottleneck gets larger. Also, the response times have then a much larger variance.
In average, the Jump-Start scheme can improve the server response time by several hundred
milliseconds in this experiment. It does not reach the ideal case of processor sharing according
to Equation (6.12), which is also shown in Figure 6.42, but the difference is rather small. Jump-
Start can also keep the response time at a low level even if the bottleneck load is high. This
indicates a reasonable behavior of the Jump-Start approach.

As shown in Figure 6.43, other end-to-end scheme have a similar performance as long as the
bottleneck load is small. But there are differences once the load increases. If ρ � 0.1, both
the Mega-Start and the Initial-Start schemes are not significantly better than the Slow-Start. In
the former case, packet losses are very likely to occur if each flow starts approximately with
full link speed. In the latter case, the lack of pacing increases the risk of buffer overflow. If the
initial window window was larger, i. e., wIS > B, the performance of Initial-Start would be even
worse than Slow-Start [205].

In the given scenario with persistent connections, Quick-Start can only use the late activation,
i. e., it needs one RTT for the signaling. This means that the optimal speedup compared to
other schemes is smaller. The graph shown in Figure 6.44 has been obtained with the target
algorithm approval control with ∆ = 200ms and θ = 1. This means that requests are approved
if the resulting bandwidth, including the current traffic and recently approved requests, is less
than the bottleneck link capacity. Once the load ρ increases, i. e., when many requests arrive in
parallel, less requests are approved, or the bandwidth granted to each request is smaller. In case
of a very high load almost all requests are denied. This effect can be seen in Figure 6.44: For a
high load, the Quick-Start protocol has more or less the same performance like a flow start with
the standard Slow-Start.

The corresponding results for XCP and RCP are depicted in Figure 6.45 (with B→ ∞). This
diagram again shows that XCP is ineffective for short- and mid-sized transfers and that it may
even be slower than TCP’s Slow-Start if there are several competing flows. RCP indeed closely



150 Chapter 6. Performance evaluation

0.01 0.1 1

Downlink load target

0

200

400

600

800

1000

1200

1400

1600

1800

2000

A
v
e
ra

g
e
 s

e
rv

e
r 

re
s
p
o
n
s
e
 t
im

e
 [
m

s
]

Simulation
Measurement
Processor sharing

SS

QS, interval 200 ms

Processor sharing

Lower bound by model

Lower bound by model
Impact of QS

approval control

Figure 6.44: Impact of an increased load on
Quick-Start

0.01 0.1 1

Downlink load target

0

200

400

600

800

1000

1200

1400

1600

1800

2000

A
v
e
ra

g
e
 s

e
rv

e
r 

re
s
p
o
n
s
e
 t
im

e
 [
m

s
]

Simulation
Processor sharing

SS

XCP

RCP
Processor sharing

Figure 6.45: Impact of an increased load on
XCP/RCP

0.01 0.1 1

Downlink load target

500

600

700

800

900

1000

1100

1200

1300

1400

1500

A
v
e
ra

g
e
 s

e
rv

e
r 

re
s
p
o
n
s
e
 t
im

e
 [
m

s
]

Slow-Start (sim.)

QS, interval 200 ms, target (sim.)

QS, interval 1000 ms, target (sim.)

QS, interval autom., fair (sim.)

QS, interval autom., optimistic (sim.)

SS

QS

Figure 6.46: Load dependency of different
QS approval control algorithms

10
3

10
4

10
5

10
6

Minimum threshold for QS activation [B]

1000

A
v
e

ra
g

e
 s

e
rv

e
r 

re
s
p

o
n

s
e

 t
im

e
 [

m
s
]

Quick-Start, interval autom., target (sim.)

Mean response length 114 kB
Downlink load 50%

Downlink load 5%

Downlink load 50%

Downlink load 5%

Mean response length 14 kB

Figure 6.47: Benefit of activating Quick-
Start only for larger transfers

approximates processor sharing. These results as well as similar studies in [181] thus confirm
the findings of Dukkipati [57] with a completely independent simulation tool implementation
of XCP and RCP.

6.4.3.3 Benefit of the intelligent usage of Quick-Start

On moderately loaded links, the performance of Quick-Start can be significantly optimized by
improved algorithms. As introduced in Section 4.5.2, the target admission control algorithm
remembers requests for a time duration of Ω ·∆. It has first been observed by the author in [199]
that the number of slots Ω and control interval duration ∆ have a significant influence on the
probability that a request is approved.

In order to illustrate this impact, selected combinations of approval control algorithms are com-
pared in Figure 6.46: The number of slots is left constant (Ω = 2), but different strategies are
used to determine ∆: The interval duration is either set to constant values of 200ms or 1000ms,



6.4 Quantification of the potential performance improvement 151

or automatically adapted as proposed in Section 4.5.3.4. If the bottleneck load is rather small,
the interval duration has hardly any impact. But as the load increases, the approval control
grants much less requests if ∆ is larger.

This dependency on the duration control interval can easily be understood by a simple approx-
imation of the approval probability of a Quick-Start request: On the one hand, the maximum
number of requests that can be approved within the history duration Ω ·∆ is c ·θ ·(1−ρestim)/q.
Therein, ρestim is the estimated link load, and the threshold θ gives the ratio of capacity available
for Quick-Start requests. On the other hand, the number of requests within the history duration
is Poisson distributed with mean Ω ·∆/δ . The probability that a request gets approved can be
approximated by dividing the number of approvable requests by the total number of requests
during the slot duration, which results in a dependency papprov ∝ (1/ρ−1)/(Ω ·∆). This term
is an approximation only, since the instantaneously measured load used by the approval algo-
rithms is not identical to the average load. But it illustrates that papprov ≈ 0 if either ρ → 1 or if
Ω ·∆ is large. This is why the setting of the control interval ∆ is crucial.

Figure 6.46 also shows that an additional fairness enforcement as proposed in Section 4.5.3.3
is more conservative and grants less capacity than the target algorithm. This is the expected
behavior, since the fair algorithm always keeps some unallocated bandwidth for future requests.

The opposite solution is the optimistic algorithm, which does not store information about pre-
vious requests and thus oversubscribes bandwidth (cf. Section 4.5.3.2). This approval control
grants more requests and results in a speedup in particular on a moderately loaded link, i. e., if
ρ is of the order of 30%. For very small and very high loads, there are no significant differences
between the different approval control strategies, as either all or no requests get approved. This
result indicates that the optimistic algorithm does not overly increase the congestion risk.

Due to the bandwidth pooling principle, the target algorithm is not optimal if many Quick-Start
requests are issued for transfers that are not able to send with the approved rate for at least some
RTTs. The solution to this problem on the network-side is the optimistic algorithm. However,
an even better approach is to avoid useless Quick-Start requests. This can be realized by an
intelligent activation strategy that is proposed in Section 6.4.3.3.

The implications of this intelligent activation are shown Figure 6.47: The graphs in the upper
part of the diagram correspond to the previously used workload model with mean m = 114kB.
If the threshold χ introduced in Section 4.5.3.5 is small, all transfers use Quick-Start. This is
the optimal case for this type or workload, where most transfers are large enough to reason-
ably utilize the granted Quick-Start rate. Obviously, it does not make sense to set χ to a very
large value (χ � 100kB), since then only very few long transfers use Quick-Start without a
significant benefit.

The usefulness of the intelligent activation is more evident if the average transfer size is smaller.
In the lower part of Figure 6.47, the response sizes are obtained from a truncated pareto distri-
bution that is parametrized to match the real traffic characteristics of the traces, as introduced
in Section 3.3.3.2, i. e., m = 14kB, αpareto = 1.1, and Kpareto = 10MB. In this case, there are
many small transfers, too. Figure 6.47 shows that the average download time can be improved
by setting χ to a value of the order of 10kB, i. e., Quick-Start requests are only triggered if
the server’s response is larger than 10kB. A value that is either orders of magnitude larger or
smaller does not result in better performance. The impact of the intelligent activation mech-
anism would be even larger if a workload model with more small transfers was used. In the
following sections, the default threshold is χ = 10kB.



152 Chapter 6. Performance evaluation

Table 6.2: Important parameters of the used Web workload models

Parameter “SURGE default” model “Large files” model
Ratio of base/embedded/loners files 0.30 / 0.38 / 0.32 0.30 / 0.38 / 0.32
File popularity Zipf, 2000 files Uniform, 2000 files
File size distribution Mixed lognormal and pareto Lognormal, µ = 11.92, σ = 1.0
Number of embedded files per object Pareto, α = 1.245, k = 2 Geometric, mean value 2
User think time Pareto, α = 1.4, k = 2 Pareto, α = 1.4, k = 2

Legend: α,k and µ,σ are the chacteristical parameters of the corresponding distribution

6.4.4 Studies with synthetic source-level Web models

6.4.4.1 Scenario and models

In the previous sections, only simple workload models have been considered in order to study
the principal behavior. The performance of interactive applications can be more realistically
investigated by experiments with real HTTP downloads from a Web server. Realistic request
patterns can be generated here by a SURGE Web traffic load generator. The SURGE tools,
which are introduced in Section 3.3.3.1, support HTTP/1.0 and HTTP/1.1 requests without
or with pipelining. They are used in the default configuration, i. e., there is a configurable
number of users/threads that each send HTTP requests to the Web server. Similar to the previous
experiments, the minimum RTT is τ = 200ms and the emulated path capacity r = 10Mbit/s.
The performance metric of interest is the total page download time Tpage, which consists of
a base document and potentially also embedded files (see Figure 3.3). In this experiment the
measurement duration is one hour per sample.

Concerning the object characteristics and request patterns, both the default and a customized
workload model are used. The important parameters of both models are listed in Table 6.2. The
SURGE model [15] represents typical Web characteristics about one decade ago, and most files
are rather small. But it is still a standard model for Web performance evaluations. In order
to demonstrate the influence of larger object sizes, a second, hypothetical workload model is
used, which has been introduced in [204]. This workload model is assumed to reflect the traffic
characteristics of a broadband interactive application with frequent mid-sized data transfers.
Therein, the mean object size is assumed to be 250kB, which is consistent with some findings
of the measurements in [209]. Other parameters have been set to a reasonable value.

6.4.4.2 Measurement results

Figure 6.48 presents the result of experiments with either a default network stack, Jump-Start,
or Quick-Start. The other fast startup schemes are here omitted, since their performance impact
is quite similar. For a rather low load of one simulated user, the mean page download time
with Slow-Start is always larger than with Jump-Start or Quick-Start, independent of the HTTP
protocol variant being used. However, the absolute difference is rather small for the “SURGE
default” model. This is to be expected, since the mean size of an object (i. e., a Web page) is here
of the order of 17kB only. In contrast, for larger file sizes, both considered fast startup schemes
can significantly reduce the download duration. A speedup of more than 1s can be achieved if
HTTP/1.0 is used, which transfers each object over a new connection with an initial Slow-Start.
But a significant improvement can also be observed for HTTP/1.1 persistent connections, both



6.4 Quantification of the potential performance improvement 153

"SURGE default" model "Large files" model
0

0.5

1

1.5

2

2.5

3

3.5

4

A
v
e
ra

g
e
 p

a
g
e
 d

o
w

n
lo

a
d
 t
im

e
 [
s
]

Slow-Start (meas.)

Jump-Start (meas.)

Quick-Start (meas.)

H
TT
P/
1.
0

SS JS QS SS JS QS

Pi
pe
lin
in
g

H
TT
P/
1.
1

Figure 6.48: Comparison of the measured
page download times for one user

1 10 100

Number of concurrent users

0

1

2

3

4

5

6

A
v
e
ra

g
e
 p

a
g
e
 d

o
w

n
lo

a
d

 t
im

e
 [
s
]

Slow-Start (meas.)

Jump-Start (meas.)

Quick-Start, early activ. (meas.)

Quick-Start, late activ. (meas.)

"SURGE default" model, HTTP/1.1

"Large files" model, HTTP/1.1

Figure 6.49: Measurement of the impact of
an increased load

without and with request pipelining. To sum up, Figure 6.48 shows again that the performance
benefit of fast startup schemes depends a lot on the characteristics of the Web pages. For small
pages of the order of 10kB, there is hardly any performance benefit. However, frequent transfers
of the order of 100kB or more can be significantly accelerated.
Figure 6.49 compares the page download durations for the two Web models when the load
increases. In order to be more realistic, it only considers data transfers by the most commonly
used HTTP version 1.1. It also distinguishes between early and late Quick-Start activation
(qreq = 5.12Mbit/s). As to be expected, the download durations increase if the load gets larger.
The result again reveals the fundamental difference between Quick-Start and end-to-end fast
startup schemes: Quick-Start only improves the performance as long as the path is only lightly
loaded. As soon as the load increases, the page download times are equal to Slow-Start or even
worse, because less requests are approved and because the granted bandwidth is smaller. This
illustrates that the Quick-Start mechanism mainly targets at underutilized links. In contrast,
Jump-Start speeds up the page download times even if the load is high.
The actual performance of a Web application is hard to model by a simple setup, since it typi-
cally consists of queries to different servers with different path characteristics. Also, the ques-
tion whether already established TCP connections can be reused, or not, depends significantly
on the structure of the content and the application communication characteristics. In general, a
fast startup is more beneficial if content is retrieved from several servers instead of one, if trans-
fer sizes are larger, and if at least part of the content is retrieved from topologically far servers.
Another example for the potential improvement for a Website is presented in Section 7.1.

6.4.5 Studies with trace-based workloads

6.4.5.1 Scenario and models

In order to quantify the performance benefit of fast startup schemes, realistic workload and
delay models must be used. Specifically, connections with small RTTs must be considered, too.
This can be achieved by replaying the real trace-based workloads introduced in Section 3.3.3.2
over the dumb-bell topology shown in Figure 6.3, which covers a whole range of RTTs. As
already mentioned, this setup is recommended in the common TCP evaluation suite [10]. In the



154 Chapter 6. Performance evaluation

0.1 1 10

Epoch duration [s]

10
-2

10
-1

10
0

C
C

D
F

Slow-Start
Jump-Start

Initial-Start
Mega-Start

Figure 6.50: Distribution of the epoch time
duration for end-to-end fast startups

0.1 1 10

Epoch duration [s]

10
-2

10
-1

10
0

C
C

D
F

Slow-Start
QS, target algo.

QS, fair algo.

QS, optimistic

QS, target algo., intelligent

XCP
RCP

Figure 6.51: Distribution of the epoch time
duration for network-supported fast startups

simulation setup, in total Nhosts = 450 client-server pairs are used, i. e., 50 per RTT value. The
connection vectors are scheduled with an exponentially distributed IAT. The central bottleneck
has a link capacity of rC = 10 Mbit/s and uses a drop-tail buffer with B = 50. Since the traces
represent an unknown mix of applications, it is impossible to measure application performance
metrics in this setup. As a remedy, the epoch duration Tepoch is used as performance metric.
Its definition is illustrated in Figure 3.13. For an epoch of the form Ei = (ai, ta,i,bi, tb,i) it
corresponds to the sum of the transfer times of the data (ai and bi) and the delay ta,i.

6.4.5.2 Simulation results

Figures 6.50 and 6.51 show the resulting CCDFs of the epoch durations for the different flow
startup schemes. In the presented experiment, the traces are scheduled so that the downlink load
of the bottleneck is ρ ≈ 0.35. Each presented measurement value corresponds to a simulated
virtual time of about three hours. The first and foremost result of these simulations is that
the differences between the different schemes are rather small. The reason is that the traces
include many small data transfers that fit in today’s initial CWND, and that the majority of the
simulated path has an RTT smaller than 100ms. Under these constraints the existing Slow-Start
performs reasonably well for most transfers. Still, one can observe in Figure 6.50 that the epoch
completion times that are of the order of several hundred milliseconds can be improved if the
Jump-Start or Initial-Start scheme is used by all entities. A similar benefit also exists in case of
Mega-Start, but the distribution tail also reveals an increased probability of delays of the order
of 3s, which is an indication for more Retransmission Timeouts.

Figure 6.51 presents the corresponding results for Quick-Start in combination with different
router strategies. Each data transfer here issues a Quick-Start request of qreq = 5.12Mbit/s. In
this usage scenario, Quick-Start is hardly of any benefit in most of the studied combinations.
The reason is the fact that many requests are denied. As explained in Section 4.5.3.1, the Quick-
Start mechanism can then have a performance worse than an unmodified TCP stack when many
requests are denied. Figure 6.51 shows that there are only two combinations of Quick-Start
algorithms that result in a slight improvement:



6.4 Quantification of the potential performance improvement 155

0.1

1

10

E
p

o
c
h

 d
u

ra
ti
o

n
 [

s
]

Slow-Start
Jump-Start

QS, intv. autom., target, intelligent

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Sum of request and response in each epoch [B]

10
1

10
2

10
3

10
4

10
5

S
a

m
p

le
s

Improvement

Figure 6.52: Breakdown of the performance
depending on transfer sizes (load 6%)

0.1

1

10

E
p

o
c
h

 d
u

ra
ti
o

n
 [

s
]

Slow-Start
Jump-Start

QS, intv. autom., target, intelligent

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Sum of request and response in each epoch [B]

10
1

10
2

10
3

10
4

10
5

S
a

m
p

le
s

Improvement

Figure 6.53: Breakdown of the performance
depending on transfer sizes (load 35%)

- Approval control with the optimistic algorithm: The oversubscription strategy proposed
in Section 4.5.3.2 can deal with scenarios in which there are many Quick-Start request.

- Intelligent activation: Activating Quick-Start only for larger transfers (χ = 10kB) avoids
useless requests and thus uses the available bandwidth more efficiently.

Again, the performance of XCP is even worse than the one of a unmodified TCP stack. In
contrast, RCP significantly outperforms any TCP-based scheme in this setup, since it speeds up
the large number of rather short transfers.

The reason for the small total improvement can also be observed in Figure 6.52 and Figure 6.53,
which depict the epoch durations as a function of the data size transported within that epoch, as
well as the 25% and 75% quantiles. In Figure 6.52, the average downlink load is small, whereas
the other diagram shows results for a moderately loaded link. As examples, the performance of
Slow-Start, Jump-Start, and Quick-Start with intelligent activation are compared. Both figures
show that for transfers with size s > 10kB the average epoch duration is indeed reduced by up
to some hundred milliseconds. For Jump-Start, the improvement is almost independent of the
load. Quick-Start, in contrast, only improves the performance if the link load is small. The
histogram in the lower part of both figures confirms that the majority of transfers is smaller than
10kB and can thus hardly benefit from any fast startup scheme. In other words, only selected
transfers can indeed benefit. Similar graphs for XCP and RCP are published in [181].

In order to provide a more systematic insight into the differences between the schemes, Fig-
ure 6.54 and Figure 6.55 study the trade-off between speedup and packet loss: The x-axis de-
picts the downlink packet loss probability, and the y-axis the 5% quantile of the epoch duration
for different downlink load conditions. The former metric characterizes the aggressiveness of
an approach, whereas the quantile is one possibility to quantify the speedup of longer transfers.
In the ideal case, a fast startup should reduce the epoch durations without causing additional
packet losses. In this portfolio presentation, this ideal behavior would correspond to a vertical
shift in down-direction.

With an unmodified stack, the packet loss probability is of the order of 1 % in the given sce-
nario, and the epoch durations increase with the load, as to be expected. Figure 6.54 reveals
that Jump-Start with its default parametrization (Kdata = 64KiB) reduces the epoch duration but



156 Chapter 6. Performance evaluation

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Downlink buffer overflow probability 

0.6

0.7

0.8

0.9

1

5
 %

 q
u

a
n

ti
le

 o
f 

th
e

 e
p

o
c
h

 d
u

ra
ti
o

n
 [

s
]

SS
JS (64 KiB)

JS (10 MSS)

IS
MS

35 %

26 %

21 %6 %

3 %
SS

IS
JS (64 KiB)

MS

better

Downl. load

JS (10 MSS)

Figure 6.54: Speedup vs. packet loss for
end-to-end schemes

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Downlink buffer overflow probability

0.6

0.7

0.8

0.9

1

5
 %

 q
u

a
n

ti
le

 o
f 

e
p

o
c
h

 d
u

ra
ti
o

n
 [

s
]

SS
QS, intv. 200, target

QS, intv. autom., fair

QS, intv. autom., optimistic

QS, intv. autom., target, intelligent

26 %

35 %

21 %6 %

3 %
SS

QS

better

Downl. load

Figure 6.55: Speedup vs. packet loss for
network-supported schemes

moderately increases the packet loss ratio by about 1%. Initial-Start, which just increases the
initial window to wiw = 10, results in a similar speedup but less packet loss. In order to fur-
ther compare this difference between Jump-Start and Initial-Start, simulations have also been
performed with a comparable Jump-Start parametrization (Kdata = 10 ·L). Then, both schemes
have almost the same performance. One can conclude from this result that in a realistic traffic
mix with many small transfers, there is only few benefit of using rate-pacing if the burst size is
small. If Mega-Start is used by all transfers, the speedup is even larger, but this comes as the
cost of rather large packet loss probabilities that can exceed 3% if the load on the bottleneck
increases.
Figure 6.55 contains packet loss statistics in the same setup for different Quick-Start usage
scenarios and again relates them to the 5% quantile of the epoch completion time. The diagram
again confirms two findings:

1. Quick-Start improves the performance only if the link load is rather small. In this case, the
speedup is comparable to end-to-end fast startup schemes. Quick-Start also moderately
increases the packet loss probability compared to the Slow-Start mechanism.

2. On moderately loaded links, Quick-Start can result in longer transfer times if the endsys-
tems frequently issue requests and if the target algorithm is used by the routers. This
problem can be avoided by changing the algorithms either in the endsystems (intelligent
activation) and/or in the routers (optimistic algorithm). Both variants have a similar ben-
efit. An interesting result is that the optimistic algorithm does not result in significantly
increased packet loss rates, even though bandwidth is oversubscribed. This outcome once
again reveals that the oversubscription principle is superior to bandwidth pooling.

Of course, these results only represent a very small part of the overall parameter space. Similar
experiments could be performed with many other setups. Still, the key differences between the
different realization possibilities for fast startups would also be confirmed in other cases.

6.4.6 Summary of the performance experiments

The bottom line of these results is that the majority of data transfers in the current Internet
would hardly benefit from a fast startup. Yet, for larger transfers there is an improvement. As



6.5 Robustness, fairness, and risk 157

10 100 1000

Downlink buffer size [packets]

0.01

0.1

D
o

w
n

lin
k
 b

u
ff

e
r 

o
v
e

rf
lo

w
 p

ro
b

a
b

ili
ty

Slow-Start
Jump-Start

Initial-Start
Mega-Start

Figure 6.56: Influence of the buffer size on
end-to-end schemes (load 35%)

10 100 1000

Downlink buffer size [packets]

0.01

0.1

D
o

w
n

lin
k
 b

u
ff

e
r 

o
v
e

rf
lo

w
 p

ro
b

a
b

ili
ty

Slow-Start
QS, interval 200 ms, target

QS, interval autom., fair

QS, interval autom., optimistic

QS, interval autom., target, intelligent

Figure 6.57: Influence of the buffer size on
Quick-Start (load of 35%)

to be expected, the end-to-end schemes Jump-Start and Initial-Start increase the packet loss
probability, but only moderately. Quick-Start results in a similar performance benefit if it is
intelligently used, but it causes less packet drops. The Mega-Start scheme is more aggressive
and risky if it just stupidly starts with an approximation of the path capacity. It therefore cannot
be used by all flows.

These results therefore also indicate that a differentiated usage of fast startups would make
sense: Applications that are known to require broadband interactivity could explicitly activate
the fast startup, while applications with less demands could just continue to use TCP’s existing
mechanisms, which are sufficient in many cases. This differentiation could be realized by the
API proposed in Section 5.1.1.3. One possible realization is showcased in Section 7.1.

6.5 Robustness, fairness, and risk

6.5.1 Dealing with small buffers

Any fast startup congestion control schemes risks a higher packet loss rate. If the buffer in front
of the bottleneck on the path is either large or uses AQM, it can accommodate the bursty traffic
of a fast startup without or with only few packet drops. However, a small buffer will overflow
very soon. As the drop of a packet wastes transmission resources on the path and requires
additional processing both in the sender and the receiver, keeping the packet loss probability to
a low value is an important design goal for congestion control mechanisms (cf. Section 4.1.2.1).

In order to study the impact of the size of the bottleneck buffer, the experiments with the trace-
based workload have been repeated with different buffer configurations. All other parameters
are set like in the previous section. Figure 6.56 and Figure 6.57 depict the packet drop prob-
ability in the bottleneck. In the given scenario with an average downlink load of ρ = 35%,
TCP’s default congestion control causes a packet loss probability between 1% and 2%, which
is a typical value for reasonably used Internet paths.

The buffer overflow probability has a complex dependency on the buffer size: In the given
scenario, a buffer of the order of 50 packets minimizes the packet losses. If the buffer is smaller,
it cannot accommodate bursts. If it is larger, it can buffer many segments. But this also means



158 Chapter 6. Performance evaluation

that the TCP senders aggressively increase their Congestion Window in Slow-Start and enter the
Congestion Avoidance phase rather late, i. e., they risk overshooting. A very similar effect can
also occur when link load is varied, i. e., the overall buffer overflow probability of a moderately
loaded link can be smaller than the one of a lightly loaded link.

Figure 6.56 confirms that all end-to-end fast startup schemes increase the packet loss probability.
The Jump-Start scheme increases the packet drop rate by a factor of about two compared to
Slow-Start, if the buffer size is B < 100. If the buffer in front of the bottleneck is larger, there is
hardly any difference to the Slow-Start. Interestingly, just increasing the initial window without
rate pacing (Initial-Start) results in less lost packets and works well even if the buffer size is
rather small. If the Mega-Start scheme starts with a rate equal to the full path capacity, it is
significantly more aggressive, and it can result in packet drop probabilities of 5% or more.
These numbers are consistent with the simulation results shown in Figure 6.54.

The key difference between end-to-end fast startup mechanisms and Quick-Start is that Quick-
Start only enables the fast startup if there is available bandwidth on the path. Otherwise, it falls
back to the Slow-Start. This means that the risk of packet loss is smaller. This expected result
is confirmed by Figure 6.57. In general, all different Quick-Start usage scenarios have a packet
loss rate that is of the same order of magnitude like the one of a scenario with default TCP
stacks. There is slighty more packet loss in the more aggressive Quick-Start usage variants
(intelligent activation in endsystems and/or optimistic algorithm in routers), but only if the
buffer is rather small (B < 100), and the packet loss rate increases by less than 1%.

In summary, these results illustrate the fundamental trade-off between potential speedup on the
one hand, and a higher risk of packet loss on the other hand. Quick-Start is more conservative
and works well even if the bottleneck buffers on the path have a very small size only, while
end-to-end schemes result in an increased packet loss rate. In general, the buffer sizes of real
network components vary over several orders of magnitude. This is why it is impossible to
precisely forecast the impact of a fast startup scheme in a large network. Still, the results
presented in this section indicate that fast startup schemes such as Jump-Start, Initial-Start, or
Quick-Start do only moderately increase the buffer overflow probabilities, and operate quite
well if the network components can accommodate bursts of some dozens of packets, which is
known to be true in many cases [234].

6.5.2 Fairness compared to TCP’s default congestion control

Another implication of most new fast startup congestion control schemes is that they may affect
competing connections that use TCP’s default congestion control, unless the traffic is com-
pletely isolated. In order to study the negative impact of aggressive fast startup schemes on a
standard-compliant TCP flow start, a simulation scenario has been set up where only half of the
senders enable a fast startup scheme, while the rest uses an unmodified stack. Exactly like in the
previous simulation setups, there are Nhosts = 450 clients and servers with nine different RTTs,
i. e., 225 pairs use Slow-Start and 225 a fast startup scheme. In order to ensure that in average
both classes of endsystems transport workload with the same statistical properties, the workload
is here given by a synthetic traffic model with response sizes according to a truncated pareto
distribution (m = 14kB, αpareto = 1.1, Kpareto = 10MB), which matches the tail characteristics
of the traffic traces (cf. Section 3.3.3.2). This workload model allows to simulate higher link
utilizations without requiring a very large number of endsystems.



6.5 Robustness, fairness, and risk 159

0.4 0.5 0.6 0.7 0.8

Mean response time of unmodified stacks [s]

0.3

0.4

0.5

0.6

0.7

M
e

a
n

 r
e

s
p

o
n

s
e

 t
im

e
 o

f 
e

n
h

a
n

c
e

d
 s

ta
c
k
s
 [

s
]

SS
JS
IS
MS

Downl. load

5 %
10 %

20 %
50 %

60 %

75 %

(7.8 %)
(1.0 %)

(1.5 %)

load: 0.87 %)

SS

IS

JS

MS

(Buffer overflow

probability at 75 %

Contrary

Ideal

Detrimental

Good
Unfair

"Good"

Slightly "unfair"

Figure 6.58: Mixed usage of default and
end-to-end fast startup congestion control

0.4 0.5 0.6 0.7 0.8

Mean response time of unmodified stacks [s]

0.3

0.4

0.5

0.6

0.7

M
e

a
n

 r
e

s
p

o
n

s
e

 t
im

e
 o

f 
e

n
h

a
n

c
e

d
 s

ta
c
k
s
 [

s
]

SS
QS, intv. 200, autom.

QS, intv. autom., fair

QS, intv. autom., optimistic

QS, intv. autom., target, intelligent

load: 0.87 % - 0.92 %)

(1.1 %)

SS

QS

(Buffer overflow

probability at 75 %

Figure 6.59: Mixed usage of default and
Quick-Start congestion control

There are five possible outcomes of the interaction between a default and an enhanced conges-
tion control [205]:

- Ideal: Both schemes experience better performance. This is a rather unlikely effect.
- Good: Using the new schemes results in a better performance, but the performance for

other ones is not worsened.
- Unfair: There is a speedup at cost of endsystems that use the default congestion control.
- Contrary: The enhanced stacks are slower than default ones.
- Detrimental: The performance is worse in both cases.

In Figure 6.58 and Figure 6.59, the x-axis and y-axis represent the response times measured for
the two groups, for mean downlink utilizations up to 75%. In this representation, an ideal or
good result is indicated by a shift to the lower-left or lower part of the diagram, respectively.
According to Figure 6.58, both Jump-Start and Initial-Start are rather fair, i. e., they speed up
their own transfers without significantly slowing down connections that use the default TCP
congestion control. The Mega-Start scheme with the assumed parametrization is unfair, which
is consistent to the other simulation results in the previous section.

The corresponding Quick-Start results are depicted in Figure 6.59. As to be expected, Quick-
Start hardly degrades the performance of connections that use a default congestion control, but
its speedup compared to Slow-Start is also smaller.

To sum up, these experiments show that using a fast startup may not necessarily result in severe
unfairness problems for connections that do not use them, even if a more aggressive behavior
inherently results in such a risk. Of course, it can be reduced by additional signaling along the
path. A further option to mitigate this problem would be an identification and isolation of the
traffic that uses a fast startup congestion control, e. g., by different DiffServ classes, but such
a scheme is not further studied in this work. There is also a trade-off between unfairness and
convergence speed: The experiments in Section 6.3.2 have shown that a very aggressive end-to-
end flow startup improves the time until a bottleneck is equally shared by several connections.
Without network support, the convergence speed of end-to-end loss-based congestion control
algorithms can only be improved by causing some packet loss to the competing traffic.



160 Chapter 6. Performance evaluation

Table 6.3: Consequences of false capacity assumptions in network components

Scheme Capacity underestimation Capacity overestimation
Quick-Start - Less bandwidth granted to requests - Approved bandwidth too large

- Slower flow startup or fallback to SS - Transient packet loss due to overshooting
- Target use case of Quick-Start

XCP and RCP - Link permanently not fully utilized - Extremely long persistent queues, or
- Empty queues - Permanently large packet loss rate

if the buffer size is small

6.5.3 Robustness against imprecise information

6.5.3.1 Challenge of capacity estimation

A fundamental requirement for any congestion control scheme is robustness, i. e., the ability to
deal with unpredictable variations of the environment and erroneous input data. Of particular
importance for network-supported congestion control schemes is the correctness of information
about link characteristics. As already mentioned in Section 4.7.1.2, routers cannot know the
available bandwidth on a link in all cases. Still, the control equations of network-controlled
schemes such as XCP and RCP assume that the link capacity c is exactly known. The impact of
wrong assumptions about link characteristics is hardly addressed in published work on network-
supported congestion control, apart from some efforts to extend XCP to networks with shared
access [1]. In the following it is shown that link capacity estimation errors are a severe problem
for XCP and RCP. This is a key advantage of Quick-Start, which is much more robust.
Let r be the true capacity of an outgoing link, and let c be the capacity assumed by a network
component supporting a network-supported congestion control scheme. Then, two different
link capacity estimation errors can occur:

- Capacity underestimation: c < r
- Capacity overestimation: c > r

The impact of these two different cases on Quick-Start, XCP, and RCP is compared in Table 6.3
and analyzed in the following subsections.

6.5.3.2 Robustness of Quick-Start

Quick-Start is explicitly designed to operate with a conservative estimation of the true link
capacity. For this purpose, the target admission control algorithm includes the parameter θ ,
which shall ensure that only a certain part θ of the link capacity is granted to Quick-Start
requests. Setting θ < 1 reduces the efficiency, since less requests can get approved, but the TCP
congestion control continues to work well. And there is still a certain speedup if only a certain
part of the link capacity is available for Quick-Start requests [199].
This effect is confirmed in Figure 6.60, which shows the traces of a long-lived flow for three
different cases (τ = 200ms): Correct knowledge or the link capacity (c = r = 10Mbit/s), un-
derestimation (c = r/10 = 1Mbit/s), and overestimation (c = 10 ·r = 100Mbit/s). In the case of
underestimation, only a small rate is granted, i. e., the flow startup is just slower. If the approval
control of a QS-enabled router assumes a too large capacity c > r, the granted rates may be too
large, and the sender then temporarily sends with a too large data rate. As shown in Figure 6.60,



6.5 Robustness, fairness, and risk 161

0

2

4

6

8

10

IP
 d

a
ta

 r
a

te
 [

M
b

it
/s

]

Quick-Start

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time since SYN segment [s]

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Q
u

e
u

e
 l
e

n
g

th
 [

p
a

c
k
e

ts
]

Underestimation
by factor 10

Overestimation
by factor 10

Burst packet loss for  overestimation

Figure 6.60: Impact of capacity estimation
errors on Quick-Start

0

2

4

6

8

10

IP
 d

a
ta

 r
a

te
 [

M
b

it
/s

]

XCP
RCP

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time since SYN segment [s]

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Q
u

e
u

e
 l
e

n
g

th
 [

p
a

c
k
e

ts
]

Underestimation by factor 10

Overestimation by factor 10

Large persistent queue

Figure 6.61: Impact of capacity estimation
errors on XCP and RCP

this results in an overshooting and multiple lost packets. TCP then suffers from a Retransmis-
sion Timeout, but it detects and solves the problem within few RTTs. In the presented scenario,
the sender requires several seconds until it can fully utilize the link. But such an overshooting
could also occur in normal TCP operation. Furthermore, the problem only exists if the requested
rates are in total indeed larger than the true link capacity, i. e., there is no harm if there are small
Quick-Start requests only.

The risk of overshooting can be significantly reduced by setting the approval target θ · c to
a worst-case assumption of the available bandwidth, i. e., θ < 1. For instance, on a router
interface towards a shared Ethernet network, θ · c could be set to 10Mbit/s only, which is the
minimum Ethernet link capacity. This conservative setting would work reasonably well even if
all connected Ethernet devices support a higher data rate (100Mbit/s, 1Gbit/s, . . . ).

6.5.3.3 Robustness of XCP and RCP

XCP and RCP are much more susceptible to erroneous link capacity information. If the link ca-
pacity is underestimated (c < r), they cannot efficiently utilize the link: Since Equation (4.20)
and Equation (4.21) provide no positive feedback once the assumed capacity is reached, the
maximum possible utilization of the link is ρ = c/r. For instance, in Figure 6.61, the achieved
peak throughput is only 10% if the link capacity is underestimated by factor r/c = 10. Even
if several connections shared the link, the efficiency would not be improved. This is the draw-
back of network-controlled congestion control. It is in theory possible to identify such under-
utilization by an additional control loop [1], but only if the traffic conditions are rather stable.

In fact, both XCP and RCP can only efficiently utilize a link if the assumed capacity c is at least
as large as the true capacity r. However, both schemes are also not very robust against capacity
overestimation neither: If c > r, the actual link usage is x(t) = c, and all excess traffic is queued.
As an increase of the queue length results in negative rate feedback, the system should remain
stable. However, it can easily be shown that a stable state is not necessarily reached. In the
following, the stability bound for RCP is derived. To the best of the knowledge of the author,
this condition has not been published elsewhere. XCP suffers from exactly the same problem,
but an analysis is more difficult due to the complex control law.



162 Chapter 6. Performance evaluation

10
6

10
7

10
8

10
9

Approved Quick-Start rate [bit/s]

0.01

0.1

1

10

T
ra

n
s
fe

r 
ti
m

e
 o

f 
a
 2

M
B

 t
ra

n
s
fe

r 
[s

]

100 Mbit/s path capacity

1 Gbit/s path capacity

Quick-Start

Slow-Start

Figure 6.62: Impact of Quick-Start capacity
overgranting over the experimental path

1 10 100

Average downlink load [%]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

R
e
la

ti
v
e
 p

ro
c
e
s
s
in

g
 e

ff
o
rt

 i
n
 T

C
P

/I
P

 s
ta

c
k
 [
%

]

Umnodified
Jump-Start

Quick-Start

Figure 6.63: Server-side processing effort in
the Linux stack obtained by kernel profiling

In steady state, the feedback of RCP according to Equation (4.21) must be zero:

αRCP (θ · c− r)−βRCP
b

davg
= 0. (6.13)

Without loss of generality, θ is here assumed to be 1. The variable b refers to the queue length.
Assuming a sufficiently large buffer, the average RTT davg is increased by the time that is
required to pass through queue: davg = τ + b

r . By substituting davg in Equation (6.13) one can
determine the persistent queue length as

b =
(c− r) · τ

1+βRCP/αRCP− c/r
. (6.14)

As the queue length must be finite, the denominator must be larger than zero. From this follows
a stability condition:

c
r

< 1+
βRCP

αRCP
. (6.15)

The stability of RCP in case of capacity overestimation thus depends on the parameters αRCP
and βRCP. For the commonly suggested parameter set αRCP = 0.4 and βRCP = 0.226, the sta-
bility condition is c/r < 1.565. In other words, the capacity must be known with a maximum
error of 50%. Other suggested parameter sets such as αRCP = 0.1 and βRCP = 0.1 allow an
estimation error by about factor three. If the estimation error is larger, the queue length will
grow without restraint.
This effect can be observed in Figure 6.61, both for XCP and for RCP. As the condition of Equa-
tion (6.15) is not fulfilled in this simulation setup, the number of queued segments increases
approximately linear in time. In practice, this means that packet loss cannot be avoided, and
that XCP and RCP must fall back to another operation mode (e. g., some TCP-like algorithms),
which has not been specified so far and renders the whole approach somehow useless.

6.5.3.4 Summary

In summary, the Quick-Start mechanism works rather well if the order of magnitude of the
available bandwidth is known, and the penalty of configuring the approval control to a too small



6.6 Complexity and costs of network support 163

target rate is rather small. If the approval control is configured with a too large target capacity,
transient packet loss occurs, but the overall impact is rather small. This is also confirmed by
measurements on the real network path shown in Figure 6.62: If the approved Quick-Start rate
is larger than the true path capacity, the transfer times are typically larger than the ones in
Slow-Start, as packet loss occurs, but the performance difference is rather small.

In contrast, the network-controlled schemes XCP and RCP are not very robust against capacity
misestimation. If the assumed link capacity is too small, the link cannot be efficiently utilized.
If it is significantly overestimated, it is possible that the control loops get unstable. Without
modifications, XCP and RCP can only be used if the available bandwidth on links is known by
approximately a factor of two. This condition is not necessarily fulfilled in real environments
and thus a fundamental limitation.

6.6 Complexity and costs of network support

6.6.1 Computational overhead of endsystem functions

All fast startup congestion control schemes require modifications that possibly result in addi-
tional processing effort in the endsystems and – if they are network-supported – also in network
components. There are only few published studies on the computational overhead caused by
such new mechanisms. The availability of comparable implementations in the same network
stack enables a fair comparison of this overhead.

An additional function required by most fast startup mechanisms is fine-grained rate pacing,
which requires timers and increases the complexity of the network stack. In general, it is dif-
ficult to quantify the impact of such new protocol mechanisms, since metrics such as CPU
usage are very specific for an implementation and a given system. Also, the overhead of new
mechanisms can only be measured if they can be totally isolated from existing functions, which
is difficult in a complex protocol stack. Still, experiments can provide some insight into the
processing overhead of new fast startup congestion control schemes.

Figure 6.63 shows the results of a server-side profiling analysis of the measurement setup that
corresponds to Figure 6.44. The presented numbers refer to the CPU usage of all IP and TCP
function calls compared to the total processing effort in the system within a measurement du-
ration of 30s. The numbers have been obtained by an “oprofile” profiler that instruments the
Linux kernel. As to be expected, the relative processing effort in the TCP/IP stack increases
with the network load. The higher the load, the more packets have to be processed. One can
also observe that the additional processing overhead of an end-to-end scheme such as Jump-
Start is negligible. In some samples, the measured system load is even slightly smaller than the
one of an unmodified TCP/IP stack, which is probably caused by the shorter transfer durations.

It is important to note that the workload scenario challenges the rate pacing implementation
because many data transfers are completely realized during the rate pacing phase. This small
overhead indicates that the usage of rate pacing does not cause significant performance prob-
lems. End-to-end schemes other than Jump-Start have similar characteristics. All in all, the ad-
ditional processing by a fast startup is simple compared to the complexity of the Linux TCP/IP
stack as a whole, and the new mechanisms are only active for rather short periods of time. This
observation is consistent with other studies [94, 102] that also found a small overhead of rate
pacing with a millisecond timer resolution.



164 Chapter 6. Performance evaluation

Trace file

request generator

as Quick−Start

network analyzer

Agilent J6800A

Eth.

1 Gbit/s

S
w

it
c
h

Quick−Start router

Ethernet

1 Gbit/s
D

U
T

Figure 6.64: Setup of the load test for
Quick-Start routers

10 100 1000

Packet delay [µs]

10
-4

10
-3

10
-2

10
-1

10
0

C
C

D
F

Unmodified, 0% req.

QS enabled, 0% req.

QS enabled, 1% req.

QS enabled, 50% req.

Linux PC

200 ms

(at 0.3 Mpps)

IXP 2400
network processor
(at 1.36 Mpps) Control

interval
1000 ms

Figure 6.65: Delay distribution of packets
through a router under load

Unlike end-to-end schemes, Quick-Start TCP causes some measurable overhead in the sender.
It is of the order of 1% of the total CPU load and increases when there is more traffic. The
profiling results reveal that the most significant contribution is the additional traffic metering
in the IP layer, which counts every packet. On the one hand, this processing overhead in the
endsystem shows that network-supported congestion control indeed comes at some cost. But on
the other hand, the overhead is rather small, i. e., Quick-Start is still an uncomplicated signaling
mechanism. The overhead could be reduced by optimized implementations. For instance, traffic
metering could be performed more efficiently in the network interface card itself, e. g., by packet
counters.

6.6.2 Computational overhead of router functions

The key challenge of router-supported congestion control is the additional packet processing
that is required in network components. This section substantiates that the computational over-
head of Quick-Start in routers is small. These measurement results are partly published together
with Hauger [204, 203, 84].

The computational overhead of processing the Quick-Start IP options is studied both in the
Linux kernel and in the high-speed network processor implementation. Both Quick-Start im-
plementations are introduced in Section 5.3. These results have been obtained from stress tests
that challenge a router by a large packet rate, which is measured in Packets Per Second (PPS).
The load test setup is depicted in Figure 6.64. In order to ensure that the bottleneck is indeed the
router processing speed and not the link capacity, the used packets have a length of 50B only. A
network analyzer is used both for the load generation and for the measurement of the delay with
high-precision timestamps. Due to limitations of the network analyzer, delay measurements can
only be performed for 700,000 subsequent packets. In the experiment, either 0%, 1%, or 50%
of the sent packets include an IP option with a Quick-Start request. A share of 1% is a realistic
assumption if the Quick-Start mechanism will become widely supported. A much larger ratio
should never occur when it is used as foreseen. The measurements with a ratio of 50% were
performed in order to study the impact of a potential DoS attack.



6.6 Complexity and costs of network support 165

Table 6.4: Quick-Start implementation performance characteristics (adapted from [203])

Network stack Share Linux personal computer . . . Network processor . . .
used in router of QS Peak Mean delay IP forw. effort Peak Mean delay

req. rate at 0.3 Mpps at 0.3 Mpps rate at 1.36 Mpps
Unmodified 0 % 0.33 Mpps 50 µs 2.5 % 3.9 Mpps 16 µs
Quick-Start 0 % 0.33 Mpps 50 µs 2.6 % 3.9 Mpps 16 µs
Quick-Start 1 % 0.33 Mpps 50 µs 2.8 % 3.9 Mpps 16 µs
Quick-Start 50 % 0.33 Mpps 50 µs 8.1 % 3.8 Mpps 17 µs

Figure 6.65 prints the complementary cumulative distribution function of the delay that packets
experience when traversing a router. In general, the delay through the Linux PC is significantly
larger than the one through the router realized with the network processor. In both cases there
is hardly any difference between the measurements with and without Quick-Start options. This
shows that Quick-Start option processing causes only very small additional delays. In case of
the Linux implementation, the traffic estimation interval ∆ does have an influence. If ∆ is short,
i. e., less than one second, the traffic statistics are more frequently updated, and this effect can
be seen in the tail of the distribution function. But its impact on the average delay is negligible.

Table 6.4 gives some further insight into the impact of Quick-Start on the router performance.
Again, the effort of processing additional IP header fields in the fast path is found to be not
very high. Concerning the peak throughput, i. e., the maximum packet rate that can be trans-
ported without packet loss, the Quick-Start implementations do not suffer from a significant
degradation compared to a corresponding router without Quick-Start support. The maximum
packet rate of the network processor is about 3.9Mpps without and with Quick-Start support.
With full-sized IP packets, this would correspond to a throughput of multiple Gbit/s. For very
frequent Quick-Start requests in every second packet there is a small decrease. As described
in [84], the synchronization among fast path processing entities can become a bottleneck if a
very large number of options has to be processed in parallel and if the synchronization of state
information is required, e. g., because of the usage of the target algorithm. However, a ratio of
50 % should never occur in normal usage. With a reasonable traffic mix with 1 % QS request,
there is no difference between a default router and a QS-enabled router, independent of the used
synchronization mechanism. The synchronization can also be completely avoided if no global
state variables are modified on a per-packet basis, i. e., the Quick-Start approval control with
the optimistic algorithm.

On a PC-based router, the maximum achieved packet rate is about one order of magnitude
smaller and of the order of 0.33Mpps. Again, the Quick-Start option processing hardly affects
the peak packet rate and the delay. In the PC used in this experiment, the bottleneck is likely to
be the internal bus between CPU and network interface card. Interestingly, in some experiments
the peak packet rate was even some percent larger when many packets carry a Quick-Start
option, which is probably a kernel-internal side effect.

A kernel profiling analysis was used as well in order to detail these results: Table 6.4 lists the
CPU load share of all method calls that handle the packet forwarding and process IP options,
both for the unmodified and the patched kernel. Without any Quick-Start options being present,
there is a measurable overhead, but it is small. The additional effort is mainly caused by the
traffic metering that counts every IP packet. As already mentioned, it could be avoided if the



166 Chapter 6. Performance evaluation

link utilization was already available in the network interface card. If 1% of the packets include
a Quick-Start option, the computational effort of the IP forwarding is hardly affected. Only if
the share of Quick-Start packets is very high, there is a measurable impact, which results from
the general processing of IP options and the Quick-Start algorithms. A detailed analysis shows
that the overhead caused by Quick-Start methods is about 4% of the total CPU load at a packet
rate of 0.3Mpps, which is close to the peak rate. It is mainly caused by the functions that modify
the Quick-Start IP option (modification of the rate, recalculation of the random nonce, etc.).
One main advantage of Quick-Start compared to network-controlled congestion control such as
XCP and RCP is that the additional packet processing is only required for few packets in realistic
usage scenarios. According to measurements published in [226, 84], the prototype network
processor implementation of XCP achieves a maximum throughput of about 1.4Mpps only,
and all packets experience an additional internal delay of the order of 10 µs due to the required
synchronization of global variables. And this problem gets worse as parallelism increases [226,
84]. These results reveal that it may be difficult to implement XCP on router architectures with
a high degree of parallel packet processing. A comparable Quick-Start implementation does not
suffer from these problems.
By design, RCP does not require a per-packet synchronization. References [58] and [102] both
report a very small computational overhead of an unpublished RCP implementation in the Linux
networking kernel. According to Dukkipati [58], the RCP-related processing is only 2.6% of
the total processing for IP packet forwarding in the Linux kernel. This statement provides some
evidence that Quick-Start and RCP have probably a similar, moderate realization complexity
in network components, i. e., in terms of implementation complexity one should be able to
implement the required additional functions in high-speed routers.



7 Applicability case studies

This chapter presents two short case studies that illustrate the real-world applicability of the
fast startup congestion control mechanisms. They also provide evidence that the performance
of novel network-challenging applications can be improved perceptively. These results com-
plement the synthetic experiments in the previous chapter. The first use case proposes a simple
HTTP protocol extension that would allow Web applications to comply with given performance
requirements by the corresponding activation of a fast startup scheme. This mechanism could
be part of a simple Web performance requirement signaling architecture, in which the network
stack takes into account application-level SLA specifications for response times as introduced
in Section 3.1.3.3. The usefulness of this architecture is demonstrated with a case study that
implements these extensions both in a Web browser and a Web server. Exemplary performance
results are provided for the OpenStreetMap (OSM) Web page, which is a typical example for
a Website where larger images have to be retrieved. The second considered example are ap-
plications dealing with three-dimensional (3D) content. Emerging 3D Web applications are a
typical representative of a broadband interactive application, since interactivity is a key us-
ability objective. This case study substantiates the claim that “mid-sized” transfer sizes are
common in such emerging applications. The hypothesis is backed by experiments that combine
a prototypical 3D visualization application with fast startup congestion control schemes.

This short chapter only provides examples and proof-of-concepts for the interaction of real-
world applications and fast startup congestion control. In this respect, all presented results are
illustrative, and many application-specific aspects are not investigated comprehensively. The
two presented use cases could also be starting points for future work beyond this thesis.

7.1 A new Web performance requirement signaling architecture

7.1.1 Congestion control with response time deadlines

As explained in Section 3.2.1.2, there is no established solution to map application-level perfor-
mance requirements to the TCP/IP network stack. Fast startup congestion control could be that
missing piece in the Internet architecture, provided that the startup parameters can be explicitly
configured by applications, e. g., by socket options as proposed in Section 5.1.1. Obvious use
cases are applications that have a desired maximal response time, which could be mandated by
the delay tolerance of human beings, or by SLAs as shown in Figure 3.4. Fast startup conges-
tion control can be a mechanism to fulfill such SLAs, provided that the required bandwidth is
indeed available on the path.

In the simplest case, a response time target is known by the sending application, which can then
activate a fast startup scheme accordingly. However, in case of a client-server Web application
with asymmetric communication characteristics, the server must decide whether and how to

167



168 Chapter 7. Applicability case studies

...

Request

GET /index.html HTTP/1.1

Host: www.example.com

Accept: text/html

Connection: keep−alive

Deadline: 300

Client Server

SYN−ACK

ACK

SYN

Desired rate

Deadline, RTT
Request

Response

Startup controller

(e. g., with QS request)

R
e
s
p
. 
ti
m

e
 t
a
rg

e
t

Figure 7.1: HTTP-based signaling of response time requirements; in the presented example a
non-standardized HTTP-extension sets a deadline of 300ms

activate a fast startup. Even though the server is typically able to determine the size of the
requested content, it can not necessarily make an informed choice how to send the data, since
it may not be aware of the urgency of the data transfer. The latter depends on current status of
the client application and the user preferences, which may, if at all, only be known in the client.
In such cases, it makes sense to explicitly signal the performance requirements from the client
to the server. As illustrated in Figure 7.1, a client could inform a server about a response time
deadline by a simple HTTP extension. This information could then be used by the server to
configure a fast startup.
Fast startup schemes with an explicit application interface, such as Quick-Start and Mega-Start,
can be configured to start with a certain sending rate. Then, an application function is required
that decides which rate to use. If a response time target Ttarget is either locally known or signaled
from the other endsystem like in Figure 7.1, the application can select an initial rate Qreq as
follows:

Qreq =
s

Ttarget−d
. (7.1)

This rule assumes that the application knows the amount of data s to be sent at the beginning of
the transfer, which is typically true for downloadable content. Additionally, the estimated RTT
d must be obtained from the TCP/IP network stack. In case of Linux, this is easily possible with
help of a socket option that provides access to TCP state information.
One could also determine a reasonable initial rate by rules other than Equation (7.1). For in-
stance, it has been suggested that an application could request for a Quick-Start rate that is
sufficient to transmit a given amount of data in a single RTT [192, 191]. This approach would
be very similar to the Jump-Start design philosophy. In combination with Quick-Start, Equa-
tion (7.1) could also be modified in order to take into account the one RTT that is required for
signaling. Alternatively, the RTT could not be taken into account at all (Qreq = s/Ttarget), since
it cannot be controlled. These straightforward variants and extensions are left for further study.
Due to the complex communication patterns of modern Web applications, the exact value of the
rate is less important and setting it to the right order of magnitude will suffice.
Determining a reasonable value for Ttarget per individual request is a non-trivial issue. For in-
stance, if a Web transaction consists of multiple requests, it is required to subdivide an overall
delay target into individual deadlines per server and per connection. The optimal solution de-
pends on the structure of the content. Yet, since a congestion control scheme anyway provides
no guarantee that the target delivery times are indeed met, one can expect that simple approx-
imations are sufficient. Also, the penalty of choosing a value that is too large or too small is
rather low; in both cases, the presented fast startup TCP extensions will not perform much worse
than the standard algorithms and deliver data more or less as fast as an unmodified stack would



7.1 A new Web performance requirement signaling architecture 169

...

GET /index.html HTTP/1.1

Host: www.example.com

Accept: text/html

Connection: keep−alive

Deadline: 300

TCP/IP stack TCP/IP stackTCP connection(s)

Client Server(Emulated) WAN

Configure
Get
RTT

Set new HTTP header

Web browser Web server

Startup controller

startup param.

Figure 7.2: Web application with deadline compliance extensions

do. Obviously, fast startup schemes without explicit application interface (i. e., Jump-Start,
Initial-Start) do not offer such a fine-grained control, but they still will transport the content
faster if they are enabled.

7.1.2 Proof-of-concept realization

It is simple to implement the suggested application-level signaling of response time targets and
to enhance Web application by the corresponding API to the fast startup congestion control.
Figure 7.2 shows the modifications that are required in a client and server that communicate by
HTTP. In the client, only two changes are required: It must determine an appropriate response
time target, e. g., by user configuration, and it must signal this value by an additional HTTP
header line. The server must have a corresponding parser and it must store the received value.
Once the corresponding content is available, it must determine the parameters, i. e., the content
size and the RTT, and then activate the fast startup accordingly by the sockets interface.

In order to prove that these extensions are very lightweight, both the “Firefox” Web browser
as well as the “lighttpd” Web server have been enhanced to support the signaling of target re-
sponse times. A screenshot of the enhanced “Firefox” browser is printed in Figure 7.3. In

Enhanced "Firefox"
Web browser
that optionally
signals target
download times

"OpenStreetMap"
default main page
(total size ca. 1.5 MB)

"Firebug" browser 
extension to measure
the page loading time

New GUI switch to
enable deadline signaling

Figure 7.3: Screenshot of the enhanced “Firefox” Web browser showing the “OpenStreetMap”
main page and an integrated measurement of the page loading time



170 Chapter 7. Applicability case studies

100 1000

Deadline signalled in HTTP header [ms]

100

1000

S
e

rv
e

r 
re

s
p

o
n

s
e

 t
im

e
 f

o
r 

a
 1

0
0

 k
B

 f
ile

 [
m

s
]

Target value

Slow-Start
Jump-Start

Mega-Start

Quick-Start

SS

JS

MS

QS

Target

Figure 7.4: Compliance to a signaled re-
sponse time deadline for a single object

100

Deadline signalled in HTTP header [ms]

6

7

8

9

10

11

P
a
g
e
 l
o
a
d
in

g
 t
im

e
 o

f 
th

e
 O

S
M

 m
a
in

 p
a
g
e
 [
s
]

Slow-Start
Jump-Start

Initial-Start
Mega-Start

Quick-Start

RTT

SS

JS

IS

QS

MS

Improvement by
more than 2 s

Figure 7.5: Influence of the deadline on the
“OpenStreetMap” Web page loading time

this proof-of-concept realization, the response time target is statically configured in the browser
configuration. The performance signaling can be activated or deactivated by a new GUI switch
element that is shown in the status line. The addition of the new HTTP header only requires
about 20 additional lines of code in the “Firefox” browser, and the GUI extension is straight-
forward, too. In the used Web server, about 70 lines of code are needed in order to parse the
HTTP header and activate the fast startup. These small numbers confirm that such an extension
is possible with almost negligible effort.

7.1.3 Exemplary measurement results

In order to illustrate the fundamental impact of the response time target signaling, Figure 7.4
shows a simple test result with a single object. In the experiment, a 100kB file has been retrieved
from the modified Web server over a link with capacity r = 10Mbit/s and an emulated RTT of
τ = 200ms. The target time is varied between 100ms and 2s. In Figure 7.4, one can clearly dis-
tinguish the startup schemes that support a parametrization by the application (Quick-Start and
Mega-Start) from those that do not have an application interface. In the latter case, the perfor-
mance is independent of the application’s need and may, or may not, meet the required deadline.
In case of Mega-Start and Quick-Start, a smaller deadline improves the server response time.
Mega-Start meets the response time target as long as this is possible over a 10Mbit/s link. If the
delay target is impossible because it is smaller than the RTT, the Web server is programmed not
to activate the fast startup. This effect can be observed in Figure 7.4 for Ttarget < τ . Quick-Start
shows a similar behavior, but it does not meet the signaled deadline. The initial rate determined
by Equation (7.1) is not large enough if Quick-Start is used with late-activation, i. e., if there
is a signaling delay of one RTT for the Quick-Start handshake. Furthermore, the used Quick-
Start implementation rounds the requested data rate down to the closest allowed request rate.
Because of both effects, it generally makes sense to request for a slightly smaller target server
response time than actually desired. Then, Quick-Start also performs well.

The result for a real Web page is presented in Figure 7.5. For this experiment, the “Open-
StreetMap” Web page has been mirrored on a local server. This Web page has been selected
as an example for a page with a significant number of larger objects, such as the images of the



7.2 Speedup of 3D visualization applications 171

map tiles. Furthermore, the interactive usage of such maps requires that the Website is almost
as fast as a standalone application if it shall be able to replace an offline navigation solution.
The server is accessed over a path with r = 1Gbit/s and τ = 200ms, i. e., there is plenty of
bandwidth to download the page, which sums up to a total amount of data of about 1.5MB. The
Web page loading time Tpage is determined by the “Firebug” extension of the “Firefox” browser
and averaged over seven repeated experiments with a disabled browser cache.

In this setup, the page loading time with a default TCP stack is about 9.6s. One reason for
this rather large value is the design of the “OpenStreetMap” Web page: It must first download
several large JavaScript files before the actual download of the map data can start. In such a
situation fast startup schemes make sense. If the Web server uses either Jump-Start or Initial-
Start, the loading time is reduced by over one second, independent of the signaled target time.
For a human user, this reduction results in a perceivably faster rendering of the Web page.

A further reduction is possible with Quick-Start or Mega-Start: If the target response time is set
to a value smaller than 300ms, the page loading time is reduced by over two seconds. In the
given scenario, the optimum value both for Quick-Start and Mega-Start is Ttarget ≈ 250ms. As
the given path has a large capacity, both Quick-Start and Mega-Start can then use a rather large
sending rate and thus minimize transfer delays. In contrast, if the response time target is of the
order of one second, the determined initial rate is rather small, and there is no benefit compared
to TCP’s standard Slow-Start. If the target value Ttarget is very close to the RTT of 200ms,
the page loading time is also slightly worse than the optimum. According to Equation (7.1),
the used data rates are then very high, and the activation of the fast startup becomes sensitive
to jitter in the RTT estimation. As already explained, the Web server in this experiment only
activates the fast startup if the target response time is smaller than the RTT, i. e., a small increase
of the estimated RTT can prevent the activation.

In summary, this case study shows that fast startup schemes perceivably improve the page load-
ing time of a Website like “OpenStreetMap”. The loading time can be reduced by up to several
seconds. The advantage of schemes with explicit activation is that the download speed can
be influenced by the user, which can selectively decide on the urgency. In contrast, the implicit
schemes result in an undifferentiated speedup. It is an open issue whether an additional interface
would be acceptable to users, i. e., if users would be interested in having an impact on the ag-
gressiveness of the congestion control and the speed of the Web, e. g., by a simple button in the
Web browser as shown in Figure 7.3. It would require large-scale field test with representative
groups of users to finally decide whether a signaling solution indeed makes sense, or whether
TCP’s existing model of not offering any control continues to be the preferred solution.

7.2 Speedup of 3D visualization applications

7.2.1 Network challenges of interactive 3D applications

More and more applications interactively display three-dimensional (3D) content and provide
rich visualizations and graphical renderings of real or virtual worlds and foreshadow a new
class of networked, multi-purpose, interactive 3D applications. Many ongoing research and
development activities are driven by the vision that it will be possible to create a new “World
Wide Space” [125] or “3D Web” [128] that offers ubiquitous access to detailed representations
of the real or virtual world and that combine realistic 3D city models with other data sources,
location-based services, and potentially even live content. These applications are enabled by



172 Chapter 7. Applicability case studies

several technical developments: Hardware-accelerated 3D processing is very common even on
mobile devices, and more and more 3D content is available, both from commercial providers
and from communities, and there is also an increasing number of solutions to solve the inter-
operability between heterogeneous data sources. A detailed discussion of these technological
enablers and the different possible architectures of interactive 3D applications is outside the
focus of this thesis. These aspects are surveyed in reference [207].

Many emerging online 3D applications are client-server applications with network-demanding
communication characteristics. The bandwidth requirements of interactive 3D applications can
be very high, since voluminous content must be transported over the Internet in a timely fashion.
These communication patterns are distinct from other application classes such as classic Web
or linear multimedia streaming applications. The encoding of complex 3D structures can sum
up to large amounts of data, in particular if it is encoded in XML and if the model also includes
high-quality textures and aerial images. Examples presented in [207] show that even a simple
3D city scenario results in a data volume of the order of one Megabyte. The size of the images
of building textures can easily exceed 10MB. This communication volume can of course be
reduced by techniques introduced in Section 3.2, such as caching and loss-less compression.
Furthermore, 3D visualization applications also have a multitude of possibilities to adapt their
communication behavior by controlling the level of detail of the visualized content as well
as other visualization parameters [26]. But the description of a complex 3D scenery is still
orders of magnitude larger than a typical Website. 3D models are thus one example for “mid-
sized” data transfers which can be significantly speeded up by fast startup congestion control.
Also, assuring the responsiveness of the application is a critical usability requirement, since
visualization lags can be immediately noticed by users.

Unlike other linear multimedia streaming traffic, the data delivery of most 3D model parts has
to be reliable [26]. This is why most online 3D visualization applications either use HTTP or
proprietary application protocols on top of TCP, even if various UDP-based application proto-
cols have also been developed (see [207]). One reason is that TCP is not optimized for both
reliable and timely transport of data. In this context, the delays caused by the Slow-Start have
been identified as a problem, e. g., in reference [166]. Furthermore, applications require knowl-
edge about the network characteristics in order to adapt and optimize their 3D visualization, in
particular an estimate how long the transport of a certain amount of data will probably last [26].

In summary, browsing interactively through complex, high-quality 3D scenarios retrieved from
the Internet results in large and bursty data downloads triggered by user actions. Because of the
combination of this workload characteristics and the requirement of responsiveness, online 3D
visualization applications are an obvious use case for fast startup mechanisms.

7.2.2 Architecture of an interactive 3D visualization application

Within the Nexus project at the University of Stuttgart [125], interactive visualization applica-
tions for 3D city models are developed. One of these prototypical applications has been tested
in combination with the Linux network stack implementations of fast startup congestion control
schemes. The selected application has the advantage that it is Linux-based and that it offers full
access to the source code of both client and server, which facilitates instrumentation and exper-
iments in controlled environments. The client application can visualize 3D city models similar
to other commercial tools, such as “Google Earth”. In order to retrieve the model scenegraph,
the client periodically synchronizes its context with the server as illustrated in Figure 7.6. A



7.2 Speedup of 3D visualization applications 173

cache
Local

TCP/IP stack

control

3D processing

3D rendering

TCP/IP stackTCP connection

control
Client Server

Client Server Data sources

Context update

(Emulated) WAN

models
3D

models
3D

Cache
Scenegraph

Scenegraph

Preprocessing

Figure 7.6: Client-server architecture of an interactive 3D visualization application

scenegraph is a graph structure that represents a 3D environment. If the user changes the visu-
alization perspective, the missing 3D model parts are retrieved from the server. In the prototype
implementation, the data transport is realized over a single persistent TCP connection using a
binary encoding format. The architecture is open to other data sources, as the server can query
different external databases and retrieve various 3D models that are available in XML formats.

In the following experiments, the client and the server are interconnected again by an 1 Gbit/s
Ethernet segment. This represents a capacity over-provisioning scenario, since the applications
cannot process the content at this speed. The Linux network emulation “NetEm” enforces a
minimum RTT of 200ms in order to realize a scenario in which the servers providing the 3D
models are distributed around the world and accessed by mobile devices, as envisioned by the
Nexus project.

Client and server applications have been instrumented in order to measure the response times,
being defined as the time between the sending of a context update of the client and the complete
reception of the corresponding new scenegraphs as illustrated in Figure 7.6. Furthermore, the
communication is analyzed by capturing “tcpdump” traces. In order to reproduce the results,
the measurement uses a recorded sequence of user interactions that browse through a couple of
different locations where 3D city models are available. At the beginning of each measurement,
the client cache is empty, i. e., the complete 3D scenery must be retrieved from the server. This
represents a typical scenario in which a user explores a new part of the 3D world.

7.2.3 Exemplary measurement results

Figure 7.7 shows one example of a resulting trace. The upper part of the diagram depicts the
observed data rate between server and client as a function of the time in the recorded sequence
of user interactions. The lower part reports the response times measured by the client applica-
tion. Each measurement point refers to the delay between the complete download of a new 3D
scenegraph object and the client message that triggered that transfer. Obviously, as long as the
3D scenery does not change, no data transfers occur. Due to the size of the displayed 3D mod-
els, the total amount of data exchanged during one measurement run is large. For instance, after
about 150s, a city model of Frankfurt is loaded and displayed, which includes many buildings.
All objects of this model part sum up to more than 80MB.

In Figure 7.7 one can observe the typical TCP behavior, i. e., the sender starts to send with a
small data rate, which then ramps up exponentially. As shown in the lower part, it can last up to
20 s until all parts of a new 3D model are retrieved, even though the link has a vast amount of
free capacity. This proves that the CUBIC congestion control is apparently sub-optimal for this
communication pattern.



174 Chapter 7. Applicability case studies

0

100

200

300

400

D
a
ta

 r
a
te

 [
M

b
it
/s

]

Default Linux TCP (CUBIC)

Jump-Start TCP

40 60 80 100 120 140 160 180 200 220 240 260

Time [s]

0

5

10

15

20

R
e
s
p
o
n
s
e
 t
im

e
 [
s
]

12.6 MB 2.16 MB

84.3 MB

47.0 MB

Data volume:

Figure 7.7: Traces from a 3D visualization
tool with Slow-Start vs. Jump-Start

0

100

200

300

400

D
a
ta

 r
a
te

 [
M

b
it
/s

]

Default Linux TCP (CUBIC)

Quick-Start TCP (adm. threshold 1 Gbit/s)

Quick-Start TCP (adm. threshold 10 Mbit/s)

40 60 80 100 120 140 160 180 200 220 240 260

Time [s]

0

5

10

15

20

R
e
s
p
o
n
s
e
 t
im

e
 [
s
]

Figure 7.8: Traces from a 3D visualization
tool with Slow-Start vs. Quick-Start

The performance of Jump-Start is also included in Figure 7.7. In the diagram, the peaks of the
fast startups are clearly visible. In this experiment, the usage of Jump-Start significantly reduces
the response times whenever data is transferred. In the best case, the model loading delay is
reduced by over 10 s, which is a very significant reduction.
The same experiment has also been performed with the Quick-Start TCP extension. Figure 7.8
shows results for two approval control configurations: In the first case it is assumed that the
total link capacity is available to Quick-Start requests (c = 1Gbit/s, θ = 1), while in the second
case the threshold of the target algorithm is only θ = 0.01, i. e., only 10Mbit/s are available.
In both setups, the requested initial sending rate is 82Mbit/s, which is a reasonable value to
transfer even large models within few seconds.
If the admission threshold is high, all Quick-Start requests throughout the experiment are ap-
proved, i. e., the initial sending rate is always of the order of 100Mbit/s. Figure 7.8 shows that
in this case the content download times are reduced to few seconds only and even smaller than
the Jump-Start results. If the admission threshold is only 10Mbit/s, the Quick-Start requests are
reduced in the network stack. The corresponding results in Figure 7.8 still show a performance
improvement. This reveals that it is sufficient to grant only a certain share of the link capacity
to Quick-Start requests. But, of course, the maximum achievable speedup is then smaller.
Similar experiments have also been realized with other high-speed congestion control algo-
rithms and resulted in similar graphs. In experiments with smaller RTTs such as 50ms, the
potential response time reduction by a fast startup scheme is smaller and hardly exceeds one
second. This result reconfirms that fast startups are mainly beneficial for transport over long-
distance paths. One could argue that large RTTs could be avoided by hosting the content inside
a CDN, as explained in Section 3.2.2.3. However, as already mentioned, it is very unclear
whether CDNs will indeed be able to deliver complex and potentially dynamic 3D models, in
particular once they get synchronized with the real world.
A shortcoming of the presented experiment is that the prototypical application cannot use mul-
tiple parallel TCP connections. Nevertheless, other online 3D visualization applications have
similar workload characteristics and would thus benefit from fast startups, too.



8 Conclusion

8.1 Summary

The Internet can never be fast enough. The TCP congestion control has been a key to the
Internet’s operational success in the last decades. Congestion control efficiently realizes best
effort transport and continues to be the predominantly used resource management principle in
packet networks, despite a vast amount of research on network QoS mechanisms. All widely
used TCP implementations use the Slow-Start algorithms, which is a fundamental principle of
the current Internet congestion control. However, the Slow-Start heuristic is time-consuming,
delays the transport of larger amounts of data and is therefore not an ideal solution for broadband
interactive applications. This naturally raises the question if and how faster startups could be
realized, in particular over paths that traverse long-distance WANs or cellular access networks.

This question is one of the remaining fundamental challenges in the current Internet. As shown
by the survey in this thesis, it is not new and has already been addressed by numerous studies
in the past decades. It is well-known that the flow startup is a complex problem, and if there
was a simple and robust alternative to the Slow-Start heuristic, it would probably be already in
use today. Yet, research work in the last years has opened up new perspectives: On the one
hand, new high-speed congestion control algorithms are more aggressive than TCP Reno. The
philosophy behind their design is that congestion must not be minimized at all cost, given that
today’s TCP stacks very efficiently recover from packet loss. Following this trend, one could
also replace the Slow-Start by a more aggressive startup. One the other hand, it is believed
that in the future long-term evolution of the Internet additional signaling mechanisms along a
path could be possible, in particular if no per-flow state is required in the network components.
This vision has recently driven the development of new network-supported congestion control
protocols that also ramp up data rates faster than the currently used algorithms.

This thesis follows both trends and comprehensively evaluates different fast startup congestion
control mechanisms that can almost immediately utilize links even in high-speed networks. It
considers both end-to-end schemes as well as protocols that use signaling along the path. Since
it is impossible to test the complete design space of flow startup schemes, the main focus are
novel, promising schemes that have been proposed in the last years, in particular the Jump-
Start proposal and the Quick-Start protocol. Quick-Start is an experimental TCP extension that
allows hosts to cooperate with the routers along a path in order to determine a large initial
sending rate. Also, a new combination of both principles (Mega-Start) is proposed, and the
trivial mechanism of just increasing the initial window is considered as well (Initial-Start). All
these TCP enhancements are implemented in the network stack of the Linux operating system
in order to enable realistic experiments. Their performance is studied by analytical models,
by simulations, by measurements in local testbeds, as well as by some tests over a real network
path. The study is complemented by a comparison to two other well-known protocols, XCP and

175



176 Chapter 8. Conclusion

XCP

RCPMega−Start

Slow−Start

Jump−Start

Initial−Start

Quick−Start

(Optimistic algo.)

(Fair algorithm)

End−to−end
(implicit feedback)

Network assistance
(sporadic feedback)

Network control
(frequent feedback)

Small

Large

Aggressiveness

Over−
subscription

pooling
Bandwidth

Expressiveness
of feedback

Figure 8.1: Classification of the congestion control mechanisms considered in this work

RCP, which have been developed as part of the ongoing clean slate research activities towards
a Future Internet.

From a global point of view, these different congestion control schemes differ in two very fun-
damental aspects: First, the network feedback inherently has a larger expressiveness if signaling
is used. The advantage of a large expressiveness is that more information is made available, but
it also comes along with the risks: In an open network like the Internet, any information must
be secured, and the resource management must be robust even if information is inaccurate. This
thesis proves that network-controlled schemes such as XCP or RCP are very sensitive to inac-
curacy of the information about the link capacity, whereas a network-assisted scheme such as
Quick-Start is much more robust, since it only uses feedback with a coarse granularity and does
not replace the end-to-end congestion control. Second, the schemes have different levels of
aggressiveness. There is an inherent trade-off between the maximum possible speedup during
a flow startup and the risk of congestion, independent of how the algorithms are designed in de-
tail. This work shows that this trade-off even exists if a signaling protocol provides information
about the path characteristics. Any resource management must either use an oversubscription
or a bandwidth pooling strategy; in the former case, there is a larger risk of causing congestion,
in particular if many new flows arrive in parallel, whereas in the latter case it is non-trivial to
deal with traffic patterns that consist of many short-lived flows. In Figure 8.1, the schemes
investigated in this work are classified along these two dimensions.

All fast startup schemes reduce the delays for larger transfers compared to Slow-Start, if they are
properly used. Still, this work identifies also significant differences. The findings concerning
the different schemes are summarized below. These advantages and drawbacks are also listed
in Table 8.1.

The Jump-Start mechanism has a quite reasonable performance in many scenarios, if it is mod-
ified as proposed in this work. It achieves a reasonable speedup of mid-sized transfers at the
cost of a moderately larger packet loss probability. While there are naturally cases in which the
fast startup is too aggressive, in many investigated scenarios the increase of packet losses is of
the order of 1% only, which is hardly critical for a modern TCP implementation, and also does
not necessarily result in significant performance degradation of other, standard-compliant TCP
connections sharing the same bottleneck. Jump-Start uses rate pacing during the first RTT.

A simpler, though slower alternative is just to increase the initial Congestion Window (Initial-
Start). This work experiments with an initial window of 10 MSS, and such a moderate increase
does not seem to be overly harmful. A significantly larger increase of the initial window is not
an option, as it would then for sure exceed typical buffer sizes in network components. But if
TCP’s initial window was increased by few segments only, more advanced fast startup schemes



8.1 Summary 177

Table 8.1: Summary of the properties of fast startup schemes

Scheme Advantages Drawbacks
End-to-end
Jump-Start - Speedup of larger transfers - Increased risk of packet losses

- Less aggressive over long paths - Behavior depends on application write patterns
and socket buffer sizes

Initial-Start - Very simple implementation - Increased risk of packet losses
- Reasonable speedup - Bursty traffic due to lack of rate pacing

Mega-Start - Improved convergence to equal - Potentially very aggressive
sharing of bandwidth - Should not be used by all applications

- Sending rate adjustable by application
Network-supported
Quick-Start - Low risk of causing congestion - Deployment challenges of IP option processing

- Simple coexistence with end-to-end - Intelligent activation heuristics required
congestion control

- Sending rate adjustable by application
XCP - Operation without packet drops - Vulnerable to capacity estimation errors

- Convergence to equal bandwidth sharing - Slower than TCP Reno for short transfers
- Isolation of TCP Reno traffic needed
- Many open issues, e. g., concerning security

RCP - Operation without packet drops - Vulnerable to capacity estimation errors
- Transfer time close to processor sharing - Large buffers in network components required
- Very fast convergence to equal - Isolation of TCP Reno traffic needed

bandwidth sharing - Incomplete protocol specification

can hardly achieve further benefits except in extreme situations. Both the Jump-Start proposal
as well as an increased initial window benefit from the typical Internet traffic characteristics:
Since many data transfers are rather small, faster startups only affect a smaller number of flows.
This principle could also be paraphrased by the design philosophy of making the rare case fast.
Both schemes also have in common that they could be a drop-in replacement of the currently
used Slow-Start algorithms and could thus be used by all TCP data transfers without explicit
support by the application.

As an alternative to a new Slow-Start algorithm, this thesis also proposes a solution that enables
the fast startup only in selected cases, i. e., upon explicit activation by the application by a new
interface (Mega-Start). Under the assumption that the application or another entity can provide
a reasonable value for an initial rate that is roughly of the order of the available bandwidth on the
path, the Mega-Start scheme can work rather well. It also has the interesting property that it al-
lows a differentiation between different application types. Furthermore, applications then have
some control over the expected data transfer times, which can improve the application-level
QoS. However, the experiments in this work also show that such a potentially very aggressive
startup could cause harm if it was used by all applications all the time. Its usefulness crucially
depends on the ability of application developers or users, which must decide whether to use it,
or whether the standard Slow-Start is just sufficient.

The fundamental challenge for all flow startup approaches is the lack of information about
the characteristics of an unknown path. This uncertainty could be reduced by new signaling
protocols. A major contribution of this thesis is the investigation of the Quick-Start protocol



178 Chapter 8. Conclusion

under realistic constraints. Given that the Quick-Start protocol only activates a fast startup if
the routers along the path observe a sufficient available capacity, the risk of congestion is much
smaller compared to end-to-end fast startup solutions. This works proves that Quick-Start is
a lightweight network-assisted mechanism that can be implemented both in endsystems and
routers with limited overhead, even though it suffers from the poor incremental deployment
properties of all network-supported mechanisms. The practical experiments with Quick-Start
in this thesis confirm the findings of previous simulation studies.

Furthermore, new algorithms are designed for the Quick-Start protocol. This thesis proposes
two new approval control strategies in order to mitigate the inefficient allocation of bandwidth
of the existing approval control algorithms: In case that the approval control of a router should
be conservative and use the design philosophy of bandwidth pooling, the proposed fair algo-
rithm ensures that the available bandwidth is more fairly assigned to different requests, without
much additional algorithmic complexity. This thesis also shows that an alternative router strat-
egy could be oversubscription, which makes the whole Quick-Start mechanism much simpler
(optimistic algorithm) without significantly increasing the congestion risk unless flash crowd
effects occur. In any case, the Quick-Start mechanism requires intelligence in the endsystems.
They must decide when to issue a request, decide on a reasonable rate, and avoid querying for
bandwidth that they will not use. If Quick-Start is just activated naively for all data transfers, the
mechanism is hardly of any benefit, or it may even worsen the performance compared to the us-
age of Slow-Start. There are other non-trivial problems, such as the handling of the Slow-Start
Threshold. A promising solution is to provide an interface by which applications can selectively
activate the Quick-Start mechanism. The experiments in this work with real applications show
that such an activation is indeed possible in practice.

Finally, this work compares Quick-Start to two other well-known network-controlled conges-
tion control frameworks that have been proposed for a Future Internet: XCP and RCP. Com-
pared to these disruptive, clean-slate approaches, Quick-Start is found to be a simple, evolu-
tionary solution, since it is more robust and does not cause interoperability problems with flows
using an existing end-to-end congestion control. In the currently proposed form, XCP and RCP
cannot be used for Internet congestion control. Despite numerous work on XCP, the algorithms
are not suitable for typical Internet workloads. The performance results of the more recent RCP
are more promising. In fact, Quick-Start with an approval control using the optimistic algorithm
has some similarities with RCP. Yet, many open issues of RCP remain unsolved. This thesis
shows that, unlike Quick-Start, XCP and RCP crucially depend on precise information about
link capacities, which can hardly be obtained in current network architectures. According to
these results, if a network-supported fast startup congestion control were to be deployed in the
Future Internet or, alternatively, in controlled intranets, Quick-Start would be the only candidate
out of the currently known techniques.

A further contribution of this work is to show-case the applicability and benefits of fast startup
congestion control with real applications. Fast startup congestion control is only useful for
selected classes of applications, which are classified as broadband interactive applications in
this work. Their key characteristic is that they are delay-sensitive and that they frequently ex-
change mid-sized or larger amounts of data. There are various different examples for such use
cases. This thesis substantiate that such characteristics are common in applications that deal
with two-dimensional or three-dimensional representations of the real world. Emerging online
3D visualization applications exhibit communication patterns that are distinct from other ap-
plication classes such as classic Web or video streaming applications, and are thus a typical



8.2 Outlook 179

representative of broadband interactive applications. The presented case studies illustrate that
such network-challenging applications could significantly benefit from fast startup congestion
control. Depending on the scenario, speedups of up to several seconds can be achieved. Addi-
tionally, the case studies show that fast startup congestion control could be the missing piece in
an overall network architecture in which applications could specify transport delay constraints,
e. g., in order to meet certain response time targets. Such a mechanism could become important
as more and more Internet applications replace locally installed software and must thus interact
with users with very small delays.

In summary, this thesis shows that fast startup congestion control would be a promising mecha-
nism in the future evolution of the Internet and would help to overcome one of the few remaining
performance limitations. A general observation in the experiments is that both end-to-end and
network-supported fast startup schemes trade off the speedup and the risk of congestion, even
though network support can limit this risk. But if one is willing to accept a moderately increased
packet loss probability, one can question whether the complexity of network support is indeed
worth the effort. In average, a sophisticated end-to-end fast startup like Jump-Start can achieve
quite similar performance results. The results of this work can thus be summarized by three key
conclusions:

1. End-to-end fast startup schemes are less harmful than often assumed, if they are carefully
designed and selectively used.

2. Network-support can overcome inherent limitations of any end-to-end congestion con-
trol, but it has problems of its own, and requires intelligent usage strategies even if the
deployment issues were solved.

3. The key challenge is the cross-layer interaction with applications, which could be ad-
dressed by additional interfaces to the network stack.

8.2 Outlook

This thesis is closely related to the fundamental question of how the Internet congestion control
should evolve in future. This question is addressed by many ongoing discussions and research
activities, but it is far from being solved. Many of the open research issues are surveyed in
Section 2.4.3, Section 4.2.5, and Section 4.7.1.2. Concerning fast startup congestion control,
there are several challenges that require further research, as they are not completely solved by
this thesis (see also [172]):

- A fundamental question is whether a slightly increased packet loss probability is accept-
able in the Internet if this improves the overall application performance. A recent proposal
of a major Internet application provider [49] also argues in favor of more aggressive TCP
algorithms and faster startups, but the question remains controversial.

- There is a lack of theoretical models for understanding and evaluating flow startup mech-
anisms, in particular concerning their impact on congestion risk, stability, and fairness.
This thesis studies the resulting trade-offs in various scenarios, but in fact an evaluation
in very large network topologies would be required, too.

- This thesis argues in favor of differentiated starting schemes, i. e., certain classes of ap-
plications can use higher initial sending rates. Such a differentiation inherently raises
fairness issues. Currently, there is no established theoretical methodology to quantify the



180 Chapter 8. Conclusion

fairness of flow startup schemes. Another question is how incentives could be created
so that aggressive startup schemes are only used when they are indeed useful. Such an
incentive solution could be designed based on the work of Briscoe [32, 35].

- The challenge for any congestion control scheme is how to deal with highly dynamic
changes of the path characteristics. Further work is required to understand the trade-
offs of end-to-end fast startup mechanism vs. network support in such an environment,
in which the feedback obtained from the network may be very inaccurate. It is unclear
whether the signaling is then indeed worth the effort.

- One could design congestion control signaling protocols other than the ones investigated
in this thesis. Yet, there is still no common understanding about the syntax and seman-
tics of such a protocol, which would be a candidate for replacing TCP in a “Post-TCP
era” [198]. Any fundamentally new Internet transport mechanism will likely come along
with a new flow startup scheme.

The studies in this thesis show that the startup of a data transfer is not a sole congestion control
problem, but instead heavily depends on the interaction with applications. These application is-
sues can only partly be addressed in this thesis. Applications may have to be redesigned in order
to get the best benefit of fast startup congestion control, and new application-network interfaces
might be needed. This thesis proposes and showcases such interfaces, but it cannot study all
implications. Topics of particular interest are adaptive applications that can change their com-
munication behavior depending on the network characteristics (cf. [208]). If an application has
an own control logic, this could facilitate the configuration of a fast startup scheme according
to the application’s demand. But then actually a further interface would make sense, which
exposes information about the network characteristics, such as the available bandwidth or an
estimate how long the transport of a certain amount of data will probably last. These interfaces
could also be enhanced to provide feedback from fast startup congestion control mechanisms.
For instance, the approved Quick-Start rate could be reported to applications so that they can
adapt accordingly. However, the interaction of fast startup congestion control and adaptive
applications is not further investigated in this work, because adaptation decisions can also be
realized without information from the network stack. A further possibility would be cross-layer
adaptation interfaces where the network stack can trigger adaptations of context-aware applica-
tions [60]. The handling of such triggers inside applications is still a research topic.

There are also certain specific design choices of fast startup congestion control schemes that
could be studied in future work:

- There are several different possibilities how a fast startup scheme could react to lost or
marked packets. It can use TCP’s standard recovery algorithm (used, e. g., in Initial-Start),
modify the CWND by a new algorithm (e. g., Jump-Start, Mega-Start), or revert to the
previous state (e. g., Quick-Start). The response after packet loss is actually orthogonal to
the initial ramp up of the CWND, i. e., there could be other combinations or algorithms
as well. These algorithmic details are left for further study.

- The experimental results do not allow to finally conclude whether a fast startup indeed
needs rate pacing if the burst size is of the order of ten packets only. Not using rate
pacing obviously increases the burstiness of the traffic. The impact of bursts signifi-
cantly depends on the characteristics of the buffers in network components, which vary
extremely. In general, it is impossible to model the buffer characteristics in the Internet,
so that this question can only be addressed by experiments with real equipment.



8.2 Outlook 181

A remaining open issue of this thesis are experiments in large-scale networks. The overall im-
plications of using fast startup congestion control on Internet scale can only be understood by
actual deployments. The author has started to perform experiments in an experimental network
testbed, but this infrastructure was then not available any more. Other large-scale experimental
platforms are still under construction. Currently, it is not possible to study network-supported
congestion control schemes in the existing experimental platforms, as hardware implementa-
tions in the network components are required. End-to-end congestion control schemes could be
tested, and this would be the most obvious next step of this work. The availability of implemen-
tations in the Linux network stack facilitates such experiments. Experimental studies with fast
startup congestion control schemes are also planned in the workplan of upcoming experimental
Future Internet platforms [230]. Such experimental work is required since simulation studies
are not sufficient to evaluate protocol mechanisms at Internet scale.





A Appendix: Mathematical background

A.1 Distribution functions

Performance evaluation uses statistical methods. In this work, several distribution functions are
used. The distributions can be described by their probability density function f (z) or by their
distribution function

F(z) = P(Z ≤ z) =
∫ z

0
f (t) dt. (A.1)

Well-known distributions are the exponential or negative-exponential distribution, the pareto
distribution, and the log-normal distribution.

A.1.1 Exponential distribution

The exponential distribution is characterized by

Fnegexp(z) =

{
1− exp

(
−λnegexp · z

)
z≥ 0

0 z < 0
. (A.2)

The mean value of the exponential distribution is mnegexp = 1/λnegexp.

A.1.2 Pareto distribution and variants

The pareto distribution function is defined as

Fpareto(z) =

1−
(

z
kpareto

)−αpareto
z≥ kpareto

0 z < kpareto

(A.3)

with shape parameter αpareto and location parameter kpareto. The mean is mpareto = αpareto·kpareto
αpareto−1

for αpareto > 1. The mean value is infinite for αpareto ≤ 1, and the distribution has an infinite
variance for αpareto ≤ 2. Because of the these properties, the truncated pareto distribution
is often used. Due to the truncation at z = Kpareto, the distribution function is Ftpareto(z) =
Fpareto(z)/(1− (Kpareto

kpareto
)−αpareto) for kpareto ≤ z ≤ Kpareto. The mean value of the truncated pareto

distribution is mtpareto = αpareto·kpareto
αpareto−1 (1− (Kpareto

kpareto
)−αpareto+1)/(1− (Kpareto

kpareto
)−αpareto).

183



184 Appendix A. Appendix: Mathematical background

A.1.3 Log-normal distribution

The log-normal distribution has a probability density function of

flognorm(z) =

 1√
2π·σlognorm·z

exp
(
−(lnz−µlognorm)2

2σ2
lognorm

)
z > 0

0 z≤ 0
. (A.4)

The mean value is given by mlognorm = exp
(

µlognorm +σ2
lognorm/2

)
.

A.2 Analytical lower bound for TCP resequencing delays

A.2.1 Scope of the model

An analytical model for the TCP resequencing delays has been published in [197, 116]. This
section briefly summarized the findings. It only considers the case of a single TCP connection
and does not investigate the performance of well-known techniques to mitigate the impact of
Head-of-Line blocking, which include SCTP’s multi-streaming or the unordered mode [116],
or, alternatively, multiple parallel TCP connections between the same two endsystems [197].

A.2.2 Model details

According to [197, 116], the average resequencing delay caused by HOL can be explicitly
calculated if the minimum RTT τ and the packet loss probability p is known, and if the impact
of the congestion control can be neglected. This is a reasonable assumption as long as p is
small. TCP can recover from packet loss either by the fast retransmit mechanism or by the
retransmission timeout. In the former case, the sender can detect the packet loss after the arrival
of three duplicate ACKs, i. e., after a delay of τ + 3δ . For simplicity, in this expression it is
supposed that signaling messages are sent with constant IAT δ . The error detection time by the
Retransmission Timeout, which is restarted whenever a new ACK arrives, is To +max(τ−δ ,0).
Considering both mechanisms, the error detection time is

Tdet = min(τ +3δ ,To +max(τ−δ ,0)) . (A.5)

This expression is an approximation only since more than one packet, the retransmission, or
acknowledgments may get lost. Lost ACKs could be handled by a simple extension [116]. In
Linux stacks the RTO duration To is typically close to its minimum value 200ms+τ (see [189]).
The impact of resequencing delays on the response time can than be calculated as follows: TCP
segments have to wait in the receiver’s resequencing queue until the retransmission arrives. The
waiting times ωi depend on the time Tdet = ω0 to detect the packet loss. The number of segments
that have to be queued until the retransmission arrives is Nqueued = bTdet/δc. The resequencing
delay of the i-th segment after the lost one is ωi = Tdet− i ·δ . The mean waiting time is the sum
of all ωi divided by the mean number of segments between two losses, which is 1/p:

Thol = p
Nqueued

∑
i=0

ωi = p
(

(Nqueued +1) ·Tdet−
(
Nqueued (Nqueued +1)

) δ

2

)
. (A.6)

Since HOL may occur in both directions and since the additional processing time in the endsys-
tems ε has to be considered, the mean response time follows as

Tresp = τ +2Thol + ε. (A.7)



B Appendix: Documentation of
parameters

This appendix documents the parameters of various experiments presented in this document.

B.1 Measurement setups

The measurement computers used in laboratory experiments have the following properties:

Component Type Comment
CPU Intel Pentium 4 2.8GHz In Section 7 also Intel Core 2
Memory 2−4GiB
Network interface card Intel Gigabit Ethernet Connected to a PCI bus
Operating system Ubuntu 7.04 In Section 7 also Ubuntu 8.04
Linux kernel version 2.6.24 See also Section 6.1.1.2

The computers used in the measurements over the experimental Internet path use a Fedora Linux
operating system with Linux kernel 2.6.24 and have a different hardware.

B.2 General Linux kernel configuration

Both in measurements and simulations, the following Linux kernel system configuration pa-
rameters are used by default, unless mentioned otherwise:

Parameter Default Comment
net/core/rmem_default 8388608 System-wide default receive buffer size
net/core/rmem_max 16777216 System-wide maximum receive buffer size
net/core/wmem_default 8388608 System-wide default send buffer size
net/core/wmem_max 16777216 System-wide maximum send buffer size
net/ipv4/tcp_rmem 16384 Auto-tuning: Minimum receive buffer size

8388608 Auto-tuning: Initial receive buffer size
16777216 Auto-tuning: Maximum receive buffer size

net/ipv4/tcp_wmem 16384 Auto-tuning: Minimum send buffer size
8388608 Auto-tuning: Initial send buffer size
16777216 Auto-tuning: Maximum send buffer size

net/ipv4/←↩ 1 Connection statistics caching disabled
tcp_no_metrics_save

185



186 Appendix B. Appendix: Documentation of parameters

Parameter Default Comment
net/ipv4/tcp_frto 0 Known implementation error in kernel

version 2.4.24 (cf. Section 6.1.1.2)

Furthermore, the socket option TCP_NODELAY is enabled in order to avoid any interaction with
the Nagle algorithm.

B.3 Default configuration of the fast startup schemes

B.3.1 Jump-Start

Parameter net/ipv4/... Default Comment [possible values]
tcp_js_enable 1 1: enabled [0,1]
tcp_js_max_size 65535 Upper threshold in byte [>0]
tcp_js_pacing_chunk 3 Rate pacing chunk size in MSS [>0]
tcp_js_ignore_rwnd 10000000 Rate limit in byte/s; RWND is ignored in the

first RTT for any positive value [>0]

B.3.2 Initial-Start

Parameter net/ipv4/... Default Comment [possible values]
tcp_js_enable 1 1: enabled [0,1]
tcp_js_size 10 Initial window in MSS [>0]
tcp_js_ignore_rwnd 1 Ignore RWND [0,1]

B.3.3 Mega-Start

Parameter net/ipv4/... Default Comment [possible values]
tcp_js_enable 1 1: enabling by sockets interface; 2: auto-

matic activation by kernel [0,1,2]
tcp_js_default_rate 10000000 Default initial data rate when automatically

activated [≥0]
tcp_js_pacing_chunk 3 Rate pacing chunk size in MSS [>0]
tcp_js_ignore_rwnd 1 Ignore RWND in first RTT [0,1]
tcp_js_synack_←↩ 0 Sending of an additional <ACK> after the
workaround <SYN,ACK> (cf. Section 5.2.3) [0,1]

B.3.4 Quick-Start

Parameter net/ipv4/... Default Comment [possible values]
ip_qs_enable 1 ≤0: disabled; 1: enabled; 2: optimistic algo-

rithms [0,1,2]
ip_qs_link_capacity True value Link capacity assumed by Quick-Start [≥0]
ip_qs_traffic_thresh 100 Percentage that is used by approval control



B.3 Default configuration of the fast startup schemes 187

Parameter net/ipv4/... Default Comment [possible values]
ip_qs_traffic_interval 0 0: automatic measurement of control inter-

val; > 0: fixed configured value [≥0]
ip_qs_max_allowed_rate 1310720000 ≥ 0: Upper bound on granted rate in bit/s;

-1: fairness enforcement [≥-1]
ip_qs_tracing 0 Tracing of approval control state to the sys-

tem log file [0,1]
tcp_qs_enable 1 0: disabled; 1: enabling by sockets interface;

2: automatic early activation; 5: automatic
late activation [0,1,2,5]

tcp_qs_idle_reactivate 1 Retry a request on a path even if previous
requests have been denied [0,1]

tcp_qs_default_rate 10000000 Default initial data rate when automatically
activated [≥0]

tcp_qs_pacing_chunk 3 Rate pacing chunk size in MSS [>0]
tcp_qs_adapt_ssthresh 0 0: QS-a; 2: QS-c; 3: QS-b [0,2,3]
tcp_qs_ssthresh_factor 1 Multiplication factor for SST in case of QS-b

and QS-c [>0]
tcp_qs_synack_←↩ 0 Sending of an additional <ACK> after the
workaround <SYN,ACK> (cf. Section 5.2.3) [0,1]





Bibliography

[1] F. Abrantes and M. Ricardo. XCP for shared-access multi-rate media. ACM
SIGCOMM Computer Communication Review, 36(3), pp. 27–38, 2006.

[2] B. O. M. Adjibadji. Untersuchung von Bandbreiteschätzverfahren hinsichtlich
der Anwendung in Mobilfunksystemen. Student thesis (in German), Institute of
Communication Networks and Computer Engineering, University of Stuttgart,
2007.

[3] A. Aggarwal, S. Savage, and T. Anderson. Understanding the performance of
TCP pacing. In Proc. IEEE INFOCOM, volume 3, pp. 1157–1165, 2000.

[4] V. Aggarwal, A. Feldmann, and C. Scheideler. Can ISPs and P2P users coop-
erate for improved performance? ACM SIGCOMM Computer Communication
Review, 37(3), pp. 29–40, 2007.

[5] M. Allman and V. Paxson. On estimating end-to-end network path properties. In
Proc. ACM SIGCOMM, pp. 263–274, 1999.

[6] M. Allman. TCPx2: Don’t fence me in. IETF Internet Draft, work in progress,
May 2006.

[7] J. Almeida, M. Dabu, A. Manikutty, and P. Cao. Providing differentiated Quality-
of-Service in Web hosting services. In ACM SIGMETRICS Workshop on Internet
Server Performance, 1998.

[8] W. Almesberger. UML simulator. In Proc. Ottawa Linux Symposium, 2003.

[9] L. Andrew. Compound TCP in Linux. http://netlab.caltech.edu/lachlan/ctcp/.

[10] L. Andrew, C. Marcondes, S. Floyd, L. Dunn, R. Guillier, W. Gang, L. Eggert,
S. Ha, and I. Rhee. Towards a common TCP evaluation suite. In Proc. PFLDnet,
2008.

[11] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing router buffers. ACM
SIGCOMM Computer Communication Review, 34(4), pp. 281–292, 2004.

[12] J. Arkko, B. Briscoe, L. Eggert, A. Feldmann, and M. Handley. Dagstuhl per-
spectives workshop on end-to-end protocols for the future internet. ACM SIG-
COMM Computer Communication Review, 39(2), pp. 42–47, 2009.

189

http://netlab.caltech.edu/lachlan/ctcp/


190 BIBLIOGRAPHY

[13] M. Arns. A new aggregation technique for the analysis of extended open fork/join
queueing networks by decomposition. In Proc. MMB, pp. 417–436, 2006.

[14] J. Aweya. On the design of IP routers part 1: Router architectures. Journal of
Systems Architecture, 46(6), pp. 483–511, 2000.

[15] P. Barford and M. Crovella. Generating representative Web workloads for net-
work and server performance evaluation. ACM SIGMETRICS Performance Eval-
uation Review, 26(1), pp. 151–160, 1998.

[16] P. Barford and M. Crovella. Critical path analysis of TCP transactions.
IEEE/ACM Transactions on Networking, 9(3), pp. 238–248, 2001.

[17] L. A. Barroso, J. Dean, and U. Hölzl. Web search for a planet: The Google
cluster architecture. IEEE Micro, 23, pp. 22–28, 2003.

[18] A. Bavier, L. Peterson, J. Brassil, R. McGeer, D. Reed, P. Sharma, P. Yala-
gandula, A. Henderson, L. Roberts, S. Schwab, R. Thomas, E. Wu, B. Mark,
B. Zhao, and A. Joseph. Increasing TCP throughput with an enhanced internet
control plane. In Proc. IEEE MILCOM, 2006.

[19] S. M. Bellovin, D. D. Clark, A. Perrig, and D. Song. A clean-slate design for the
next-generation secure Internet. Report of a workshop of the National Science
Foundation, 2004.

[20] S. Ben Fredj, T. Bonald, A. Proutiere, G. Régnié, and J. W. Roberts. Statisti-
cal bandwidth sharing: A study of congestion at flow level. ACM SIGCOMM
Computer Communication Review, 31(4), pp. 111–122, 2001.

[21] N. Bhatti and R. Friedrich. Web server support for tiered services. IEEE Network,
13(5), pp. 64–71, 1999.

[22] E. Blanton and M. Allman. On the impact of bursting on TCP performance. In
Proc. Passive and Active Measurement Workshop (PAM), 2005.

[23] R. Bless and M. Doll. Integration of the FreeBSD TCP/IP-stack into the discrete
event simulator OMNet++. In Proc. Winter Simulation Conference, 2004.

[24] S. Bodamer. Verfahren zur relativen Dienstgütedifferenzierung in IP-Netzknoten.
PhD thesis (in German), University of Stuttgart, 2004.

[25] S. Bodamer, K. Dolzer, C. Gauger, M. Barisch, and M. Necker. IKR Simulation
Library 2.6 User Guide. IKR, University of Stuttgart, 2007.

[26] I. M. Boier-Martin. Adaptive graphics. IEEE Computer Graphics and Applica-
tions, 23(1), pp. 6–10, 2003.

[27] O. Boxma, G. Koole, and Z. Liu. Queueing-theoretic solution methods for mod-
els of parallel and distributed systems. In O. Boxma and G. Koole, editors, Per-
formance Evaluation of Parallel and Distributed Systems - Solution Methods.
CWI (Tract 105 & 106), Amsterdam, 1994.



BIBLIOGRAPHY 191

[28] L. S. Brakmo and L. L. Peterson. TCP Vegas: End to end congestion avoidance
on a global internet. IEEE Journal on Selected Areas in Communication, 13(8),
pp. 1465–1480, 1995.

[29] L. Breslau, S. Jamin, and S. Shenker. Comments on the performance of
measurement-based admission control algorithms. In Proc. IEEE INFOCOM,
pp. 1233–1242, 2000.

[30] L. Breslau, E. W. Knightly, S. Shenker, I. Stoica, and H. Zhang. Endpoint admis-
sion control: Architectural issues and performance. ACM SIGCOMM Computer
Communication Review, 30(4), pp. 57–69, 2000.

[31] P. G. Bridges, G. T. Wong, M. Hiltunen, R. D. Schlichting, and M. J. Barrick.
A configurable and extensible transport protocol. IEEE/ACM Transactions on
Networking, 15(6), pp. 1254–1265, 2007.

[32] B. Briscoe, A. Jacquet, C. Di Cairano-Gilfedder, A. Carla, A. Soppera, and
M. Koyabe. Policing congestion response in an internetwork using re-feedback.
ACM SIGCOMM Computer Communication Review, 35(4), pp. 277–288, 2005.

[33] B. Briscoe. Flow rate fairness: Dismantling a religion. ACM SIGCOMM Com-
puter Communication Review, 37(2), pp. 65–74, 2007.

[34] B. Briscoe, A. Jacquet, T. Moncaster, and A. Smith. Re-ECN: Adding account-
ability for causing congestion to TCP/IP. IETF Internet Draft, work in progress,
July 2008.

[35] B. Briscoe. A fairer, faster Internet protocol. IEEE Spectrum, Dec. 2008, pp.
38–43, 2008.

[36] S. Bryant, B. Davie, L. Martini, and E. Rosen. Pseudowire congestion control
framework. IETF Internet Draft, work in progress, June 2009.

[37] L.-O. Burchard. Analysis of data structures for admission control of advance
reservation requests. IEEE Transactions on Knowledge and Data Engineering,
17(3), pp. 413–424, 2005.

[38] L. Burgstahler and M. Neubauer. New modifications of the exponential moving
average for bandwidth estimation. In 15th ITC Specialist Seminar, 2002.

[39] C. Caini and R. Firrincieli. TCP Hybla: a TCP enhancement for heterogeneous
networks. International Journal of Satellite Communications and Networking,
22, pp. 547–566, 2004.

[40] G. Camarillo and M.-A. García-Martín. The 3G IP Multimedia Subsystem (IMS):
Merging the Internet and the Cellular Worlds. Wiley, 2nd edition, 2005.

[41] V. Cardellini, E. Casalicchio, M. Colajanni, and P. S. Yu. The state of the art
in locally distributed Web-server systems. ACM Computing Surveys, 34(2), pp.
263–311, 2002.



192 BIBLIOGRAPHY

[42] N. Cardwell, S. Savage, and T. Anderson. Modeling TCP latency. In Proc. IEEE
INFOCOM, volume 3, pp. 1742–1751, 2000.

[43] V. G. Cerf and R. E. Kahn. A protocol for packet network interconnection. IEEE
Transactions on Communications, 22(5), pp. 637–648, 1974.

[44] S. Chang and A. Vetro. Video adaptation: Concepts, technologies, and open
issues. Proceedings of IEEE, 93(1), pp. 148–158, 2005.

[45] T.-Y. Chang, Z. Zhuang, A. Velayutham, and R. Sivakumar. Webaccel: Accel-
erating Web access for low-bandwidth hosts. Computer Networks, 52(11), pp.
2129–2147, 2008.

[46] J. Charzinski. Measured HTTP performance and fun factors. In Proc. 17th In-
ternational Teletraffic Congress (ITC), pp. 1063–1074, 2001.

[47] Z. Chen, T. Bu, M. Ammar, and D. Towsley. Comments on “modeling TCP
reno performance: A simple model and its empirical validation”. IEEE/ACM
Transactions on Networking, 14(2), pp. 451–453, 2006.

[48] D.-M. Chiu and R. Jain. Analysis of the increase and decrease algorithms for
congestion avoidance in computer networks. Computer Networks and ISDN Sys-
tems, 17(1), pp. 1–14, 1989.

[49] H. K. J. Chu. Tuning TCP for the 21st century. Presentation at 75th IETF meet-
ing, 2009.

[50] D. D. Clark. The design philosophy of the DARPA internet protocols. ACM
SIGCOMM Computer Communication Review, 18(4), pp. 106–114, 1988.

[51] D. Clark, K. Sollins, J. Wrolawski, D. Katabi, J. Kulik, X. Yang, R. Braden,
T. Faber, A. Falk, V. Pingali, M. Handley, and N. Chiappa. New Arch: Future
generation Internet architecture. Final report of the DARPA NewArch project,
2003.

[52] A. Dan, H. Ludwig, and G. Pacifici. Web services differentiation with service
level agreements. White paper, IBM Corporation, 2003.

[53] D. W. Davies. The control of congestion in packet-switching networks. IEEE
Transactions on Communications, 20(3), pp. 546–550, 1972.

[54] J. D. Day. Patterns in network architecture: a return to fundamentals. Pearson
Education, 2008.

[55] A. B. Downey. Lognormal and Pareto distributions in the Internet. Computer
Communications, 28(7), pp. 790–801, 2005.

[56] N. Dukkipati and N. McKeown. Why flow-completion time is the right metric for
congestion control. ACM SIGCOMM Computer Communication Review, 36(1),
pp. 59–62, 2006.



BIBLIOGRAPHY 193

[57] N. Dukkipati. Rate Control Protocol (RCP): Congestion Control to Make Flows
Complete Quickly. PhD thesis, Stanford University, 2007.

[58] N. Dukkipati, G. Gibb, N. McKeown, and J. Zhu. Building a RCP (Rate Control
Protocol) test network. In Proc. IEEE Symposium on High-Speed Interconnects,
2007.

[59] R. Dunaytsev, Y. Koucheryavy, and J. Harju. The PFTK-model revised. Com-
puter Communications, 29(13-14), pp. 2671–2679, 2006.

[60] C. Efstratiou, K. Cheverst, N. Davies, and A. Friday. An architecture for the
effective support of adaptive context-aware applications. In Proc. Conference
on Mobile Data Management (MDM), LNCS 1987, Springer-Verlag, pp. 15–26,
2001.

[61] L. Eggert and W. M. Eddy. Towards more expressive transport-layer interfaces.
In Proc. ACM/IEEE International Workshop on Mobility in the Evolving Internet
Architecture, pp. 71–74, 2006.

[62] M. A. El-Gendy, A. Bose, and K. G. Shin. Evolution of the Internet QoS and
support for soft real-time applications. Proceedings of the IEEE, 91(7), pp. 1086–
1104, 2003.

[63] G. Fairhurst and A. Sathiaseelan. Quick-Start for Datagram Congestion Control
Protocol (DCCP). IETF Internet Draft, work in progress, June 2009. Published
as RFC 5634.

[64] A. Falk, Y. Pryadkin, and D. Katabi. Specification for the explicit control proto-
col (XCP). IETF Internet Draft, work in progress, July 2007.

[65] J. Färber. Modellierung von IP-basiertem Paketverkehr ausgewählter interak-
tiver Dienste. PhD thesis (in German), University of Stuttgart, 2007.

[66] A. Feldmann, A. C. Gilbert, W. Willinger, and T. G. Kurtz. The changing nature
of network traffic: Scaling phenomena. ACM SIGCOMM Computer Communi-
cation Review, 28(2), pp. 5–29, 1998.

[67] A. Feldmann. Internet clean-slate design: What and why? ACM SIGCOMM
Computer Communication Review, 37(3), pp. 59–64, 2007.

[68] W. Feng, K. G. Shin, D. D. Kandlur, and D. Saha. The BLUE active queue
management algorithms. IEEE/ACM Trans. Netw., 10(4), pp. 513–528, 2002.

[69] M. Fisk and W. Feng. Dynamic right-sizing in TCP. In 2nd Annual Los Alamos
Computer Science Institute Symposium (LACSI 2001), 2001.

[70] S. Floyd and V. Paxson. Difficulties in simulating the Internet. IEEE/ACM Trans-
actions on Networking, 9(4), pp. 392–403, 2001.

[71] B. Ford. Structured streams: a new transport abstraction. ACM SIGCOMM
Computer Communication Review, 37(4), pp. 361–372, 2007.



194 BIBLIOGRAPHY

[72] B. Ford and J. Iyengar. Breaking up the transport logjam. In ACM Workshop on
Hot Topics in Networks (HotNets-VII), 2008.

[73] S. B. Fredj, S. Oueslati-Boulahia, and J. W. Roberts. Measurement-based admis-
sion control for elastic traffic. In Proc. 17th International Teletraffic Congress
(ITC), pp. 161–172, 2001.

[74] X. Fu, H. Schulzrinne, A. Bader, D. Hogrefe, C. Kappler, G. Karagiannis,
H. Tschofenig, and S. Van den Bosch. NSIS: A new extensible IP signaling
protocol suite. IEEE Communications Magazine, 43(10), pp. 133–141, 2005.

[75] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The cost of a cloud: Re-
search problems in data center networks. ACM SIGCOMM Computer Commu-
nication Review, 39(1), pp. 68–73, 2009.

[76] L. A. Grieco and S. Mascolo. Performance evaluation and comparison of West-
wood+, New Reno, and Vegas TCP congestion control. ACM SIGCOMM Com-
puter Communication Review, 34(2), pp. 25–38, 2004.

[77] K.-J. Grinnemo, J. Garcia, and A. Brunstrom. Taxonomy and survey of
retransmission-based partially reliable transport protocols. Computer Commu-
nications, 27(15), pp. 1441–1452, 2004.

[78] M. Grossglauser and D. N. C. Tse. A time-scale decomposition approach to
measurement-based admission control. IEEE/ACM Transactions on Networking,
11(4), pp. 550–563, 2003.

[79] L. Guo and I. Matta. The war between mice and elephants. In Proc. International
Conference on Network Protocols (ICNP), pp. 180–188, 2001.

[80] S. Ha, L. Le, I. Rhee, and L. Xu. Impact of background traffic on performance of
high-speed TCP variant protocols. Computer Networks, 51(7), pp. 1748–1762,
2007.

[81] S. Ha and I. Rhee. Hybrid slow start for high-bandwidth and long-distance net-
works. In Proc. PFLDnet2008, March 2008.

[82] S. Ha, I. Rhee, and L. Xu. CUBIC: A new TCP-friendly high-speed TCP variant.
ACM SIGOPS Operating System Review, 42(5), pp. 64–74, 2008.

[83] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal. Size-based
scheduling to improve web performance. ACM Transactions on Computer Sys-
tems, 21(2), pp. 207–233, 2003.

[84] S. Hauger, M. Scharf, J. Kögel, and C. Suriyajan. Quick-Start and XCP on a
network processor: Implementation issues and performance evaluation. In Proc.
IEEE HPSR 2008, 2008.

[85] J. Hautakorpi, G. Camarillo, R. Penfield, A. Hawrylyshen, and M. Bhatia. Re-
quirements from SIP (Session Initiation Protocol) Session Border Control De-
ployments. IETF Internet Draft, work in progress, January 2009. Published as
RFC 5853.



BIBLIOGRAPHY 195

[86] B. R. Haverkort. Performance of Computer Communication Systems – A Model-
Based Approach. Wiley, 1998.

[87] E. He, P. V.-B. Primet, M. Welzl, M. Goutelle, Y. Gu, S. Hegde, R. Kettimuthu,
J. Leigh, C. Xiong, and M. M. Yousaf. A survey of transport protocols other than
standard TCP. Document gfd-i.055, Global Grid Forum, 2005.

[88] J. Heidemann, K. Obraczkad, and J. Touch. Modeling the performance of HTTP
over several transport protocols. IEEE/ACM Transactions on Networking, 5(5),
pp. 616–630, 1997.

[89] J. Heidemann, K. Mills, and S. Kumar. Expanding confidence in network simu-
lations. IEEE Network, 15(5), pp. 58–63, 2001.

[90] S. Hemminger. Network emulation with NetEm. In Proc. Australia’s National
Linux Conference (LCA), 2005.

[91] S. Hessler and M. Welzl. An empirical study of the congestion response of Re-
alPlayer, Windows MediaPlayer and Quicktime. In Proc. IEEE International
Symposium on Computers and Communications, 2005.

[92] J. C. Hoe. Improving the start-up behavior of a congestion control scheme for
TCP. ACM SIGCOMM Computer Communication Review, 26(4), pp. 270–280,
1996.

[93] H.-Y. Hsieh and R. Sivakumar. A transport layer approach for achieving aggre-
gate bandwidths on multi-homed mobile hosts. In Proc. ACM MobiCom, pp.
83–94, 2002.

[94] N. Hu and P. Steenkiste. Improving TCP startup performance using active mea-
surements: algorithm and evaluation. Proc. IEEE ICNP, pp. 107–118, 2003.

[95] Communication Networks II lecture script. Institute of Communication Net-
works and Computer Engineering, University of Stuttgart, 2008.

[96] S. Iren, P. D. Amer, and P. T. Conrad. The transport layer: Tutorial and survey.
ACM Computing Surveys, 31(4), pp. 360–404, 1999.

[97] P. Jacobs and B. Davie. Technical challenges in the delivery of interprovider
QoS. IEEE Communications Magazine, 43(6), pp. 112–118, 2005.

[98] V. Jacobson. Congestion avoidance and control. ACM SIGCOMM Computer
Communication Review, 18(4), pp. 314–329, 1988.

[99] R. Jain. A timeout-based congestion control scheme for window flow-controlled
networks. IEEE Journal on Selected Areas in Communications, 4(7), 1986.

[100] R. Jain and K. K. Ramakrishnan. Congestion avoidance in computer networks
with a connectionless network layer: Concepts, goals and methodology. In Proc.
Computer Networking Symposium, pp. 134–143, 1988.



196 BIBLIOGRAPHY

[101] M. Jain and C. Dovrolis. Ten fallacies and pitfalls on end-to-end available band-
width estimation. In Proc. ACM Internet Measurement Conference (IMC), pp.
272–277, 2004.

[102] S. Jain, Y. Zhang, and D. Loguinov. Towards experimental evaluation of explicit
congestion control. Computer Networks, 53(7), pp. 1027–1039, 2009.

[103] S. Jansen and A. McGregor. Simulation with real world network stacks. In Proc.
Winter Simulation Conference, pp. 2454–2463, 2005.

[104] S. Jansen and A. McGregor. Performance, validation and testing with the net-
work simulation cradle. In Proc. IEEE International Symposium on Modeling,
Analysis, and Simulation (MASCOTS), pp. 355–362, 2006.

[105] S. Jansen and A. McGregor. Static virtualization of C source code. Software –
Practice and Expererience, 38(4), pp. 397–416, 2008.

[106] H. Jiang and C. Dovrolis. Passive estimation of TCP round-trip times. ACM
SIGCOMM Computer Communication Review, 32(3), pp. 75–88, 2002.

[107] P. Jogalekar and M. Woodside. Evaluating the scalability of distributed sys-
tems. IEEE Transactions in Parallel and Distributed Systems, 11(6), pp. 589–
603, 2000.

[108] Jupiter Research. Retail Web site performance: Consumer reaction to a poor
online shopping experience. Technical report, Jupiter Research, New York, NY,
USA, 2006.

[109] M. Karsten. Collected experience from implementing RSVP. IEEE/ACM Trans-
actions on Networking, 14(4), pp. 767–778, 2006.

[110] D. Katabi, M. Handley, and C. Rohrs. Congestion control for high bandwidth-
delay product networks. ACM SIGCOMM Computer Communication Review,
32(4), pp. 89–102, 2002.

[111] F. Kelly. Charging and rate control for elastic traffic. European Transactions on
Telecommunications, 8(1), pp. 33–37, 1997.

[112] F. Kelly, A. Maulloo, and D. Tan. Rate control in communication networks:
shadow prices, proportional fairness and stability. Journal of the Operational
Research Society, 49, pp. 237–252, 1998.

[113] F. Kelly. Fairness and stability of end-to-end congestion control. European Jour-
nal of Control, 9, pp. 159–176, 2003.

[114] T. Kelly. Scalable TCP: improving performance in highspeed wide area net-
works. ACM SIGCOMM Computer Communication Review, 33(2), pp. 83–91,
2003.

[115] S. Keshav. Congestion Control in Computer Networks. PhD thesis, University of
California, Berkeley, 1991.



BIBLIOGRAPHY 197

[116] S. Kiesel and M. Scharf. Modeling and performance evaluation of transport
protocols for firewall control. Computer Networks, 51(11), pp. 3232–3251, 2007.

[117] S. Kiesel. Architekturen verteilter Firewalls für IP-Telefonie-Plattformen. PhD
thesis (in German), University of Stuttgart, 2008.

[118] C. C. Knestrick. Lunar: A user-level stack library for network emulation. Mas-
ter’s thesis, Virginia Polytechnic Institute and State University, 2004.

[119] S.-S. Ko and R. F. Serfozo. Response times in M/M/s fork-join networks. Ad-
vances in Applied Probability, 36(3), pp. 854–871, 2004.

[120] E. Kohler, S. Floyd, and A. Sathiaseelan. Faster restart for TCP friendly rate
control (TFRC). IETF Internet Draft, work in progress, July 2008.

[121] K. Kumazoe, C. Marcondes, M. Gerla, D. Cavendish, M. Tsuru, and Y. Oi. Con-
servative slow start: Controlling losses in very high speed networks. In Proc.
IEEE ICC, pp. 5798–5803, 2008.

[122] S. S. Kunniyur. AntiECN marking: A marking scheme for high bandwidth delay
connections. In Proc. IEEE International Conference on Communications (ICC),
2003.

[123] A. Kuzmanovic and E. W. Knightly. TCP-LP: low-priority service via end-point
congestion control. IEEE/ACM Transactions on Networking, 14(4), pp. 739–752,
2006.

[124] A. Lakshmikantha, R. Srikant, N. Dukkipati, N. McKeown, and C. Beck. Buffer
sizing results for RCP congestion control under connection arrivals and depar-
tures. ACM SIGCOMM Computer Communication Review, 39(1), pp. 5–15,
2009.

[125] R. Lange, N. Cipriani, L. Geiger, M. Großmann, H. Weinschrott, A. Brodt,
M. Wieland, S. Rizou, and K. Rothermel. Making the World Wide Space happen:
New challenges for the Nexus context platform. In Proc. IEEE PerCom, 2009.

[126] G. Lawton. New ways to build rich Internet applications. Computer, 41(8), pp.
10–12, 2008.

[127] L. Le, J. Aikat, K. Jeffay, and F. D. Smith. The effects of active queue man-
agement and explicit congestion notification on web performance. IEEE/ACM
Transactions on Networking, 15(6), pp. 1217–1230, 2007.

[128] N. Leavitt. Browsing the 3D Web. Computer, 39(9), pp. 18–21, 2006.

[129] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C. Lynch,
J. Postel, L. G. Roberts, and S. S. Wolff. The past and future history of the
Internet. Communications of the ACM, 40(2), pp. 102–108, 1997.

[130] D. J. Leith, R. N. Shorten, and G. McCullagh. Experimental evaluation of Cubic-
TCP. In Proc. PFLDnet, 2007.



198 BIBLIOGRAPHY

[131] D. J. Leith, L. L. H. Andrew, T. Quetchenbach, R. N. Shorten, and K. Lavi.
Experimental evaluation of delay/loss-based TCP congestion control algorithms.
In Proc. PFLDnet, 2008.

[132] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the self-similar
nature of Ethernet traffic (extended version). IEEE/ACM Transactions on Net-
working, 2(1), pp. 1–15, 1994.

[133] K.-C. Leung and V. O. K. Li. Transmission Control Protocol (TCP) in wireless
networks: issues, approaches, and challenges. IEEE Communications Surveys &
Tutorials, 8(4), pp. 64–79, 2006.

[134] Y.-T. Li, D. Leith, and R. N. Shorten. Experimental evaluation of TCP protocols
for high-speed networks. IEEE/ACM Transactions on Networking, 15(5), pp.
1109–1122, 2007.

[135] Z. Liu, L. Wynter, C. H. Xia, and F. Zhang. Parameter inference of queueing
models for IT systems using end-to-end measurements. Performance Evaluation,
63(1), pp. 36–60, 2006.

[136] D. Liu, M. Allman, S. Jin, and L. Wang. Congestion control without a startup
phase. In Proc. PFLDnet, 2007.

[137] S. Liu, T. Başar, and R. Srikant. TCP-Illinois: A loss- and delay-based congestion
control algorithm for high-speed networks. Performance Evaluation, 65(6-7), pp.
417–440, 2008.

[138] M. Lorang. Verbindungsorientierte und verbindungslose Mechanismen eines
skalierbaren Verkehrsmanagements für IP-Netze. PhD thesis (in German), Uni-
versity of Stuttgart, 2005.

[139] S. H. Low. A duality model of TCP and queue management algorithms.
IEEE/ACM Transactions on Networking, 11(4), pp. 525–536, 2003.

[140] H.-L. Lu and I. Faynberg. An architectural framework for support of Quality of
Service in packet networks. IEEE Communications Magazine, 6(41), pp. 98–
105, 2003.

[141] W. Y. Lum and F. C. M. Lau. User-centric content negotiation for effective adap-
tation service in mobile computing. IEEE Transactions on Software Engineering,
29(12), pp. 1100–1111, 2003.

[142] P. Mähönen, D. Trossen, D. Papadimitriou, G. Polyzos, and D. Kennedy. The
future networked society. White paper from the EIFFEL Think-Tank, 2006.

[143] C. L. T. Man, G. Hasegawa, and M. Murata. ImTCP: TCP with an inline measure-
ment mechanism for available bandwidth. Computer Communications, 29(10),
pp. 1614–1626, 2006.

[144] J. S. Marcus and D. Elixmann. The future of IP interconnection: Technical,
economic, and public policy aspects. Report of WIK-Consult, Bad Honneff,
Germany, 2008.



BIBLIOGRAPHY 199

[145] R. Martin and M. Menth. Improving the timeliness of rate measurements. In
GI/ITG Conference on Measuring, Modelling and Evaluation of Computer and
Communication Systems (MMB)/Polish-German Teletraffic Symposium (PGTS),
2004.

[146] M. Mathies. Relentless congestion control. In Proc. PFLDNeT, 2009.

[147] M. Mathis, J. Semke, and J. Mahdavi. The macroscopic behavior of the TCP
congestion avoidance algorithm. ACM SIGCOMM Computer Communication
Review, 27(3), pp. 67–82, 1997.

[148] S. McCanne and S. Floyd. ns network simulator. http://www.isi.edu/nsnam/ns/.

[149] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng. Composing
adaptive software. Computer, 37(7), pp. 56–64, 2004.

[150] A. Medina, M. Allman, and S. Floyd. Measuring the evolution of transport proto-
cols in the Internet. ACM SIGCOMM Computer Communication Review, 35(2),
pp. 37–52, 2005.

[151] D. A. Menascé and V. A. F. Almeida. Capacity Planning for Web Services:
Metrics, Models, and Methods. Prentice Hall PTR, 2nd edition, 2001.

[152] D. A. Menascé, V. A. F. Almeida, R. Riedi, F. Ribeiro, R. Fonseca, and W. Meira.
A hierarchical and multiscale approach to analyze e-business workloads. Perfor-
mance Evaluation, 54(1), pp. 33–57, 2003.

[153] A. Mielke. Elements for response-time statistics in ERP transaction systems.
Performance Evaluation, 63(7), pp. 635–653, 2006.

[154] J. Milbrandt, M. Menth, and J. Junker. Experience-based admission control in
the presence of traffic changes. Journal of Communications (JCM), 2(1), pp.
10–21, 2007.

[155] R. B. Miller. Response time in man-computer conversational transactions. In
Proc. AFIPS Fall Joint Computer Conference, San Francisco, CA, USA, pp. 267–
277, 1968.

[156] P. Molinero-Fernández, N. McKeown, and H. Zhang. Is IP going to take over
the world (of communications)? ACM SIGCOMM Computer Communication
Review, 33(1), pp. 113–118, 2003.

[157] T. Moors. A critical review of “End-to-end arguments in system design”. In Proc.
International Conference on Communications (ICC), pp. 1214–1219, 2002.

[158] P. Mosebekk. A Linux implementation and analysis of the eXplicit Control Pro-
tocol (XCP). Master’s thesis, University of Oslo, 2005.

[159] A. P. Mudambi, X. Zheng, and M. Veeraraghavan. A transport protocol for dedi-
cated end-to-end circuits. In Proc. IEEE International Conference on Communi-
cations (ICC), volume 1, pp. 18–23, 2006.

http://www.isi.edu/nsnam/ns/


200 BIBLIOGRAPHY

[160] K. Nakauchi and K. Kobayashi. An explicit router feedback framework for high
bandwidth-delay product networks. Computer Networks, 51(7), pp. 1833–1846,
2007.

[161] P. Natarajan, J. R. Iyengar, P. D. Amer, and R. Stewart. SCTP: An innovative
transport layer protocol for the web. In Proc. WWW 2006, pp. 615–624, 2006.

[162] M. Necker, M. Scharf, and A. Weber. Performance of different proxy concepts
in UMTS networks. In LNCS 3427, Springer-Verlag, pp. 36–51, 2005.

[163] R. Nelson and A. N. Tantawi. Approximate analysis of fork/join synchronization
in parallel queues. IEEE Transactions on Computers, 37(6), pp. 739–743, 1988.

[164] J. Nichols, M. Claypool, and R. K. M. Li. Measurements of the congestion
responsiveness of Windows streaming media. In Proc. International ACM Work-
shop on Network and Operating Systems Support for Digital Audio and Video
(NOSSDAV), pp. 94–99, 2004.

[165] H. F. Nielsen, J. Gettys, A. Baird-Smith, E. Prud’hommeaux, H. W. Lie, and
C. Lilley. Network performance effects of HTTP/1.1, CSS1, and PNG. ACM
SIGCOMM Computer Communication Review, 27(4), pp. 155–166, 1997.

[166] A. Nurminen. Mobile, hardware-accelerated urban 3D maps in 3G networks. In
Proc. ACM Web3D, pp. 7–16, 2007.

[167] A. Odlyzko. The delusions of net neutrality. In Proc. Telecommunications Policy
Research Conference, 2008.

[168] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose. Modeling TCP reno perfor-
mance: A simple model and its empirical validation. IEEE/ACM Transactions
on Networking, 8(2), pp. 133–145, 2000.

[169] V. N. Padmanabhan and R. H. Katz. TCP fast start: A technique for speeding up
Web transfers. In Proc. IEEE Globecom, pp. 41–46, 1998.

[170] G. Pallis and A. Vakali. Insight and perspectives for content delivery networks.
Communications of the ACM, 49(1), pp. 101–106, 2006.

[171] R. Pan, B. Prabhakar, and K. Psounis. CHOKe - a stateless active queue man-
agement scheme for approximating fair bandwidth allocation. In Proc. IEEE
INFOCOM, volume 2, pp. 942–951, 2000.

[172] D. Papadimitriou, M. Welzl, M. Scharf, and B. Briscoe. Open research issues in
Internet congestion control. IRTF Internet Draft, work in progress, August 2009.
Published as RFC 6077.

[173] C. Partridge, D. Rockwell, M. Allman, R. Krishnan, and J. P. Sterbenz. A swifter
start for TCP. Technical Report 8339, BBN Technologies, 2002.

[174] C. J. Pavlovski. Service delivery platforms in practice. IEEE Communications
Magazine, 45(3), pp. 114–121, 2007.



BIBLIOGRAPHY 201

[175] K. Pawlikowski, H.-D. J. Jeong, and J.-S. R. Lee. On credibility of simulation
studies of telecommunication networks. IEEE Communications Magazine, 40(1),
pp. 132–139, 2002.

[176] V. Paxson and S. Floyd. Wide area traffic: The failure of Poisson modeling.
IEEE/ACM Transactions on Networking, 3(3), pp. 226–244, 1995.

[177] L. Peterson and V. S. Pai. Experience-driven experimental systems research.
Communications of the ACM, 50(11), pp. 38–44, 2007.

[178] M. Poikselkä, G. Mayer, H. Khartabil, and A. Niemi. The IMS: IP Multimedia
Concepts and Services. Wiley, 2nd edition, 2006.

[179] R. Prasad, C. Dovrolis, M. Murray, and kc claffy. Bandwidth estimation: Metrics,
measurement techniques, and tools. IEEE Network, 17(6), pp. 27–35, 2003.

[180] M. Proebster. Leistungsuntersuchung von Verfahren zur Überlastregelung mit
expliziter Router-Signalisierung. Diploma thesis (in German), Institute of Com-
munication Networks and Computer Engineering, University of Stuttgart, 2008.

[181] M. Proebster, M. Scharf, and S. Hauger. Performance comparison of router as-
sisted congestion control protocols: XCP vs. RCP. In Proc. 2nd International
Workshop on the Evaluation of Quality of Service through Simulation in the Fu-
ture Internet, 2009.

[182] B. Raghavan and A. C. Snoeren. Decongestion control. In ACM SIGCOMM
Workshop on Hot Topics in Networks (Hotnets-V), 2006.

[183] R. K. Reeser, R. D. van der Mei, and R. Hariharan. An analytic model of a Web
server. In Proc. 16th International Teletraffic Congress (ITC), pp. 1199–1208,
1999.

[184] I. Rhee and L. Xu. CUBIC: A new TCP-friendly high-speed TCP variant. In
Proc. PFLDnet, 2005.

[185] A. Riedl, M. Perske, T. Bauschert, and A. Probst. Investigation of the M/G/R
processor sharing model for dimensioning of IP access networks with elastic
traffic. In Polish-German Teletraffic Symposium (PGTS), 2000.

[186] J. Roberts. Internet traffic, QoS and pricing. Proceedings of the IEEE, 92(9), pp.
1389–1399, 2004.

[187] L. G. Roberts. Major improvements in TCP performance over satellite and radio.
In Proc. IEEE MILCOM, 2006.

[188] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system
design. ACM Transactions on Computer Systems, 2(4), pp. 277–288, 1984.

[189] P. Sarolahti and A. Kuznetsov. Congestion control in Linux TCP. In Proc.
USENIX Annual Technical Conference, pp. 49–62, 2002.



202 BIBLIOGRAPHY

[190] P. Sarolahti, J. Korhonen, L. Daniel, and M. Kojo. Using Quick-Start to improve
TCP performance with vertical hand-offs. In Proc. IEEE Conference on Local
Computer Networks, pp. 897–904, 2006.

[191] P. Sarolahti. TCP Performance in Heterogeneous Wireless Networks. PhD thesis,
University of Helsinki, 2007.

[192] P. Sarolahti, M. Allman, and S. Floyd. Determining an appropriate sending rate
over an underutilized network path. Computer Networks, 51(7), pp. 1815–1832,
2007.

[193] A. Sathiaseelan and G. Fairhurst. Use of quickstart for improving the perfor-
mance of TFRC-SP over satellite networks. In Proc. International Workshop on
Satellite and Space Communications, 2006.

[194] M. Savorić. Improving Congestion Control in IP-based Networks by Information
Sharing. PhD thesis, Technical University of Berlin, 2004.

[195] M. Scharf, M. C. Necker, and B. Gloss. The sensitivity of TCP to sudden delay
variations in mobile networks. In Proc. IFIP Networking 2004, LNCS 3042,
Springer-Verlag, pp. 76–87, 2004.

[196] M. Scharf. On the response time of large-scale composite Web services. In Proc.
19th International Teletraffic Congress (ITC), pp. 1807–1816, 2005.

[197] M. Scharf and S. Kiesel. Head-of-line blocking in TCP and SCTP: Analysis and
measurements. In Proc. IEEE Globecom, 2006.

[198] M. Scharf. Future Internet transport layer - heading towards a post-TCP era? In-
vited talk at Future Internet Design Workshop, European Conference on Optical
Communications (ECOC), 2007.

[199] M. Scharf. Performance analysis of the Quick-Start TCP extension. In Proc.
IEEE Broadnets, 2007.

[200] M. Scharf and C. Zeeh. Experience with simulating real TCP/IP-protocol stacks.
Presentation at ITG Fachgruppe 5.2.1 Workshop on Network Engineering, 2007.

[201] M. Scharf. Why do we need TCP flow control (rwnd)? E-mail discussion on the
IRTF end-to-end interest mailing list, June 2008.

[202] M. Scharf, S. Floyd, and P. Sarolathi. TCP flow control for fast startup schemes.
IETF Internet Draft, work in progress, July 2008.

[203] M. Scharf, S. Hauger, and J. Kögel. Quick-Start TCP: From theory to practice.
In Proc. PFLDnet, 2008.

[204] M. Scharf and H. Strotbek. Performance evaluation of Quick-Start TCP with
a Linux kernel implementation. In Proc. IFIP Networking 2008, LNCS 4982,
Springer-Verlag, pp. 703–714, 2008.



BIBLIOGRAPHY 203

[205] M. Scharf. Performance evaluation of fast startup congestion control schemes. In
Proc. IFIP Networking 2009, LNCS 5550, Springer-Verlag, pp. 716–727, 2009.

[206] M. Scharf. Some thoughts on Quick-Start TCP admission control algorithms.
Presentation at IRTF ICCRG meeting, May 2009.

[207] M. Scharf, M. Eissele, C. Mueller, and T. Ertl. Speeding up the 3D Web: A case
for fast startup congestion control. In Proc. PFLDNeT, 2009.

[208] T. R. Schmidt. Adaptionsalgorithmen zur Erhöhung der Dienstgüte verteilter
interaktiver Multimedia-Anwendungen in IP-basierten Netzen. PhD thesis (in
German), University of Stuttgart, 2004.

[209] F. Schneider, S. Agarwal, T. Alpcan, and A. Feldmann. The new Web: Charac-
terizing AJAX traffic. In Proc. Passive and Active Network Measurement Con-
ference, LNCS 4979, Springer-Verlag, pp. 31–40, 2008.

[210] J. Semke, J. Mahdavi, and M. Mathis. Automatic TCP buffer tuning. ACM
SIGCOMM Computer Communication Review, 28(4), pp. 315–323, 1998.

[211] S. Shalunov, L. D. Dunn, Y. Gu, S. Low, I. Rhee, S. Senger, B. Wydrowski, and
L. Xu. Design space for a bulk transport tool. Bulk transport working group
report, Internet2, 2005.

[212] S. Shenker. Fundamental design issues for the future Internet. IEEE Journal on
Selected Areas in Communications, 13(7), pp. 1176–1188, 1995.

[213] R. Shorten and D. Leith. H-TCP: TCP for high-speed and long-distance net-
works. In Proc. PFLDnet, 2004.

[214] A. Shriram and J. Kaur. Empirical evaluation of techniques for measuring avail-
able bandwidth. In Proc. IEEE INFOCOM, pp. 2162–2170, 2007.

[215] B. Sikdar, S. Kalyanaraman, and K. S. Vastola. Analytic models for the latency
and steady-state throughput of TCP Tahoe, Reno, and SACK. IEEE/ACM Trans-
actions on Networking, 11(6), pp. 959–971, 2003.

[216] M. Simeoni, P. Inverardi, A. D. Marco, and S. Balsamo. Model-based perfor-
mance prediction in software development: A survey. IEEE Transactions on
Software Engineering, 30(5), pp. 295–310, 2004.

[217] L. Skorin-Kapov, M. Mosmondor, O. Dobrijevic, and M. Matijasevic.
Application-level QoS negotiation and signaling for advanced multimedia ser-
vices in the IMS. IEEE Communications Magazine, 45(7), pp. 108–116, 2007.

[218] M. Smith and S. Bishop. Flow control in the Linux network stack. Technical
report, Computer Laboratory, University of Cambridge, 2005.

[219] M. Sridharan, D. Bansal, and D. Thaler. Implementation report on experiences
with various TCP RFCs. Presentation at 68th IETF meeting, 2007.



204 BIBLIOGRAPHY

[220] R. Srikant. The mathematics of Internet congestion control. Birkhäuser Boston,
2004.

[221] I. Stoica and H. Zhang. Providing guaranteed services without per flow man-
agement. ACM SIGCOMM Computer Communication Review, 29(4), pp. 81–94,
1999.

[222] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queueing: A scalable
architecture to approximate fair bandwidth allocations in high-speed networks.
IEEE/ACM Transactions on Networking, 11(1), pp. 33–46, 2003.

[223] H. Strotbek. Entwurf und Implementierung einer TCP-Erweiterung im Linux-
Kernel. Diploma thesis (in German), Institute of Communication Networks and
Computer Engineering, University of Stuttgart, 2007.

[224] A.-J. Su, D. R. Choffnes, A. Kuzmanovic, and F. E. Bustamante. Drafting behind
Akamai (travelocity-based detouring). ACM SIGCOMM Computer Communica-
tion Review, 36(4), pp. 435–446, 2006.

[225] M. Suchara, R. Witt, and B. Wydrowski. TCP MaxNet - implementation and
experiments on the WAN in Lab. In Proc. IEEE International Conference on
Networks (ICON), 2005.

[226] C. Suriyajan. Design and Implementation of Quick-Start and XCP Router Func-
tions in a Network Processor. Master thesis, Institute of Communication Net-
works and Computer Engineering, University of Stuttgart, 2007.

[227] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A compound TCP approach for
high-speed and long distance networks. In Proc. IEEE INFOCOM, 2006.

[228] A. Thomasian. Performance analysis of database systems. In Performance
Evaluation: Origins and Directions, LNCS 1769, Springer-Verlag, pp. 305–327,
2000.

[229] M. Tian, A. Gramm, T. Naumowicz, and H. Ritter. A concept for QoS integration
in Web services. In Proc. Web Services Quality Workshop, Rome, Italy, 2003.

[230] P. Tran-Gia, A. Feldmann, R. Steinmetz, J. Eberspächer, M. Zitterbart, P. Müller,
and H. Schotten. G-Lab Phase 1. White paper (in German), German Lab, 2008.

[231] U. Vallamsetty, K. Kant, and P. Mohapatra. Characterization of e-commerce
traffic. Electronic Commerce Research, 3(1-2), pp. 167–192, 2003.

[232] A. Venkataramani, R. Kokku, and M. Dahlin. TCP Nice: a mechanism for back-
ground transfers. ACM SIGOPS Operating Systems Review, 36(SI), pp. 329–343,
2002.

[233] C. Villamizar and C. Song. High performance TCP in ANSNET. ACM SIG-
COMM Computer Communication Review, 24(5), pp. 45–60, 1994.



BIBLIOGRAPHY 205

[234] A. Vishwanath, V. Sivaraman, and M. Thottan. Perspectives on router buffer
sizing: recent results and open problems. ACM SIGCOMM Computer Commu-
nication Review, 39(2), pp. 34–39, 2009.

[235] V. Visweswaraiah and J. Heidemann. Improving restart of idle TCP connections.
Technical Report 97-661, University of Southern California, 1997.

[236] T. Voigt, R. Tewari, D. Freimuth, and A. Mehra. Kernel mechanisms for service
differentiation in overloaded web servers. In Proc. USENIX Annual Technical
Conference, Boston, MA, USA, pp. 189–202, 2001.

[237] S. Y. Wang, C. L. Chou, and C. Lin. The design and implementation of the
NCTUns network simulation engine. Simulation Modelling Practice and Theory,
15, pp. 57–81, 2007.

[238] S. Wanke, M. Scharf, S. Kiesel, and S. Wahl. Measurement of the SIP parsing
performance in the SIP Express Router. In Proc. EUNICE 2007, LNCS 4606,
Springer-Verlag, pp. 103–110, 2007.

[239] Web site. WAN in Lab – Traffic Traces for TCP Evaluation. http://wil.cs.caltech.
edu/suite/TrafficTraces.php.

[240] K. Wehrle, F. Pählke, H. Ritter, D. Müller, and M. Bechler. The Linux Networking
Architecture. Prentice Hall, 2005.

[241] D. X. Wei and P. Cao. NS-2 TCP-Linux: An NS-2 TCP implementation with
congestion control algorithms from Linux. In Proc. ValueTool’06 – Workshop of
NS-2, 2006.

[242] D. X. Wei, C. Jin, S. H. Low, and S. Hegde. FAST TCP: Motivation, architecture,
algorithms, performance. IEEE/ACM Transactions on Networking, 14(6), pp.
1246–1259, 2006.

[243] J. Wei and C.-Z. Xu. eQoS: Provisioning of client-perceived end-to-end QoS
guarantees in Web servers. IEEE Transactions on Computers, 55(12), pp. 1543–
1556, 2006.

[244] M. C. Weigle, P. Adurthi, F. Hernández-Campos, K. Jeffay, and F. D. Smith.
Tmix: A tool for generating realistic TCP application workloads in ns-2. ACM
SIGCOMM Computer Communication Review, 36(3), pp. 65–76, 2006.

[245] M. Welzl. Traceable congestion control. In Proceedings of QoFIS/ICQT, LNCS
2511, Springer-Verlag, pp. 273–282, 2002.

[246] M. Welzl. Network congestion control: managing Internet traffic. Wiley, 2005.

[247] M. Welzl and W. M. Eddy. Congestion control in the RFC series. IRTF Internet
Draft, work in progress, October 2008. Published as RFC 5783.

[248] J. Widmer, R. Denda, and M. Mauve. A survey on TCP-friendly congestion
control. IEEE Network, 15(3), pp. 28–37, 2001.

http://wil.cs.caltech.edu/suite/TrafficTraces.php
http://wil.cs.caltech.edu/suite/TrafficTraces.php


206 BIBLIOGRAPHY

[249] S. Wright. Admission control in multi-service IP networks: A tutorial. IEEE
Communications Surveys & Tutorials, 9(2), pp. 72–87, 2007.

[250] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman. One more bit is enough.
ACM SIGCOMM Computer Communication Review, 35(4), pp. 37–48, 2005.

[251] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. G. Liu, and A. Silberschatz. P4P:
Provider portal for applications. ACM SIGCOMM Computer Communication
Review, 38(4), pp. 351–362, 2008.

[252] N. Yin and M. G. Hluchyj. Implication of dropping packets from the front of a
queue. IEEE Transactions on Communications, 41(6), pp. 846–851, 1993.

[253] C. Zeeh. Integration of the Linux TCP/IP Protocol Stack in an Event-driven
Simulation Environment. Diploma thesis, Institute of Communication Networks
and Computer Engineering, University of Stuttgart, 2006.

[254] Y. Zhang, L. Qiu, and S. Keshav. Speeding up short data transfers: Theory,
architectural support, and simulation results. In Proc. NOSSDAV, 2000.

[255] Y. Zhang and T. R. Henderson. An implementation and experimental study of the
Explicit Control Protocol (XCP). In Proc. IEEE Infocom, pp. 1037–1048, 2005.

[256] Y. Zhang, D. Leonard, and D. Loguinov. Jetmax: Scalable max-min congestion
control for high-speed heterogeneous networks. Computer Networks, 52(6), pp.
1193–1219, 2008.

[ATM TM] ATM Forum. Traffic Management Specification, version 4.1. Technical Report
AF-TM-0121.000, The ATM Forum, 1999.

[ES 282 001] ETSI. Telecommunications and Internet converged Services and Protocols for
Advanced Networking (TISPAN); NGN Functional Architecture Release 1. ES
282 001, ETSI, 2008.

[802.1D] IEEE. Local and metropolitan area networks Media Access Control (MAC)
Bridges. Standard 802.1D-2004, IEEE, 2004.

[1003.1] IEEE. Standard for Information Technology – Portable Operating System Inter-
face (POSIX) Base Specifications, Issue 7. Standard 1003.1-2008, IEEE, 2008.

[RFC 791] J. Postel. Internet Protocol. RFC 791, IETF, September 1981.

[RFC 793] J. Postel. Transmission Control Protocol. RFC 793, IETF, September 1981.

[RFC 896] J. Nagle. Congestion control in IP/TCP internetworks. RFC 896, IETF, January
1984.

[RFC 1287] D. Clark, L. Chapin, V. Cerf, R. Braden, and R. Hobby. Towards the Future
Internet Architecture. RFC 1287, IETF, December 1991.

[RFC 1323] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High Performance.
RFC 1323, IETF, May 1992.



BIBLIOGRAPHY 207

[RFC 1633] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Archi-
tecture: an Overview. RFC 1633, IETF, June 1994.

[RFC 1644] R. Braden. T/TCP – TCP Extensions for Transactions Functional Specification.
RFC 1644, IETF, July 1994.

[RFC 1958] B. Carpenter (Editor). Architectural Principles of the Internet. RFC 1958, IETF,
June 1996.

[RFC 2140] J. Touch. TCP Control Block Interdependence. RFC 2140, IETF, April 1997.

[RFC 2309] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd,
V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan,
S. Shenker, J. Wroclawski, and L. Zhang. Recommendations on Queue Manage-
ment and Congestion Avoidance in the Internet. RFC 2309, IETF, April 1998.

[RFC 2475] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Archi-
tecture for Differentiated Service. RFC 2475, IETF, December 1998.

[RFC 2581] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control. RFC 2581,
IETF, April 1999.

[RFC 2616] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616, IETF,
June 1999.

[RFC 2861] M. Handley, J. Padhye, and S. Floyd. TCP Congestion Window Validation. RFC
2861, IETF, June 2000.

[RFC 2914] S. Floyd. Congestion Control Principles. RFC 2914, IETF, September 2000.

[RFC 3124] H. Balakrishnan and S. Seshan. The Congestion Manager. RFC 3124, IETF,
June 2001.

[RFC 3135] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby. Performance En-
hancing Proxies Intended to Mitigate Link-Related Degradations. RFC 3135,
IETF, June 2001.

[RFC 3168] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion
Notification (ECN) to IP. RFC 3168, IETF, September 2001.

[RFC 3390] M. Allman, S. Floyd, and C. Partridge. Increasing TCP’s Initial Window. RFC
3390, IETF, October 2002.

[RFC 3649] S. Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649, IETF,
December 2003.

[RFC 3742] S. Floyd. Limited Slow-Start for TCP with Large Congestion Windows. RFC
3742, IETF, March 2004.

[RFC 4094] J. Manner and X. Fu. Analysis of Existing Quality-of-Service Signaling Proto-
cols. RFC 4094, IETF, May 2005.



208 BIBLIOGRAPHY

[RFC 4594] J. Babiarz, K. Chan, and F. Baker. Configuration Guidelines for DiffServ Service
Classes. RFC 4594, IETF, August 2006.

[RFC 4614] M. Duke, R. Braden, W. Eddy, and E. Blanton. A Roadmap for Transmission
Control Protocol (TCP) Specification Documents. RFC 4614, IETF, September
2006.

[RFC 4782] S. Floyd, M. Allman, A. Jain, and P. Sarolahti. Quick-Start for TCP and IP. RFC
4782, IETF, January 2007.

[RFC 5290] S. Floyd and M. Allman. Comments on the Usefulness of Simple Best-Effort
Traffic. RFC 5290, IETF, July 2008.

[RFC 5348] S. Floyd, M. Handley, J. Padhye, and J. Widmer. TCP Friendly Rate Control
(TFRC): Protocol Specification. RFC 5348, IETF, September 2008.

[RFC 5559] P. Eardley. Pre-Congestion Notification (PCN) Architecture. RFC 5559, IETF,
June 2009.

[ISO 7498] ISO. Information technology – Open Systems Interconnection – Basic Reference
Model: The Basic Model. International Standard 7498-1, ISO/IEC, 1994.

[E.800] ITU-T. Terms and definitions related to quality of service and network perfor-
mance including dependability. Rec. E.800, ITU-T, 1994.

[G.1000] ITU-T. Communications Quality of Service: A framework and definitions. Rec.
G.1000, ITU-T, 2001.

[G.1010] ITU-T. End-user multimedia QoS categories. Rec. G.1010, ITU-T, 2001.

[G.1040] ITU-T. Network contribution to transaction time. Rec. G.1040, ITU-T, 2006.

[Y.1221] ITU-T. Traffic control and congestion control in IP-based networks. Rec. Y.1221,
ITU-T, 2002.

[Y.1291] ITU-T. An architectural framework for support of Quality of Service in packet
networks. Rec. Y.1291, ITU-T, 2004.

[Y.1541] ITU-T. Network performance objectives for IP-based services. Rec. Y.1541,
ITU-T, 2002.

[Y.2001] ITU-T. General overview of NGN. Rec. Y.2001, ITU-T, 2004.

[Y.2011] ITU-T. General principles and general reference model for Next Generation Net-
works. Rec. Y.2011, ITU-T, 2004.

[TS 23.107] 3GPP. Quality of Service (QoS) concept and architecture. TS 23.107, 3GPP,
2007.

[TS 23.228] 3GPP. IP Multimedia Subsystem (IMS); stage 2. TS 23.228, 3GPP, 2008.






	Kurzfassung
	Abstract
	Contents
	List of figures
	List of tables
	Abbreviations and symbols
	Introduction
	The Internet and its future evolution
	Problem statement and contributions of this thesis
	Thesis structure

	Communication network architectures
	Packet networks
	Fundamentals and terminology
	Packet network technologies
	Performance and Quality of Service
	Network Quality of Service mechanisms

	Internet
	Historical evolution
	Design principles
	Network architecture
	Protocols
	Services
	Network Quality of Service mechanisms

	IP-based telecommunication networks
	Historical evolution
	Design principles
	Network architecture
	Protocols
	Services
	Network Quality of Service mechanisms

	Future evolution
	Technological progress and trends
	Architectural challenges for the Future Internet
	Research directions


	Performance of broadband interactive applications
	Internet and Web applications
	Classification of applications
	Web application technologies
	Performance requirements, metrics, and service level agreements
	Broadband interactive applications

	Existing mechanisms for performance improvement and assurance
	Server mechanisms
	Distribution mechanisms
	Client mechanisms

	Performance evaluation methodology
	Role of performance evaluation
	Methods for performance modeling, prediction, and measurement
	Traffic and workload modeling
	Accurate simulation of real network stacks


	Fast startup congestion control mechanisms
	Systematic classification of congestion control methods
	Terminology and fundamentals
	Congestion control requirements and design space
	Classification of end-to-end congestion control methods
	Classification of network-supported congestion control methods
	Differences to related mechanisms

	State-of-the-art and open issues of Internet congestion control
	Internet standard solution
	Interaction with network entities
	Survey of experimental new algorithms and enhancements
	Impact of network stack implementations
	Remaining open and unsolved issues

	Fast startups: Definition, motivation, and design principles
	Definition of fast startup congestion control
	Motivation and challenges of fast startups
	Design principles of fast startup congestion control

	End-to-end fast startup mechanisms
	Existing Slow-Start enhancements without speedup
	Existing optimistic fast startup mechanisms
	Design of enhanced and new optimistic fast startup schemes
	Other approaches

	Network-assisted fast startup mechanisms
	Overview of the Quick-Start protocol
	A new admission control concept: Approval control for Quick-Start
	Design of improved approval control algorithms for Quick-Start
	Other approaches

	Network-controlled congestion control
	Network control as a clean slate approach
	Overview of the eXplicit Control Protocol (XCP)
	Overview of the Rate Control Protocol (RCP)
	Other approaches

	Functional comparison of fast startup schemes
	Systematic comparison of Quick-Start, XCP, and RCP
	Other published comparative studies and related work


	Application integration and implementation issues and solutions
	Solutions for the interface design
	Application interfaces
	Network interfaces

	Proposed mechanisms to avoid interactions with flow control
	State-of-the-art receive window auto-tuning
	Possible interactions with fast startup congestion control
	Proposed solution and its implications
	More disruptive alternative solutions

	Realization complexity and feasibility
	Overview of the implementation work
	Implementation in endsystems
	High-speed implementation in network components
	Lessons learned from the case study


	Performance evaluation
	Evaluation methodology and tools
	Simulation scenarios
	Measurement setups
	Experiments in a test network

	Simulation tool validation
	Scenario selection
	Validation scenario: Response function
	Validation scenario: Head-of-line blocking
	Summary of the validation experiments

	Study of functional design aspects of fast startups
	Comparison of the startup behavior
	Differences in convergence and bandwidth sharing
	Design and evaluation of new algorithms for Quick-Start

	Quantification of the potential performance improvement
	New analytical model for fast startup performance
	Comparison of the potential speedup
	Bandwidth sharing properties
	Studies with synthetic source-level Web models
	Studies with trace-based workloads
	Summary of the performance experiments

	Robustness, fairness, and risk
	Dealing with small buffers
	Fairness compared to TCP's default congestion control
	Robustness against imprecise information

	Complexity and costs of network support
	Computational overhead of endsystem functions
	Computational overhead of router functions


	Applicability case studies
	A new Web performance requirement signaling architecture
	Congestion control with response time deadlines
	Proof-of-concept realization
	Exemplary measurement results

	Speedup of 3D visualization applications
	Network challenges of interactive 3D applications
	Architecture of an interactive 3D visualization application
	Exemplary measurement results


	Conclusion
	Summary
	Outlook

	Appendix: Mathematical background
	Distribution functions
	Exponential distribution
	Pareto distribution and variants
	Log-normal distribution

	Analytical lower bound for TCP resequencing delays
	Scope of the model
	Model details


	Appendix: Documentation of parameters
	Measurement setups
	General Linux kernel configuration
	Default configuration of the fast startup schemes
	Jump-Start
	Initial-Start
	Mega-Start
	Quick-Start


	Bibliography

