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Abstract
Traffic characteristics in communication systems have changed massively in the past. However, these changes
are ongoing as this is a continuous process caused by constantly changing technologies, services and usage pat-
terns. Simultaneously, research enabled a refined understanding of traffic characteristics. An important and traffic
invariant characteristic is self-similarity and long range dependence. This is also present in the Internet back-
bone, impacting particularly performance evaluation studies due to its significantly slower decrease of correla-
tions/variability. Therefore, it essential that traffic models reflect the relevant characteristics of real traffic appear-
ing in current networks and provide additional flexibility for further changes. Lindenmayer System (L-System)
based traffic models provide such a flexibility. In this paper, we extend the L-System model to the bit-rate level.
We show the good modelling properties of the extended L-System model on basis of artificial traces and real
traces of a broad-band user access rate scenario. We describe the developed modifications of the fitting process to
accommodate the model extension.

1 Introduction
Characteristics of traffic in communication systems
have changed massively in the past decades and are
continuously changing, caused by changing technolo-
gies, services and usage patterns. Increasing penetra-
tion of broad-band and mobile user access, enabled
quick adoption of new services, like file sharing, geo
services or video services (e. g. YouTube). Further,
the services’ shares shift with time or popularity and,
hence, impact on traffic characteristics. Also, the pen-
etration of communication systems and their usage in
daily life increased immensely, from a dial-in towards
an always and everywhere online pattern. All this con-
tributes to continuously changing traffic characteristics.
Simultaneously, research enabled a refined understand-
ing of traffic characteristics and also revealed new char-
acteristics (e. g. scaling, burstiness, peakedness, mono-
/multi-fractality). An important and traffic invariant
characteristic is the self-similarity property [10, 18]
or the long range dependence (LRD) [12] which is
also present in the Internet backbone on larger time
scales [9]. This characteristic impacts particularly per-
formance evaluation studies due to its significantly
slower decrease of correlations/variability over scal-
ing regarding time or space, impacting queue length
dimensioning, burstiness/peak rate values and simula-
tions times [6].
Traffic models play a fundamental role for performance
evaluation studies of communication systems. In or-
der to achieve realistic results, the traffic models have
to reflect the relevant characteristics appearing in cur-

rent networks. Specially, the current continuing trend to
an increased date-centric and increased packet-oriented
network paradigm impose new challenges for traffic
modelling in transport networks contexts (e. g. with the
upcoming carrier-grade Ethernet services and technol-
ogy). It is essential using realistic traffic models of
current traffic characteristics even for transport network
evaluation studies. Additionally, traffic models have to
provide flexibility to adapt to further changes wrt. their
application and traffic characteristics.
Lindenmayer System (L-System) based traffic mod-
els provide such a flexibility. They were only re-
cently introduced to the context of communication net-
works. These traffic models can be basically deployed
at different abstraction levels (e.g. packet, rate, flow,
connection-level) due to the adaptability of the under-
lying stochastic, parametric L-System formalism. The
latter has already been successfully deployed for mod-
elling multicellular growth of organisms and modelling
natural-looking plants for computer graphics.
The L-System models can be parameterised such that
they reflect the traffic characteristics of an almost ar-
bitrary trace. Such generated traffic matches well the
trace distribution and the correlation structure of the
trace. It also reflects the degree of self-similarity con-
tained in the trace, even the multifractality to a certain
extend.
So far, L-System models have been applied only to
packet-level yet. Performance evaluation in the context
of transport networks are seldom performed at packet-
level but rather on a rate or higher level.



In this paper, we extend the L-System model to the
rate-level, making it applicable to above evaluations.
We show the modelling properties of the extended
L-System model on basis of artificial traces and real
traces which are captured at the uplink of a dormi-
tory network, providing already broad-band user access
rates. We describe the developed modifications of the
fitting process to accommodate the model extension.
Also, we discuss selected aspects and properties for the
determination of the model parameters. Results show
that the extended traffic model matches well the given
traffic characteristics.
This paper is organised as follows. In section 2, we de-
scribe the fundamental Lindenmayer formalism. This
formalism is used in section 3 for traffic modelling
where we describe the model and the parameter deter-
mination. In section 4, we discuss the results of the
model applied to different traces. We present the con-
clusions in section 5.

2 Lindenmayer System
The Lindenmayer System (L-System) is a formalism
for the generation of complex, fractal structures. There,
a complex structure is represented by a string of ele-
ments. The term element denotes any discrete construc-
tional unit that repeatedly appears in the desired com-
plex structure.
The biologist A. Lindenmayer introduced originally L-
Systems [11] for describing the development of multi-
cellular organisms and are now also used for describing
and modelling natural-looking plants [14, 13]. They are
especially powerful for describing fractal (self-similar)
structures.
The central concept behind an L-System is that it works
as a parallel rewriting system, which replaces succes-
sively any individual element of the current string by
a subsequent sequence of elements. This is called a
production step. Such a production step is repeated it-
eratively until the required complexity of the string is
reached. The number of required iterations is called
maximal iteration depth S . The replacements are gov-
erned by so-called production rules. At least one pro-
duction rule must exist for each element, but also mul-
tiple rules may exist.
The L-System builds a formal grammar [14], equiva-
lent to context-free Chomsky grammars [3] or Backus-
Naur form [2]. It is characterised by an quadruple
G B (V, P, π(P), ω), where
• V is the alphabet containing all possible ele-

ments λi,
• P is the set of all production rules,
• π(p) represents the rule probability by which a

rule p∈P is selected from all possible rules of an
alphabet element and

• ω is the initial start element, called axiom.
The L-System is called stochastic if multiple produc-
tion rules exist for an element and the applied rule is

selected randomly. If exactly one production rule exists
for each element, then it is called deterministic. Fur-
ther, production rules for an element can depend on ad-
ditional parameters (e. g. time, iteration depth,...). Such
L-Systems are called parametric. In the following, we
use L-System as a synonym for a parametric, stochastic
L-System . An illustrative example is the following:

Alphabet: V = {A, B}

Production rules: P = {A
1
→ AB,

B
0.5
→ AA, B

0.5
→ BA}

Axiom: ω = A

where
π(p)
→ denotes the probability π(p) that a produc-

tion rule p will be chosen. For this example, a possible
sequence of strings at different iteration depths is

iteration depth string
i = 0 A
i = 1 AB
i = 2 ABAA
i = 3 ABBAABAB

This general and abstract formalism enables the appli-
cation of an L-System in further, rather different do-
mains. The key is the appropriate transfer and inter-
pretation of the alphabet and rules for the new purpose.

3 L-System based Traffic Model
Salvador et al. [15] first brought the the L-System to
the traffic modelling context. They used the
L-System formalism to model traffic and proposed dif-
ferent variants of approaches [16], however, only on
the packet-level. They showed that the L-System based
traffic model reflects traffic characteristics of different
types of traffic (aggregated traffic and application traf-
fic). For this, they fitted the L-System based traffic
model to traces. The generated traffic by such an fit-
ted model reflected the probability density function,
degree of self-similarity and correlation structure [17]
very well.
Here, we extend the L-System based traffic model to
the bit-rate/volume abstraction-level. This increases the
flexibility and makes it more applicable for studies of
metro and backbone networks scenarios as the packet-
level is usually not reasonable in such contexts. In
the following we will use simply rates for bit-rates and
L-System (traffic) model for an L-System based traffic
model.

3.1 Traffic Model
The basic traffic modelling idea is that the sequence
of traffic rates represents the complex, chaotic (frac-
tal) structure, which is generated by an L-System as de-
scribed in section 2. The L-System traffic model will
reflect the traffic characteristics which are captured in
a rate trace of an overall length T , where the rates are
calculated for an interval of length ∆. The generation
of traffic with a parameterised L-System model is then



not limited to this time T .
Now, the L-System formalism has to be transferred
to the traffic modelling context and its parameters
V, P, π(P) and ω have to be interpreted appropriately.
Further, additional interpretations and parameters are
required.
The L-System is characterised by GB(V, P, π(P), ω).
Here, the alphabet VB{λ1, . . . , λL} defines all possi-
ble, non-negative rates which can occur in the modelled
traffic, where L is the number of alphabet elements.
The generation follows the L-System principle:
• Starting with the initial element, i.e. axiom ω.
• In each production step a new sequence X(i) of

elements is generated, where i=0, . . . , S is the
current iteration depth, representing the num-
ber of applied production steps for generation of
X(i).

• The production step X(i) → X(i+1) is iteratively
applied until the final iteration depth of S is
reached. So, X(0)=ω and X(S ) is the final desired
sequence of rates which will be used for traffic
generation.

Further parameters and interpretations are required for
the traffic modelling context apart from the direct
L-System parameters. Each string X(i), at iteration
depth i, is mapped to a time-scale i, where the elements
of this string, representing rates, are based on intervals
of length ti. The production rules generate for each el-
ement X(i)

k , k=1, . . . , 2i, of X(i) two successor elements
(X(i+1)

2k−1 , X
(i+1)
2k ) such that the arithmetic mean of the two

successor elements remains the same as the original el-
ement. After a production step, the number of string el-
ements in X(i+1) is doubled and the time interval length
is halved (ti+1Bti/2). The finest time-scale, with a time
interval length of ∆, is reached after S repetitions of the
production step. By this construction, it is achieved that
the total mean (over total time length T ) is conserved
and defined by the initial string ω.
Traffic shows different traffic characteristics over all dif-
ferent time-scales. These time-scales can be grouped to
ranges, where traffic shows similar behaviour. A range
Rs is defined by {is, is+1, . . . , is+1}, where is∈{0, . . . , S },
is<is+1 and s∈{1, . . . , S }. For this, the production rules
are parametric such that they are conditioned to be ap-
plied only for a range of time-scales. Therefor, a pro-
duction rule is specified by

pi, j

∣∣∣∣
k∈Rs

: λi
πs(pi, j)
−→ (λ j, 2λi − λ j)

and, thus, is only valid if the time-scale k lies between is

and is+1. Further, rule pi, j for element λi will be selected
with probability πs(pi, j).
This construction process can be represented as a tree
where the root is the axiom and the leaves are the ele-
ments of the final sequence at the finest time-scale S .
Here, the traffic is modelled following the multiplica-
tive principle where an initial value (axiom) is itera-
tively subdivided in a mean conserving manner.

This means, that each final element (leaf) is a weighted
product of all node values from root to leaf. It is dif-
ferent to the additive approach which is predominant in
traffic modelling. The L-System model belongs to the
class of cascade based traffic models. Also, the mod-
els described in [4, 5] belong to this class and can be
described by an L-System .

3.2 Parameter Inference
The fitting approach follows mainly the approach pre-
sented in [15], however, we extended it to the bit-rate
level and we modified the time-scale range determina-
tion to be more general applicable.
The parameter inference is based on a bit-rate traffic
trace calculated at intervals of length ∆. With the over-
all time span T of the trace also the number of time-
scales S is defined as

S B
⌊
log2

T
∆

⌋
.

The required model parameters are the alphabet, pro-
duction rules and the grouping of consecutive time-
scales to ranges.
For the alphabet V B {λ1, . . . , λL}, λ1 and λL is deter-
mined as the minimal and maximal rate values occur-
ring in the trace, respectively. The remaining elements
are calculated as

λi B λ1 + (i − 1)
λL − λ1

L − 1
, i = 1, . . . , L

which are L−2 equidistant spaced values between λ1
and λL. The number of elements, L, defines the possible
accuracy and thus how close the modelled values are at
the real trace values. The decision of the number of
element L is based on the form of the trace probability
density function (pdf). A higher variable pdf requires
a finer step size, thus more elements than a smoothly
shaped pdf, where a coarser step size is sufficient.
The production rules define how elements are replaced
in each production step. In principle, an element can
be subdivided to any other mean-conserving pair. The
subdivision is controlled by the probabilities of the pro-
duction rules. However, the different variabilities of the
rates in the real trace at different time-scales must be
considered and, thus, the subdivision of rates. The vari-
ability is reduced at coarser time-scales (i. e. small i)
and higher at finer time-scales (i. e. large i). This is
achieved by grouping appropriate time-scales to ranges
and inferring for each a set of production rules.
For determining this, the trace is analysed at the differ-
ent time-scales of a ranges Rs. Let denote Y (i) the trace
at time-scale i and its k−th element by Y (i)

k .
Between two consecutive time-scales i and i+1, each
interval k with its rate Y (i)

k at time-scale i is subdivided
into two, halved successor time intervals with their cor-
responding rates Y (i+1)

2k−1 ,Y
(i+1)
2k at time-scale i+1. The

probabilities πs count these relative frequencies. The
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Figure 1 Lognormal trace and corresponding generated traffic of an L-System model

rates occurring in the trace are each rounded to the clos-
est alphabet element.
In [15], Salvador et al. used for determination of the
ranges only the wavelet scaling analysis [1] based on
the log-scale diagram of second-order discrete wavelet
coefficients over scales. There, a range corresponds to
a set of consecutive time-scales which lie on a straight
line (i.e. have a linear relation) wrt. to the confidence
intervals in the log-scale diagram. However, we show
in section 4 the need of further criteria.
The ranges are used to group consecutive time-scales
which share a similar traffic behaviour regarding the
scaling, variability and correlation. For each range, a
single set of production rules is determined. The crite-
ria for a group of time-scales building a range are
• linear sections in the wavelet log-scale diagram,
• same degree of variance based on the variance-

time plot,
• balanced sample size of rate subdivisions across

time-scales avoiding a predominance of subdivi-
sions at a time-scale over the other for the prob-
ability estimation process,

• statistically large enough number of samples for
the probability estimations in a range.

It has to be considered that the number of alphabet el-
ements, production rules and ranges influence mutually
the complexity of the parameter inference process. So,
for an increased number of elements, an increased num-
ber of production rules and probabilities is necessary.
Lower number of elements leads to a reduced accuracy
of the generated wrt. to the original traffic. The same
applies analogously for the number of ranges. How-
ever, the parameters can be tool-based inferred from a
trace.

4 Results
In the following, we show numerical results of a fitted
L-System traffic model on the bit-rate/volume level. In
particular, we show the need of a further criteria for the
range identification within the parameter inference pro-
cess. Further, we compare the traffic characteristics of
a trace with the characteristics of the traffic generated
by an L-System traffic model which we fitted to traces.
The matching self-similarity can be seen on the basis of
the log-scale wavelet or the variance-time diagram.
We use two types of traces to show different aspects. On
the one hand, we use traces, which we artificially gen-
erate by probability distributions, to show limitations
of the current range identification step. On the other
hand we use a real trace collected in a productive net-
work to show the good modelling properties of the fitted
L-System traffic model.
We generate two artificial rate traces (rate inter-
val length ∆=0.1s) which are based on a lognor-
mal distributed (µ=1, σ=1) and negative exponential
(λ=0.001) distributed packet inter-arrival times, respec-
tively. In the following, we call the traces lognormal
and Poisson, respectively.
The measurements point for the real trace was the Inter-
net uplink (upstream) of the dormitory network "Self-
net" of University of Stuttgart with approx. 1000 ac-
tively connected students. The students extensively
use a wide variety of services (e. g. web, email, e-
learning, gaming, e-commerce, voip, video conferenc-
ing) and new emerging Internet services are quickly
adopted. Each student has a 100 Mbit/s access rate
and, at the time of the collection, the uplink bandwidth
was 100 Mbit/s. This environment of a dormitory net-
work might be regarded as a possible future scenario
for residential users with broad-band access. We cap-
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Figure 2 Poisson trace and corresponding generated traffic of an L-System model

tured the packet-level trace with our measurement plat-
form I2MP (IKR Internet Measurement Platform) [8],
a hardware-supported (FPGA-based) passive measure-
ment platform. From this, we build the rate trace (rate
interval length of ∆=0.1s) which is used here. It con-
tains S=17 scales and starts at late afternoon [8].
We implement the L-System parameter inferring proce-
dures, including our extensions, in a set of routines. For
the generation of L-System model based traffic, we use
the IKR Simulation Library (IKR Simlib [7]) and im-
plemented an L-System traffic generator. Also, we use
IKR Simlib routines for the trace analysis.
We plot the log-scale wavelet diagram for the lognor-
mal and the Poisson trace in Figures 1(a) and 2(a), re-
spectively. A single straight line can be drawn for each
trace which contains all scales within the confidence in-
tervals. This was the reason to use on a first step an
artificial trace which is governed by a clear known dis-
tribution and so excludes further biasing effects.
So, according to the procedure in [15], one range
for the L-System model would be sufficient. We infer
L-System model parameter (λ1=0, λL=49, L=50, ω=22
for lognormal trace and λ1=22, λL=147, L=126,ω=100
for Poisson trace). However, the fitted L-System with
single range containing all time-scales (i=0, . . . , S )
does not model well the traces’ pdf, Figures 1(b), 2(b)
(dotted, red curves). The curves show peaks at the bor-
ders of the distribution. These peaks are caused by
indistinction of the different variabilities (and their as-
sociated different probabilities) present in the traces at
higher and lower time-scales as the variance-time di-
agrams show (Figures 1(c), 2(c)). This indistinction
causes the L-System model to tend massively to small
rates already during the construction phase in the higher
time-scales and leading to an overemphasis of the low

and high rates (due to the mean conserving property) at
the finest time-scale S .
As the number of subdivisions halves between two
time-scales i and i−1, it is necessary that frequencies of
subdivision at scales with a lower number of samples
will not be covered and biased by larger frequencies of
subdivisions at scales with a higher number of samples.
We incorporate these two further aspects for the range
determination. This leads to ranges [0,3], [3,7], [7,17]
and [0,3], [3,7], [7,13] of the fitted L-System model
for lognormal and Poisson trace, respectively. Now,
this produces good matching results for the pdf (Fig-
ures 1(b), 2(b); dashed, green curves) and variance-time
plot (Figures 1(c), 2(c); dahed, green curve) with same
parameter set as before apart from the ranges.
We apply this also to the Selfnet trace, leading to λ1=3,
λL=9026, L=100, and ω=1809. The range determina-
tion based only on the log-scale wavelet diagram (Fig-
ure 3(a), solid curve) suggests range borders 6 and 10.
This leads to a biased pdf (Figure 3(b); dotted, red
curve). Considering also the other aspects, we deter-
mine the ranges [0,3], [3,10], [10,17] which leads to
a good matching of the pdf (Figure 3(b)), log-scale
wavelet diagram (Figure 3(a)) and a reasonable match-
ing of the variance-time behaviour (Figure 3(c)).

5 Conclusions
In this paper, we present an extended Lindenmayer Sys-
tem (L-System) based traffic model. The original model
was only recently introduced to the context of traffic
modelling. An L-Systems is a general and powerful for-
malism (formal grammar). Especially, the stochastic,
parametric L-Systems are excellent suitable to describe
and to model fractal, random sequences with given con-
straints. This builds the underlying describing and con-
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Figure 3 Selfnet trace and corresponding generated traffic of an L-System model

struction method for the here described traffic model,
where the traffic is generated according to the multi-
plicative (cascade) principle.
The model can be principally deployed at different ab-
straction levels due to the general L-System formalism,
however, it was only deployed at packet-level, yet.
Here, we extend the packet-level L-System traffic
model to the bit-rate/volume abstraction level. We
showed the good modelling properties of the extended
traffic model on the basis of artificial traces (gener-
ated by a mathematical probability distribution) and
real trace, captured at a large broad-band dormitory net-
work at University of Stuttgart. The extended model
can be fitted to a trace and is able to reflect well the
trace’s rate pdf, degree of self-similarity and variabil-
ity over different time-scales. Further, we showed the
need of additional criteria for the parameter determina-
tion within the inference process. For this, we proposed
further criteria to improve the resulting parameter set.
All these extensions of the model leverage the
L-System based traffic model to a broader application
scope which is now also suitable for metro and back-
bone performance evaluation studies. Also, due to
the flexible formalism of the underlying model, the
L-System based traffic model is able to accommodate
a wide range of different traffic characteristics and ab-
straction levels.
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