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I

INTRODUCTI ON

Many problems in physics and eﬁgineering lead to
linear equation systems. In many non-linear cases, in
" which an exact solution is very complicated or not practicable
at all, a linearisation yieldé gwod'apprmximate results.
Therefore very often the solvability of engineering problems
depends .on the solution of large sets of linear equations,
Of course, the upper limit of the rank of an equation
system to be solved 1is heavily,influenced by the properties
of the computer used, in particular by the storage capacity
and the computing speea,‘chever, the method applied and
the equation system itself play a very imp@rtant,part, too,

in this question.
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'ELIMINATION METHODS 3

In Fig. 1 a set of linear equations‘is shown . The
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Set of linear equations



classical approach is the well-known solution of such
ksystems by means of elimination, the so-called GAUSS -
JORDAN - algorithm. In this method, equations are
successively combined in such a way,vthat'in the new
equations obtained oné coefficient becomes zero. Thus,
finally a set of equations with a priangular'matrix

(as shown in Fig. 2) is obtained, from which the unknowns
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Set of linear equations with
 triangular matrix

can- easily be evaluated in turn. This elimination method
is known in various modifications which are adapted to
vspecial'computing facilities or special sorts of equatioms.,

Whereas formerly by manual computation it was only

- possible to solve systems with up to about ten unknowns
(with a reasonable amount of computing work), this limit
can now be exceeded by far with the aid of electronic
computers. The maximum possiblé number of unknowns depends
'mainly'on the storage capacity of the computer. For a set

Qf n linear equations in general n.(n+l) = nz‘ storage

locations are necessary.

Thus, on a modern computer as e.g. the Control Data
CDC 6600 with a core store of'6@000 words and an addition
time of 1 Ms for 12 digits it is possibie to solve
systems with about 200 unknowns, regarding the fact that
programs, monitor etc. must also be stored. Abplying the



7 million words magnetic disk memory of this computer,
it.would be possible to deal with systemé ofzub to 2500
- equations. This is, however, not possible because of the
immense comﬁuting time in the magnitude of more than a
hundred hours in this case, caused by the péor speed of
the magnetic disk memory. | ' '

The nunber of 200 unknowns doesn't seem to be too bad,
but in many cases this is not sufficient.

In a modified elimination process, the matrix is sub-
divided into several submatrices as shown in Fig. 3 -
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. Subdivided matrix

This procedure is more complicatede Usually the maximum
rank can be enlarged by a factor two or three with this
method. Larger systems can also be solved, but only with
long COmputing times. The largest general equation system
solved on the CDC 6600 up to now had 600 unknowns.

In special cases the storage requirement of a matrix
can be smaller. A very important special kind of matrices
are the soacalled‘bamd matrices. In such a matrix (as
shown in Fig. 4) only the elements on the diagonal and
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Band matrix

near the diagonal are different from zero. In a band matrix
process. Therefore it is not necessary to store them, and
the storage requirement can’ be reduced. Furthermore,'the
elimination prooesskis shortened in case of band matrices.
This means a reduction of computing time, too. Thus, in
case of band matrices the rank may have higher values,

in particular if the number of terms in each equation

is small.

A further, considerable enlargement of the rank can be
obtained with band matrices by applying the method of sub-
matrices. Then, the maximum rank of a set of equations is
mainly determined by the compuﬁimg time available.

The largest sebts of equations with a band matrix
evaluated on the CDC 6600 up to now had 6000 unknowns; in
each equation were not more than 600 terms. For these systems

4 computing time of 5 up to 15 hours was necessary.



From this it can be seen, that the use of elimination
methods can be extended to fairly large sets ofAeQuations,
‘but only on the expense of a large amount of programming
work and with long computing times. Furthermore, elimina-
tion methods are sensitive to rounding errors, in particular
if a matrix is very large or ill-conditioned. Of course,
rounding errors can be restricted by double or multiple
precision storage, but in case of large sets of equations
there will usually be not enough storage capacity available.

IT1

ITERATIVE METHODS

ITI.1 GAUSS - SEIDEL - method

A very well known iterative method is the so oalled
GAUSS - SEIDEL - algorithm.

Thls method starts with a set of approxxmdte values Xy Oﬁ
for the unknowns X, - (The subbcrlpts indicate the number
of the unknown, the superscripts the number of the iteration
oyples),These initial values forvthe unknowns are chosen
according to empirical'knowledge €., xgﬂa 0 or xqam’l
In the GAUSS - SEIDEL - meth@d the e initial approximate
| values are improved buCP6381V61Y as follows:

If these approximate. values are inserted for 1nstanoe in
the first equation, this equation will in general be not
fulfilled, i.e., the left side has the value ("error") el
instead of 0. Now, the numerical value of the first unknown
Xi@) is altered in such a way that the left side of this
equation becomes 0. For this purpose, the increment~Ax1



must be

e

i = )

Ax

Similarly, the approximate values are insertedin the
second equation, and the second unknown is altered in
such a way that this equation is fulfilled, etc. Here,
for the unknown X, the new, improved value is taken
already. In general, the increment Axi which must be
 added to the value xiﬁo is | ' |

€5

. 214
where e, means the deviation of the left side of

equation number i from zero. Finally, when the last
unknown has been altered by means of the last equation,
the first cycle is completed and a new set of approximate
values x;%} exiéts. In the.following cycles these values
can be further improved. The process is stopped, when the
increments Axi are altogether less than a given bound & ,

- " : ‘ o
ézg:{Z&Xi| < &
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where & is e.g. equal to 10 7.

For the convergence of ﬁhié method the maﬁrix elements
in the leading diagonal must dominate the other elements.
There are several convergence criteria. E.g. the method is
convergent, 'if in each equation the absolute value of ‘the
coefficient of the diagonal is greater than the absolute
valuésrof the other coefficients together:

.
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This is, however, a suffioient'COndition only, and not a
necessary one; that‘means, the_prooess can converge, even ‘
 if this condition is not fulfilled. There are also conditions
which are more critical, but these are rather complicated
and can usually not be checked before starting the iteration
process. Thus, sometimes the question of convergence can
only be solved by trial: in this case, during the iteration
process it is observed whether it coﬁverges or not.

If this itération method does not converge for a certain
matrix, then by a method of GAUSS the matrlx could be altered
in suoh a way that the iteration process converges. This
- alteration, however, needs more computing work than the -

whole solution of ‘the equatlons by ellmlnatlon and is there-
fore usually not of interest. '

A disadvantage,of the GAUSS - SEIDEL - method is,-that in
many cases it converges‘father slowly. Therefore seVeral
- modifications w1th better convergence properties have been
'developed. o ‘ , :

One of these modified methods is the so-called
suooess1ve overrelaxation method The next section deals
w1th thls method.

III.2 Successiﬁe Overrelaxation»Methodv K

In the GAUSS - SEIDEL - method, the correctlons for the
approx1mate X-values were

e,

Ax, = - —=
] Ca.,
ii

This correction is chosen such, that the error ei is just
compensated. In the overrelaxation method, these corrections
are multiplied with a factor w: ‘

e.
1

e Ui
ii
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i. e., the errors ei'are not just compensatéd; but over-

compensated.,

TheVCOnvergence'criteria for the overrelakation“method
are the same as for the GAUSS - SEIDEL - method. If,
however, the!rélaxation factor w 1is properly chosen, the
overrelagation method may converge considerably faster as
compared with the GAUSS - SEIDEL - method.

In general it 1s 1mportant to use a suitable w Tfactor.
strlctly speaklng, the optimum w factor can be different
for.each equation and for each dteration cycle. For reasons
~ of simplicity, however, usually a constant w factor is [
ﬁ'applled The optlmum w factor caﬂ be found by trial only,’
exxmm 1n extremely small equation oystemso ~

The way to find an w factor which is optimal or nearly
optimal could run as follows. The method is carried out
with several W values up to a certaln checking p01nt for ;
instance up to 8 cyoles Then, the method is carried onyandﬁ
‘flnlshed with the best of these w values. " o |
When some experlenoes with thls method are avallable, :
it 1s 1n many cases p0851b1e‘to find emplrlcal apnrox1matlons
for, the optimum w factor with respect to type and magnltude
of the equation system. '

Generally, w has values between 0 and 2

0 <ws 2

. The GAUSS - SEIDEL - method is a special case of the

oveﬁrelaxation method with| w = 1. Sometimes the optimum7
w - factor can be less than L. If an w <1 is used, the
method is called "underrelaxation'.
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III.3 Advantages of Iterative.Methods

Conoerning the advantages of iterative methods it must
be poihted out, that they are very well suited‘forkequation
systems with a sparée matrix, i. e. a matrix in which &
considérableinumber of elements are zero.
~ As fhe'matrix is not changed in iterative methods, the
zero elements exist through the whole process. This effects
a decrease of computlng time. '

Another advantage of a sparse matrix is that the zero
~elements need not be stored if an iterative method is applied.
It is then suffioienﬁ to store theknonnzero elements and
their subscripts which indicate the position of these
elements in the matfix..By this kind of storage it is often
possible to solve larger sets of equations. ‘

In large equation systems very often the matrix elements
are not wrltten on punched cards but evaluated by the computer

acoordlng to a special program. o
' Because the matrix elements are not changed during the

1g'1terat10n process, they can be evaluated whenever they are

vneeded in the iteration procedure and do not need to be
| stored at all. The only thing that must be stored is the
set of unknowns. Thls is ‘a most 1mportant adqentage of
’iteratlve methods.* ‘ «

The§storage neceseary is therefore restricted to n
locations only (instead of n ) This enables a considerable
enlargement of the maximum rank. With the Telefunken medium

speed oomputer TR 4 of the University Stuttgart‘with an
‘addition time of 5 us the number of unknowns can be raised
to about 16 000, w1tn the CDC 6600 computer the rank could

be raised to about 40 000. These are fairly high values,

A further very important advantage of iterative methods
1s their 1nsensibility against roundlng errors. This is
very important.
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‘ Theorehiaally,eliminati@é methods yield exact results,
whereas iterative methods give approximate results only.
If, however, these methods are carried out in practice on
a computer with a limited number of’digits,ke. g. 12 or
15 digits per valué “the Sﬂtuatzan is entlrely different.
Then the iterative methods can vield results of high preclslon
whereas the precision of results accordlng to ellmlnatlon
methods can be severely 1mpa1r@d by rounding errors.

v
APPLICATION TO MODEEN SWITCHING NETWORKS
IV.1 Overflow Systems

AS a first éxample let us consider a so-called overflow
syStem. Such a system is shown in Fig. 5.\A,Poi$sdn traffic

I —
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1y PRIMARY
GROUP
=3 ’
R
R e eeam— SECONDARY -
— T GROUP
P
¥ 2
Fig. 5

Qéerflow system
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A, is offered to a trunkngroup, the so-called primary
group, with n, trunks. (Al,is the number of calls arriving
per unit of time). Calls which can not find a free trunk

in this group are overflowing to another group, the so-
called secondary group. This so-called overflow traffic Bl
and another Poisson traffic A2 are offered to the seoondary
group, which consists of n, trunks. : ,

This is a very 81mp1e example of an overflow systemg In
modern telephone systems,w1th alternate routing faollltles9
overflow systems are used to a very large extent. This has
also been pointed out in the paper of U. Herzog ("Problems

_in Teletraffic Theory"). ' o

For an exact computation of the amount of trafflc which

can not be handled by the secondary group, a set of 11near

| equations must be solved. R

" In the primary group either no trunk 1 trunk, 2 trunks

. etc. or all n1 trunks can be occupled Thus (n ‘+1)'different
states are possible in the prlmary group. For eaoh of these
states, in the secondary group there are (n2+1) p0581b1e
states resgectively. In. total there are (n; +1).(n n,+1)
different states. o ,

~ In this system all calls can reach any free trunk of the
primary group or secondary group respectively. Thus, for
"calculating the probability of loss, the pattern or situation
‘of occupied trunks is irrelevant. Therefore it is sufficient
to distinguish betWeen‘the (n1+1).(n2+1) different states

of occupation. :

Each of these states of occupation occurs with a certain -
probability. For calculating the probability of loss, the
probabilities of all these (n1+1) (n +1) states must be
evaluated. Therefore this problem leads to a set of
(n +1). (n2+1) equations. ‘

‘ In the investigation of such overflow systems the .
‘sucoessive overrelaxation method proved. to be very well
suited for the solution of the llnear equation systems
occuring. '
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As we had to compute.values‘for quite a - number of
systems, it was well worth finding out the optimum |
w factor, which is mainly dependent of the rank for
systems of this kind. In Fig. 6 the optimum w factor is

20

. “Wopt /
A [

N e
1,0 \
7 10 100 1000 10000
Fig. 6

The‘optimum1pu‘factbr as a function of the
number of unknowns o

shown as a function of the number of unknowns.

, The largest system of this kind investigated up to

now yielded a set of 10}000 equations. In each equation
there were 5 terms at most, the others being zero. With
an w factor of 1.715 the solution of this set of equations
took 85 minutes on the computer TR 4, giving results -
true to 7 digits. ‘
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IV.2 Groups with Limited Access

In a2 second example let us counslider a trunk group
with limited access, a so- called grading, as shown in -
Fig. 7 . In this group there are N trunks, but all calls

Fig, 7

Group with limited access
( grading )

have access to k trunks only. In this example each call
in one of the 4 éubgr@ups has access to 4 trunks only. A
Poisson traffic A is offered equally to the various sub-
grbups of this trunk group: The traffic R, which can not
be handled, is to be evaluated. '
For the exact calculation of such & group with limited
access it 1s not sufficient to consider the number of
trunks which are occupied in a certain state, because each
of the subgroups, e.g. subgroup number 1 , have-access to
4 trunks of the 10 only. Therefore it is essential to
distinguish the various possible patterns in which these
occupied trunks afe situated, i.e., to consider which of

the individual trunks are occupiled.



- 16."

The pattern of occupation can be regarded as a snap-
shot of the momentary state of the system. ,

As there are N trunks, each of which can be either free
or occupied, there are 2N possible patterns. Thus the
investigation of such a group leads to a set of ZN linear
‘equatidns. ’ »

In groups‘with'special symmetries the rank can be re-
stricted. The patterns can then be classified into groups
of patterns with the same probability, and it is sufficient
to calculate the probabilities for these groups only instead
of all patterns. But -this special case shall not be con-
sidered here. | '

The investigation of such groups with,limitéd access is
rather an old problem of tyaﬁfic theory. As, however, the
- number of equétions increases tremendously with increasing
number of trunks, the magnitude of such groups which could
~be 1nvest1gated without the use of electronic computers was
limited to about 3 trunks,\correspondlng to 23 or 8
equatlons.‘ : ;
- When the first computers became avallable, it was p0831ble e
to 1nvest1gate groups with up to 9 trunks, correspondlng .
to 512 equatlonq. o

On the TR 4 computer, it is now ‘possible to investigate .
~groups with up tov14 tpunks, corresponding to a set of
2 16 384 equations. With the overrelaxation method
thls system needed a computlng time of 95 minutes with an
W factor of 1.33 .

For such groups with limibed access the Opﬁimum
W factor is - similarly to the first example - mainly
‘a function of the rank, and thus of the number of trunks.
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In Fig. 8 the number of iteration cycles i& shown as a
function of the relaxation factor w for a prescribed.

) . \ /i

200

ITERATION
'CYCLES

100

n = 1681
€:107% | y-rFacTOR
R ——

R 15 20

‘Fig, 8

The number of iteration cycles
as a function o{ the W factor

& value. From this diagram it cen be seen that the
computing‘time can increase cohsiderablyg e.g. by a -
factor 3 or more, if the w factor is not prbperly chosen.
(This diagram corresponds to a set of 1 681 equations).
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v

CONCLUSION

_In solving sets of equations with special properties,

it is often ﬁseful to apply iterative methods, in particular
the overrelaxation method, instead of the classical
elimination process. It is possible to save computing time
and storage'room, which is essentially. Therefore very large
sets of equations can be solved. As examples, appli¢ations
- to modern telephone switching systems have been presented.
From these examples it can be seen that sets of 10 000
and more equations can be solved ea511y by means of the
overrelaxatlon method._



