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ABSTRACT

Alternate routing systems with overflow facil-
ities are widely used in long distarn. telephone
networks., In such systems, calls carn be switched
via several routes. A very simple example of an
alternaste routing system, i. e. an overflow sys-
tem, is shown in fig. 1. Calls which can not be
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Fig. 1: Simple example of an overflow system
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group

switched via the first route (primary group) o-
verflow to the final route (secondary group).

The topic of this paper is the exact calcula-
tion of such overflow systems.

The primary group as well as the secondary
group of an overflow system can either be a full
available group, or an ideal grading, or a non-
ideal grading. Thus there are 9 possible types
of overflow systems. An exact solution is given
for all of these types of systems in case of
Poisson input, i. e. an infinite number of traf-
fic sources. (Exact solutions which are already
Jnown will only be briefly referred to.)

Section 1 deals with systems consisting of
two non-ideal gradings. Section 2 is concerned
with overflow systems in which one group is an
ideal grading or a full available group. In
section 3, systems with ideal gradings and full
available groups are considered.

Finally, section 4 treats overflow systems
with two full available groups and a finite
number of traffic sources.
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1. OVERFLOW SYSTEMS CONSISTING OF NON-IDEAL

GBADINGS

In telephone networks, overflow systems with
non-ideal gradings are used to a great extent.
A very simple example of such a system is shown
in fig. 2. The primary group is a grading with
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Fig. 2: Overflow system with two non-ideal
gradings

n% = 8 trunks and the availability kq = 3 . If
this group is blocked, calls can overflow to the
secondary group with ny = 6 trunks and the
availability kp = 4 .

For the exact solution of the loss By in the
primary group a set of 2™1 linear equations must
be solved. This method is well known' [ 1, 2,
Solving such large sets of equations, it is use-
ful to apply iterative methods, in particular
the so-called successive overrelaxation method
(SOR=-method) .

The total loss Bgot (or the traffic Ry over-
flowing behind the secondary group, resp.) can
be calculated according to the same method. For
this purpose the grading of the primary group
and the grading of the secondary group can be
regarded as one total grading with (nj+np)
trunks and the availability (kj+kjp). ‘

The loss B2 in the secondary group is then
found easily as B
tot
Bo = o 1
2 B; (1)

(From the probabilities of state of the total
grading the loss B; can be calculated as well,
so that only one set of equations must be
solved.)

For the system shown in fig. 2 and an offered

traffic of A=8 Erlangs the following loss prob-
abilities and overflow traffic values are ob-
tained: .

By = 0.3355 Ry = 2,684 Erlangs

Bz = 0,1142 Ry, = 0.307 Erlangs

Btot = 0,0383

The number of equations increases very rapid-
ly with the number of trunks (nj+np). (In the



example mentloned above a set of 214 = 16 384
equations is obtained.) Therefore this method
can-only be applied for very small overflow
systems.

If, however, one or both groups are ideal
‘gradings or full available groups, larger sys-
tems can also be calculated. Such systems will
be considered in the following sections. ...

2, OVERFLOW SYSTEMS WITH ONZ NON-IDEAL GRADING

AND ONE IDEAL GRADING (OR FULL AVAILABLE
GROUP)

2.1, Overflow Systems with a Non-ideal Primary
Grading and an IdealySecondary Grading

2.,1.1. The System

This section deals with overflow systems con-

sisting of a non-ideal primary grading and an
ideal secondary grading as shown in fig. 3.

Fig.,B Non-ideal primary grading with
© 7 1ldeal secondary grading

__ For the following calculation method, equal
offered overflow traffic to each secondary sem~

lector group is presumed. This condition is ful- "

filled if the uniform number of primary and sec-
ondary selector groups is determined as follows:
Let g, be the original number of primary selec
‘tor gr%u

- groups. Then the uniform number of selector
groups in the overflow system has to be

9 =9/rg (2)

- (B ()

Primary and secondary selector’ ‘groups have to “be
arranged- such that each combination of a certain
primary selector group and a.certain secondary
selector group.occurs just once,.as indicated
schematically in fig. 3.

where

2.1.2. The Equations of State

The trunks in the primary group must be num-
bered (in an arbitrary order). Then the grading
of this group can be described by means of a
matrix M with the general element ms, j (s = 1.k,
J=1/.g1). The matrix corresponding to the prl-
mary group in fig., 3 is shown 1n flg. Lo :

IO 12 3 4 N

FI R 5 5.6 6

7 8 9 w0 Mo = |

M . 7 879 10
8 9 10 7 g}

[+
@
o]
~

Fig. 4: The matrix M
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ps and g) that of.the secondary selector-

. busy-patterns of this selector
_of the matrix M) where at least the flrst9

As the state congestion probabilities

(kz)

Gy () = 27 Xy = 0,7, ., (%a)

7

“of the ideal secondary grading and the corre-

sponding passage probabilities
M la) = 1-6300),  Xe= 91, (hb)

are known, it is not necessary to regard all its
possible 2n2 patterns of established calls; it
is sufficient to consider the (np +1) differenﬁ
global states.

For the description of the states "free" and
"busy" of each individual trunk in the primary
group a set of Boolean variables zjy (i=1..n4)
with the following definition is used:

zZy 0 if trunk No. 1 is free,
z3 1 if trunk No. i is busy.

The probability that the lines No. 1, 2, ...
of the primary group have a certain state
{z1, 20, ... Zpy} and that, furthermore, just X
trunks are busy in the secondary group is dew
noted by p(21,Zp,.c0,2y x2). Then the following
equations of state are obtalned according to the
principle of statistical equilibrium:

([}

g K

[Zz *xz«A 1— “*}““Trzm;, N6, x,))} plzy, 23, 4 2Zny; %)

=1 =7 s=1

>

Ny

- §(1‘21)'P(27,22,--~,2i~1, 1, 20w, 2y [ X2)

(=1

+ (1=a) (xp+1): n(z1,zz,--- Zpg%t1) (5a)
g k
§ § T‘lzm“ p(2;,23,. ,me n lzmﬂm Zny;%)
N G5 st , )
% Kk
+ By (5= 1) gT E Trzmsj p{ 21,22,y Zng s X271),

J=1 §=1

Cxg= 00,0y,

20= 01 for.i = 1,2,...,n
where .
L =1, 3 %y = n,, else O = 0
A =1 if X, > 07 , else 3= 0 .

“The product ﬁ‘ln the fourth row of equatlon (5a)

refers to thes? firste outlets k Of a certain
selector group., The summation é: comprises all
*7 group (column

outlets are busy.
The sum of all probabllitles p(zl,zz,...,znl,
x2) is equal to. one:

‘l

| ;ZNZZ ZEALELNZHZL Zm'*’ ) a (5Db)

Zm0ZT 270 =0

For the solution of the equatlons (5a,b): the
SOR-method is suitable.
2.1.3. The Loss Probabilities

The overflow traffic Ry (see fig. 3) can
easily be obtained from the state probabilities:

Z Z ; Z Z{t('\z 21,22, 20, %) Trzn’w (6)

J=1 Zy™0 Z5=0 Zpe 0 X ky

AnalogouQIy the overflow traffic Rl amounts to

43 3 5.5 S suniltn,

J=1 2,70 2,20 25,20 %=0

With these values and with the offered traffic A
one can calculate easily the loss probability Bq
of the primary group, the loss 8o of the second-
ary group and the total loss Wt g !



B, - = (8)
B, = -ﬁ:— (9)
R

2.1.4, Example

For a primary grading, as shown in fig. 3,
and an ideal secondary grading with (np =10,
kp = 4) the following values are obtained if a
traffic of A = 8 Erlangs is offered:

By = 0.2108 Ry = 1.6862 Erlangs
By = 0.0103 By = 0.0173 Erlangs
Biog = 0.00216

The number of selector groups according to eq.
(2) and (3) is 10
g=4'(u)=81$0

2,2, Overflow Systems with & Non-ideal Primary
Grading and a Full Available Secondary

Group

Systems of this kind represent the special
case (ky=ny) of the systems considered in sec-
tion 2.% (see fig. 5),

A

|

Pt St

|
Fig. 5: Non-ideal primary grading with
full available secondary group

Regarding that here

- 0 for xp ¢ n

G2(x2) = {1 for xg = ng ’ (11)
the equations of state can be slightly simpli-
fied,

Besides its use in the calculation of over-
flow systems this method can be applied to the
exact calculation of special gradings where the
trunks connected to the ny last hunting steps
form a full avallable subgroup.

This calculation method reduces the rank of
the equation system to 2™ .(np+1), instead of
2%1. 272 in the case of the method for general
gradings.

Example.

For a primary grading as shown in fig., 5 with
an offered traffic of A = 8 Erlangs and & full
availlable secondary group of 10 trunks the values

Bo = 0,001378 , Rp = 0.002324 Erlangs
Btot = 0,000291
are obtained.

2.3, Overflow Systems with an Ideal Primary
Grading and a Non-ideal Secondary Grading

In such an overflow system (as shown in
fig. 6), the primary group has the state conges-

tion probabilities (fu
G, (%) = «-—-—,-’11—- , Xpm O, 1
(& (12a)
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Fig. 6: Ideal primary grading with
non~-ideal secondary grading
and the passage probabilities .
/Aq(XJ = 4'64(X1) , Xy = 0;7/1 € (12b)

As explained in section 2.1.1 the total number
of selector groups has to be

9 = 9/+9, (13a)
In this case we get
= (M. g’ b

Upon numbering the trunks of the secondary
group, the states of these trunks and the matrix
of the grading can be denoted as in section 2.1.1.

Let the probability that just X1 trunks are
busy in the 1deal primary grading and that fur-
thermore the trunks No. 1, 2, ... ny of the sec-
ondary group are in a certain state {zl,zz,..znz}
be denoted as p(xy; 21,2p,+4.,2,5). Then the
following equations of state are“obtained:

Ny 93' k
[X1 "Zi’t + Ajly(xy) + g‘j‘sv(*'v)' (7 ‘Trzm,‘j)]'p("v,'zr. 23,+2n,)
1 7 $=1

(= i=
= (1-9)(q*1) p(xy*1; 2y, 2500, Zny)

L]
+ ZH'ZI')‘P(’M 25,23,.,201,1,2¢41,-.-,2n,)
= 152, i ] 2 (1’-58,)
+ B-Apy(x1) - P71, 29,2,,...,2p,)

g. ky @
A
+ 35 -8y (%) E Z Trz,,,“j p(%; z,,z,,..,,z,,k =) olz,,m_.,, .‘.,z,,’) )

;
J=1

€=7 s=1
X = 01,000,y )
2¢= 01 for ( =12,..,n
where
& =1 if xq = ny , else o= 0
A =1 if x4 # 00 , else 3= 0

with the normalizing condition

n
21_ 2124- Zn(xy;znzz,w;zn,) =1 (14b)
2

2,20 Za=D Zp=0 x=0

The SOR-method is suitable for solving these
eq. (l4a,b)., From the probabilities p(xy; 21,
Z3,00432no) the overflow traffic Ry 1s Obtalned:

g 1 1 1 00m &y
Ry = 5427-2 Z Z--Z 231(X7)'P(X1i21172r'7201)1r2mw' (15)
J=1 2,%0 2,=0 2p,°0 %=k $=1
The overflow traffic Ry (and the loss By, resp.)
can be determined according to Erlang's inter-
connection formula. Then the loss probabilities
By and By, can be found with eq. (9) and (10).

Example .,
For an ideal primary grading with (nq =10;

kq = 4) and a secondary grading as shown in fig. 6
one obtains the following values:

0.19938 Ry 1.595 Erlangs

0.01079 Ry = 0.0172 Erlangs
Byo, = 0.00215

[vs]
[aM
W



2.4, Overflow Systems with a Full Available
Primary Group and a Non-ideal Secondary

Grading

This type of system is a special case of the
systems considered in section 2.3. Since in this

speclal case :
_ {0 for x4y ¥ ng.
Gq(xy) = {‘1 for Lt (16)

the equations of state (1l4a) can be simplified.

This kind of overflow system is realized very
often in telephone networks with small (and
therefore full available) primary groups and
large final groups with limited access.

The investigation of such systems enables
detailed studies about the effects of various
grading structures on the loss probability in
the case of offered overflow traffic.

Example.

Let a random traffic of A = 8 Erlangs be
offered to a full available primary group with
ny = 10 trunks and a secondary grading as shown
in fig. 6. Then the following loss and overflow
traffic values are obtained:

By = 0.12166 Ry = 0.973 Erlangs
By = 0,00992 Ry = 0.00965 Erlangs
Btot = 0.00121

3. OVERFILOW SYSTEMS WITH IDEAL GRADINGS AND
FULL AVAILABLE GROUPS

3,1. Overflow Systems with Two Ideal Gradings

Such systems (as shown in fig. 7) can be cal-
culated exactly by means of Bretschneider's
. e LA :

¢

ideal
grading

A

ideal
grading ko1

v B2
Fig. 7: Ideal primary grading with
ideal secondary grading

Ky o1y

me thod [ b,] . For comparison, however, the equa-
tions of state shall be mentioned briefly:

[x, A (1- 51kX1)' 52("2))] R ICRY)

oL-(xy+1) - P(xy+1,%)

 B(x%1) - p(X, X+ 1)

(17a)
v Ao pg (=) p(x-1, %)
+ A 8- Gy(xy) - pp(xa=1) - p(xy,xa=1)
Xy = 0,7,..., Ny
Xg = 0,1,..., M
where
® =1 if xy < nqg , else ® =0
A =1 if xp < np , else 3 =0
¥ =1 1f x4 > 0 , else y =0
6 =1 if x > 0 , else 6 =0
with the normalizing condition
L] Ny
D plajg) = 1 (17)
=0 X;=0

Here p(xj, %xp) means the probability that xj
trunks are busy in the primary group and xp in
the secondary group. The equations (17a,b) can
be solved with the aid of the SOR-method.
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Example .
For ny =10, kg =4, ny, =10, ky =4, and an
offered traffic Of A=8 Erlangs one obtains

B, = 0,009506 Ry = 0.01516 Erlangs

Biot = 0.001895

3.2, Overflow Systems with an Ideal Primary
Grading and a Full Avallable Secondary

Group

Overflow systems of this kind are a special
case of the systems mentioned in section 3.1.
Regarding, however, eq. (11), the formulae men-
tioned in section 3.1 can be slightly simplified.

Example.

For ny =10, ky =4, ny =10, and an offered
traffic of A = 8 Erlangs one obtains the values

B = 0,001278 Ry, = 0.00204 Erlangs
B = 0,000255

2
tot

3.3. Overflow Systems with a Full Available
Primary Group and an Ideal Secondary
Grading

3¢e3sls The System and the Equations of State

Such systems (as shown in fig.8) could be
calculated according to the method mentioned in

A
l tt8a)
n
l Ry
ideal k. .n
grading 2072 (18b)
Ry

Fig. 8: Full available primary group
with ideal secondary grading

gection 3.1. If, however, eq. (16) 1s taken into
account, the equations of state can be simplified
remarkably, and a new t y pe of equation is
obtained:

(e %+ A) B3, %) = (q+1)p(xt, X )

+ (X+1) PNy, Xg*1)

+ Ap(M-1,% ), (18a)
o= 8,1y M1,
Xg = 0,1,...,Mm
[mexasrpadpm) = Gty ping )
+ Ap(m-1,% ) (18b)

+Apu(x-1)-p(ny , x-1),
Xp = 0,7,..,, Ny

with the normalizing condition

ny ny
2 2 pbuxm) = (18¢c)
Xm0 %=0
and with
plx,x;) = o for x <o,
X < 0,
%> m, (184)
X3 > My

It should be pointed out that in (18a) there
%s n? term corresponding to the last term in eq.
17a).
In the following, an explicit sclution of the
equations (18a,b,c) will be derived.



3o3.2. Graphic Illustration of the Equations
of State
In the following schemes (fig. 9, 10, 11, 12)
each of the probablilities plxy,%;) is repre-
sented by a crosspoint of a grid as shown in
fig. 9.

"y

Ha P(3,2)

0 iz 3 4 n,

X ——p

Fig. 9: Representation of the probabllities
p(xy,%3) by the crosspoints of a grid

The eq. (18a,b) comnnect 2, 3, or 4 probabil-
ities p(X1,X2) each. These equatlions are repre-
sented in fig. 10, 11, 12 by small graphs which
connect the points corresponding to the p-values,
Fig. 10 shows the graph representing eq. (18a)

g

o T2 3 4 ... iy
X, T

Fig. 10: Illustration of eq. (18a)
for x; = U, xp =3

for xy = 4, xp = 3. In fig. 11 some more exam-
ples of eq. (?83} are indicated, including the

Ty

a 1 2 3 4 e ny
)(1 ool
Fig. 11: Illustration of eq. (1Ba)

special cases xq = 0, xp = 0, and x5 = np.
Filg. 12 shows examples corresponding to eq.(18b),

"2

]

0 T2 3 4 - n
e

Fig. 12: Illustration of eq. (18b)

3o3.3. Beduction to a One-dimensional System

In a first step, the probabilities p(xq,xp)
can be expressed as a function of the values
p(0,xp) only.

For x4 = 0 and % = np eqg. (18a) yields a
relation between p(%,nz) and p(l,ny) as indi-
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cated in the upper left corner of fig. 11. Thus,
if the probability p(O,np) is given, also p(l,nz)
can be calculated.

For x; =1 and xp = ny, eq. (18a) constitutes
a relation between p(0,np), p(i,np), and p(2,ny).
Therefore, knowing p(O,ny) and p(1,ns), the pr.
p(2,np) can be determined, and so forth.

Obviously all probabllities p(xq,ny) are
functions of the pr. p(0,ny) only.

For x; = 0, x5 = np -1 eq. (18a) contains the
pr. p(0,ny), p(O,n2-1§, and p(l,np-1). Thus, if
also p(0,n3-1), besides p(0,np), is given, the
pr. p(l,np-1) can be evaluated. With eq. (18a)
for (x4 = 1; xp = np-1) the pr. p(2,np-1) can be
obtained, etc,

Thus, all pr. p(xy,xp) can be expressed as a
function of only the (ny+1) proMabilities p(0,0),
P(041), eosy D(O;X0), oes, p(0,n,), which are
situated at the le%t edge of the grid:

pla,53) = By PO PO poR)]  (19)

If these functions fy4,,, according to eq. (i9)
are calculated along %he method shown above, the
following expression is found:

n2
Plxs,x) = Z (‘7);.)(2' (Xi)’ss,,\ﬁ 3 P0.8) (20a)

5=% X =12
X=01..,n
where M ey
A7 r-A4+v
@E AL E——
Srm ;E: (m-v)! ( v /, (200)
V=0

rm 2 0

The formula (20a,b) holds true also in the
special case of a full available
secondary group (instead of an i d e a 1 “sec-
ondary g r a d 1 ng considered here). In cone
nection with the calculation of such overflow
systems with f u 1 1 available secondary groups
(see section 3.4), formula (20a,b) has already
been derived by E. Brockmeyer [ 57].

The same formula is obtained in the more
general case considered here, because the state
congestion probabilities G ,(xp) of the second.
ary group, which make the difference between
these systems, do not occur in eq. (18a) and
(20a,b).

J.3.4. Reduction to the Probability p(0,np)

In this section it will be shown that the pr.
p(0,%x5) can be expressed by the pr. p(0,ny) with
the aid of eq. (18b):

Inserting eq. (20a) into (18b), one obtains
)
Xy _
Apfyr) - D )2 (xzfﬂ)vgé_nﬁxz_ﬂ-p(o, £)
& =Xy4 ’
- n2 -
= [A‘M(X2)+n1%X2]Z (~ /,)g & (Xéz').SE‘ )774.X2<$'p(0; E)
&=% (21)
&
ke 3 A5 e PO)
E=X%

E g0 &y, ol
“ o) (1) '(x2+7> 55,77”,2,,7,5 pOS8),

E=X+7

Xy = o, ‘71 wee '72

/7

or, substituting xp by (xp+1),
2

7
}O(Ofxz) B e+ (-7)&'1/\’2—7,/0(0,;).
A o) Sy
Hbg S, E=xz+]

) ([/U(XQ)(A%)_ (/\’;:7)]"4 'Sé/';”» g eiy- &

(22)
/
*[A‘N(Xzﬁ) 0y xy41] ()(2{7)‘55 nyeyel-§
+ (X2'L7)’</X§2)5(; Ny +xp=2- &
- ) A »
Xg = O, 1,0, 11



From the eq. (18a) and (20a) follows for x,= ny
(A‘+X7+n‘2).15;73"¥7 = ()(7¢7)-AS:7,21¥7+7 J-A.S%H\’/"]
or, generally (x; # m, ny, » r):
(A;m*’)“5,cm = (1S A Spmer (23)

Inserting ea. (23) into (22) for r = E and
m = n1+x2+1~E’, and regarding that

= ey ))&
(Xz‘*«?)'()Q{z) = (B0 (y35) (24)
one obtains n,
POX) = )7 proE)-
g £5X%577
. £y, ¢
[(Xg) 5&’,”77“\’2“5 (23)
_ 6(qr1) E
%) '(x2+7)'515,n,+.\/2+7~g
¢ D2ty
+ A/M(XZ) (X2+7>'S£"7)?+X2+2»EJ 5
Xy = 0,0, Dyl
or ny
plox) = > dye-p(0g), e
E=x,+1 Xy = 0,1, c0, my-1
with the abbreviation
-X~7
(-7)%X ,
Wz = 75, L (R) Sz exz
e G(X+1)_ zZy. 8
N 72%) (xﬁ) Z,/?;*X'J-Z’ (27)
!’)7+/I z
'A"-,u“ ) ) (x+7)'Sz,n,+Xw2*z]
Written out in full, eq. (26a) reads
(26D)

plo,ny1) = U1, P00, ) ‘
r(0,n;-2) = Ap,-2ny1 PO+ Aoz, RON,)
P (0073) = Qp,o30,0°P(0,72) + An3 ny7 P (A1)

+dny-3,n, - p (O, 1)

o e oc o o e

p(6,0) Qo7 P(07) + Qg P (02) 4+ gy p(0,1)

With this-set of equations, the values p(0,xp)
can be easily expressed as a function of p(0,n,)

- only: p(@n2~7) = b,72~7‘,0(0,f)2)

p(0,0-2) = bp, 20 p(0,1)
(28a)
r (0,0) = b, 'P(O/nz)
or
©(0OX) = buy PO, X2= 0707 (28Db)
where -
({)/72 = 7 7
bﬁz—? = 0’72"71”2
bp 5 = Tp._ .
12,2 ny-2,0 ¥ Qny-2 nye1 " Any-1, (292)
bn2~3 = dn;-3,n, +C?’n2-3,n2~7'%2»7,r>2
+0ny-3n,2° (Ong*,?/ mt Unjz 71" Ay, )72)
or

2

N2 n2 2
= > O 2¢ . ..
by, 2. ’{2'272&27»72 2022,23 ZQZW#,ZW

A=t HI2PT Zy=zy+] 2y =Zy g+ T

for xo = 07, .00, N, (291)
with w = n;-x,
In eq. (29b) all summations in the product of
the right hand side, having a lower bound
greater than n, must be substituted by unity.
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From the eqg. (19), (28) and (23) one obtains

o
\ , s o E0EN S
Pl = PO > (152 (5) bg S ny-
&= Xp = 0,y {30}
Ky = OFyeee 1y
3:3.5. The State Probabilities

The value p(0,np) can be determined by means
of eq. (18c¢), or, more conveniently, from the

equation AX7
2 )_(7—'r . ‘S;/X7
§ Pl k) = Pilx) = =5 S S«,}m ’ (31)
Xp= 0 o
a0 ’ Xy = 07, vy Mg
Using eq. (31) for x; = O, one obtains
y — 4
A 7, 1),
Xy=0 Z ?‘T o (32)
&#=0
In serting eq. {28b) yields
Ny
P (0 1) E b wm ol = g (x7)
e g Srn, 4% (33)
=0 7, Fova
or
- £ (%)
PO T (34)
N2 b
X=0 :

From the eq. (30) and (34) the solution for
the state probabilities p(xl,xz) is obtained:

s
E-9 /&
%(”7) 2‘(X2)'ba'55,x7+x2~£
pGx) = J070%1) *

XA

A 7 2 ( 5
2> be 25)

E=0 7 x-09,.m,

X2 =0,%, e, 1y

The overflow traffic R; amounts to
4]

Ry = A:Z:}@(Xz)'}?(nw)ﬁ) (36)

=k
The loss By (or the overflow traffic By resp. )
can be calculated according to Erlang's loss
formula, the loss values By and Bys¢ result from
eq. (9) and (10).

3.3.6. Numerical Computation and Results

Using the relation
RY

rm T Seam TS

rm=a (37)
the S-polynomials can be evaluated successively
by addition of two other values, starting with
the numerical values

Am

5/’,0 =7 and Sﬂ,m = mi
Example.

For an overflow system with a full available
primary group of ng =10 trunks, an offered traf-
fic of A=8 HrlangS, and an ideal secondary
grading of np= 10 trunks and availability ko = 4
one obtains

By = 0.008889
Btot = (5,001081

“or calculating this example, the method shown
here is faster by a factor 35 as compared with
the SOR method.

By, = 0.008625 Erlangs

3.3.7. Extension to Non-ideal Secondary Gradings

This method can also be applied to overflow
systems with non - 1 de a l secondary
gradings (see section 2.4) if the state conges-
tion probabilities 62{x2) are known with suf-



ficient accuracy. For determining Sz(x ), the
following approximation formula by “U,%Herzog
and R. Kirsch[ 6 ] can be used:

(¢

Gy () = e K= 07, (38)
(i
with
K= kom0 (k- 5) 772}’“;2,(%-52,%;)’ o)
Kk 36

where ¢; and ¢, are constants which can be found
by a few simulation runs ver grading typs.

Example.

For an overflow system with n1:=36 trunks and
a secondary group which consists of a so-called
simplified standard grading (as shown in fig.13)

A

l

y = 36

lﬂ1

® s 6 e 8 8 2 5 6 o o o

® o 8 © 6 © & ® & & o @

J777777777h4 )

be,

Fig. 13: Overflow system with a so-called
simplified standard grading as
secondary group

with no =60 trunks and the availability ko = 10
one obtains for an offered traffic of A =80
Erlangs the value . Bz = 0.0752

(For so-called simplified standard gradings of
the German PIT the constants cq=1.26 and

6z =0.32 are valid [¢] . The traffic Y, carried
in the secondary group was determined approxima-

- ooy PRECYN oareanr €1 e e L
‘tel"y for offered OVETr1l LOW tx'alxi(,»)

4 traffic simulation yields
B, = 0,0750 I o0.004

From this it can be seen that by means of this
numerical method loss probablilities of high
accuracy can be obtained even for remarkably
large secondary groups.

3.4, Overflow Systems Consisting of
Two Full Available Groups

The loss values in overflow systems where the
primary group as well as the secondary group are
full available can be easily obtained by apply-~
ing Erlang's loss formula two times. The probe-
ability distribution in the secondary group can
be calculated according to the well known
analytic solution of E. Brockmeyer [ 57 .
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Se OVWER-1LOW SYSTEMS WITH TWO FULL AVAILABLE

GROUPS AND A F I NI T E NUMBER OF SCURCES

An overflow system consisting of 2 full
avallable groups with a limited number of traf-

x,q
b
ny
} B
)
) R

Fig. 14: Overflow system with full available
groups and a finite number of sources

fic sources is shown in fig. 14. For this system
the following equations of state are obtained:

(3050t (G-xm05)] oy, xy) = o [g-Ga-1)-xa ] Plx-1,x5)
+ (1) pla+T x)
+ (+ 1) p(x; x3+71) (40a)

Xy= O, oo, My=1

J

X o= 01 ...,y

[Prexg+ B (G=r=x)]pfa ) = e fg-(m-1)-Xa ] p(n1-1,0)
A fgmny - 0g1)] plng xp1).

W+ 1) p(ngay+1) (40b)
Xy = O ..., Ny
where =1 if Xp < ny, else Y=o s
Ny
2 2 plax) = 1 (40c)
Xy=0 X =0

An analytic solution has been derived also for
this type of overflow systems. For lack of space,
however, this solution will be only briefly
stated here. : i

The following expression for the probabilities
p(xy,%p), which is similar to eq. (19), can be
der}ve with the aid of generating functions:

P ARIENEIE TR R

plxr,x) =
E‘XJ
where
Ll o r r
7 - “arw ).gm jre =1+
lm = % (qu,'z“ & (7 7 ?) (h2)

The value p(ny,ny) can be calculated directly:

(n, ?/72)' o2

P (n,,‘ nz) =

B P (43)
Z (Q)""
7=0
Furthermore, eq. (41) yields
o P, 0y) = pl0.M T, 5, (L)
us
9 Vg™
+ [
rOn) = (nyny ) (45)

I),4/;2
Bon B0 (D)0

Inserting eq. (45) into (40b) leads to the
relation



&-x-7

na
4 D ) ).

o (q-ny=%2) Ty n, Eoxgi1
[« ta ey [ (8- 65N g
()(24.7) [n1 o Bt (‘7’”1“‘/2 7)] T,;fxz ~E+7
+ 0} (6+2)- (X)#—Q} £, ,)7,;,(2-54-2),
%=09 ..., N1

’

p(ox) =
(46)

where V= 1 if x, < np - 1 , else ¥+=0 ,
or in a simplified notation

ay. (0%,
Z_. X €’ r (47)

E=Xy+] Xa= O, 00n) Na=1

p,x) =
with the abbreviation
. (w4)20ﬁ4
Iz = W “‘(9‘"7“*)'[(5)‘(xf'))]’rz,n,‘«x—z

+(,54) [n,+X+0l Hg-ny-x-1)] - Tz
+ 2 (x+2)- (x+2) '7Z_,n,+x~2*2 ),

where V=1 if x < np -1, elset=0.

Knowing p(0,n,) from eq. (45), all values
p(0,x,) can be calculated successively according
to eqs (47). Then the probabilities p(x4,Xp) can
be easily evaluated by means of eq. (41).

This results in the following formulae for
the probabilities p(xl,xz):

n1¢—X—Z+1

(48)

o2
05,%) = 7{'71*”2)""2 g( 4)3')(2 bg ) &, xexy-€
e (49)
where
« N2
b Zg_axzrz7 Z_aZwZz Za22,23 - Zazw-hzw
2y=+7 2=21+1 23=2p+7 2 =2yt
for Xo= 0., Mz (50)

withw = 1y -xp
Further one obtains the traffic Yy carried in

the primary group and the traffic ¥, carried in
the secondary group.

N2
Y, = Z_ Z’(7')°(X1,X2) (51))

X1=0 X3=0
Y= Zn X (X1,%3) (52)
)(.- Mo = O )
Xo=0 L

the offered traffic
A= o-(q-Y;-1)) (53)

and the overflow traffics

Ry = A-Yr (54)

The loss values B,,
(8), (9), and (107.

For the variance V of the traffic Y, carried
in the secondary group one obtains

By, and Bgog result from eq.

g
Z Z (2= Y5)% p(xy, x2) (56)

9 = X2-

-, Example .

For a full avalilable primary group with

=10 trunks, a full available secondary group
w th n, = 10 trunks, and for q= 40 traffic
sources with a call intensity & = 0.5 each
the following values are obtained:

Y, = 8.748 Erlangs
Y, = 4,505 Erlangs
A = 13,373 Erlangs

B, = 0, 3458 = 4,625 Erlangs
B, = 0,.0260 R2 = 0,120 Erlangs
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