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INTRODUCTION

Many problems in physics and engineering lead TO
linear equation systems. In many non-linear cases, in
which an exact sélution is very complicated or not practicavie
at all, a linearisation yields good approximate results.
Therefore very often the solvability of engineering provlems
depends on the solution of large sets of linear eguations.
Of course, the upper limit of the rank of an eguation
system to be solved 1is heavily influehced by the properties
of the computer used, in particular by the storage capacity
and tne computing speed. However, the method applied and
the equation system itself play a very important part, too,
in this gquestion.

II

ELIMINATION METHODS

In Fig. 1 a set of linear equations is shown. The
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Fig. 1

Set of linear equations
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classical approach is the well-known solution of sucn
systems by means of elimination, the so-called GAUSS -~
JOWDAN - algorithm, In this method, equations are
_successively combined in such a way, tnat in tne new
equations obtained one coefficient becomes zero. Thus,
finally a set of equations with a triangular matrix

(as shown in Fig. 2) is obtained, from which the unknowns

+ c, %X - d = 0

C11%1 T C1p¥p T C13%Xy T .. 1n*n 1
+ e o @ + - d- =
©33%3 ©3n*n 7 %3 0
°in¥q =~ 9n = O
Fig. 2

Set of linear equations with
triangular matrix

can easily be evaluated in turn. This elimination method
is known in various modifications which are adapted to
special computing facilities or special sorts of equations.

Whereas formerly by manual computation it was only
possible to solve systems with up to about ten unknowns
(with a reasonable amount of computing work), this limit
can now be exceeded by far with the aid of electronic
computers., The maximum possible number of unknowns depends
mainly on the storage capacity of the computer. For a set
of n linear equations in general n.(n+l) = n2' storage
locations are necessary.

Thus, -on a modern computer as e.g. the Control Data
CDC 6600 with a core store of 64000 words and an addition
time of 1 Hs for 12 digits it 1s possible to solve
systems with about 200 unknowns, regarding the fact that
programs, monitor etc. must also be stored. Applying the
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7 million words magnetic disk memory of this computer,
it would be possible to deal with systems of up to 2500
~eguations. This is, however, not possible because of the
immense computing time in the mapgnitude of more than a
hundred hours in this case, caused by the poor speed of
the magnetic disk memory. ,

The nunber of 200 unknowns doesn't seem to be too bad,
but in many cases this is not sufficient.

In a modified elimination process, the matrix is sub-
divided into several submatrices as shown in Fig. 3 .

M1 Mi2 M4
W= Moq Moo Mpq
Ma1 Ma2 a5

Fig. 3

Subdivided matrix

This procedure is more complicated. Usually the maximum
rank can be enlarged by a factor two or three with this
method. Larger systems can also be solved, but only with
long computing times. The largest general equation system
solved on the CDC 6600 up to now had 600 unknowns.

In special cases the storage requirement of a matrix
can be smaller. A very important special kind of matrices
are the so-called band matrices. In such a matrix (as
shown in Fig. &) only the elements on the diagonal and
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Band matrix

near the diagonal are different from zero. In a bend matrix
the zero elements are not changed during the elimination
process. Therefore it is not necessary to store them, and
the storage requirement can be reduced. Furthermore, the
elimination process is shortened in case of band matrices.
This means a reduction of computing time, too. Thus, in
case of band matrices the rank may have higher values,

in particular if the number of terms in each equation

is small.

A further, considerable enlargement of the rank can be
obtained with band matrices by applying the method of sub-
matrices. Then, the maximum rank of a set of equations 1is
mainly determined by the computing time available.

The largest sets of equations with a band matrix .
evaluated on the CDC 6600 up to now had 6000 unknowns; in
each equation were not more than 600 terms. For these systems

a computing time of 5 up to.l5 hours was necessary.
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From this it can be seen, that the use of elimination
methods can be extended to fairly large sets of equations,
but only on the expense of a large amount of programming
work and with long computing times. Furthermore, elimina-
tion methods are sensitive to rounding errors, in particular
if a matrix is very large or ill-conditioned. Of course,
rounding errors can be restricted by double or multiple
precision storage, but in case of large sets of equations
there will usually be not enough storage capacity available.

III

 ITERATIVE METHODS

)

III.1 GAUSS - SEIDEL - method

A very well known iterative method is the so-called
GAUSS - SEIDEL - algorithm.

This method starts with a set of approximate values xiév
for the unknowns Xy (The subscripts indicate the number
of the unknown, the superscripts the number of the iteration
cycle.) These initial values for the unknowns are chosen
according to empirical knowledge, e.g. xg”z 0 or x¥)= .

In the GAUSS - SEIDEL - method, these initial approximate
valués are improved successively as follows:

If these approximaté values are inserted for instance in
the first equation, this equation will in general be not
fulfilled, i.e., the left side has the value ("error") ey
instead of 0. Now, the numerical value of the first unknown
xﬁq) is altered in such a way that the left side of this

equation becomes 0. For this purpose, the increment Axl
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must Dbe
1 all

St inply, Lhe dpproximatce values are incertea in ftne
second equation, and the second unknown is altered in
such a way that this equation is fulfilled, etc. Here,
for the unknown x; the new, improved value is taken
already. In general, the increment Axi which must be
added to the value xiw) is

e
i
A x = -
ks 214

where e, means the deviation of the left side of

equation number i from zero. Finally, when the last
unknown has been altered by means of the last equatlion,
the first cycle is completed and a new set of approximate
values xiwv exists. In the following cycles these values
can be further improved. The process is stopped, when the
increments Axi are altogether less than a given bound & ,

n

,Z‘AXL" < £

(=1

where & 1is e.g. equal to 10“5.

For the convergence of this method the matrix elements
in the leading diagonal must dominate the other elements.
There are several convergence criteria. E.g. the method 1s
cor.vergent, if in each equation the absolute value of the
coefficient of the diagonal is greater than the absolute
values of the other coefficients together:
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This i%, however, a sufficient condition only, ana not a
n@céssary one; that means, the process can converge, even

1f this condition is not fulfilled. There are also conditions
which are more critical, but these are rather complicatea
and can usually not be checked before starting the iteration
process. Thus, sometimes the question of convergence can
only be solved by trial: in this case, during the iteration

process 1t is observed whether it converges or not.

If this iteration method does not converge for a certain
matrix, then by a method of GAUSS the matrix could be altered
in such a way that the iteration brooess converges. Tnis
alteration, however, needs more computing work than the
wnole solution of the equations by elimination and is there-~
fore usually not of interest.

A disadvantage of the GAUSS - SEIDEL - method is, that in
many cases 1t converges rather slowly. Therefore several
modifications with better convergence properties have been
developed. |

One of these modified methods is the so-called
successive overrelaxation method. The next section deals
with this method.

III.2 Successive Overrelaxation Method
In the GAUSS - SEIDEL - method, the corrections for the
approximate x-values were

€y
1 854

This correction is chosen such, that the error e, is just
compensated. In the overrelaxation method, these correction
are multiplied with-a factor w:

e

a

4x = - W
. i1
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i. e., the errors e, are not just compensated, but over-
compensated.

The convergence criteria for the overrelaxation method
are the same as for the GAUSS - SEIDEL - method. If,
however, the relaxation factor w 1is proberly chosen, the
overrelaxation method may converge considerably faster as
compared with the GAUSS - SWIDEL - method.

In general, it is important to use a suitable w factor.
strictly speaking, the optimum w factor can be different
for each equation and for each iteration cycle. For reasons
of simplicity, however, usually a constant W factor is
applied. The optimum w factor can be found by trial only,
except in extremely small egquation éystems.

The way to find an w factor which is optimal or nparly
optimal could run as follows. Tne method is carried out
with several W values up to a certain checking point, for
instance up to 8 cycles. Then, the method is carried on and
finished with the best of these W values.

When some experiences with this method are available,
it is in many cases possible to find empirical approximations
for the optimum w factor with respect to type and magnitude
of the equation system.

Generally, w has values between 0 and 2

0 = Ww = 2

The GAUSS - SEIDEL - method is a special case of the
overrelaxation method with w 1. Sometimes the optimum
w factor can be less than 1. If an w <1 is used, the
method is called "underrelaxation".

il




- 11 - 34-70 VII

L{IT1.3 Advantages of Iterative Methods

Concerning the advantages of iterative methods 1t must
be pointed out, that they are very well suited for equation
systems with a sparse matrix, i. e. a matrix in which a
conslderable number of elements are zero.

As the matrix 1is not changed in iterative methods, the
zero elements exist through the whole process. This effects
a decrease of computing time.

Anothner advantage of a sparse matrix is that the zero
elements need not be stored if an iterative methoa is applied.
It is then sufficient to store the non-zero elements and
their subscripts which indicate the position of these
elements in the matrix. By this kind of storage it is often

possible to solve lérger sets of equations.

In large equation systems very often the matrix elements
are not written on punched cards but evaluated by the computer
according to a special program.

Because the matrix elements are not changed during the
iteration process, they can be evaluated whenever they are
needed in the iteration procedure and do not need to be
stored at all. The only thing that mustbe stored is the
set of unknowns. This is a most important advantage of
iterative methods.

The storage necessary 1is therefore restricted ton

locations only (instead of nz). This enables a consideraople

asala s

speed computer TR & of the University Stuttgart with an
addition time of 5 us the number of unknowns can be raised
to about 16 000, with the CDC 6600 computer the rank could
be raised to about 40 000. These are fairly high values.

A further very important advantage of iterative methods
is thelr insensibility against rounding errors. This is
very important.
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Theoretlcally climination methods yield exact results,
wrerceas iterative methods give approximate results only.
IT, nowever, these methods are carried out in practice on
a computer with a limited number of digits, e. g. 12 or
15 digits per value; the situation is entirely different.
Then the iterative methods can yield results of hign precision,
whereas the precision of results according to elimination
methods can be severely impaired by rounding errors.

IV

APPLICATION TO MODERN SWITCHING NETWORKS
IV.1 Overflow Systems

- As a first example let us consider a so-called overflow
system. Such a system is shown in Fig. 5. A Polsson traffic
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Fig. 5

Overflow system
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Aq is offered to a trunk group, the so-called primary
sroup, with ny trunks. (A1 is the number of calls arriving
ver unit of time). Calls which can not find a free trunk

in this group are overflowing to another pgroup, the so-
called secondary group. This so-called overflow traflflic hl
and another Poisson traffic A2 are offered to the seconuary
group, which consists of n, trunks.

This is a very simple example of an overflow system. 1In
modern telephone systems with alternate routing facilities,
overflow systems are used to a.very large extent. This has
also been pointed out in the paper of U. Herzog ("Problems
in Teletraffic Theory"). _

For an exact computation of the amount of traffic whicn
can not be handled by the secondary group, a set of linear
equations must be solved.

In the primary group either no trunk, 1 trunk, 2 trunks
etc. or all n, trunks can be occupied. Thus (nl+l) different
states are possible in the primary group. For each of these
states, in the secondary group there are (n2+1) possible
states respectively. In total there are (n1+1).(n2+1)
different states.

In this system all calls can reach any free trunk of the
primary group or secondary group respectively. Thus, for
calculating the probability of loss, the pattern or situation
of occupied trunks is irrelevant. Therefore it is sufficient
to distinpguish between the (n1+1).(n2+1) different states
of occupation.

Each of these states of occupation occurs with a certain
probability. For calculating the probability of loss, the
probabilities of all these (n1+1).(n2+1) states must be
evaluated. Therefore this problem leads to & sev of

[

(nl+1).(n2+1) equations.
In the investigation of such overflow systems the
successive overrelaxation method proved U0 be very well
suited for the solution of the linear equation systems

oceuring.
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As we nad to compute values for quite & number of
systems, it was well worth finding out the optimum
w factor, which is mainly dependent of the rank for
systems of this kind. In Flg. 6 the optimum w factor 1is

20

wopt /
1,5

/
R
1,0 ;
1 0 100 000 10000
Fig. 6

The optimum w factor as a function of the
number of unknowns

shown as a function of the number of unknowns.

The largest system of this kind investigated up to
NOW yielded a set of 10 000 equations. In each equation
there were 5 terms at most, the others being zero. With
an w factor of 1.715 the solution of this set of eguations
took 85 minutes on the computer TR L, giving results -
true to 7 digits.
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IV.2 Groups with Limited Access
In a second example let us consider a trunk group

with limited access, a so- called. grading, as shown in
Fig. 7 . In this group there are N trunks, but all calls

Fig. 7

~Group with limited access
( grading )

have access to k trunks only. In this example each call
in one of the 4 subgroups has access to 4 trunks only. A
Poisson traffic A is offered equally to the various sub-
groups of this trunk group. The traffic B, which can not
. be handled, is to be evaluated.

For the exact calculation of such & group with limited
access 1t is not sufficient to consider the number of
trunks which are occupled in a certain state, because each
of the subgroups, e.g. subgroup number 1 , have access to
4 trunks of the 10 only. Therefore it i1s essential to
distingulsh the various possible patterns in which these
occupied trunks are situated, i.e., to consider which of

the individual trunks are occupiled.
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The pattern of occupation can be regarded &as a snap-
shot of the momentary state of tne system.

As there are N trunks, each of which can be either [ree

r occupled, there are ZN possible patterns. Thus the
investigation of such a group leads to a set of ZN linear
equations.

In groups with special symmetriesvthe rank can be re-
stricted. The patterns can then be classified into groups
of patterns with the same probability, and it 1s sufficient
to calculate the probabilities‘for these groups only instead
of all patterns. But this special case shall not be con-
sidered here.

The investigation of such groups with limited access 1is
rather an old problem of traffic theory. As, however, the
nunber of equations increases tremendously with increasing
number of trunks, the magnitude of such groups which could
be investigated without the use of electronlc computers was
limited to about 3 trunks, corresponding to 23 or 8
equatlons.

When the first computers became available, it was possible
to investigate groups with up to‘9 trunks, corresponding
to 512 equations.

On the TR 4 computer, it is now possible to investigate
groups with up to 14 trunks, corresponding to a set of

14 = 16 384 equations. With the overrelaxation method
this system needed a computing time of 95 minutes with an
W factor of 1.33 . -

For such groups with limited access the optimum
W factor is - similarly to the first example - mainly
a function of the rank, and thus of the number of trunks.
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In Fig. 8 the number of iteration cycles is shown as a
function of the relaxation factor w for a prescribed

:

ITERATION
CYCLES

300

200

100

n = 1681
ex0"° w-FACTOR

Fig. 8

The number of iteration cycles
as a function of the w factor

& value. From this diagram it can be seen that the
computing time can increase considerably, e.g. by a
factor 3 or more, if the w factor is not properly chosen.
(This diagram corresponds to a set of 1 681 equations).
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\Y

~CONCLUSION

In solving sets of equations with special properties,
it is often useful to apply iterative methods, in particular
the overrelaxation'method, instead of the classical ”
elimination process. It is possible to save computing time
and storage room, which is essentially. Therefore very large
sets of equations can be solved; As examples, applications.
to modern telephone switching systems have been presented.
From these examples it can be seen that sets of 10 000
and more equations can be solved easily by means of the
overrelaxation method. ’




